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ANALYTIC 

GEOMETRY

IN CALCULUS

n this chapter we will study aspects of analytic ge-

ometry that are important in applications of calculus. We

will begin by introducing polar coordinate systems, which

are used, for example, in tracking the motion of planets

and satellites, in identifying the locations of objects from

information on radar screens, and in the design of anten-

nas. We will then discuss relationships between curves in

polar coordinates and parametric curves in rectangular co-

ordinates, and we will discuss methods for finding areas in

polar coordinates and tangent lines to curves given in polar

coordinates or parametrically in rectangular coordinates.

We will then review the basic properties of parabolas,

ellipses, and hyperbolas and discuss these curves in the

context of polar coordinates. Finally, we will give some

basic applications of our work in astronomy.
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11.1 POLAR COORDINATES

Up to now we have specified the location of a point in the plane by means of coor-

dinates relative to two perpendicular coordinate axes. However, sometimes a moving

point has a special affinity for some fixed point, such as a planet moving in an orbit

under the central attraction of the Sun. In such cases, the path of the particle is best

described by its angular direction and its distance from the fixed point. In this section

we will discuss a new kind of coordinate system that is based on this idea.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

POLAR COORDINATE SYSTEMS
A polar coordinate system in a plane consists of a fixed pointO, called the pole (or origin),

and a ray emanating from the pole, called the polar axis. In such a coordinate system we

can associate with each point P in the plane a pair of polar coordinates (r, θ), where r

is the distance from P to the pole and θ is an angle from the polar axis to the ray OP

(Figure 11.1.1). The number r is called the radial coordinate of P and the number θ the

angular coordinate (or polar angle) of P . In Figure 11.1.2, the points (6, 45◦ ), (5, 120◦ ),

(3, 225◦ ), and (4, 330◦ ) are plotted in polar coordinate systems. IfP is the pole, then r = 0,

but there is no clearly defined polar angle. We will agree that an arbitrary angle can be used

in this case; that is, (0, θ) are polar coordinates of the pole for all choices of θ .
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r
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The polar coordinates of a point are not unique. For example, the polar coordinates

(1, 315◦ ), (1,−45◦ ), and (1, 675◦ )

all represent the same point (Figure 11.1.3). In general, if a point P has polar coordinates

(r, θ), then

(r, θ + n · 360◦ ) and (r, θ − n · 360◦ )

are also polar coordinates ofP for any nonnegative integer n. Thus, every point has infinitely

many pairs of polar coordinates.
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As defined above, the radial coordinate r of a point P is nonnegative, since it represents

the distance fromP to the pole. However, it will be convenient to allow for negative values of

r as well. To motivate an appropriate definition, consider the point P with polar coordinates

(3, 225◦ ). As shown in Figure 11.1.4, we can reach this point by rotating the polar axis

through an angle of 225◦ and then moving 3 units from the pole along the terminal side of

the angle, or we can reach the point P by rotating the polar axis through an angle of 45◦ and

then moving 3 units from the pole along the extension of the terminal side. This suggests

that the point (3, 225◦ ) might also be denoted by (−3, 45◦ ), with the minus sign serving

to indicate that the point is on the extension of the angle’s terminal side rather than on the

terminal side itself.
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In general, the terminal side of the angle θ + 180◦ is the extension of the terminal side

of θ , so we define negative radial coordinates by agreeing that

(−r, θ) and (r, θ + 180◦ )

are polar coordinates of the same point.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. For many purposes it does not matter whether polar angles are mea-

sured in degrees or radians. However, in problems that involve derivatives or integrals they

must be measured in radians, since the derivatives of the trigonometric functions were de-

rived under this assumption. Henceforth, we will use radian measure for polar angles, except

in certain applications where it is not required and degree measure is more convenient.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RELATIONSHIP BETWEEN POLAR
AND RECTANGULAR COORDINATES

Frequently, it will be useful to superimpose a rectangular xy-coordinate system on top of a

polar coordinate system, making the positive x-axis coincide with the polar axis. If this is

done, then every pointP will have both rectangular coordinates (x, y) and polar coordinates

(r, θ). As suggested by Figure 11.1.5, these coordinates are related by the equations

x = r cos θ, y = r sin θ (1)

These equations are well suited for finding x and y when r and θ are known. However, to

find r and θ when x and y are known, it is preferable to use the identities sin2 θ+cos2 θ = 1

and tan θ = sin θ/ cos θ to rewrite (1) as

r2 = x2 + y2, tan θ =
y

x
(2)

x

y

r y = r sin u

P 

x = r cos u

u

(x, y)

(r, u)

p/2

0

Figure 11.1.5

Example 1 Find the rectangular coordinates of the point P whose polar coordinates are

(6, 2π/3).

Solution. Substituting the polar coordinates r = 6 and θ = 2π/3 in (1) yields

x = 6 cos
2π

3
= 6

(

−
1

2

)

= −3

y = 6 sin
2π

3
= 6

(√
3

2

)

= 3
√

3

Thus, the rectangular coordinates of P are (−3, 3
√

3) (Figure 11.1.6). ◭

P

r = 6

p/2

2p/3

0
x

y

Figure 11.1.6

Example 2 Find polar coordinates of the point P whose rectangular coordinates are

(−2, 2
√

3 ).

Solution. We will find the polar coordinates (r, θ) of P that satisfy the conditions r > 0

and 0 ≤ θ < 2π. From the first equation in (2),

r2 = x2 + y2 = (−2)2 + (2
√

3 )2 = 4 + 12 = 16

so r = 4. From the second equation in (2),

tan θ =
y

x
=

2
√

3

−2
= −

√
3

From this and the fact that (−2, 2
√

3 ) lies in the second quadrant, it follows that the angle

satisfying the requirement 0 ≤ θ < 2π is θ = 2π/3. Thus, (4, 2π/3) are polar coordinates

of P . All other polar coordinates of P are expressible in the form
(

4,
2π

3
+ 2nπ

)

or

(

−4,
5π

3
+ 2nπ

)

where n is an integer. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHS IN POLAR COORDINATES
We will now consider the problem of graphing equations of the form r = f(θ) in polar

coordinates, where θ is assumed to be measured in radians. Some examples of such equations

are

r = 2 cos θ, r =
4

1 − 3 sin θ
, r = θ

In a rectangular coordinate system the graph of an equation y = f(x) consists of all points

whose coordinates (x, y) satisfy the equation. However, in a polar coordinate system, points

have infinitely many different pairs of polar coordinates, so that a given point may have

some polar coordinates that satisfy the equation r = f(θ) and others that do not. Taking

this into account, we define the graph of r = f (θ) in polar coordinates to consist of all

points with at least one pair of coordinates (r, θ) that satisfy the equation.

The most elementary way to graph an equation r = f(θ) in polar coordinates is to plot

points. The idea is to choose some typical values of θ, calculate the corresponding values

of r , and then plot the resulting pairs (r, θ) in a polar coordinate system. Here are some

examples.

Example 3 Sketch the graph of the equation r = sin θ in polar coordinates by plotting

points.

Solution. Table 11.1.1 shows the coordinates of points on the graph at increments of

π/6 (= 30◦ ).

Table 11.1.1
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These points are plotted in Figure 11.1.7. Note, however, that there are 13 points listed

in the table but only 6 distinct plotted points. This is because the pairs from θ = π on yield

duplicates of the preceding points. For example, (−1/2, 7π/6) and (1/2, π/6) represent

the same point. ◭
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Observe that the points in Figure 11.1.7 appear to lie on a circle. We can confirm that

this is so by expressing the polar equation r = sin θ in terms of x and y. To do this, we

multiply the equation through by r to obtain

r2 = r sin θ

which now allows us to apply Formulas (1) and (2) to rewrite the equation as

x2 + y2 = y

Rewriting this equation as x2 + y2 − y = 0 and then completing the square yields

x2 +
(

y − 1
2

)2 = 1
4

which is a circle of radius 1
2

centered at the point
(

0, 1
2

)

in the xy-plane.

Just because an equation r = f(θ) involves the variables r and θ does not mean that

it has to be graphed in a polar coordinate system. When useful, this equation can also be

graphed in a rectangular coordinate system. For example, Figure 11.1.8 shows the graph of

r = sin θ in a rectangular θr-coordinate system. This graph can actually help to visualize

how the polar graph in Figure 11.1.7 is generated:
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• At θ = 0 we have r = 0, which corresponds to the pole (0, 0) on the polar graph.

• As θ varies from 0 to π/2, the value of r increases from 0 to 1, so the point (r, θ)moves

along the circle from the pole to the high point at (1, π/2).

• As θ varies from π/2 to π, the value of r decreases from 1 back to 0, so the point (r, θ)

moves along the circle from the high point back to the pole.

• As θ varies from π to 3π/2, the values of r are negative, varying from 0 to −1. Thus,

the point (r, θ) moves along the circle from the pole to the high point at (1, π/2),

which is the same as the point (−1, 3π/2). This duplicates the motion that occurred for

0 ≤ θ ≤ π/2.
• As θ varies from 3π/2 to 2π, the value of r varies from −1 to 0. Thus, the point (r, θ)

moves along the circle from the high point back to the pole, duplicating the motion that

occurred for π/2 ≤ θ ≤ π.

Example 4 Sketch the graph of r = cos 2θ in polar coordinates.

Solution. Instead of plotting points, we will use the graph of r = cos 2θ in rectangular

coordinates (Figure 11.1.9) to visualize how the polar graph of this equation is generated.

The analysis and the resulting polar graph are shown in Figure 11.1.10. This curve is called

a four-petal rose. ◭

6 c i o
u

r

-1

1

r =  cos 2u

Figure 11.1.9

Figure 11.1.10

r varies from 

1 to 0 as u 

varies from 

0 to p/4.

r varies from 

0 to –1 as u 

varies from 

p/4 to p/2.

r varies from 

–1 to 0 as u 

varies from 

p/2 to 3p/4.

r varies from 

0 to 1 as u 

varies from 

3p/4 to p.

r varies from 

1 to 0 as u 

varies from 

p to 5p/4.

r varies from 

0 to –1 as u 

varies from 

5p/4 to 3p/2.

r varies from 

–1 to 0 as u 

varies from 

3p/2 to 7p/4.

r varies from 

0 to 1 as u 

varies from 

7p/4 to 2p.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SYMMETRY TESTS
Observe that the polar graph of r = cos 2θ in Figure 11.1.10 is symmetric about the x-

axis and the y-axis. This symmetry could have been predicted from the following theorem,

which is suggested by Figure 11.1.11 (we omit the proof).

11.1.1 THEOREM (Symmetry Tests).

(a) A curve in polar coordinates is symmetric about the x-axis if replacing θ by −θ in

its equation produces an equivalent equation (Figure 11.1.11a).

(b) A curve in polar coordinates is symmetric about the y-axis if replacing θ by π− θ
in its equation produces an equivalent equation (Figure 11.1.11b).

(c) A curve in polar coordinates is symmetric about the origin if replacing r by −r in

its equation produces an equivalent equation (Figure 11.1.11c).

Figure 11.1.11 (a) (b) (c)

(r, u)
(r, u)

(r, u)

(–r, u)

(r, p – u)

(r, –u)

p/2

0

p/2

0

p/2

0
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Example 5 Use Theorem 11.1.1 to confirm that the graph of r = cos 2θ in Figure 11.1.10

is symmetric about the x-axis and y-axis.

Solution. To test for symmetry about the x-axis, we replace θ by −θ. This yields

r = cos(−2θ) = cos 2θ

Thus, replacing θ by −θ does not alter the equation.

To test for symmetry about the y-axis, we replace θ by π− θ. This yields

r = cos 2(π− θ) = cos(2π− 2θ) = cos(−2θ) = cos 2θ

Thus, replacing θ by π− θ does not alter the equation. ◭

Example 6 Sketch the graph of r = a(1 − cos θ) in polar coordinates, assuming a to be

a positive constant.

Solution. Observe first that replacing θ by −θ does not alter the equation, so we know in

advance that the graph is symmetric about the polar axis. Thus, if we graph the upper half

of the curve, then we can obtain the lower half by reflection about the polar axis.

As in our previous examples, we will first graph the equation in rectangular coordinates.

This graph, which is shown in Figure 11.1.12a, can be obtained by rewriting the given

equation as r = a − a cos θ, from which we see that the graph in rectangular coordinates

can be obtained by first reflecting the graph of r = a cos θ about the x-axis to obtain the

graph of r = −a cos θ, and then translating that graph up a units to obtain the graph of

r = a − a cos θ. Now we can see that:

• As θ varies from 0 to π/3, r increases from 0 to a/2.

• As θ varies from π/3 to π/2, r increases from a/2 to a.

• As θ varies from π/2 to 2π/3, r increases from a to 3a/2.

• As θ varies from 2π/3 to π, r increases from 3a/2 to 2a.

This produces the polar curve shown in Figure 11.1.12b. The rest of the curve can be

obtained by continuing the preceding analysis from π to 2π or, as noted above, by reflecting

the portion already graphed about the x-axis (Figure 11.1.12c). This heart-shaped curve is

called a cardioid (from the Greek word “kardia” for heart). ◭

(2a, p)
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a

a

(a) (b)

4 68 c o
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r

a
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(c)

a

2

p

3
,( )

3a

2

2p

3
,( )

p

2
a,( )

r =  a(1 – cos u)

Figure 11.1.12

Example 7 Sketch the curves

(a) r = 1 (b) θ =
π

4
(c) r = θ (θ ≥ 0)

in polar coordinates.
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Solution (a). For all values of θ, the point (1, θ) is 1 unit away from the pole. Thus, the

graph is the circle of radius 1 centered at the pole (Figure 11.1.13a).

Solution (b). For all values of r, the point (r, π/4) lies on a line that makes an angle of

π/4 with the polar axis (Figure 11.1.13b). Positive values of r correspond to points on the

line in the first quadrant and negative values of r to points on the line in the third quadrant.

Thus, in absence of any restriction on r , the graph is the entire line. Observe, however, that

had we imposed the restriction r ≥ 0, the graph would have been just the ray in the first

quadrant.

Solution (c). Observe that as θ increases, so does r; thus, the graph is a curve that

spirals out from the pole as θ increases. A reasonably accurate sketch of the spiral can

be obtained by plotting the intersections with the x- and y-axes for values of θ that are

multiples of π/2, keeping in mind that the value of r is always equal to the value of θ

(Figure 11.1.13c). ◭

r = u

p/2

0

u = p/4

p/2

0

r = 1

(a) (b) (c)

4p2pp3p

3p/2

p/4

5p/2
9p/2

7p/2

p/2

1

Figure 11.1.13

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The spiral in Figure 11.1.13c, which belongs to the family of Archimedean

spirals r = aθ, coils counterclockwise around the pole because of the restriction θ ≥ 0.

Had we made the restriction θ ≤ 0, the spiral would have coiled clockwise, and had we

allowed both positive and negative values of θ, the clockwise and counterclockwise spirals

would have been superimposed to form a double Archimedean spiral (Figure 11.1.14).

r = u
–∞ < u < +∞

r = u
u ≥  0

r = u
u ≤ 0

Figure 11.1.14

Example 8 Sketch the graph of r2 = 4 cos 2θ in polar coordinates.

Solution. This equation does not express r as a function of θ, since solving for r in terms

of θ yields two functions:

r = 2
√

cos 2θ and r = −2
√

cos 2θ

Thus, to graph the equation r2 = 4 cos 2θ we will have to graph the two functions separately

and then combine those graphs.

We will start with the graph of r = 2
√

cos 2θ. Observe first that this equation is not

changed if we replace θ by −θ or if we replace θ by π− θ . Thus, the graph is symmetric

about the x-axis and the y-axis. This means that the entire graph can be obtained by graphing

the portion in the first quadrant, reflecting that portion about the y-axis to obtain the portion

in the second quadrant and then reflecting those two portions about the x-axis to obtain the

portions in the third and fourth quadrants.

To begin the analysis, we will graph the equation r = 2
√

cos 2θ in rectangular co-

ordinates (see Figure 11.1.15a). Note that there are gaps in that graph over the intervals

π/4 < θ < 3π/4 and 5π/4 < θ < 7π/4 because cos 2θ is negative for those values of θ.

From this graph we can see that:
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• As θ varies from 0 to π/4, r decreases from 2 to 0.

• As θ varies from π/4 to π/2, no points are generated on the polar graph.

This produces the portion of the graph shown in Figure 11.1.15b. As noted above, we can

complete the graph by a reflection about the y-axis followed by a reflection about the x-axis

(11.1.15c). The resulting propeller-shaped graph is called a lemniscate (from the Greek

word “lemniscos” for a looped ribbon resembling the number 8). We leave it for you to

verify that the equation r = 2
√

cos 2θ has the same graph as r = −2
√

cos 2θ, but traced

in a diagonally opposite manner. Thus, the graph of the equation r2 = 4 cos 2θ consists of

two identical superimposed lemniscates. ◭

u

r

3 9 f l o

2

-2 22

(b)(a) (c)

r = 2√cos 2u 

p/2
u = p/4

0

p/2

0

Figure 11.1.15

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FAMILIES OF LINES AND RAYS
THROUGH THE POLE

If θ0 is a fixed angle, then for all values of r the point (r, θ0) lies on the line that makes

an angle of θ = θ0 with the polar axis; and, conversely, every point on this line has a pair

of polar coordinates of the form (r, θ0). Thus, the equation θ = θ0 represents the line that

passes through the pole and makes an angle of θ0 with the polar axis (Figure 11.1.16a). If r

is restricted to be nonnegative, then the graph of the equation θ = θ0 is the ray that emanates

from the pole and makes an angle of θ0 with the polar axis (Figure 11.1.16b). Thus, as θ0

varies, the equation θ = θ0 produces either a family of lines through the pole or a family of

rays through the pole, depending on the restrictions on r .

u = u0

p/2

0
u0

u = u0 (r ≥  0)

p/2

0
u0

(a) (b)

Figure 11.1.16

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FAMILIES OF CIRCLES
We will consider three families of circles in which a is assumed to be a positive constant:

r = a r = 2a cos θ r = 2a sin θ (3–5)

The equation r = a represents a circle of radius a centered at the pole (Figure 11.1.17a).

Thus, as a varies, this equation produces a family of circles centered at the pole. For families

(4) and (5), recall from plane geometry that a triangle that is inscribed in a circle with a

diameter of the circle for a side must be a right triangle. Thus, as indicated in Figures 11.1.17b

and 11.1.17c, the equation r = 2a cos θ represents a circle of radius a, centered on the x-axis

and tangent to the y-axis at the origin; similarly, the equation r = 2a sin θ represents a circle
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P(r, u)

r

2a

r = 2a cos u r = 2a cos u

u

P(r, u)

r
2a

r = 2a sin u

u

u

a

r = a

P(a, u)

p/2

0

p/2

0

p/2 p/2

0

0

r = 2a sin u

(b) (d)(c)(a) (e)

p/2

0

Figure 11.1.17

of radius a, centered on the y-axis and tangent to the x-axis at the origin. Thus, as a varies,

Equations (4) and (5) produce the families illustrated in Figures 11.1.17d and 11.1.17e.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that replacing θ by −θ does not change the equation r = 2a cos θ,

and replacing θ by π− θ does not change the equation r = 2a sin θ. This explains why the

circles in Figure 11.1.17d are symmetric about the x-axis and those in Figure 11.1.17e are

symmetric about the y-axis.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FAMILIES OF ROSE CURVES
In polar coordinates, equations of the form

r = a sin nθ r = a cos nθ (6–7)

in which a > 0 and n is a positive integer represent families of flower-shaped curves called

roses (Figure 11.1.18). The rose consists of n equally spaced petals of radius a if n is odd

and 2n equally spaced petals of radius a if n is even. It can be shown that a rose with an even

number of petals is traced out exactly once as θ varies over the interval 0 ≤ θ < 2π and a

rose with an odd number of petals is traced out exactly once as θ varies over the interval

0 ≤ θ < π (Exercise 73). A four-petal rose of radius 1 was graphed in Example 4.

n = 2

r = a sin nu

r = a cos nu

n = 3 n = 4 n = 5 n = 6

rose curves

Figure 11.1.18

• FOR THE READER. What do the graphs of the one-petal roses look like?

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FAMILIES OF CARDIOIDS AND
LIMAÇONS

Equations with any of the four forms

r = a ± b sin θ r = a ± b cos θ (8–9)
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in which a > 0 and b > 0 represent polar curves called limaçons (from the Latin word

“limax” for a snail-like creature that is commonly called a slug). There are four possible

shapes for a limaçon that are determined by the ratio a/b (Figure 11.1.19). If a = b (the

case a/b = 1), then the limaçon is called a cardioid because of its heart-shaped appearance,

as noted in Example 6.

Limaçon with

inner loop
Dimpled limaçon Convex limaçonCardioid

a/b < 1 a/b = 1 1 < a/b < 2 a/b ≥ 2

Figure 11.1.19

Example 9 Figure 11.1.20 shows the family of limaçons r = a+ cos θ with the constant

a varying from 0.25 to 2.50 in steps of 0.25. In keeping with Figure 11.1.19, the limaçons

evolve from the loop type to the convex type. As a increases from the starting value of 0.25,

the loops get smaller and smaller until the cardioid is reached at a = 1. As a increases

further, the limaçons evolve through the dimpled type into the convex type. ◭

a = 0.25 a = 0.5 a = 0.75 a = 1 a = 1.25 a = 1.50 a = 1.75 a = 2.00 a = 2.25 a = 2.50

r = a + cos u

Figure 11.1.20

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FAMILIES OF SPIRALS
A spiral is a curve that coils around a central point. As illustrated in Figure 11.1.14, spi-

rals generally have “left-hand” and “right-hand” versions that coil in opposite directions,

depending on the restrictions on the polar angle and the signs of constants that appear in

their equations. Some of the more common types of spirals are shown in Figure 11.1.21 for

nonnegative values of θ, a, and b.

p/2p/2p/2p/2p/2

0

00
00

Archimedean spiral

r = au

Parabolic spiral

r = a√u

Logarithmic spiral

r = aebu
Lituus spiral

r = a /√u

Hyperbolic spiral

r = a /u

Figure 11.1.21

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SPIRALS IN NATURE
Spirals of many kinds occur in nature. For example, the shell of the chambered nautilus

(below) forms a logarithmic spiral, and a coiled sailor’s rope forms an Archimedean spiral.

Spirals also occur in flowers, the tusks of certain animals, and in the shapes of galaxies.
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The shell of the chambered 

nautilus reveals a logarithmic 

spiral. The animal lives in the 

outermost chamber.

A sailor’s coiled rope forms 

an Archimedean spiral.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GENERATING POLAR CURVES WITH
GRAPHING UTILITIES

For polar curves that are too complicated for hand computation, graphing utilities must be

used. Although many graphing utilities are capable of graphing polar curves directly, some

are not. However, if a graphing utility is capable of graphing parametric equations, then it

can be used to graph a polar curve r = f(θ) by converting this equation to parametric form.

This can be done by substituting f(θ) for r in (1). This yields

x = f(θ) cos θ, y = f(θ) sin θ (10)

which is a pair of parametric equations for the polar curve in terms of the parameter θ.

Example 10 Express the polar equation

r = 2 + cos
5θ

2

parametrically, and generate the polar graph from the parametric equations using a graphing

utility.

p/2

0

r = 2 + cos 
5u

2

Figure 11.1.22

Solution. Substituting the given expression for r in x = r cos θ and y = r sin θ yields

the parametric equations

x =
[

2 + cos
5θ

2

]

cos θ, y =
[

2 + cos
5θ

2

]

sin θ

Next, we need to find an interval over which to vary θ to produce the entire graph. To find

such an interval, we will look for the smallest number of complete revolutions that must

occur until the value of r begins to repeat. Algebraically, this amounts to finding the smallest

positive integer n such that

2 + cos

�
5(θ + 2nπ)

2 �= 2 + cos
5θ

2

or

cos

�
5θ

2
+ 5nπ�= cos

5θ

2

For this equality to hold, the quantity 5nπmust be an even multiple of π; the smallest n for

which this occurs is n = 2. Thus, the entire graph will be traced in two revolutions, which

means it can be generated from the parametric equations

x =
[

2 + cos
5θ

2

]

cos θ, y =
[

2 + cos
5θ

2

]

sin θ (0 ≤ θ ≤ 4π)

This yields the graph in Figure 11.1.22. ◭
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•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Some graphing utilities require that t be used for the parameter. If

this is true of your graphing utility, then you will have to replace θ by t in (10) to generate

graphs in polar coordinates. Use a graphing utility to duplicate the curve in Figure 11.1.22.

EXERCISE SET 11.1 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, plot the points in polar coordinates.

1. (a) (3, π/4) (b) (5, 2π/3) (c) (1, π/2)

(d) (4, 7π/6) (e) (−6,−π) (f ) (−1, 9π/4)

2. (a) (2,−π/3) (b) (3/2,−7π/4) (c) (−3, 3π/2)

(d) (−5,−π/6) (e) (2, 4π/3) (f ) (0, π)

In Exercises 3 and 4, find the rectangular coordinates of the

points whose polar coordinates are given.

3. (a) (6, π/6) (b) (7, 2π/3) (c) (−6,−5π/6)

(d) (0,−π) (e) (7, 17π/6) (f ) (−5, 0)

4. (a) (−8, π/4) (b) (7,−π/4) (c) (8, 9π/4)

(d) (5, 0) (e) (−2,−3π/2) (f ) (0, π)

5. In each part, a point is given in rectangular coordinates.

Find two pairs of polar coordinates for the point, one pair

satisfying r ≥ 0 and 0 ≤ θ < 2π, and the second pair

satisfying r ≥ 0 and −π < θ ≤ π.
(a) (−5, 0) (b) (2

√
3,−2) (c) (0,−2)

(d) (−8,−8) (e) (−3, 3
√

3 ) (f ) (1, 1)

6. In each part find polar coordinates satisfying the stated

conditions for the point whose rectangular coordinates are

(−
√

3, 1).

(a) r ≥ 0 and 0 ≤ θ < 2π

(b) r ≤ 0 and 0 ≤ θ < 2π

(c) r ≥ 0 and −2π < θ ≤ 0

(d) r ≤ 0 and −π < θ ≤ π

In Exercises 7 and 8, use a calculating utility, where needed,

to approximate the polar coordinates of the points whose rect-

angular coordinates are given.

7. (a) (4, 3) (b) (2,−5) (c) (1, tan−1 1)

8. (a) (−3, 4) (b) (−3, 1.7) (c)
(

2, sin−1 1
2

)

In Exercises 9 and 10, identify the curve by transforming the

given polar equation to rectangular coordinates.

9. (a) r = 2 (b) r sin θ = 4

(c) r = 3 cos θ (d) r =
6

3 cos θ + 2 sin θ

10. (a) r = 5 sec θ (b) r = 2 sin θ

(c) r = 4 cos θ + 4 sin θ (d) r = sec θ tan θ

In Exercises 11 and 12, express the given equations in polar

coordinates.

11. (a) x = 7 (b) x2 + y2 = 9

(c) x2 + y2 − 6y = 0 (d) 4xy = 9

12. (a) y = −3 (b) x2 + y2 = 5

(c) x2 + y2 + 4x = 0 (d) x2(x2 + y2) = y2

In Exercises 13–16, a graph is given in a rectangular θr-

coordinate system. Sketch the corresponding graph in polar

coordinates.

13.

c o

-3

3

u

r 14.

2 6 a c
-2

2

u

r

15.

2 4 6 8

3

7

-1

u

r 16.

6 c i o

2

4

u

r

In Exercises 17–20, find an equation for the given polar graph.

17.

6 2

1

5

(a) (b) (c)

Circle Circle Cardioid

18. (a) (b) (c)

Limaçon Circle Three-petal rose

3 1

3

1
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19. (a) (b) (c)

Four-petal rose Limaçon Lemniscate

3

3

1

5

3

20. (a) (b) (c)

Cardioid Five-petal rose Circle

3

6

1

4

In Exercises 21–50, sketch the curve in polar coordinates.

21. θ =
π

6
22. θ = −

3π

4

23. r = 3 24. r = 4 sin θ

25. r = 6 cos θ 26. r = 1 + sin θ

27. 2r = cos θ 28. r − 2 = 2 cos θ

29. r = 3(1 − sin θ) 30. r = −5 + 5 sin θ

31. r = 4 − 4 cos θ 32. r = 1 + 2 sin θ

33. r = −1 − cos θ 34. r = 4 + 3 cos θ

35. r = 2 + sin θ 36. r = 3 − cos θ

37. r = 3 + 4 cos θ 38. r − 5 = 3 sin θ

39. r = 5 − 2 cos θ 40. r = −3 − 4 sin θ

41. r2 = 9 cos 2θ 42. r2 = sin 2θ

43. r2 = 16 sin 2θ 44. r = 4θ (θ ≥ 0)

45. r = 4θ (θ ≤ 0) 46. r = 4θ

47. r = cos 2θ 48. r = 3 sin 2θ

49. r = 9 sin 4θ 50. r = 2 cos 3θ

In Exercises 51–55, use a graphing utility to generate the po-

lar graph. Be sure to choose the parameter interval so that a

complete graph is generated.

51. r = cos
θ

2
52. r = sin

θ

2

53. r = 1 + 2 cos
θ

4
54. r = 0.5 + cos

θ

3

55. r = cos
θ

5

56. The accompanying figure shows the graph of the “butterfly

curve”

r = ecos θ − 2 cos 4θ + sin3 θ

4

Generate the complete butterfly with a graphing utility, and

state the parameter interval you used.

p/2

0

Figure Ex-56

57. The accompanying figure shows the Archimedean spiral

r = θ/2 produced with a graphing calculator.

(a) What interval of values for θ do you think was used to

generate the graph?

(b) Duplicate the graph with your own graphing utility.

[–9, 9] × [–6, 6]

xScl = 1, yScl = 1

Figure Ex-57

58. The accompanying figure shows graphs of the Archimedean

spiral r = θ and the parabolic spiral r =
√
θ . Which is

which? Explain your reasoning.

0 0

p/2p/2

I II

Figure Ex-58

59. (a) Show that if a varies, then the polar equation

r = a sec θ (−π/2 < θ < π/2)
describes a family of lines perpendicular to the polar

axis.

(b) Show that if b varies, then the polar equation

r = b csc θ (0 < θ < π)

describes a family of lines parallel to the polar axis.

60. Show that if the polar graph of r = f(θ) is rotated coun-

terclockwise around the origin through an angle α, then

r = f(θ − α) is an equation for the rotated curve. [Hint: If

(r0, θ0) is any point on the original graph, then (r0, θ0 + α)
is a point on the rotated graph.]
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61. Use the result in Exercise 60 to find an equation for the car-

dioid r = 1 + cos θ after it has been rotated through the

given angle, and check your answer with a graphing utility.

(a)
π

4
(b)

π

2
(c) π (d)

5π

4

62. Use the result in Exercise 60 to find an equation for the

lemniscate that results when the lemniscate in Example 8 is

rotated counterclockwise through an angle of π/2.

63. Sketch the polar graph of the equation (r − 1)(θ − 1) = 0.

64. (a) Show that if A and B are not both zero, then the graph

of the polar equation

r = A sin θ + B cos θ

is a circle. Find its radius.

(b) Derive Formulas (4) and (5) from the formula given in

part (a).

65. Find the highest point on the cardioid r = 1 + cos θ.

66. Find the leftmost point on the upper half of the cardioid

r = 1 + cos θ.

67. (a) Show that in a polar coordinate system the distance d

between the points (r1, θ1) and (r2, θ2) is

d =
√

r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2)

(b) Show that if 0 ≤ θ1 < θ2 ≤ π and if r1 and r2 are posi-

tive, then the area A of the triangle with vertices (0, 0),

(r1, θ1), and (r2, θ2) is

A = 1
2
r1r2 sin(θ2 − θ1)

(c) Find the distance between the points whose polar coor-

dinates are (3, π/6) and (2, π/3).

(d) Find the area of the triangle whose vertices in polar

coordinates are (0, 0), (1, 5π/6), and (2, π/3).

68. In the late seventeenth century the Italian astronomer Gio-

vanni Domenico Cassini (1625–1712) introduced the family

of curves

(x2 + y2 + a2)2 − b4 − 4a2x2 = 0 (a > 0, b > 0)

in his studies of the relative motions of the Earth and the Sun.

These curves, which are called Cassini ovals, have one of

the three basic shapes shown in the accompanying figure.

(a) Show that if a = b, then the polar equation of the

Cassini oval is r2 = 2a2 cos 2θ , which is a lemniscate.

(b) Use the formula in Exercise 67(a) to show that the lem-

niscate in part (a) is the curve traced by a point that

moves in such a way that the product of its distances

from the polar points (a, 0) and (a, π) is a2.

a < b

a > b

x

y

a = b

Figure Ex-68

Vertical and horizontal asymptotes of polar curves can often

be detected by investigating the behavior of x = r cos θ and

y = r sin θ as θ varies. This idea is used in Exercises 69–72.

69. Show that the hyperbolic spiral r = 1/θ (θ > 0) has a hor-

izontal asymptote at y = 1 by showing that y → 1 and

x→ +� as θ → 0+. Confirm this result by generating the

spiral with a graphing utility.

70. Show that the spiral r = 1/θ2 does not have any horizontal

asymptotes.

71. (a) Show that the kappa curve r = 4 tan θ (0 ≤ θ ≤ 2π)

has a vertical asymptote at x = 4 by showing that x→4

and y→+� as θ→π/2− and that x→4 and y→−�

as θ→π/2+.

(b) Use the method in part (a) to show that the kappa curve

also has a vertical asymptote at x = −4.

(c) Confirm the results in parts (a) and (b) by generating

the kappa curve with a graphing utility.

72. Use a graphing utility to make a conjecture about the exis-

tence of asymptotes for the cissoid r = 2 sin θ tan θ, and

then confirm your conjecture by calculating appropriate

limits.

73. Prove that a rose with an even number of petals is traced out

exactly once as θ varies over the interval 0 ≤ θ < 2π and a

rose with an odd number of petals is traced out exactly once

as θ varies over the interval 0 ≤ θ < π.

11.2 TANGENT LINES AND ARC LENGTH FOR PARAMETRIC
AND POLAR CURVES

In this section we will derive the formulas required to find slopes, tangent lines, and

arc lengths of parametric and polar curves.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TANGENT LINES TO PARAMETRIC
CURVES

We will be concerned in this section with curves that are given by parametric equations

x = f(t), y = g(t)

in which f(t) and g(t) have continuous first derivatives with respect to t. It can be proved

that if dx/dt = 0, then y is a differentiable function of x, in which case the chain rule
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implies that

dy

dx
=
dy/dt

dx/dt
(1)

This formula makes it possible to find dy/dx directly from the parametric equations without

eliminating the parameter.

Example 1 Find the slope of the tangent line to the unit circle

x = cos t, y = sin t (0 ≤ t ≤ 2π)

at the point where t = π/6 (Figure 11.2.1).
x

y

p/6
1

Figure 11.2.1

Solution. From (1), the slope at a general point on the circle is

dy

dx
=
dy/dt

dx/dt
=

cos t

− sin t
= − cot t (2)

Thus, the slope at t = π/6 is

dy

dx

∣

∣

∣

∣

t=π/6
= − cot

π

6
= −

√
3 ◭

x

y

O

t

P(cos t, sin t)

Radius OP has slope m = tan t.

1

Figure 11.2.2

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Note that Formula (2) makes sense geometrically because the radius to the

point P(cos t, sin t) has slope m = tan t; hence, the tangent line at P, being perpendicular

to the radius, has slope −1/m = −1/ tan t = − cot t (Figure 11.2.2).

It follows from Formula (1) that the tangent line to a parametric curve will be horizontal

at those points where dy/dt = 0 and dx/dt = 0, since dy/dx = 0 at such points. Two

different situations occur when dx/dt = 0. At points where dx/dt = 0 and dy/dt = 0, the

right side of (1) has a nonzero numerator and a zero denominator; we will agree that the

curve has infinite slope and a vertical tangent line at such points. At points where dx/dt

and dy/dt are both zero, the right side of (1) becomes an indeterminate form; we call such

points singular points. No general statement can be made about the behavior of parametric

curves at singular points; they must be analyzed case by case.

Example 2 In a disastrous first flight, an experimental paper airplane follows the trajectory

x = t − 3 sin t, y = 4 − 3 cos t (t ≥ 0)

but crashes into a wall at time t = 10 (Figure 11.2.3).

(a) At what times was the airplane flying horizontally?

(b) At what times was it flying vertically?

Solution (a). The airplane was flying horizontally at those times when dy/dt = 0 and

dx/dt = 0. From the given trajectory we have

dy

dt
= 3 sin t and

dx

dt
= 1 − 3 cos t (3)

Setting dy/dt = 0 yields the equation 3 sin t = 0, or, more simply, sin t = 0. This equation

has four solutions in the time interval 0 ≤ t ≤ 10:

t = 0, t = π, t = 2π, t = 3π

Since dx/dt = 1 − 3 cos t = 0 for these values of t (verify), the airplane was flying

horizontally at times

t = 0, t = π ≈ 3.14, t = 2π ≈ 6.28, and t = 3π ≈ 9.42

which is consistent with Figure 11.2.3.
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-2 12

8

x

y

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6
t = 7

t = 8

t = 9

t = 10

t = 0

Figure 11.2.3

Solution (b). The airplane was flying vertically at those times when dx/dt = 0 and

dy/dt = 0. Setting dx/dt = 0 in (3) yields the equation

1 − 3 cos t = 0 or cos t = 1
3

This equation has three solutions in the time interval 0 ≤ t ≤ 10 (Figure 11.2.4):

t = cos−1 1
3
, t = 2π− cos−1 1

3
, t = 2π+ cos−1 1

3

Since dy/dt = 3 sin t is not zero at these points (why?), it follows that the airplane was

flying vertically at times

t = cos−1 1
3

≈ 1.23, t ≈ 2π− 1.23 ≈ 5.05, t ≈ 2π+ 1.23 ≈ 7.51

which again is consistent with Figure 11.2.3. ◭

o 10

-1

1

x

y

y = cos t

cos–1 
1

3

1

3

Figure 11.2.4

Example 3 The curve represented by the parametric equations

x = t2, y = t3 (−� < t < +�)

is called a semicubical parabola. The parameter t can be eliminated by cubing x and

squaring y, from which it follows that y2 = x3. The graph of this equation, shown in

Figure 11.2.5, consists of two branches: an upper branch obtained by graphing y = x3/2

and a lower branch obtained by graphing y = −x3/2. The two branches meet at the origin,

which corresponds to t = 0 in the parametric equations. This is a singular point because

the derivatives dx/dt = 2t and dy/dt = 3t2 are both zero there. ◭

x = t2, y = t3

(–∞ <  t < +∞)

x

y

–6

6

5

Figure 11.2.5

Example 4 Without eliminating the parameter, finddy/dx andd2y/dx2 at the points (1, 1)

and (1,−1) on the semicubical parabola given by the parametric equations in Example 3.

Solution. From (1) we have

dy

dx
=
dy/dt

dx/dt
=

3t2

2t
=

3

2
t (t = 0) (4)

and from (1) applied to y ′ = dy/dx we have

d2y

dx2
=
dy ′

dx
=
dy ′/dt

dx/dt
=

3/2

2t
=

3

4t
(5)

Since the point (1, 1) on the curve corresponds to t = 1 in the parametric equations, it

follows from (4) and (5) that

dy

dx

∣

∣

∣

∣

t=1

=
3

2
and

d2y

dx2

∣

∣

∣

∣

t=1

=
3

4

Similarly, the point (1,−1) corresponds to t = −1 in the parametric equations, so applying

(4) and (5) again yields

dy

dx

∣

∣

∣

∣

t=−1

= −
3

2
and

d2y

dx2

∣

∣

∣

∣

t=−1

= −
3

4

Note that the values we obtained for the first and second derivatives are consistent with

the graph in Figure 11.2.5, since at (1, 1) on the upper branch the tangent line has positive
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slope and the curve is concave up, and at (1,−1) on the lower branch the tangent line has

negative slope and the curve is concave down.

Finally, observe that we were able to apply Formulas (4) and (5) for both t = 1 and

t = −1, even though the points (1, 1) and (1,−1) lie on different branches. In contrast,

had we chosen to perform the same computations by eliminating the parameter, we would

have had to obtain separate derivative formulas for y = x3/2 and y = −x3/2. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TANGENT LINES TO POLAR
CURVES

Our next objective is to find a method for obtaining slopes of tangent lines to polar curves

of the form r = f(θ) in which r is a differentiable function of θ. We showed in the last

section that a curve of this form can be expressed parametrically in terms of the parameter

θ by substituting f(θ) for r in the equations x = r cos θ and y = r sin θ. This yields

x = f(θ) cos θ, y = f(θ) sin θ

from which we obtain

dx

dθ
= −f (θ) sin θ + f ′(θ) cos θ = −r sin θ +

dr

dθ
cos θ

dy

dθ
= f (θ) cos θ + f ′(θ) sin θ = r cos θ +

dr

dθ
sin θ

(6)

Thus, if dx/dθ and dy/dθ are continuous and if dx/dθ = 0, then y is a differentiable

function of x, and Formula (1) with θ in place of t yields

dy

dx
=
dy/dθ

dx/dθ
=
r cos θ + sin θ

dr

dθ

−r sin θ + cos θ
dr

dθ

(7)

Example 5 Find the slope of the tangent line to the circle r = 4 cos θ at the point where

θ = π/4.

Solution. From (7) with r = 4 cos θ we obtain (verify)

dy

dx
=

4 cos2 θ − 4 sin2 θ

−8 sin θ cos θ
=

4 cos 2θ

−4 sin 2θ
= − cot 2θ

Thus, at the point where θ = π/4 the slope of the tangent line is

m =
dy

dx

∣

∣

∣

∣

θ=π/4
= − cot

π

2
= 0

which implies that the circle has a horizontal tangent line at the point where θ = π/4

(Figure 11.2.6). ◭
4

Tangent

p/2

p/4
0

r =  4 cos u

Figure 11.2.6

Example 6 Find the points on the cardioid r = 1 − cos θ at which there is a horizontal

tangent line, a vertical tangent line, or a singular point.

Solution. A horizontal tangent line will occur where dy/dθ = 0 and dx/dθ = 0, a vertical

tangent line where dy/dθ = 0 and dx/dθ = 0, and a singular point where dy/dθ = 0

and dx/dθ = 0. We could find these derivatives from the formulas in (6). However, an

alternative approach is to go back to basic principles and express the cardioid parametrically

by substituting r = 1 − cos θ in the conversion formulas x = r cos θ and y = r sin θ. This

yields

x = (1 − cos θ) cos θ, y = (1 − cos θ) sin θ (0 ≤ θ ≤ 2π)

Differentiating these equations with respect to θ and then simplifying yields (verify)

dx

dθ
= sin θ(2 cos θ − 1),

dy

dθ
= (1 − cos θ)(1 + 2 cos θ)
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Thus, dx/dθ = 0 if sin θ = 0 or cos θ = 1
2
, and dy/dθ = 0 if cos θ = 1 or cos θ = − 1

2
.

We leave it for you to solve these equations and show that the solutions of dx/dθ = 0 on

the interval 0 ≤ θ ≤ 2π are

dx

dθ
= 0: θ = 0,

π

3
, π,

5π

3
, 2π

and the solutions of dy/dθ = 0 on the interval 0 ≤ θ ≤ 2π are

dy

dθ
= 0: θ = 0,

2π

3
,

4π

3
, 2π

Thus, horizontal tangent lines occur at θ = 2π/3 and θ = 4π/3; vertical tangent lines occur

at θ = π/3, π, and 5π/3; and singular points occur at θ = 0 and θ = 2π (Figure 11.2.7).

Note, however, that r = 0 at both singular points, so there is really only one singular point

on the cardioid—the pole. ◭

r = 1 – cos u

p/2

0

1

2

5p

3( ,     )

3

2

2p

3( ,     )

3

2

4p

3( ,     )

1

2

p

3( ,    )
(2, p)

Figure 11.2.7

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TANGENT LINES TO POLAR
CURVES AT THE ORIGIN

Formula (7) reveals some useful information about the behavior of a polar curve r = f(θ)
that passes through the origin. If we assume that r = 0 and dr/dθ = 0 when θ = θ0, then

it follows from Formula (7) that the slope of the tangent line to the curve at θ = θ0 is

dy

dx
=

0 + sin θ0

dr

dθ

0 + cos θ0

dr

dθ

=
sin θ0

cos θ0

= tan θ0

(Figure 11.2.8). However, tan θ0 is also the slope of the line θ = θ0, so we can conclude that

this line is tangent to the curve at the origin. Thus, we have established the following result.

r = f (u)

u = u0

u0

p/2

0

Slope = tan u0

Figure 11.2.8

11.2.1 THEOREM. If the polar curve r = f(θ) passes through the origin at θ = θ0,

and if dr/dθ = 0 at θ = θ0, then the line θ = θ0 is tangent to the curve at the origin.

This theorem tells us that equations of the tangent lines at the origin to the curve r = f(θ)
can be obtained by solving the equation f(θ) = 0. It is important to keep in mind, however,

that r = f(θ) may be zero for more than one value of θ, so there may be more than one

tangent line at the origin. This is illustrated in the next example.

Example 7 The three-petal rose r = sin 3θ in Figure 11.2.9 has three tangent lines at

the origin, which can be found by solving the equation

sin 3θ = 0

It was shown in Exercise 73 of Section 11.1 that the complete rose is traced once as θ varies

over the interval 0 ≤ θ < π, so we need only look for solutions in this interval. We leave

it for you to confirm that these solutions are

θ = 0, θ =
π

3
, and θ =

2π

3

Since dr/dθ = 3 cos 3θ = 0 for these values of θ, these three lines are tangent to the rose

at the origin, which is consistent with the figure. ◭

r = sin 3u

p/2

0

u = 2p/3 u = p/3

Figure 11.2.9

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ARC LENGTH OF A POLAR CURVE
A formula for the arc length of a polar curve r = f(θ) can be derived by expressing the

curve in parametric form and applying Formula (6) of Section 6.4 for the arc length of a

parametric curve. We leave it as an exercise to show the following.

11.2.2 ARC LENGTH FORMULA FOR POLAR CURVES. If no segment of the polar curve

r = f(θ) is traced more than once as θ increases from α to β, and if dr/dθ is continuous

for α ≤ θ ≤ β, then the arc length L from θ = α to θ = β is

L =
∫ β

α

√

r2 +�dr
dθ�2 dθ (8)
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Example 8 Find the arc length of the spiral r = eθ in Figure 11.2.10 between θ = 0 and

θ = π.

Solution.

L =
∫ β

α

√

r2 +�dr
dθ�2 dθ =

∫ π

0

√

(eθ )2 + (eθ )2 dθ

=
∫ π

0

√
2 eθ dθ =

√
2 eθ

]π

0

=
√

2(eπ − 1) ≈ 31.3 ◭

(1, 0)(p, ep)

p/2

0

r = eu

Figure 11.2.10

Example 9 Find the total arc length of the cardioid r = 1 + cos θ .

Solution. The cardioid is traced out once as θ varies from θ = 0 to θ = 2π. Thus,

L =
∫ β

α

√

r2 +�dr
dθ�2 dθ =

∫ 2π

0

√

(1 + cos θ)2 + (− sin θ)2 dθ

=
√

2

∫ 2π

0

√
1 + cos θ dθ

= 2

∫ 2π

0

√

cos2
1

2
θ dθ

Identity (45)

of Appendix E

= 2

∫ 2π

0

∣

∣

∣

∣

cos
1

2
θ

∣

∣

∣

∣

dθ

Since cos 1
2
θ changes sign at π, we must split the last integral into the sum of two integrals:

the integral from 0 to π plus the integral from π to 2π. However, the integral from π to 2π

is equal to the integral from 0 to π, since the cardioid is symmetric about the polar axis

(Figure 11.2.11). Thus,

L = 2

∫ 2π

0

∣

∣

∣

∣

cos
1

2
θ

∣

∣

∣

∣

dθ = 4

∫ π

0

cos
1

2
θ dθ = 8 sin

1

2
θ

]π

0

= 8 ◭

r = 1 + cos u
p/2

0

Figure 11.2.11

EXERCISE SET 11.2 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. (a) Find the slope of the tangent line to the parametric curve

x = t2 + 1, y = t/2 at t = −1 and at t = 1 without

eliminating the parameter.

(b) Check your answers in part (a) by eliminating the

parameter and differentiating an appropriate function

of x.

2. (a) Find the slope of the tangent line to the parametric curve

x = 3 cos t, y = 4 sin t at t = π/4 and at t = 7π/4

without eliminating the parameter.

(b) Check your answers in part (a) by eliminating the

parameter and differentiating an appropriate function

of x.

3. For the parametric curve in Exercise 1, make a conjecture

about the sign of d2y/dx2 at t = −1 and at t = 1, and

confirm your conjecture without eliminating the parameter.

4. For the parametric curve in Exercise 2, make a conjecture

about the sign of d2y/dx2 at t = π/4 and at t = 7π/4, and

confirm your conjecture without eliminating the parameter.

In Exercises 5–10, find dy/dx and d2y/dx2 at the given point

without eliminating the parameter.

5. x =
√
t, y = 2t + 4; t = 1

6. x = 1
2
t2, y = 1

3
t3; t = 2

7. x = sec t, y = tan t; t = π/3

8. x = sinh t, y = cosh t; t = 0

9. x = 2θ + cos θ, y = 1 − sin θ; θ = π/3

10. x = cosφ, y = 3 sinφ; φ = 5π/6

11. (a) Find the equation of the tangent line to the curve

x = et , y = e−t

at t = 1 without eliminating the parameter.

(b) Check your answer in part (a) by eliminating the

parameter.
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12. (a) Find the equation of the tangent line to the curve

x = 2t + 4, y = 8t2 − 2t + 4

at t = 1 without eliminating the parameter.

(b) Check your answer in part (a) by eliminating the

parameter.

In Exercises 13 and 14, find all values of t at which the para-

metric curve has (a) a horizontal tangent line and (b) a vertical

tangent line.

13. x = 2 cos t, y = 4 sin t (0 ≤ t ≤ 2π)

14. x = 2t3 − 15t2 + 24t + 7, y = t2 + t + 1

15. As shown in the accompanying figure, the Lissajous curve

x = sin t, y = sin 2t (0 ≤ t ≤ 2π)

crosses itself at the origin. Find equations for the two tangent

lines at the origin.

16. As shown in the accompanying figure, the prolate cycloid

x = 2 − π cos t, y = 2t − π sin t (−π ≤ t ≤ π)

crosses itself at a point on the x-axis. Find equations for the

two tangent lines at that point.

x

y

Figure Ex-15

x

y

Figure Ex-16

17. Show that the curve x = t3 − 4t, y = t2 intersects itself at

the point (0, 4), and find equations for the two tangent lines

to the curve at the point of intersection.

18. Show that the curve with parametric equations

x = t2 − 3t + 5, y = t3 + t2 − 10t + 9

intersects itself at the point (3, 1), and find equations for the

two tangent lines to the curve at the point of intersection.

19. (a) Use a graphing utility to generate the graph of the para-

metric curve

x = cos3 t, y = sin3 t (0 ≤ t ≤ 2π)

and make a conjecture about the values of t at which

singular points occur.

(b) Confirm your conjecture in part (a) by calculating ap-

propriate derivatives.

20. (a) At what values of θ would you expect the cycloid in

Figure 1.8.13 to have singular points?

(b) Confirm your answer in part (a) by calculating appro-

priate derivatives.

In Exercises 21–26, find the slope of the tangent line to the

polar curve for the given value of θ.

21. r = 2 cos θ; θ = π/3 22. r = 1 + sin θ; θ = π/4
23. r = 1/θ; θ = 2 24. r = a sec 2θ; θ = π/6
25. r = cos 3θ; θ = 3π/4 26. r = 4 − 3 sin θ; θ = π

In Exercises 27 and 28, calculate the slopes of the tangent

lines indicated in the accompanying figures.

27. r = 2 + 2 sin θ 28. r = 1 − 2 sin θ

0

p/2

Figure Ex-27

0

p/2

Figure Ex-28

In Exercises 29 and 30, find polar coordinates of all points at

which the polar curve has a horizontal or a vertical tangent

line.

29. r = a(1 + cos θ) 30. r = a sin θ

In Exercises 31 and 32, use a graphing utility to make a con-

jecture about the number of points on the polar curve at which

there is a horizontal tangent line, and confirm your conjecture

by finding appropriate derivatives.

31. r = sin θ cos2 θ 32. r = 1 − 2 sin θ

In Exercises 33–38, sketch the polar curve and find polar

equations of the tangent lines to the curve at the pole.

33. r = 2 cos 3θ 34. r = 4 cos θ

35. r = 4
√

cos 2θ 36. r = sin 2θ

37. r = 1 + 2 cos θ 38. r = 2θ

In Exercises 39–44, use Formula (8) to calculate the arc length

of the polar curve.

39. The entire circle r = a
40. The entire circle r = 2a cos θ

41. The entire cardioid r = a(1 − cos θ)

42. r = sin2(θ/2) from θ = 0 to θ = π
43. r = e3θ from θ = 0 to θ = 2

44. r = sin3(θ/3) from θ = 0 to θ = π/2
45. (a) What is the slope of the tangent line at time t to the

trajectory of the paper airplane in Example 2?
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(b) What was the airplane’s approximate angle of inclina-

tion when it crashed into the wall?

46. Suppose that a bee follows the trajectory

x = t − 2 sin t, y = 2 − 2 cos t (t ≥ 0)

but lands on a wall at time t = 10.

(a) At what times was the bee flying horizontally?

(b) At what times was the bee flying vertically?

47. (a) Show that the arc length of one petal of the rose

r = cos nθ is given by

2

∫ π/(2n)

0

√

1 + (n2 − 1) sin2 nθ dθ

(b) Use the numerical integration capability of a calculat-

ing utility to approximate the arc length of one petal of

the four-petal rose r = cos 2θ.

(c) Use the numerical integration capability of a calculating

utility to approximate the arc length of one petal of the

n-petal rose r = cos nθ for n = 2, 3, 4, . . . , 20; then

make a conjecture about the limit of these arc lengths

as n→+�.

48. (a) Sketch the spiral r = e−θ (0 ≤ θ < +�).

(b) Find an improper integral for the total arc length of the

spiral.

(c) Show that the integral converges and find the total arc

length of the spiral.

Exercises 49–54 require the formulas developed in the fol-

lowing discussion: If f ′(t) and g′(t) are continuous functions

and if no segment of the curve

x = f(t), y = g(t) (a ≤ t ≤ b)
is traced more than once, then it can be shown that the area of

the surface generated by revolving this curve about the x-axis

is

S =
∫ b

a

2πy

√�
dx

dt�2 +

�
dy

dt�2 dt
and the area of the surface generated by revolving the curve

about the y-axis is

S =
∫ b

a

2πx

√�
dx

dt�2 +

�
dy

dt�2 dt
[The derivations are similar to those used to obtain Formulas

(4) and (5) in Section 6.5.]

49. Find the area of the surface generated by revolving x = t2,

y = 2t (0 ≤ t ≤ 4) about the x-axis.

50. Find the area of the surface generated by revolving the curve

x = et cos t , y = et sin t (0 ≤ t ≤ π/2) about the x-axis.

51. Find the area of the surface generated by revolving the curve

x = cos2 t , y = sin2 t (0 ≤ t ≤ π/2) about the y-axis.

52. Find the area of the surface generated by revolving x = t ,

y = 2t2 (0 ≤ t ≤ 1) about the y-axis.

53. By revolving the semicircle

x = r cos t, y = r sin t (0 ≤ t ≤ π)

about the x-axis, show that the surface area of a sphere of

radius r is 4πr2.

54. The equations

x = aφ − a sinφ, y = a − a cosφ (0 ≤ φ ≤ 2π)

represent one arch of a cycloid. Show that the surface area

generated by revolving this curve about the x-axis is given

by S = 64πa2/3.

55. As illustrated in the accompanying figure, suppose that a rod

with one end fixed at the pole of a polar coordinate system

rotates counterclockwise at the constant rate of 1 rad/s. At

time t = 0 a bug on the rod is 10 mm from the pole and

is moving outward along the rod at the constant speed of

2 mm/s.

(a) Find an equation of the form r = f(θ) for the path of

motion of the bug, assuming that θ = 0 when t = 0.

(b) Find the distance the bug travels along the path in part

(a) during the first 5 seconds. Round your answer to the

nearest tenth of a millimeter.

t = 0 s

t = 5 s

Bug

Figure Ex-55

56. Use Formula (6) of Section 6.4 to derive Formula (8).
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11.3 AREA IN POLAR COORDINATES

In this section we will show how to find areas of regions that are bounded by polar

curves.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

AREA IN POLAR COORDINATES 11.3.1 AREA PROBLEM IN POLAR COORDINATES. Suppose that α and β are angles

that satisfy the condition

α < β ≤ α + 2π

and suppose that f(θ) is continuous for α ≤ θ ≤ β. Find the area of the region R

enclosed by the polar curve r = f(θ) and the rays θ = α and θ = β (Figure 11.3.1).

In rectangular coordinates we solved Area Problem 5.1.1 by dividing the region into an

increasing number of vertical strips, approximating the strips by rectangles, and taking a

limit. In polar coordinates rectangles are clumsy to work with, and it is better to divide the

region into wedges by using rays

θ = θ1, θ = θ2, . . . , θ = θn−1

such that

α < θ1 < θ2 < · · · < θn−1 < β

(Figure 11.3.2). As shown in that figure, the rays divide the region R into n wedges with

areas A1, A2, . . . , An and central angles  θ1, θ2, . . . ,  θn. The area of the entire region

can be written as

A = A1 + A2 + · · · + An =
n

∑

k=1

Ak (1)

R

r = f (u)

u = b u = a

Figure 11.3.1

u = b

u = un – 1

u = u2

u = u1

u = a
∆u2

∆u1

∆un

A1

A2
An

.. ...
Figure 11.3.2

If  θk is small, and if we assume for simplicity that f (θ) is nonnegative, then we can

approximate the area Ak of the kth wedge by the area of a sector with central angle  θk
and radius f(θ∗

k ), where θ = θ∗
k is any ray that lies in the kth wedge (Figure 11.3.3). Thus,

from (1) and Formula (5) of Appendix E for the area of a sector, we obtain

A =
n

∑

k=1

Ak ≈
n

∑

k=1

1

2
[f(θ∗

k )]
2 θk (2)

If we now increase n in such a way that max θk→0, then the sectors will become better

and better approximations of the wedges and it is reasonable to expect that (2) will approach

the exact value of the area A (Figure 11.3.4); that is,

A = lim
max θk→0

n
∑

k=1

1

2
[f(θ∗

k )]
2 θk =

∫ β

α

1

2
[f(θ)]2 dθ

Thus, we have the following solution of Area Problem 11.3.1.

u*
k

∆uk

r = f (u)

u = u*
k

Figure 11.3.3

u = b u = a

Figure 11.3.4
11.3.2 AREA IN POLAR COORDINATES. Ifα andβ are angles that satisfy the condition

α < β ≤ α + 2π

and if f(θ) is continuous for α ≤ θ ≤ β, then the area A of the region R enclosed by

the polar curve r = f(θ) and the rays θ = α and θ = β is

A =
∫ β

α

1

2
[f(θ)]2 dθ =

∫ β

α

1

2
r2 dθ (3)
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The hardest part of applying (3) is determining the limits of integration. This can be done

as follows:

Step 1. Sketch the region R whose area is to be determined.

Step 2. Draw an arbitrary “radial line” from the pole to the boundary curve

r = f(θ).

Step 3. Ask, “Over what interval of values must θ vary in order for the radial

line to sweep out the region R?”

Step 4. Your answer in Step 3 will determine the lower and upper limits of

integration.

Example 1 Find the area of the region in the first quadrant that is within the cardioid

r = 1 − cos θ .

Solution. The region and a typical radial line are shown in Figure 11.3.5. For the radial

line to sweep out the region, θ must vary from 0 to π/2. Thus, from (3) with α = 0 and

β = π/2, we obtain

A =
∫ π/2

0

1

2
r2 dθ =

1

2

∫ π/2

0

(1 − cos θ)2 dθ =
1

2

∫ π/2

0

(1 − 2 cos θ + cos2 θ) dθ

With the help of the identity cos2 θ = 1
2
(1 + cos 2θ), this can be rewritten as

A =
1

2

∫ π/2

0�32 − 2 cos θ +
1

2
cos 2θ�dθ =

1

2

[

3

2
θ − 2 sin θ +

1

4
sin 2θ

]π/2

0

=
3

8
π− 1 ◭

r = 1 – cos u

The shaded region is swept 

out by the radial line as u 

varies from 0 to p/2.

p/2

0

Figure 11.3.5

Example 2 Find the entire area within the cardioid of Example 1.

Solution. For the radial line to sweep out the entire cardioid, θ must vary from 0 to 2π.

Thus, from (3) with α = 0 and β = 2π,

A =
∫ 2π

0

1

2
r2 dθ =

1

2

∫ 2π

0

(1 − cos θ)2 dθ

If we proceed as in Example 1, this reduces to

A =
1

2

∫ 2π

0�32 − 2 cos θ +
1

2
cos 2θ�dθ =

3π

2

Alternative Solution. Since the cardioid is symmetric about the x-axis, we can calculate

the portion of the area above the x-axis and double the result. In the portion of the cardioid

above the x-axis, θ ranges from 0 to π, so that

A = 2

∫ π

0

1

2
r2 dθ =

∫ π

0

(1 − cos θ)2 dθ =
3π

2
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

USING SYMMETRY
Although Formula (3) is applicable if r = f (θ) is negative, area computations can some-

times be simplified by using symmetry to restrict the limits of integration to intervals where

r ≥ 0. This is illustrated in the next example.

Example 3 Find the area of the region enclosed by the rose curve r = cos 2θ .

Solution. Referring to Figure 11.1.10 and using symmetry, the area in the first quadrant

that is swept out for 0 ≤ θ ≤ π/4 is one-eighth of the total area inside the rose. Thus, from
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Formula (3)

A = 8

∫ π/4

0

1

2
r2 dθ = 4

∫ π/4

0

cos2 2θ dθ

= 4

∫ π/4

0

1

2
(1 + cos 4θ) dθ = 2

∫ π/4

0

(1 + cos 4θ) dθ

= 2θ +
1

2
sin 4θ

]π/4

0

=
π

2
◭

Sometimes the most natural way to satisfy the restriction α < β ≤ α + 2π required by

Formula (3) is to use a negative value for α. For example, suppose that we are interested in

finding the area of the shaded region in Figure 11.3.6a. The first step would be to determine

the intersections of the cardioid r = 4 + 4 cos θ and the circle r = 6, since this information

is needed for the limits of integration. To find the points of intersection, we can equate the

two expressions for r. This yields

4 + 4 cos θ = 6 or cos θ =
1

2

which is satisfied by the positive angles

θ =
π

3
and θ =

5π

3

However, there is a problem here because the radial lines to the circle and cardioid do

not sweep through the shaded region shown in Figure 11.3.6b as θ varies over the interval

π/3 ≤ θ ≤ 5π/3. There are two ways to circumvent this problem—one is to take advantage

of the symmetry by integrating over the interval 0 ≤ θ ≤ π/3 and doubling the result, and

the second is to use a negative lower limit of integration and integrate over the interval

−π/3 ≤ θ ≤ π/3 (Figure 11.3.6c). The two methods are illustrated in the next example.

r = 4 + 4 cos u

r = 6

(a)

u = 4

u = $
(d)

u = 4

u = $
(c)

u = 4

u = k
(b)

u = 4

u = $
(e)

p/2

0

p/2

0

p/2

0

p/2

0

p/2

0

Figure 11.3.6

Example 4 Find the area of the region that is inside of the cardioid r = 4 + 4 cos θ and

outside of the circle r = 6.

Solution Using a Negative Angle. The area of the region can be obtained by subtracting

the areas in Figures 11.3.6d and 11.3.6e:

A =
∫ π/3

−π/3

1

2
(4 + 4 cos θ)2 dθ −

∫ π/3

−π/3

1

2
(6)2 dθ Area inside cardioid

minus area inside circle.

=
∫ π/3

−π/3

1

2
[(4 + 4 cos θ)2 − 36] dθ =

∫ π/3

−π/3
(16 cos θ + 8 cos2 θ − 10) dθ

=
[

16 sin θ + (4θ + 2 sin 2θ)− 10 θ
]π/3

−π/3 = 18
√

3 − 4π

Solution Using Symmetry. Using symmetry, we can calculate the area above the polar

axis and double it. This yields (verify)

A = 2

∫ π/3

0

1

2
[(4 + 4 cos θ)2 − 36] dθ = 2(9

√
3 − 2π) = 18

√
3 − 4π

which agrees with the preceding result. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTERSECTIONS OF POLAR
GRAPHS

In the last example we found the intersections of the cardioid and circle by equating their

expressions for r and solving for θ.However, because a point can be represented in different

ways in polar coordinates, this procedure will not always produce all of the intersections.

For example, the cardioids

r = 1 − cos θ and r = 1 + cos θ (4)

intersect at three points: the pole, the point (1, π/2), and the point (1, 3π/2) (Figure

11.3.7). Equating the right-hand sides of the equations in (4) yields 1 − cos θ = 1 + cos θ

or cos θ = 0, so

θ =
π

2
+ kπ, k = 0,±1,±2, . . .

Substituting any of these values in (4) yields r = 1, so that we have found only two distinct

points of intersection, (1, π/2) and (1, 3π/2); the pole has been missed. This problem

occurs because the two cardioids pass through the pole at different values of θ—the cardioid

r = 1 − cos θ passes through the pole at θ = 0, and the cardioid r = 1 + cos θ passes

through the pole at θ = π.
The situation with the cardioids is analogous to two satellites circling the Earth in in-

tersecting orbits (Figure 11.3.8). The satellites will not collide unless they reach the same

point at the same time. In general, when looking for intersections of polar curves, it is a

good idea to graph the curves to determine how many intersections there should be.

r = 1 – cos u r = 1 + cos u

(1, 6)

(1, i)

p/2

0

Figure 11.3.7

The orbits intersect, but the

satellites do not collide.

Figure 11.3.8

EXERCISE SET 11.3 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Write down, but do not evaluate, an integral for the area of

each shaded region.

(a) (b) (c)

r = 2 cos u r = sin 2ur = 1 – cos u

(d) (e) (f)

r = 1 – sin u r = cos 2ur = u

2. Evaluate the integrals you obtained in Exercise 1.

3. In each part, find the area of the circle by integration.

(a) r = a (b) r = 2a sin θ (c) r = 2a cos θ

4. (a) Show that r = sin θ + cos θ is a circle.

(b) Find the area of the circle using a geometric formula

and then by integration.

In Exercises 5–10, find the area of the region described.

5. The region that is enclosed by the cardioid r = 2 + 2 cos θ.

6. The region in the first quadrant within the cardioid

r = 1 + sin θ.

7. The region enclosed by the rose r = 4 cos 3θ.

8. The region enclosed by the rose r = 2 sin 2θ.

9. The region enclosed by the inner loop of the limaçon

r = 1 + 2 cos θ. [Hint: r ≤ 0 over the interval of

integration.]

10. The region swept out by a radial line from the pole to the

curve r = 2/θ as θ varies over the interval 1 ≤ θ ≤ 3.

In Exercises 11–14, find the area of the shaded region.

11.

r = √cos 2u

r = 2 cos u

12.

r = 1 + cos u

r = cos u
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13.

r = 4√3 sin t

r = 4 cos t

14.

r = 1 + cos t

r = 3 cos t

In Exercises 15–22, find the area of the region described.

15. The region inside the circle r = 5 sin θ and outside the

limaçon r = 2 + sin θ .

16. The region outside the cardioid r = 2 − 2 cos θ and inside

the circle r = 4.

17. The region inside the cardioid r = 2 + 2 cos θ and outside

the circle r = 3.

18. The region that is common to the circles r = 4 cos θ and

r = 4 sin θ .

19. The region between the loops of the limaçon r = 1
2
+ cos θ .

20. The region inside the cardioid r = 2 + 2 cos θ and to the

right of the line r cos θ = 3
2
.

21. The region inside the circle r = 10 and to the right of the

line r = 6 sec θ .

22. The region inside the rose r = 2a cos 2θ and outside the

circle r = a
√

2.

23. (a) Find the error: The area that is inside the lemniscate

r2 = a2 cos 2θ is

A =
∫ 2π

0

1

2
r2 dθ =

∫ 2π

0

1

2
a2 cos 2θ dθ

=
1

4
a2 sin 2θ

]2π

0

= 0

(b) Find the correct area.
(c) Find the area inside the lemniscate r2 = 4 cos 2θ and

outside the circle r =
√

2.

24. Find the area inside the curve r2 = sin 2θ.

25. A radial line is drawn from the origin to the spiral r = aθ
(a > 0 and θ ≥ 0). Find the area swept out during the second

revolution of the radial line that was not swept out during

the first revolution.

26. (a) In the discussion associated with Exercises 49–54 of

Section 11.2, formulas were given for the area of the

surface of revolution that is generated by revolving a

parametric curve about the x-axis or y-axis. Use those

formulas to derive the following formulas for the areas

of the surfaces of revolution that are generated by re-

volving the portion of the polar curve r = f(θ) from

θ = α to θ = β about the polar axis and about the line

θ = π/2:

S =
∫ β

α

2πr sin θ

√

r2 +�dr
dθ�2 dθ About θ = 0

S =
∫ β

α

2πr cos θ

√

r2 +�dr
dθ�2 dθ About θ = π/2

(b) State conditions under which these formulas hold.

In Exercises 27–30, sketch the surface, and use the formulas

in Exercise 26 to find the surface area.

27. The surface generated by revolving the circle r = cos θ

about the line θ = π/2.

28. The surface generated by revolving the spiral r = eθ
(0 ≤ θ ≤ π/2) about the line θ = π/2.

29. The “apple” generated by revolving the upper half of the

cardioid r = 1 − cos θ (0 ≤ θ ≤ π) about the polar axis.

30. The sphere of radius a generated by revolving the semi-

circle r = a in the upper half-plane about the polar axis.

C 31. (a) Show that the Folium of Descartes x3 − 3xy + y3 = 0

can be expressed in polar coordinates as

r =
3 sin θ cos θ

cos3 θ + sin3 θ

(b) Use a CAS to show that the area inside of the loop is 3
2

(Figure 3.6.2).

C 32. (a) What is the area that is enclosed by one petal of the rose

r = a cos nθ if n is an even integer?

(b) What is the area that is enclosed by one petal of the rose

r = a cos nθ if n is an odd integer?

(c) Use a CAS to show that the total area enclosed by the

rose r = a cos nθ is πa2/2 if the number of petals is

even. [Hint: See Exercise 73 of Section 11.1.]

(d) Use a CAS to show that the total area enclosed by the

rose r = a cos nθ is πa2/4 if the number of petals is

odd.

33. One of the most famous problems in Greek antiquity was

“squaring the circle”; that is, using a straightedge and com-

pass to construct a square whose area is equal to that of a

given circle. It was proved in the nineteenth century that

no such construction is possible. However, show that the

shaded areas in the accompanying figure are equal, thereby

“squaring the crescent.”

p/2

0

Figure Ex-33

34. Use a graphing utility to generate the polar graph of the

equation r = cos 3θ + 2, and find the area that it encloses.

35. Use a graphing utility to generate the graph of the bifolium

r = 2 cos θ sin2 θ , and find the area of the upper loop.
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11.4 CONIC SECTIONS IN CALCULUS

In this section we will discuss some of the basic geometric properties of parabolas, el-

lipses, and hyperbolas. These curves play an important role in calculus and also arise

naturally in a broad range of applications in such fields as planetary motion, design of

telescopes and antennas, geodetic positioning, and medicine, to name a few.

Some students may already be familiar with the material in this section, in which case

it can be treated as a review. Instructors who want to spend some additional time on

precalculus review may want to allocate more than one lecture on this material.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONIC SECTIONS
Circles, ellipses, parabolas, and hyperbolas are called conic sections or conics because

they can be obtained as intersections of a plane with a double-napped circular cone (Fig-

ure 11.4.1). If the plane passes through the vertex of the double-napped cone, then the

intersection is a point, a pair of intersecting lines, or a single line. These are called degen-

erate conic sections.

Circle Ellipse Parabola Hyperbola

A point
A pair of

intersecting lines
A single line

Figure 11.4.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITIONS OF THE CONIC
SECTIONS

Although we could derive properties of parabolas, ellipses, and hyperbolas by defining them

as intersections with a double-napped cone, it will be better suited to calculus if we begin

with equivalent definitions that are based on their geometric properties.
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11.4.1 DEFINITION. A parabola is the set of all points in the plane that are equidistant

from a fixed line and a fixed point not on the line.

The line is called the directrix of the parabola, and the point is called the focus (Fig-

ure 11.4.2). A parabola is symmetric about the line that passes through the focus at right

angles to the directrix. This line, called the axis or the axis of symmetry of the parabola,

intersects the parabola at a point called the vertex.

Focus

Vertex

Axis

Directrix

All points on the

parabola are equidistant

from the focus

and directrix.

Figure 11.4.2

11.4.2 DEFINITION. An ellipse is the set of all points in the plane, the sum of whose

distances from two fixed points is a given positive constant that is greater than the distance

between the fixed points.

The two fixed points are called the foci (plural of “focus”) of the ellipse, and the midpoint

of the line segment joining the foci is called the center (Figure 11.4.3a). To help visualize

Definition 11.4.2, imagine that two ends of a string are tacked to the foci and a pencil traces

a curve as it is held tight against the string (Figure 11.4.3b). The resulting curve will be

an ellipse since the sum of the distances to the foci is a constant, namely the total length

of the string. Note that if the foci coincide, the ellipse reduces to a circle. For ellipses

other than circles, the line segment through the foci and across the ellipse is called the

major axis (Figure 11.4.3c), and the line segment across the ellipse, through the center, and

perpendicular to the major axis is called the minor axis. The endpoints of the major axis

are called vertices.

CenterFocus Focus

The sum of the distances 

to the foci is constant.

Vertex Vertex 

Major

axis

Minor

axis

(a) (b) (c)

Figure 11.4.3

11.4.3 DEFINITION. A hyperbola is the set of all points in the plane, the difference

of whose distances from two fixed distinct points is a given positive constant that is less

than the distance between the fixed points.

The two fixed points are called the foci of the hyperbola, and the term “difference” that

is used in the definition is understood to mean the distance to the farther focus minus the

distance to the closer focus. As a result, the points on the hyperbola form two branches,

each “wrapping around” the closer focus (Figure 11.4.4a). The midpoint of the line segment

joining the foci is called the center of the hyperbola, the line through the foci is called

the focal axis, and the line through the center that is perpendicular to the focal axis is

called the conjugate axis. The hyperbola intersects the focal axis at two points called the

vertices.

Associated with every hyperbola is a pair of lines, called the asymptotes of the hyperbola.

These lines intersect at the center of the hyperbola and have the property that as a point P

moves along the hyperbola away from the center, the distance between P and one of the

asymptotes approaches zero (Figure 11.4.4b).
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Conjugate

axis

Focal

axis

FocusFocus
VertexVertex

Center 

The distance from the 

farther focus minus the 

distance to the closer 

focus is constant.

x

y

These distances approach

zero as the point moves

away from the center.

These distances approach

zero as the point moves

away from the center.

(a) (b)

Figure 11.4.4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EQUATIONS OF PARABOLAS IN
STANDARD POSITION

It is traditional in the study of parabolas to denote the distance between the focus and the

vertex by p. The vertex is equidistant from the focus and the directrix, so the distance

between the vertex and the directrix is also p; consequently, the distance between the focus

and the directrix is 2p (Figure 11.4.5). As illustrated in that figure, the parabola passes

through two of the corners of a box that extends from the vertex to the focus along the axis

of symmetry and extends 2p units above and 2p units below the axis of symmetry.

Axis

Directrix

pp
2p

2p

Figure 11.4.5

The equation of a parabola is simplest if the vertex is the origin and the axis of symmetry

is along the x-axis or y-axis. The four possible such orientations are shown in Figure 11.4.6.

These are called the standard positions of a parabola, and the resulting equations are called

the standard equations of a parabola.

x

y

x

y

x

y

x

y

(p, 0) (–p, 0)
(0, p)

x = –p x = p y = –p

y = p

y2 = 4px y2 = –4px x2 = 4py x2 = –4py

parabolas in standard position 

(0, –p)

Figure 11.4.6

x

y

x = –p

P(x, y)D(–p, y)

F(p, 0)

Figure 11.4.7

To illustrate how the equations in Figure 11.4.6 are obtained, we will derive the equation

for the parabola with focus (p, 0) and directrix x = −p. Let P(x, y) be any point on the

parabola. Since P is equidistant from the focus and directrix, the distances PF and PD in

Figure 11.4.7 are equal; that is,

PF = PD (1)

whereD(−p, y) is the foot of the perpendicular from P to the directrix. From the distance

formula, the distances PF and PD are

PF =
√

(x − p)2 + y2 and PD =
√

(x + p)2 (2)

Substituting in (1) and squaring yields

(x − p)2 + y2 = (x + p)2 (3)
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and after simplifying

y2 = 4px (4)

The derivations of the other equations in Figure 11.4.6 are similar.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A TECHNIQUE FOR SKETCHING
PARABOLAS

Parabolas can be sketched from their standard equations using four basic steps:

• Determine whether the axis of symmetry is along the x-axis or the y-axis. Referring to

Figure 11.4.6, the axis of symmetry is along the x-axis if the equation has a y2-term,

and it is along the y-axis if it has an x2-term.

• Determine which way the parabola opens. If the axis of symmetry is along the x-axis,

then the parabola opens to the right if the coefficient of x is positive, and it opens to the

left if the coefficient is negative. If the axis of symmetry is along the y-axis, then the

parabola opens up if the coefficient of y is positive, and it opens down if the coefficient

is negative.

• Determine the value of p and draw a box extending p units from the origin along the

axis of symmetry in the direction in which the parabola opens and extending 2p units

on each side of the axis of symmetry.

• Using the box as a guide, sketch the parabola so that its vertex is at the origin and it

passes through the corners of the box (Figure 11.4.8).

Rough sketch

Figure 11.4.8

Example 1 Sketch the graphs of the parabolas

(a) x2 = 12y (b) y2 + 8x = 0

and show the focus and directrix of each.

Solution (a). This equation involves x2, so the axis of symmetry is along the y-axis, and

the coefficient of y is positive, so the parabola opens upward. From the coefficient of y, we

obtain 4p = 12 or p = 3. Drawing a box extending p = 3 units up from the origin and

2p = 6 units to the left and 2p = 6 units to the right of the y-axis, then using corners of

the box as a guide, yields the graph in Figure 11.4.9.

x

y

(0, 3)

y = –3

6-6

x2 = 12y

Figure 11.4.9 The focus is p = 3 units from the vertex along the axis of symmetry in the direction in

which the parabola opens, so its coordinates are (0, 3). The directrix is perpendicular to the

axis of symmetry at a distance of p = 3 units from the vertex on the opposite side from the

focus, so its equation is y = −3.

Solution (b). We first rewrite the equation in the standard form

y2 = −8x

This equation involves y2, so the axis of symmetry is along the x-axis, and the coefficient of

x is negative, so the parabola opens to the left. From the coefficient of x we obtain 4p = 8,

so p = 2. Drawing a box extending p = 2 units left from the origin and 2p = 4 units

above and 2p = 4 units below the x-axis, then using corners of the box as a guide, yields

the graph in Figure 11.4.10. ◭

x

y

-4

4

x = 2

(–2, 0)

y2 = –8x

Figure 11.4.10

Example 2 Find an equation of the parabola that is symmetric about the y-axis, has its

vertex at the origin, and passes through the point (5, 2).

Solution. Since the parabola is symmetric about the y-axis and has its vertex at the origin,

the equation is of the form

x2 = 4py or x2 = −4py

where the sign depends on whether the parabola opens up or down. But the parabola must

open up, since it passes through the point (5, 2), which lies in the first quadrant. Thus, the

equation is of the form

x2 = 4py (5)
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Since the parabola passes through (5, 2), we must have 52 = 4p · 2 or 4p = 25
2

. Therefore,

(5) becomes

x2 = 25
2
y ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EQUATIONS OF ELLIPSES IN
STANDARD POSITION

It is traditional in the study of ellipses to denote the length of the major axis by 2a, the

length of the minor axis by 2b, and the distance between the foci by 2c (Figure 11.4.11).

The number a is called the semimajor axis and the number b the semiminor axis (standard

but odd terminology, since a and b are numbers, not geometric axes).

a a

c c

b

b

Figure 11.4.11

a

b

c c
a – c

√b2 + c2 √b2 + c2 Q

P

Figure 11.4.12

There is a basic relationship between the numbers a, b, and c that can be obtained by

examining the sum of the distances to the foci from a point P at the end of the major axis

and from a point Q at the end of the minor axis (Figure 11.4.12). From Definition 11.4.2,

these sums must be equal, so we obtain

2
√

b2 + c2 = (a − c)+ (a + c)
from which it follows that

a =
√

b2 + c2 (6)

or, equivalently,

c =
√

a2 − b2 (7)

From (6), the distance from a focus to an end of the minor axis is a (Figure 11.4.13), which

implies that for all points on the ellipse the sum of the distances to the foci is 2a.

b

c

a

Figure 11.4.13

It also follows from (6) that a ≥ b with the equality holding only when c = 0. Geomet-

rically, this means that the major axis of an ellipse is at least as large as the minor axis and

that the two axes have equal length only when the foci coincide, in which case the ellipse

is a circle.

The equation of an ellipse is simplest if the center of the ellipse is at the origin and the foci

are on the x-axis or y-axis. The two possible such orientations are shown in Figure 11.4.14.

These are called the standard positions of an ellipse, and the resulting equations are called

the standard equations of an ellipse.

x

y

b

–b

a–a (–c, 0) (c, 0)

x2

a2

y2

b2
+      = 1

x

y

a

–a

b–b

(0, –c)

x2

b2

y2

a2
+      = 1

(0, c)

ellipses in standard position 

Figure 11.4.14

x

y

F ′(–c, 0) F(c, 0)

P(x, y)

Figure 11.4.15

To illustrate how the equations in Figure 11.4.14 are obtained, we will derive the equation

for the ellipse with foci on the x-axis. Let P(x, y) be any point on that ellipse. Since the

sum of the distances from P to the foci is 2a, it follows (Figure 11.4.15) that

PF ′ + PF = 2a

so
√

(x + c)2 + y2 +
√

(x − c)2 + y2 = 2a
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Transposing the second radical to the right side of the equation and squaring yields

(x + c)2 + y2 = 4a2 − 4a
√

(x − c)2 + y2 + (x − c)2 + y2

and, on simplifying,
√

(x − c)2 + y2 = a −
c

a
x (8)

Squaring again and simplifying yields

x2

a2
+

y2

a2 − c2
= 1

which, by virtue of (6), can be written as

x2

a2
+
y2

b2
= 1 (9)

Conversely, it can be shown that any point whose coordinates satisfy (9) has 2a as the sum

of its distances from the foci, so that such a point is on the ellipse.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A TECHNIQUE FOR SKETCHING
ELLIPSES

Ellipses can be sketched from their standard equations using three basic steps:

• Determine whether the major axis is on the x-axis or the y-axis. This can be ascertained

from the sizes of the denominators in the equation. Referring to Figure 11.4.14, and

keeping in mind that a2 > b2 (since a > b), the major axis is along the x-axis if x2

has the larger denominator, and it is along the y-axis if y2 has the larger denominator.

If the denominators are equal, the ellipse is a circle.

• Determine the values of a and b and draw a box extending a units on each side of the

center along the major axis and b units on each side of the center along the minor axis.

• Using the box as a guide, sketch the ellipse so that its center is at the origin and it touches

the sides of the box where the sides intersect the coordinate axes (Figure 11.4.16).

Rough sketch

Figure 11.4.16

Example 3 Sketch the graphs of the ellipses

(a)
x2

9
+
y2

16
= 1 (b) x2 + 2y2 = 4

showing the foci of each.

Solution (a). Since y2 has the larger denominator, the major axis is along the y-axis.

Moreover, since a2 > b2, we must have a2 = 16 and b2 = 9, so

a = 4 and b = 3

Drawing a box extending 4 units on each side of the origin along the y-axis and 3 units on

each side of the origin along the x-axis as a guide yields the graph in Figure 11.4.17.

-3 3

-4

4

x

y

x2

9

y2

16
+      = 1

(0, √7)

(0, –√7)

Figure 11.4.17

The foci lie c units on each side of the center along the major axis, where c is given by

(7). From the values of a2 and b2 above, we obtain

c =
√

a2 − b2 =
√

16 − 9 =
√

7 ≈ 2.6

Thus, the coordinates of the foci are (0,
√

7 ) and (0,−
√

7 ), since they lie on the y-axis.

Solution (b). We first rewrite the equation in the standard form

x2

4
+
y2

2
= 1

Since x2 has the larger denominator, the major axis lies along the x-axis, and we have

a2 = 4 and b2 = 2. Drawing a box extending a = 2 on each side of the origin along the

x-axis and extending b =
√

2 ≈ 1.4 units on each side of the origin along the y-axis as a

guide yields the graph in Figure 11.4.18.
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From (7), we obtain

c =
√

a2 − b2 =
√

2 ≈ 1.4

Thus, the coordinates of the foci are (
√

2, 0) and (−
√

2, 0), since they lie on the x-axis.

◭

Example 4 Find an equation for the ellipse with foci (0,±2) and major axis with end-

points (0,±4).

-2 2

x

y

√2

-√2

x2

4

y2

2
+      = 1

(√2, 0)(–√2, 0)

Figure 11.4.18

Solution. From Figure 11.4.14, the equation has the form

x2

b2
+
y2

a2
= 1

and from the given information, a = 4 and c = 2. It follows from (6) that

b2 = a2 − c2 = 16 − 4 = 12

so the equation of the ellipse is

x2

12
+
y2

16
= 1 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EQUATIONS OF HYPERBOLAS IN
STANDARD POSITION

It is traditional in the study of hyperbolas to denote the distance between the vertices by 2a,

the distance between the foci by 2c (Figure 11.4.19), and to define the quantity b as

b =
√

c2 − a2 (10)

This relationship, which can also be expressed as

c =
√

a2 + b2 (11)

is pictured geometrically in Figure 11.4.20. As illustrated in that figure, and as we will show

later in this section, the asymptotes pass through the corners of a box extending b units on

each side of the center along the conjugate axis and a units on each side of the center along

the focal axis. The number a is called the semifocal axis of the hyperbola and the number

b the semiconjugate axis. (As with the semimajor and semiminor axes of an ellipse, these

are numbers, not geometric axes).

a a

c c

Figure 11.4.19

If V is one vertex of a hyperbola, then, as illustrated in Figure 11.4.21, the distance from

V to the farther focus minus the distance from V to the closer focus is

[(c − a)+ 2a] − (c − a) = 2a

Thus, for all points on a hyperbola, the distance to the farther focus minus the distance to

the closer focus is 2a.
b

a

c

Figure 11.4.20

a a

c – a c – a

V

Figure 11.4.21

The equation of a hyperbola is simplest if the center of the hyperbola is at the origin

and the foci are on the x-axis or y-axis. The two possible such orientations are shown in

Figure 11.4.22. These are called the standard positions of a hyperbola, and the resulting

equations are called the standard equations of a hyperbola.

The derivations of these equations are similar to those already given for parabolas and

ellipses, so we will leave them as exercises. However, to illustrate how the equations of the

asymptotes are derived, we will derive those equations for the hyperbola

x2

a2
−
y2

b2
= 1

We can rewrite this equation as

y2 =
b2

a2
(x2 − a2)

which is equivalent to the pair of equations

y =
b

a

√

x2 − a2 and y = −
b

a

√

x2 − a2
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(0, c)

(0, –c)

b–b

–a

ab

–b

–a a (c, 0)(–c, 0)

y = 
a

b
xy = 

b
a x

y = –
b
a

x
y = –

a

b
x

x2

a2
–

y2

b2
= 1

y2

a2
–

x2

b2
= 1

x

y

x

y

hyperbolas in standard position 

Figure 11.4.22

Thus, in the first quadrant, the vertical distance between the line y = (b/a)x and the hyper-

bola can be written (Figure 11.4.23) as

b

a
x −

b

a

√

x2 − a2

But this distance tends to zero as x→+� since

lim
x→+��ba x −

b

a

√

x2 − a2�= lim
x→+�

b

a
(x −

√

x2 − a2 )

= lim
x→+�

b

a

(x −
√

x2 − a2 )(x +
√

x2 − a2 )

x +
√

x2 − a2

= lim
x→+�

ab

x +
√

x2 − a2
= 0

The analysis in the remaining quadrants is similar.

y = 
b
a x

x

y

y = 
b
a √x2 – a2

Figure 11.4.23

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A QUICK WAY TO FIND
ASYMPTOTES

There is a trick that can be used to avoid memorizing the equations of the asymptotes of

a hyperbola. They can be obtained, when needed, by substituting 0 for the 1 on the right

side of the hyperbola equation, and then solving for y in terms of x. For example, for the

hyperbola

x2

a2
−
y2

b2
= 1

we would write

x2

a2
−
y2

b2
= 0 or y2 =

b2

a2
x2 or y = ±

b

a
x

which are the equations for the asymptotes.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A TECHNIQUE FOR SKETCHING
HYPERBOLAS

Hyperbolas can be sketched from their standard equations using four basic steps:

• Determine whether the focal axis is on the x-axis or the y-axis. This can be ascertained

from the location of the minus sign in the equation. Referring to Figure 11.4.22, the

focal axis is along the x-axis when the minus sign precedes the y2-term, and it is along

the y-axis when the minus sign precedes the x2-term.
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• Determine the values of a and b and draw a box extending a units on either side of the

center along the focal axis and b units on either side of the center along the conjugate

axis. (The squares of a and b can be read directly from the equation.)

• Draw the asymptotes along the diagonals of the box.

• Using the box and the asymptotes as a guide, sketch the graph of the hyperbola (Fig-

ure 11.4.24).

Rough sketch

Figure 11.4.24

Example 5 Sketch the graphs of the hyperbolas

(a)
x2

4
−
y2

9
= 1 (b) y2 − x2 = 1

showing their vertices, foci, and asymptotes.

Solution (a). The minus sign precedes the y2-term, so the focal axis is along the x-axis.

From the denominators in the equation we obtain

a2 = 4 and b2 = 9

Since a and b are positive, we must have a = 2 and b = 3. Recalling that the vertices lie a

units on each side of the center on the focal axis, it follows that their coordinates in this case

are (2, 0) and (−2, 0). Drawing a box extending a = 2 units along the x-axis on each side

of the origin and b = 3 units on each side of the origin along the y-axis, then drawing the

asymptotes along the diagonals of the box as a guide, yields the graph in Figure 11.4.25.
5

-5

5

x

y

√13-√13

y = 
3

2
xy = –

3

2
x

x2

4
–

y2

9
= 1

Figure 11.4.25

To obtain equations for the asymptotes, we substitute 0 for 1 in the given equation; this

yields

x2

4
−
y2

9
= 0 or y = ±

3

2
x

The foci lie c units on each side of the center along the focal axis, where c is given by (11).

From the values of a2 and b2 above we obtain

c =
√

a2 + b2 =
√

4 + 9 =
√

13 ≈ 3.6

Since the foci lie on the x-axis in this case, their coordinates are (
√

13, 0) and (−
√

13, 0).

-4 4

-4

4

x

y

√2

−√2

y = xy = –x

Figure 11.4.26

Solution (b). The minus sign precedes the x2-term, so the focal axis is along the y-axis.

From the denominators in the equation we obtain a2 = 1 and b2 = 1, from which it follows

that

a = 1 and b = 1

Thus, the vertices are at (0,−1) and (0, 1). Drawing a box extending a = 1 unit on either

side of the origin along the y-axis and b = 1 unit on either side of the origin along the

x-axis, then drawing the asymptotes, yields the graph in Figure 11.4.26. Since the box is

actually a square, the asymptotes are perpendicular and have equations y = ±x. This can

also be seen by substituting 0 for 1 in the given equation, which yields y2 − x2 = 0 or

y = ±x. Also,

c =
√

a2 + b2 =
√

1 + 1 =
√

2

so the foci, which lie on the y-axis, are (0,−
√

2 ) and (0,
√

2 ). ◭

•
•
•
•
•
•
•
•

REMARK. A hyperbola in which a = b, as in part (b) of this example, is called an equi-

lateral hyperbola. Such hyperbolas always have perpendicular asymptotes.

Example 6 Find the equation of the hyperbola with vertices (0,±8) and asymptotes

y = ± 4
3
x.
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Solution. Since the vertices are on the y-axis, the equation of the hyperbolas has the form

(y2/a2)− (x2/b2) = 1 and the asymptotes are

y = ±
a

b
x

From the locations of the vertices we have a = 8, so the given equations of the asymptotes

yield

y = ±
a

b
x = ±

8

b
x = ±

4

3
x

from which it follows that b = 6. Thus, the hyperbola has the equation

y2

64
−
x2

36
= 1 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TRANSLATED CONICS
Equations of conics that are translated from their standard positions can be obtained by

replacing x by x − h and y by y − k in their standard equations. For a parabola, this

translates the vertex from the origin to the point (h, k); and for ellipses and hyperbolas, this

translates the center from the origin to the point (h, k).

Parabolas with vertex (h, k) and axis parallel to x-axis

(y − k)2 = 4p(x − h) [Opens right] (12)

(y − k)2 = −4p(x − h) [Opens left] (13)

Parabolas with vertex (h, k) and axis parallel to y-axis

(x − h)2 = 4p(y − k) [Opens up] (14)

(x − h)2 = −4p(y − k) [Opens down] (15)

Ellipse with center (h, k) and major axis parallel to x-axis

(x − h)2

a2
+
(y − k)2

b2
= 1 [b ≤ a] (16)

Ellipse with center (h, k) and major axis parallel to y-axis

(x − h)2

b2
+
(y − k)2

a2
= 1 [b ≤ a] (17)

Hyperbola with center (h, k) and focal axis parallel to x-axis

(x − h)2

a2
−
(y − k)2

b2
= 1 (18)

Hyperbola with center (h, k) and focal axis parallel to y-axis

(y − k)2

a2
−
(x − h)2

b2
= 1 (19)

Example 7 Find an equation for the parabola that has its vertex at (1, 2) and its focus at

(4, 2).
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Solution. Since the focus and vertex are on a horizontal line, and since the focus is to the

right of the vertex, the parabola opens to the right and its equation has the form

(y − k)2 = 4p(x − h)

Since the vertex and focus are 3 units apart, we have p = 3, and since the vertex is at

(h, k) = (1, 2), we obtain

(y − 2)2 = 12(x − 1) ◭

Sometimes the equations of translated conics occur in expanded form, in which case we

are faced with the problem of identifying the graph of a quadratic equation in x and y:

Ax2 + Cy2 +Dx + Ey + F = 0 (20)

The basic procedure for determining the nature of such a graph is to complete the squares

of the quadratic terms and then try to match up the resulting equation with one of the forms

of a translated conic.

Example 8 Describe the graph of the equation

y2 − 8x − 6y − 23 = 0

Solution. The equation involves quadratic terms in y but none in x, so we first take all of

the y-terms to one side:

y2 − 6y = 8x + 23

Next, we complete the square on the y-terms by adding 9 to both sides:

(y − 3)2 = 8x + 32

Finally, we factor out the coefficient of the x-term to obtain

(y − 3)2 = 8(x + 4)

This equation is of form (12) with h = −4, k = 3, and p = 2, so the graph is a parabola

with vertex (−4, 3) opening to the right. Since p = 2, the focus is 2 units to the right of the

vertex, which places it at the point (−2, 3); and the directrix is 2 units to the left of the vertex,

which means that its equation is x = −6. The parabola is shown in Figure 11.4.27. ◭

x

y

(–4, 3)

(–2, 3)

Directrix

x = –6

y2 – 8x – 6y – 23 = 0

Figure 11.4.27

Example 9 Describe the graph of the equation

16x2 + 9y2 − 64x − 54y + 1 = 0

Solution. This equation involves quadratic terms in both x and y, so we will group the

x-terms and the y-terms on one side and put the constant on the other:

(16x2 − 64x)+ (9y2 − 54y) = −1

Next, factor out the coefficients of x2 and y2 and complete the squares:

16(x2 − 4x + 4)+ 9(y2 − 6y + 9) = −1 + 64 + 81

or

16(x − 2)2 + 9(y − 3)2 = 144

Finally, divide through by 144 to introduce a 1 on the right side:

(x − 2)2

9
+
(y − 3)2

16
= 1

This is an equation of form (17), with h = 2, k = 3, a2 = 16, and b2 = 9. Thus, the graph
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of the equation is an ellipse with center (2, 3) and major axis parallel to the y-axis. Since

a = 4, the major axis extends 4 units above and 4 units below the center, so its endpoints

are (2, 7) and (2,−1) (Figure 11.4.28). Since b = 3, the minor axis extends 3 units to the

left and 3 units to the right of the center, so its endpoints are (−1, 3) and (5, 3). Since

c =
√

a2 − b2 =
√

16 − 9 =
√

7

the foci lie
√

7 units above and below the center, placing them at the points (2, 3 +
√

7 )

and (2, 3 −
√

7 ). ◭

x

y

(2, 7)

(2, –1)

(5, 3)(–1, 3)
(2, 3)

(2, 3 + √7)

(2, 3 – √7)

16x2 + 9y2 – 64x – 54y + 1 = 0

Figure 11.4.28

Example 10 Describe the graph of the equation

x2 − y2 − 4x + 8y − 21 = 0

Solution. This equation involves quadratic terms in both x and y, so we will group the

x-terms and the y-terms on one side and put the constant on the other:

(x2 − 4x)− (y2 − 8y) = 21

We leave it for you to verify by completing the squares that this equation can be written as

(x − 2)2

9
−
(y − 4)2

9
= 1 (21)

This is an equation of form (18) with h = 2, k = 4, a2 = 9, and b2 = 9. Thus, the equation

represents a hyperbola with center (2, 4) and focal axis parallel to the x-axis. Since a = 3,

the vertices are located 3 units to the left and 3 units to the right of the center, or at the points

(−1, 4) and (5, 4). From (11), c =
√
a2 + b2 =

√
9 + 9 = 3

√
2, so the foci are located

3
√

2 units to the left and right of the center, or at the points (2 − 3
√

2, 4) and (2 + 3
√

2, 4).

The equations of the asymptotes may be found using the trick of substituting 0 for 1 in

(21) to obtain

(x − 2)2

9
−
(y − 4)2

9
= 0

This can be written as y − 4 = ±(x − 2), which yields the asymptotes

y = x + 2 and y = −x + 6

With the aid of a box extending a = 3 units left and right of the center and b = 3 units

above and below the center, we obtain the sketch in Figure 11.4.29. ◭

x

y
y = x + 2y = –x + 6

(2 + 3√2, 4)(2 – 3√2, 4)

x2 – y2 – 4x + 8y – 21 = 0

Figure 11.4.29

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

REFLECTION PROPERTIES OF THE
CONIC SECTIONS

Parabolas, ellipses, and hyperbolas have certain reflection properties that make them ex-

tremely valuable in various applications. In the exercises we will ask you to prove the

following results.

11.4.4 THEOREM (Reflection Property of Parabolas). The tangent line at a point P on a

parabola makes equal angles with the line through P parallel to the axis of symmetry

and the line through P and the focus (Figure 11.4.30a).

11.4.5 THEOREM (Reflection Property of Ellipses). A line tangent to an ellipse at a point

P makes equal angles with the lines joining P to the foci (Figure 11.4.30b).

11.4.6 THEOREM (Reflection Property of Hyperbolas). A line tangent to a hyperbola at a

point P makes equal angles with the lines joining P to the foci (Figure 11.4.30c).
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a

a
Focus

Axis of
symmetry

Tangent

line at P

P

P

a
a

Tangent line at P

P

Tangent line at P

a a

(a) (b) (c)

Figure 11.4.30

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPLICATIONS OF THE CONIC
SECTIONS

Fermat’s principle in optics states that light reflects off of a surface at an angle equal to its

angle of incidence. (See Exercise 61 in Section 4.6.) In particular, if a reflecting surface is

generated by revolving a parabola about its axis of symmetry, it follows from Theorem 11.4.4

that all light rays entering parallel to the axis will be reflected to the focus (Figure 11.4.31a);

conversely, if a light source is located at the focus, then the reflected rays will all be parallel

to the axis (Figure 11.4.31b). This principle is used in certain telescopes to reflect the

approximately parallel rays of light from the stars and planets off of a parabolic mirror to an

eyepiece at the focus; and the parabolic reflectors in flashlights and automobile headlights

utilize this principle to form a parallel beam of light rays from a bulb placed at the focus.

The same optical principles apply to radar signals and sound waves, which explains the

parabolic shape of many antennas.

(a) (b)

Figure 11.4.31

Incoming signals are reflected by the 

parabolic antenna to the receiver at the 

focus.

Visitors to various rooms in the United States Capitol Building and in St. Paul’s Cathedral

in Rome are often astonished by the “whispering gallery” effect in which two people at

opposite ends of the room can hear one another’s whispers very clearly. Such rooms have

ceilings with elliptical cross sections and common foci. Thus, when the two people stand

at the foci, their whispers are reflected directly to one another off of the elliptical ceiling.

Hyperbolic navigation systems, which were developed in World War II as navigational

aids to ships, are based on the definition of a hyperbola. With these systems the ship receives

synchronized radio signals from two widely spaced transmitters with known positions. The

ship’s electronic receiver measures the difference in reception times between the signals

and then uses that difference to compute the difference 2a in its distance between the two

transmitters. This information places the ship somewhere on the hyperbola whose foci are

at the transmitters and whose points have 2a as the difference in their distances from the

foci. By repeating the process with a second set of transmitters, the position of the ship can

be approximated as the intersection of two hyperbolas (Figure 11.4.32).

Ship

Atlantic

Ocean

Figure 11.4.32
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EXERCISE SET 11.4 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, find the equation of the conic.

(a) (b)

(c) (d)

(e) (f)

1 2 3 4
-2

-1

1

0

2

x

y

-3 -2 -1 1 2 3

-3

-2

-1

1

0

x

y

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x

y

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x

y

-3 -2 -1 1

0

0 2 3

-3

-2

-1

1

2

3

x

y

-3 -2 -1 1

0

0

0 2 3

-3

-2

-1

1

0 0

0 0

2

3

x

y

2. (a) Find the focus and directrix for each parabola in Exer-

cise 1.

(b) Find the foci of the ellipses in Exercise 1.

(c) Find the foci and the equations of the asymptotes of the

hyperbolas in Exercise 1.

In Exercises 3–8, sketch the parabola, and label the focus,

vertex, and directrix.

3. (a) y2 = 6x (b) x2 = −9y

4. (a) y2 = −10x (b) x2 = 4y

5. (a) (y − 3)2 = 6(x − 2) (b) (x + 2)2 = −(y + 2)

6. (a) (y + 1)2 = −7(x − 4) (b)
(

x − 1
2

)2 = 2(y − 1)

7. (a) x2 − 4x + 2y = 1 (b) x = y2 − 4y + 2

8. (a) y2 − 6y − 2x + 1 = 0 (b) y = 4x2 + 8x + 5

In Exercises 9–14, sketch the ellipse, and label the foci, the

vertices, and the ends of the minor axis.

9. (a)
x2

16
+
y2

9
= 1 (b) 9x2 + y2 = 9

10. (a)
x2

4
+
y2

25
= 1 (b) 4x2 + 9y2 = 36

11. (a) 9(x − 1)2 + 16(y − 3)2 = 144

(b) 3(x + 2)2 + 4(y + 1)2 = 12

12. (a) (x + 3)2 + 4(y − 5)2 = 16

(b) 1
4
x2 + 1

9
(y + 2)2 − 1 = 0

13. (a) x2 + 9y2 + 2x − 18y + 1 = 0

(b) 4x2 + y2 + 8x − 10y = −13

14. (a) 9x2 + 4y2 + 18x − 24y + 9 = 0

(b) 5x2 + 9y2 − 20x + 54y = −56

In Exercises 15–20, sketch the hyperbola, and label the ver-

tices, foci, and asymptotes.

15. (a)
x2

16
−
y2

4
= 1 (b) 9y2 − 4x2 = 36

16. (a)
y2

9
−
x2

25
= 1 (b) 16x2 − 25y2 = 400

17. (a)
(x − 2)2

9
−
(y − 4)2

4
= 1

(b) (y + 3)2 − 9(x + 2)2 = 36

18. (a)
(y + 4)2

3
−
(x − 2)2

5
= 1

(b) 16(x + 1)2 − 8(y − 3)2 = 16

19. (a) x2 − 4y2 + 2x + 8y − 7 = 0

(b) 16x2 − y2 − 32x − 6y = 57

20. (a) 4x2 − 9y2 + 16x + 54y − 29 = 0

(b) 4y2 − x2 + 40y − 4x = −60

In Exercises 21–26, find an equation for the parabola that

satisfies the given conditions.

21. (a) Vertex (0, 0); focus (3, 0).

(b) Vertex (0, 0); directrix x = 7.

22. (a) Vertex (0, 0); focus (0,−4).

(b) Vertex (0, 0); directrix y = 1
2
.

23. (a) Focus (0,−3); directrix y = 3.

(b) Vertex (1, 1); directrix y = −2.

24. (a) Focus (6, 0); directrix x = −6.

(b) Focus (−1, 4); directrix x = 5.

25. Axis y = 0; passes through (3, 2) and (2,−3).

26. Vertex (5,−3); axis parallel to the y-axis; passes through

(9, 5).

In Exercises 27–32, find an equation for the ellipse that sat-

isfies the given conditions.

27. (a) Ends of major axis (±3, 0); ends of minor axis (0,±2).

(b) Length of major axis 26; foci (±5, 0).

28. (a) Ends of major axis (0,±
√

5 ); ends of minor axis

(±1, 0).

(b) Length of minor axis 16; foci (0,±6).
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29. (a) Foci (±1, 0); b =
√

2.

(b) c = 2
√

3; a = 4; center at the origin; foci on a coor-

dinate axis (two answers).

30. (a) Foci (±3, 0); a = 4.

(b) b = 3; c = 4; center at the origin; foci on a coordi-

nate axis (two answers).

31. (a) Ends of major axis (±6, 0); passes through (2, 3).

(b) Foci (1, 2) and (1, 4); minor axis of length 2.

32. (a) Center at (0, 0); major and minor axes along the coor-

dinate axes; passes through (3, 2) and (1, 6).

(b) Foci (2, 1) and (2,−3); major axis of length 6.

In Exercises 33–38, find an equation for a hyperbola that sat-

isfies the given conditions. (In some cases there may be more

than one hyperbola.)

33. (a) Vertices (±2, 0); foci (±3, 0).

(b) Vertices (±1, 0); asymptotes y = ±2x.

34. (a) Vertices (0,±3); foci (0,±5).

(b) Vertices (0,±3); asymptotes y = ±x.
35. (a) Asymptotes y = ± 3

2
x; b = 4.

(b) Foci (0,±5); asymptotes y = ±2x.

36. (a) Asymptotes y = ± 3
4
x; c = 5.

(b) Foci (±3, 0); asymptotes y = ±2x.

37. (a) Vertices (2, 4) and (10, 4); foci 10 units apart.

(b) Asymptotes y = 2x + 1 and y = −2x + 3; passes

through the origin.

38. (a) Foci (1, 8) and (1,−12); vertices 4 units apart.

(b) Vertices (−3,−1) and (5,−1); b = 4.

39. (a) As illustrated in the accompanying figure, a parabolic

arch spans a road 40 feet wide. How high is the arch if a

center section of the road 20 feet wide has a minimum

clearance of 12 feet?

(b) How high would the center be if the arch were the upper

half of an ellipse?

40. (a) Find an equation for the parabolic arch with base b and

height h, shown in the accompanying figure.

(b) Find the area under the arch.

20 ft

12 ft 12 ft

40 ft

Figure Ex-39

x

y

(b, 0)

(   b, h)1

2

Figure Ex-40

41. Show that the vertex is the closest point on a parabola to

the focus. [Suggestion: Introduce a convenient coordinate

system and use Definition 11.4.1.]

42. As illustrated in the accompanying figure, suppose that a

comet moves in a parabolic orbit with the Sun at its focus

and that the line from the Sun to the comet makes an angle

of 60◦ with the axis of the parabola when the comet is 40

million miles from the center of the Sun. Use the result in

Exercise 41 to determine how close the comet will come to

the center of the Sun.

43. For the parabolic reflector in the accompanying figure, how

far from the vertex should the light source be placed to pro-

duce a beam of parallel rays?

60°

Figure Ex-42

1 ft

1 ft

Figure Ex-43

44. In each part, find the shaded area in the figure.

(a) (b) (c)

x

x x

y y y

y2 – 8x2 = 5

y – 2x2 = 0

3x2 – 7y2 = 5

9y2 – 2x2 = 1

x2 + y2 = 7

x2 – y2 = 1

45. (a) The accompanying figure shows an ellipse with semi-

major axis a and semiminor axis b. Express the coor-

dinates of the points P,Q, and R in terms of t .

(b) How does the geometric interpretation of the parameter

t differ between a circle

x = a cos t, y = a sin t

and an ellipse

x = a cos t, y = b sin t?

x

y

b

t
a

Q

P
R

Figure Ex-45

46. (a) Show that the right and left branches of the hyperbola

x2

a2
−
y2

b2
= 1

can be represented parametrically as

x = a cosh t, y = b sinh t (−� < t < +�)

x = −a cosh t, y = b sinh t (−� < t < +�)

(b) Use a graphing utility to generate both branches of the

hyperbola x2 − y2 = 1 on the same screen.
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47. (a) Show that the right and left branches of the hyperbola

x2

a2
−
y2

b2
= 1

can be represented parametrically as

x = a sec t, y = b tan t (−π/2 < t < π/2)
x = −a sec t, y = b tan t (−π/2 < t < π/2)

(b) Use a graphing utility to generate both branches of the

hyperbola x2 − y2 = 1 on the same screen.

48. Find an equation of the parabola traced by a point that moves

so that its distance from (−1, 4) is the same as its distance

to y = 1.

49. Find an equation of the ellipse traced by a point that moves

so that the sum of its distances to (4, 1) and (4, 5) is 12.

50. Find the equation of the hyperbola traced by a point that

moves so that the difference between its distances to (0, 0)

and (1, 1) is 1.

51. Suppose that the base of a solid is elliptical with a major axis

of length 9 and a minor axis of length 4. Find the volume

of the solid if the cross sections perpendicular to the major

axis are squares (see the accompanying figure).

52. Suppose that the base of a solid is elliptical with a major axis

of length 9 and a minor axis of length 4. Find the volume

of the solid if the cross sections perpendicular to the minor

axis are equilateral triangles (see the accompanying figure).

Figure Ex-51 Figure Ex-52

53. Show that an ellipse with semimajor axis a and semiminor

axis b has area A = πab.
54. (a) Show that the ellipsoid that results when an ellipse with

semimajor axis a and semiminor axis b is revolved

about the major axis has volume V = 4
3
πab2.

(b) Show that the ellipsoid that results when an ellipse with

semimajor axis a and semiminor axis b is revolved

about the minor axis has volume V = 4
3
πa2b.

55. Show that the ellipsoid that results when an ellipse with

semimajor axis a and semiminor axis b is revolved about

the major axis has surface area

S = 2πab

(

b

a
+
a

c
sin−1 c

a

)

where c =
√
a2 − b2.

56. Show that the ellipsoid that results when an ellipse with

semimajor axis a and semiminor axis b is revolved about

the minor axis has surface area

S = 2πab

(

a

b
+
b

c
ln
a + c
b

)

where c =
√
a2 − b2.

57. Suppose that you want to draw an ellipse that has given val-

ues for the lengths of the major and minor axes by using the

method shown in Figure 11.4.3b. Assuming that the axes

are drawn, explain how a compass can be used to locate the

positions for the tacks.

58. The accompanying figure shows Kepler’s method for con-

structing a parabola: a piece of string the length of the left

edge of the drafting triangle is tacked to the vertexQ of the

triangle and the other end to a fixed point F. A pencil holds

the string taut against the base of the triangle as the edge

oppositeQ slides along a horizontal line L below F. Show

that the pencil traces an arc of a parabola with focus F and

directrix L.

L

F

Q

Figure Ex-58

59. The accompanying figure shows a method for constructing

a hyperbola: a corner of a ruler is pinned to a fixed point

F1 and the ruler is free to rotate about that point. A piece

of string whose length is less than that of the ruler is tacked

to a point F2 and to the free corner Q of the ruler on the

same edge as F1. A pencil holds the string taut against the

top edge of the ruler as the ruler rotates about the point F1.

Show that the pencil traces an arc of a hyperbola with foci

F1 and F2.

F2

F1

Q

Figure Ex-59

60. Show that if a plane is not parallel to the axis of a right circu-

lar cylinder, then the intersection of the plane and cylinder

is an ellipse (possibly a circle). [Hint: Let θ be the angle

shown in Figure Ex-60 (next page), introduce coordinate

axes as shown, and express x ′ and y ′ in terms of x and y.]

61. As illustrated in the accompanying figure, a carpenter needs

to cut an elliptical hole in a sloped roof through which a cir-

cular vent pipe of diameter D is to be inserted vertically.

The carpenter wants to draw the outline of the hole on the

roof using a pencil, two tacks, and a piece of string (as in

Figure 11.4.3b). The center point of the ellipse is known,
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and common sense suggests that its major axis must be per-

pendicular to the drip line of the roof. The carpenter needs

to determine the length L of the string and the distance T

between a tack and the center point. The architect’s plans

show that the pitch of the roof is p (pitch = rise over run;

see the accompanying figure). Find T and L in terms of D

andp. [Note: This exercise is based on an article by William

H. Enos, which appeared in the Mathematics Teacher, Feb.

1991, p. 148.]

y′

y

x′

x

u

Figure Ex-60

Rise

RunDrip line

Vent

pipe

Figure Ex-61

62. Prove: The line tangent to the parabola x2 = 4py at the

point (x0, y0) is x0x = 2p(y + y0).

63. Prove: The line tangent to the ellipse

x2

a2
+
y2

b2
= 1

at the point (x0, y0) has the equation

xx0

a2
+
yy0

b2
= 1

64. Prove: The line tangent to the hyperbola

x2

a2
−
y2

b2
= 1

at the point (x0, y0) has the equation

xx0

a2
−
yy0

b2
= 1

65. Use the results in Exercises 63 and 64 to show that if an el-

lipse and a hyperbola have the same foci, then at each point

of intersection their tangent lines are perpendicular.

66. Find two values of k such that the line x+2y = k is tangent

to the ellipse x2 + 4y2 = 8. Find the points of tangency.

67. Find the coordinates of all points on the hyperbola

4x2 − y2 = 4

where the two lines that pass through the point and the foci

are perpendicular.

68. A line tangent to the hyperbola 4x2 − y2 = 36 intersects

the y-axis at the point (0, 4). Find the point(s) of tangency.

69. As illustrated in the accompanying figure, suppose that two

observers are stationed at the points F1(c, 0) and F2(−c, 0)
in an xy-coordinate system. Suppose also that the sound of

an explosion in the xy-plane is heard by the F1 observer t

seconds before it is heard by theF2 observer. Assuming that

the speed of sound is a constant v, show that the explosion

occurred somewhere on the hyperbola

x2

v2t2/4
−

y2

c2 − (v2t2/4)
= 1

x

y

F2(–c, 0 ) F1(c, 0 )

Figure Ex-69

70. As illustrated in the accompanying figure, suppose that two

transmitting stations are positioned 100 km apart at points

F1(50, 0) and F2(−50, 0) on a straight shoreline in an xy-

coordinate system. Suppose also that a ship is traveling par-

allel to the shoreline but 200 km at sea. Find the coordinates

of the ship if the stations transmit a pulse simultaneously,

but the pulse from station F1 is received by the ship 0.1

microsecond sooner than the pulse from station F2. [Hint:

Use the formula obtained in Exercise 69, assuming that the

pulses travel at the speed of light (299,792,458 m/s).]

x

y

F2(–50, 0 ) F1(50, 0 )

200 km

Figure Ex-70

C 71. As illustrated in the accompanying figure, the tank of an oil

truck is 18 feet long and has elliptical cross sections that are

6 feet wide and 4 feet high.

(a) Show that the volume V of oil in the tank (in cubic feet)

when it is filled to a depth of h feet is

V = 27

[

4 sin−1 h− 2

2
+ (h− 2)

√

4h− h2 + 2π

]

(b) Use the numerical root-finding capability of a CAS to

determine how many inches from the bottom of a dip-

stick the calibration marks should be placed to indicate

when the tank is 1
4
, 1

2
, and 3

4
full.

18′

6′

4′

h

Dipstick

Figure Ex-71
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72. Consider the second-degree equation

Ax2 + Cy2 +Dx + Ey + F = 0

where A and C are not both 0. Show by completing the

square:

(a) If AC > 0, then the equation represents an ellipse, a

circle, a point, or has no graph.
(b) If AC < 0, then the equation represents a hyperbola or

a pair of intersecting lines.
(c) If AC = 0, then the equation represents a parabola, a

pair of parallel lines, or has no graph.

73. In each part, use the result in Exercise 72 to make a state-

ment about the graph of the equation, and then check your

conclusion by completing the square and identifying the

graph.

(a) x2 − 5y2 − 2x − 10y − 9 = 0
(b) x2 − 3y2 − 6y − 3 = 0
(c) 4x2 + 8y2 + 16x + 16y + 20 = 0
(d) 3x2 + y2 + 12x + 2y + 13 = 0
(e) x2 + 8x + 2y + 14 = 0
(f ) 5x2 + 40x + 2y + 94 = 0

74. Derive the equation x2 = 4py in Figure 11.4.6.

75. Derive the equation (x2/b2)+ (y2/a2) = 1 given in Figure

11.4.14.

76. Derive the equation (x2/a2)− (y2/b2) = 1 given in Figure

11.4.22.

77. Prove Theorem 11.4.4. [Hint: Choose coordinate axes so

that the parabola has the equation x2 = 4py. Show that the

tangent line at P(x0, y0) intersects the y-axis atQ(0,−y0)

and that the triangle whose three vertices are at P,Q, and

the focus is isosceles.]

78. Given two intersecting lines, let L2 be the line with the

larger angle of inclination φ2, and let L1 be the line with

the smaller angle of inclination φ1. We define the angle θ

between L1 and L2 by θ = φ2 − φ1. (See the accompanying

figure.)

(a) Prove: If L1 and L2 are not perpendicular, then

tan θ =
m2 −m1

1 +m1m2

where L1 and L2 have slopes m1 and m2.

(b) Prove Theorem 11.4.5. [Hint: Introduce coordinate axes

so that the ellipse has the equation x2/a2 + y2/b2 = 1,

and use part (a).]

(c) Prove Theorem 11.4.6. [Hint: Introduce coordinate axes

so that the hyperbola has the equation x2/a2 −y2/b2 =
1, and use part (a).]

x

y

u

f2

L2

L1

f1

Figure Ex-78

11.5 ROTATION OF AXES; SECOND-DEGREE EQUATIONS

-2-3 -1 1 2 3

-2

-3

-1

1

2

3

x

y

P(x, y) (1, 2)

(–1, –2)

Figure 11.5.1

In the preceding section we obtained equations of conic sections with axes parallel

to the coordinate axes. In this section we will study the equations of conics that are

“tilted” relative to the coordinate axes. This will lead us to investigate rotations of

coordinate axes.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

QUADRATIC EQUATIONS IN x
AND y

We saw in Examples 8–10 of the preceding section that equations of the form

Ax2 + Cy2 +Dx + Ey + F = 0 (1)

can represent conic sections. Equation (1) is a special case of the more general equation

Ax2 + Bxy + Cy2 +Dx + Ey + F = 0 (2)

which, if A, B, and C are not all zero, is called a second-degree equation or quadratic

equation in x and y. We will show later in this section that the graph of any second-degree

equation is a conic section (possibly a degenerate conic section). If B = 0, then (2) reduces

to (1) and the conic section has its axis or axes parallel to the coordinate axes. However, if

B = 0, then (2) contains a “cross-product” term Bxy, and the graph of the conic section

represented by the equation has its axis or axes “tilted” relative to the coordinate axes. As

an illustration, consider the ellipse with foci F1(1, 2) and F2(−1,−2) and such that the sum

of the distances from each point P(x, y) on the ellipse to the foci is 6 units. Expressing this

condition as an equation, we obtain (Figure 11.5.1)
√

(x − 1)2 + (y − 2)2 +
√

(x + 1)2 + (y + 2)2 = 6
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Squaring both sides, then isolating the remaining radical, then squaring again ultimately

yields

8x2 − 4xy + 5y2 = 36

as the equation of the ellipse. This is of form (2) with A = 8, B = −4, C = 5,D = 0,

E = 0, F = −36.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ROTATION OF AXES
To study conics that are tilted relative to the coordinate axes it is frequently helpful to

rotate the coordinate axes, so that the rotated coordinate axes are parallel to the axes of the

conic. Before we can discuss the details, we need to develop some ideas about rotation of

coordinate axes.

In Figure 11.5.2a the axes of an xy-coordinate system have been rotated about the origin

through an angle θ to produce a new x ′y ′-coordinate system. As shown in the figure, each

point P in the plane has coordinates (x ′, y ′) as well as coordinates (x, y). To see how the

two are related, let r be the distance from the common origin to the point P , and let α be

the angle shown in Figure 11.5.2b. It follows that

x = r cos(θ + α), y = r sin(θ + α) (3)

and

x ′ = r cosα, y ′ = r sinα (4)

Using familiar trigonometric identities, the relationships in (3) can be written as

x = r cos θ cosα − r sin θ sinα

y = r sin θ cosα + r cos θ sinα

and on substituting (4) in these equations we obtain the following relationships called the

rotation equations:

x = x ′ cos θ − y ′ sin θ

y = x ′ sin θ + y ′ cos θ
(5)

x

x'

y

y'

u

P
(x, y)
(x', y' )

x

x'

x'

y

y' y'

u

a

P

r
y

x

(b)(a)

Figure 11.5.2

Example 1 Suppose that the axes of an xy-coordinate system are rotated through an angle

of θ = 45◦ to obtain an x ′y ′-coordinate system. Find the equation of the curve

x2 − xy + y2 − 6 = 0

in x ′y ′-coordinates.

Solution. Substituting sin θ = sin 45◦ = 1/
√

2 and cos θ = cos 45◦ = 1/
√

2 in (5)

yields the rotation equations

x =
x ′
√

2
−
y ′
√

2
and y =

x ′
√

2
+
y ′
√

2
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Substituting these into the given equation yields

(

x ′
√

2
−
y ′
√

2

)2

−
(

x ′
√

2
−
y ′
√

2

) (

x ′
√

2
+
y ′
√

2

)

+
(

x ′
√

2
+
y ′
√

2

)2

− 6 = 0

or

x ′2 − 2x ′y ′ + y ′2 − x ′2 + y ′2 + x ′2 + 2x ′y ′ + y ′2

2
= 6

or

x ′2

12
+
y ′2

4
= 1

which is the equation of an ellipse (Figure 11.5.3). ◭

x

x'

y

y'

45°

x2 – xy + y2 – 6 = 0

Figure 11.5.3 If the rotation equations (5) are solved for x ′ and y ′ in terms of x and y, one obtains

(Exercise 14):

x ′ = x cos θ + y sin θ

y ′ = −x sin θ + y cos θ
(6)

Example 2 Find the new coordinates of the point (2, 4) if the coordinate axes are rotated

through an angle of θ = 30◦ .

Solution. Using the rotation equations in (6) with x = 2, y = 4, cos θ = cos 30◦ =√
3/2, and sin θ = sin 30◦ = 1/2, we obtain

x ′ = 2(
√

3/2)+ 4(1/2) =
√

3 + 2

y ′ = −2(1/2)+ 4(
√

3/2) = −1 + 2
√

3

Thus, the new coordinates are (
√

3 + 2,−1 + 2
√

3 ). ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ELIMINATING THE
CROSS-PRODUCT TERM

In Example 1 we were able to identify the curve x2 −xy+y2 −6 = 0 as an ellipse because

the rotation of axes eliminated the xy-term, thereby reducing the equation to a familiar

form. This occurred because the new x ′y ′-axes were aligned with the axes of the ellipse.

The following theorem tells how to determine an appropriate rotation of axes to eliminate

the cross-product term of a second-degree equation in x and y.

11.5.1 THEOREM. If the equation

Ax2 + Bxy + Cy2 +Dx + Ey + F = 0 (7)

is such that B = 0, and if an x ′y ′-coordinate system is obtained by rotating the xy-axes

through an angle θ satisfying

cot 2θ =
A− C
B

(8)

then, in x ′y ′-coordinates, Equation (7 ) will have the form

A′x ′2 + C ′y ′2 +D′x ′ + E′y ′ + F ′ = 0

Proof. Substituting (5) into (7) and simplifying yields

A′x ′2 + B ′x ′y ′ + C ′y ′2 +D′x ′ + E′y ′ + F ′ = 0
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where

A′ = A cos2 θ + B cos θ sin θ + C sin2 θ

B ′ = B(cos2 θ − sin2 θ)+ 2(C − A) sin θ cos θ

C ′ = A sin2 θ − B sin θ cos θ + C cos2 θ

D′ = D cos θ + E sin θ

E′ = −D sin θ + E cos θ

F ′ = F

(9)

(Verify.) To complete the proof we must show that B ′ = 0 if

cot 2θ =
A− C
B

or equivalently,

cos 2θ

sin 2θ
=
A− C
B

(10)

However, by using the trigonometric double-angle formulas, we can rewrite B ′ in the form

B ′ = B cos 2θ − (A− C) sin 2θ

Thus, B ′ = 0 if θ satisfies (10).

•
•
•
•
•
•
•
•

REMARK. It is always possible to satisfy (8) with an angle θ in the range 0 < θ < π/2.

We will always use such a value of θ .

Example 3 Identify and sketch the curve xy = 1.

Solution. As a first step, we will rotate the coordinate axes to eliminate the cross-product

term. Comparing the given equation to (7), we have

A = 0, B = 1, C = 0

Thus, the desired angle of rotation must satisfy

cot 2θ =
A− C
B

=
0 − 0

1
= 0

This condition can be met by taking 2θ = π/2 or θ = π/4 = 45◦ . Substituting cos θ =
cos 45◦ = 1/

√
2 and sin θ = sin 45◦ = 1/

√
2 in (5) yields

x =
x ′
√

2
−
y ′
√

2
and y =

x ′
√

2
+
y ′
√

2

Substituting these in the equation xy = 1 yields
(

x ′
√

2
−
y ′
√

2

) (

x ′
√

2
+
y ′
√

2

)

= 1 and
x ′ 2

2
−
y ′ 2

2
= 1

which is the equation in the x ′y ′-coordinate system of an equilateral hyperbola with ver-

tices at (
√

2, 0) and (−
√

2, 0) in that coordinate system (Figure 11.5.4). ◭

xy = 1

x

x'

y

y'

Figure 11.5.4

In problems where it is inconvenient to solve

cot 2θ =
A− C
B

for θ , the values of sin θ and cos θ needed for the rotation equations can be obtained by first

calculating cos 2θ and then computing sin θ and cos θ from the identities

sin θ =
√

1 − cos 2θ

2
and cos θ =

√

1 + cos 2θ

2
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Example 4 Identify and sketch the curve

153x2 − 192xy + 97y2 − 30x − 40y − 200 = 0

Solution. We have A = 153, B = −192, and C = 97, so

cot 2θ =
A− C
B

= −
56

192
= −

7

24

Since θ is to be chosen in the range 0 < θ < π/2, this relationship is represented by the

triangle in Figure 11.5.5. From that triangle we obtain cos 2θ = − 7
25

, which implies that

cos θ =
√

1 + cos 2θ

2
=

√

1 − 7
25

2
=

3

5

sin θ =
√

1 − cos 2θ

2
=

√

1 + 7
25

2
=

4

5

Substituting these values in (5) yields the rotation equations

x = 3
5
x ′ − 4

5
y ′ and y = 4

5
x ′ + 3

5
y ′

and substituting these in turn in the given equation yields
153
25
(3x ′ − 4y ′)2 − 192

25
(3x ′ − 4y ′)(4x ′ + 3y ′)+ 97

25
(4x ′ + 3y ′)2

− 30
5
(3x ′ − 4y ′)− 40

5
(4x ′ + 3y ′)− 200 = 0

which simplifies to

25x ′2 + 225y ′2 − 50x ′ − 200 = 0

or

x ′2 + 9y ′2 − 2x ′ − 8 = 0

Completing the square yields

(x ′ − 1)2

9
+ y ′2 = 1

which is the equation in the x ′y ′-coordinate system of an ellipse with center (1, 0) in that

coordinate system and semiaxes a = 3 and b = 1 (Figure 11.5.6). ◭

x

y

–7

24
25

2u

Figure 11.5.5

x

x'

y

y'

(x' – 1)2

9
+ y' 2 = 1

Figure 11.5.6

THE DISCRIMINANT

It is possible to describe the graph of a second-degree equation without rotating coordinate

axes.

11.5.2 THEOREM. Consider a second-degree equation

Ax2 + Bxy + Cy2 +Dx + Ey + F = 0 (11)

(a) If B2 − 4AC < 0, the equation represents an ellipse, a circle, a point, or else has

no graph.

(b) If B2 − 4AC > 0, the equation represents a hyperbola or a pair of intersecting

lines.

(c) If B2 − 4AC = 0, the equation represents a parabola, a line, a pair of parallel

lines, or else has no graph.

The quantity B2 − 4AC in this theorem is called the discriminant of the quadratic

equation. To see why Theorem 11.5.2 is true, we need a fact about the discriminant. It can

be shown (Exercise 19) that if the coordinate axes are rotated through any angle θ , and if

A′x ′2 + B ′x ′y ′ + C ′y ′2 +D′x ′ + E′y ′ + F ′ = 0 (12)
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is the equation resulting from (11) after rotation, then

B2 − 4AC = B ′2 − 4A′C ′ (13)

In other words, the discriminant of a quadratic equation is not altered by rotating the co-

ordinate axes. For this reason the discriminant is said to be invariant under a rotation of

coordinate axes. In particular, if we choose the angle of rotation to eliminate the cross-

product term, then (12) becomes

A′x ′2 + C ′y ′2 +D′x ′ + E′y ′ + F ′ = 0 (14)

and since B ′ = 0, (13) tells us that

B2 − 4AC = −4A′C ′ (15)

Proof of Theorem 11.5.2(a). If B2 − 4AC < 0, then from (15), A′C ′ > 0, so (14) can

be divided through by A′C ′ and written in the form

1

C ′

(

x ′2 +
D′

A′ x
′
)

+
1

A′

(

y ′2 +
E′

C ′ y
′
)

= −
F ′

A′C ′

Since A′C ′ > 0, the numbers A′ and C ′ have the same sign. We assume that this sign is

positive, since Equation (14) can be multiplied through by −1 to achieve this, if necessary.

By completing the squares, we can rewrite the last equation in the form

(x ′ − h)2

(
√
C ′ )2

+
(y ′ − k)2

(
√
A′ )2

= K

There are three possibilities:K > 0, in which case the graph is either a circle or an ellipse,

depending on whether or not the denominators are equal; K < 0, in which case there is no

graph, since the left side is nonnegative for all x ′ and y ′; orK = 0, in which case the graph

is the single point (h, k), since the equation is satisfied only by x ′ = h and y ′ = k. The

proofs of parts (b) and (c) require a similar kind of analysis.

Example 5 Use the discriminant to identify the graph of

8x2 − 3xy + 5y2 − 7x + 6 = 0

Solution. We have

B2 − 4AC = (−3)2 − 4(8)(5) = −151

Since the discriminant is negative, the equation represents an ellipse, a point, or else has no

graph. (Why can’t the graph be a circle?) ◭

In cases where a quadratic equation represents a point, a line, a pair of parallel lines,

a pair of intersecting lines, or has no graph, we say that equation represents a degenerate

conic section. Thus, if we allow for possible degeneracy, it follows from Theorem 11.5.2

that every quadratic equation has a conic section as its graph.

EXERCISE SET 11.5 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Let an x ′y ′-coordinate system be obtained by rotating an

xy-coordinate system through an angle of θ = 60◦ .

(a) Find the x ′y ′-coordinates of the point whose xy-coor-

dinates are (−2, 6).

(b) Find an equation of the curve
√

3xy + y2 = 6 in x ′y ′-

coordinates.

(c) Sketch the curve in part (b), showing both xy-axes and

x ′y ′-axes.

2. Let an x ′y ′-coordinate system be obtained by rotating an

xy-coordinate system through an angle of θ = 30◦ .

(a) Find the x ′y ′-coordinates of the point whose xy-coor-

dinates are (1,−
√

3).

(b) Find an equation of the curve 2x2 + 2
√

3xy = 3 in

x ′y ′-coordinates.

(c) Sketch the curve in part (b), showing both xy-axes and

x ′y ′-axes.
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In Exercises 3–12, rotate the coordinate axes to remove the

xy-term. Then name the conic and sketch its graph.

3. xy = −9 4. x2 − xy + y2 − 2 = 0

5. x2 + 4xy − 2y2 − 6 = 0

6. 31x2 + 10
√

3xy + 21y2 − 144 = 0

7. x2 + 2
√

3xy + 3y2 + 2
√

3x − 2y = 0

8. 34x2 − 24xy + 41y2 − 25 = 0

9. 9x2 − 24xy + 16y2 − 80x − 60y + 100 = 0

10. 5x2 − 6xy + 5y2 − 8
√

2x + 8
√

2y = 8

11. 52x2 − 72xy + 73y2 + 40x + 30y − 75 = 0

12. 6x2 + 24xy − y2 − 12x + 26y + 11 = 0

13. Let an x ′y ′-coordinate system be obtained by rotating an

xy-coordinate system through an angle θ . Prove: For every

value of θ , the equation x2 + y2 = r2 becomes x ′2 + y ′2 =
r2. Give a geometric explanation.

14. Derive (6) by solving the rotation equations in (5) for x ′ and

y ′ in terms of x and y.

15. Let an x ′y ′-coordinate system be obtained by rotating an xy-

coordinate system through an angle of 45◦ . Use (6) to find

an equation of the curve 3x ′2 + y ′2 = 6 in xy-coordinates.

16. Let an x ′y ′-coordinate system be obtained by rotating an

xy-coordinate system through an angle of 30◦ . Use (5) to

find an equation in x′y′-coordinates of the curve y = x2.

17. Show that the graph of the equation
√
x +

√
y = 1

is a portion of a parabola. [Hint: First rationalize the equa-

tion and then perform a rotation of axes.]

18. Derive the expression for B ′ in (9).

19. Use (9) to prove thatB2−4AC = B ′2−4A′C ′ for all values

of θ .

20. Use (9) to prove that A+ C = A′ + C ′ for all values of θ .

21. Prove: If A = C in (7), then the cross-product term can be

eliminated by rotating through 45◦ .

22. Prove: If B = 0, then the graph of x2 + Bxy + F = 0 is a

hyperbola if F = 0 and two intersecting lines if F = 0.

In Exercises 23–27, use the discriminant to identify the graph

of the given equation.

23. x2 − xy + y2 − 2 = 0

24. x2 + 4xy − 2y2 − 6 = 0

25. x2 + 2
√

3xy + 3y2 + 2
√

3x − 2y = 0

26. 6x2 + 24xy − y2 − 12x + 26y + 11 = 0

27. 34x2 − 24xy + 41y2 − 25 = 0

28. Each of the following represents a degenerate conic section.

Where possible, sketch the graph.

(a) x2 − y2 = 0

(b) x2 + 3y2 + 7 = 0

(c) 8x2 + 7y2 = 0

(d) x2 − 2xy + y2 = 0

(e) 9x2 + 12xy + 4y2 − 36 = 0

(f ) x2 + y2 − 2x − 4y = −5

29. Prove parts (b) and (c) of Theorem 11.5.2.

C 30. Consider the conic whose equation is

x2 + xy + 2y2 − x + 3y + 1 = 0

(a) Use the discriminant to identify the conic.

(b) Graph the equation by solving for y in terms of x and

graphing both solutions.

(c) Your CAS may be able to graph the equation in the form

given. If so, graph the equation in this way.

C 31. Consider the conic whose equation is

2x2 + 9xy + y2 − 6x + y − 4 = 0

(a) Use the discriminant to identify the conic.

(b) Graph the equation by solving for y in terms of x and

graphing both solutions.

(c) Your CAS may be able to graph the equation in the form

given. If so, graph the equation in this way.

11.6 CONIC SECTIONS IN POLAR COORDINATES

It will be shown later in the text that if an object moves in a gravitational field that is

directed toward a fixed point (such as the center of the Sun), then the path of that ob-

ject must be a conic section with the fixed point at a focus. For example, planets in our

solar system move along elliptical paths with the Sun at a focus, and the comets move

along parabolic, elliptical, or hyperbolic paths with the Sun at a focus, depending on

the conditions under which they were born. For applications of this type it is usually

desirable to express the equations of the conic sections in polar coordinates with the

pole at a focus. In this section we will show how to do this.
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE FOCUS–DIRECTRIX
CHARACTERIZATION OF CONICS

To obtain polar equations for the conic sections we will need the following theorem.

11.6.1 THEOREM (Focus–Directrix Property of Conics). Suppose that a point P moves in

the plane determined by a fixed point (called the focus) and a fixed line (called the

directrix), where the focus does not lie on the directrix. If the point moves in such a way

that its distance to the focus divided by its distance to the directrix is some constant e

(called the eccentricity), then the curve traced by the point is a conic section. Moreover,

the conic is a parabola if e = 1, an ellipse if 0 < e < 1, and a hyperbola if e > 1.

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. It is an unfortunate historical accident that the letter e is used for the base

of the natural logarithms and the eccentricity of conic sections. However, the appropriate

interpretation will usually be clear from the context in which the letter is used.

We will not give a formal proof of this theorem; rather, we will use the specific cases

in Figure 11.6.1 to illustrate the basic ideas. For the parabola, we will take the directrix to

be x = −p, as usual; and for the ellipse and the hyperbola we will take the directrix to be

x = a2/c. We want to show in all three cases that if P is a point on the graph, F is the

focus, andD is the directrix, then the ratio PF/PD is some constant e, where e = 1 for the

parabola, 0 < e < 1 for the ellipse, and e > 1 for the hyperbola. We will give the arguments

for the parabola and ellipse and leave the argument for the hyperbola as an exercise.

x

y

x = –p

P(x, y)D

F(p, 0) F(c, 0)

P(x, y) D

x = a2/c

x

y

F(c, 0)

P(x, y)D

x = a2/c

x

y

Figure 11.6.1

For the parabola, the distance PF to the focus is equal to the distance PD to the directrix,

so that PF/PD = 1,which is what we wanted to show. For the ellipse, we rewrite Equation

(8) of Section 11.4 as

√

(x − c)2 + y2 = a −
c

a
x =

c

a

(

a2

c
− x

)

But the expression on the left side is the distance PF, and the expression in the parentheses

on the right side is the distance PD, so we have shown that

PF =
c

a
PD

Thus, PF/PD is constant, and the eccentricity is

e =
c

a
(1)
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If we rule out the degenerate case where a = 0 or c = 0, then it follows from Formula (7)

of Section 11.4 that 0 < c < a, so 0 < e < 1, which is what we wanted to show.

We will leave it as an exercise to show that the eccentricity of the hyperbola in Fig-

ure 11.6.1 is also given by Formula (1), but in this case it follows from Formula (11) of

Section 11.4 that c > a, so e > 1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ECCENTRICITY OF AN ELLIPSE AS
A MEASURE OF FLATNESS

The eccentricity of an ellipse can be viewed as a measure of its flatness—as e approaches 0

the ellipses become more and more circular, and as e approaches 1 they become more and

more flat (Figure 11.6.2). Table 11.6.1 shows the orbital eccentricities of various celestial

objects. Note that most of the planets actually have fairly circular orbits.

F

e = 0
e = 0.5

e = 0.8

e = 0.9

Ellipses with a common focus 

and equal semimajor axes.

Figure 11.6.2

Table 11.6.1

celestial body

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Halley's comet

0.206

0.007

0.017

0.093

0.048

0.056

0.046

0.010

0.249

0.970

eccentricity

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

POLAR EQUATIONS OF CONICS
Our next objective is to derive polar equations for the conic sections from their focus–

directrix characterizations. We will assume that the focus is at the pole and the directrix is

either parallel or perpendicular to the polar axis. If the directrix is parallel to the polar axis,

then it can be above or below the pole; and if the directrix is perpendicular to the polar axis,

then it can be to the left or right of the pole. Thus, there are four cases to consider. We will

derive the formulas for the case in which the directrix is perpendicular to the polar axis and

to the right of the pole.

As illustrated in Figure 11.6.3, let us assume that the directrix is perpendicular to the

polar axis and d units to the right of the pole, where the constant d is known. If P is a point

on the conic and if the eccentricity of the conic is e, then it follows from Theorem 11.6.1

that PF/PD = e or, equivalently, that

PF = ePD (2)

However, it is evident from Figure 11.6.3 that PF = r and PD = d − r cos θ. Thus, (2) can

be written as

r = e(d − r cos θ)

which can be solved for r and expressed as

r =
ed

1 + e cos θ

(verify). Observe that this single polar equation can represent a parabola, an ellipse, or a

hyperbola, depending on the value of e. In contrast, the rectangular equations for these

conics all have different forms. The derivations in the other three cases are similar.

F
Pole

d

DP(r, u)

Directrix

r

r cos u

u

Figure 11.6.3
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11.6.2 THEOREM. If a conic section with eccentricity e is positioned in a polar co-

ordinate system so that its focus is at the pole and the corresponding directrix is d units

from the pole and is either parallel or perpendicular to the polar axis, then the equation

of the conic has one of four possible forms, depending on its orientation:

r =
ed

1 + e cos θ
Directrix right of pole

r =
ed

1 − e cos θ
Directrix left of pole

(3–4)

r =
ed

1 + e sin θ
Directrix above pole

r =
ed

1 − e sin θ
Directrix below pole

(5–6)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SKETCHING CONICS IN POLAR
COORDINATES

Precise graphs of conic sections in polar coordinates can be generated with graphing util-

ities. However, it is often useful to be able to make quick sketches of these graphs that

show their orientations and give some sense of their dimensions. The orientation of a conic

relative to the polar axis can be deduced by matching its equation with one of the four

forms in Theorem 11.6.2. The key dimensions of a parabola are determined by the con-

stant p (Figure 11.4.5) and those of ellipses and hyperbolas by the constants a, b, and c

(Figures 11.4.11 and 11.4.20). Thus, we need to show how these constants can be obtained

from the polar equations.

Example 1 Sketch the graph of r =
2

1 − cos θ
in polar coordinates.

Solution. The equation is an exact match to (4) with d = 2 and e = 1. Thus, the graph is

a parabola with the focus at the pole and the directrix 2 units to the left of the pole. This tells

us that the parabola opens to the right along the polar axis and p = 1. Thus, the parabola

looks roughly like that sketched in Figure 11.6.4. ◭

Rough sketch

Figure 11.6.4

All of the important geometric information about an ellipse can be obtained from the

values of a, b, and c in Figure 11.6.5. One way to find these values from the polar equation

of an ellipse is based on finding the distances from the focus to the vertices. As shown in

the figure, let r0 be the distance from the focus to the closest vertex and r1 the distance to

the farthest vertex. Thus,

r0 = a − c and r1 = a + c (7)

from which it follows that

a = 1
2
(r1 + r0) (8)

and

c = 1
2
(r1 − r0) (9)

Moreover, it also follows from (7) that

r0r1 = a2 − c2 = b2

Thus,

b = √
r0r1 (10)

b

c

a

a

r1

a

r0

Figure 11.6.5
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•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In words, Formula (8) states that a is the arithmetic average (also called the

arithmetic mean) of r0 and r1, and Formula (10) states that b is the geometric mean of r0
and r1.

Example 2 Sketch the graph of r =
6

2 + cos θ
in polar coordinates.

Solution. This equation does not match any of the forms in Theorem 11.6.2 because they

all require a constant term of 1 in the denominator. However, we can put the equation into

one of these forms by dividing the numerator and denominator by 2 to obtain

r =
3

1 + 1
2

cos θ

This is an exact match to (3) with d = 6 and e = 1
2
, so the graph is an ellipse with the

directrix 6 units to the right of the pole. The distance r0 from the focus to the closest vertex

can be obtained by setting θ = 0 in this equation, and the distance r1 to the farthest vertex

can be obtained by setting θ = π. This yields

r0 =
3

1 + 1
2

cos 0
=

3
3
2

= 2, r1 =
3

1 + 1
2

cosπ
=

3
1
2

= 6

Thus, from Formulas (8), (10), and (9), respectively, we obtain

a = 1
2
(r1 + r0) = 4, b = √

r0r1 = 2
√

3, c = 1
2
(r1 − r0) = 2

Thus, the ellipse looks roughly like that sketched in Figure 11.6.6. ◭

Rough sketch of

r = 
3

1 +   cos u
1

2

Figure 11.6.6

b

a

c

r1

r0

Figure 11.6.7

All of the important information about a hyperbola can be obtained from the values of

a, b, and c in Figure 11.6.7. As with the ellipse, one way to find these values from the polar

equation of a hyperbola is based on finding the distances from the focus to the vertices. As

shown in the figure, let r0 be the distance from the focus to the closest vertex and r1 the

distance to the farthest vertex. Thus,

r0 = c − a and r1 = c + a (11)

from which it follows that

a = 1
2
(r1 − r0) (12)

and

c = 1
2
(r1 + r0) (13)

Moreover, it also follows from (11) that

r0r1 = c2 − a2 = b2

from which it follows that

b =
√
r0r1 (14)

Example 3 Sketch the graph of r =
2

1 + 2 sin θ
in polar coordinates.

Solution. This equation is an exact match to (5) with d = 1 and e = 2. Thus, the graph

is a hyperbola with its directrix 1 unit above the pole. However, it is not so straightforward

to compute the values of r0 and r1, since hyperbolas in polar coordinates are generated in

a strange way as θ varies from 0 to 2π. This can be seen from Figure 11.6.8a, which is the

graph of the given equation in rectangular coordinates. It follows from this graph that the

corresponding polar graph is generated in pieces (see Figure 11.6.8b):

• As θ varies over the interval 0 ≤ θ < 7π/6, the value of r is positive and varies down

to 2/3 and then to +�, which generates part of the lower branch.
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• As θ varies over the interval 7π/6 < θ ≤ 3π/2, the value of r is negative and varies

from −� to −2, which generates the right part of the upper branch.

• As θ varies over the interval 3π/2 ≤ θ < 11π/6, the value of r is negative and varies

from −2 to −�, which generates the left part of the upper branch.

• As θ varies over the interval 11π/6 < θ ≤ 2π, the value of r is positive and varies

from +� to 2, which fills in the missing piece of the lower right branch.

It is now clear that we can obtain r0 by setting θ = π/2 and r1 by setting θ = 3π/2.Keeping

in mind that r0 and r1 are positive, this yields

r0 =
2

1 + 2 sin(π/2)
=

2

3
, r1 =

∣

∣

∣

∣

2

1 + 2 sin(3π/2)

∣

∣

∣

∣

=
∣

∣

∣

∣

2

−1

∣

∣

∣

∣

= 2

Thus, from Formulas (12), (14), and (13), respectively, we obtain

a =
1

2
(r1 − r0) =

2

3
, b =

√
r0r1 =

2
√

3

3
, c =

1

2
(r1 + r0) =

4

3

Thus, the hyperbola looks roughly like that sketched in Figure 11.6.8c. ◭

u

r

r = 
2

1 + 2 sin u

(a) (b) (c)

6 e i m o

-3

-2

-1

1

2

Rough sketch Rough sketch

Figure 11.6.8

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPLICATIONS IN ASTRONOMY
In 1609 Johannes Kepler

∗
published a book known as Astronomia Nova (or sometimes Com-

mentaries on the Motions of Mars) in which he succeeded in distilling thousands of years

of observational astronomy into three beautiful laws of planetary motion (Figure 11.6.9).

∗
JOHANNES KEPLER (1571–1630). German astronomer and physicist, Kepler, whose work provided our con-

temporary view of planetary motion, led a fascinating but ill-starred life. His alcoholic father made him work in

a family-owned tavern as a child, later withdrawing him from elementary school and hiring him out as a field

laborer, where the boy contracted smallpox, permanently crippling his hands and impairing his eyesight. In later

years, Kepler’s first wife and several children died, his mother was accused of witchcraft, and being a Protestant

he was often subjected to persecution by Catholic authorities. He was often impoverished, eking out a living as an

astrologer and prognosticator. Looking back on his unhappy childhood, Kepler described his father as “criminally

inclined” and “quarrelsome” and his mother as “garrulous” and “bad-tempered.” However, it was his mother who

left an indelible mark on the six-year-old Kepler by showing him the comet of 1577; and in later life he personally

prepared her defense against the witchcraft charges. Kepler became acquainted with the work of Copernicus as

a student at the University of Tübingen, where he received his master’s degree in 1591. He continued on as a

theological student, but at the urging of the university officials he abandoned his clerical studies and accepted a

position as a mathematician and teacher in Graz, Austria. However, he was expelled from the city when it came

under Catholic control, and in 1600 he finally moved on to Prague, where he became an assistant at the observatory

of the famous Danish astronomer Tycho Brahe. Brahe was a brilliant and meticulous astronomical observer who

amassed the most accurate astronomical data known at that time; and when Brahe died in 1601 Kepler inherited

the treasure-trove of data. After eight years of intense labor, Kepler deciphered the underlying principles buried

in the data and in 1609 published his monumental work, Astronomia Nova, in which he stated his first two laws of

planetary motion. Commenting on his discovery of elliptical orbits, Kepler wrote, “I was almost driven to madness

in considering and calculating this matter. I could not find out why the planet would rather go on an elliptical

orbit (rather than a circle). Oh ridiculous me!” It ultimately remained for Isaac Newton to discover the laws of

gravitation that explained the reason for elliptical orbits.
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11.6.3 KEPLER’S LAWS.

• First law (Law of Orbits). Each planet moves in an elliptical orbit with the Sun at a

focus.

• Second law (Law of Areas). The radial line from the center of the Sun to the center

of a planet sweeps out equal areas in equal times.

• Third law (Law of Periods). The square of a planet’s period (the time it takes the planet

to complete one orbit about the Sun) is proportional to the cube of the semimajor

axis of its orbit.

Kepler’s laws, although stated for planetary motion around the Sun, apply to all orbiting

celestial bodies that are subjected to a single central gravitational force—artificial satellites

subjected only to the central force of Earth’s gravity and moons subjected only to the central

gravitational force of a planet, for example. Later in the text we will derive Kepler’s laws

from basic principles, but for now we will show how they can be used in basic astronomical

computations.

Sun

Equal areas are swept out 

in equal times, and the 

square of the period T is 

proportional to a3.

a a

Figure 11.6.9

Apogee Perigee

Figure 11.6.10

In an elliptical orbit, the closest point to the focus is called the perigee and the farthest

point the apogee (Figure 11.6.10). The distances from the focus to the perigee and apogee

are called the perigee distance and apogee distance, respectively. For orbits around the

Sun, it is more common to use the terms perihelion and aphelion, rather than perigee and

apogee, and to measure time in Earth years and distances in astronomical units (AU), where

1 AU is the semimajor axis a of the Earth’s orbit (approximately 150×106 km or 92.9×106

mi). With this choice of units, the constant of proportionality in Kepler’s third law is 1, since

a = 1 AU produces a period of T = 1 Earth year. In this case Kepler’s third law can be

expressed as

T = a3/2 (15)

Shapes of elliptical orbits are often specified by giving the eccentricity e and the semi-

major axis a, so it is useful to express the polar equations of an ellipse in terms of these

constants. Figure 11.6.11, which can be obtained from the ellipse in Figure 11.6.1 and the

relationship c = ea, implies that the distance d between the focus and the directrix is

d =
a

e
− c =

a

e
− ea =

a(1 − e2)

e
(16)

from which it follows that ed = a(1−e2). Thus, depending on the orientation of the ellipse,

the formulas in Theorem 11.6.2 can be expressed in terms of a and e as

r =
a(1 − e2)

1 ± e cos θ
+: Directrix right of pole

−: Directrix left of pole

r =
a(1 − e2)

1 ± e sin θ
+: Directrix above pole

−: Directrix below pole

(17–18)

Moreover, it is evident from Figure 11.6.11 that the distances from the focus to the closest

and farthest vertices can be expressed in terms of a and e as

r0 = a − ea = a(1 − e) and r1 = a + ea = a(1 + e) (19–20)

Center Focus

Directrix

a
e

aa

ae

Figure 11.6.11

Halley's comet p/2

0

Figure 11.6.12

Example 4 Halley’s comet (last seen in 1986) has an eccentricity of 0.97 and a semimajor

axis of a = 18.1 AU.

(a) Find the equation of its orbit in the polar coordinate system shown in Figure 11.6.12.

(b) Find the period of its orbit.

(c) Find its perihelion and aphelion distances.
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Solution (a). From (17), the polar equation of the orbit has the form

r =
a(1 − e2)

1 + e cos θ

But a(1 − e2) = 18.1[1 − (0.97)2] ≈ 1.07. Thus, the equation of the orbit is

r =
1.07

1 + 0.97 cos θ

Solution (b). From (15), with a = 18.1, the period of the orbit is

T = (18.1)3
/2 ≈ 77 years

Solution (c). Since the perihelion and aphelion distances are the distances to the closest

and farthest vertices, respectively, it follows from (19) and (20) that

r0 = a − ea = a(1 − e) = 18.1(1 − 0.97) ≈ 0.543 AU

r1 = a + ea = a(1 + e) = 18.1(1 + 0.97) ≈ 35.7 AU

or since 1 AU ≈ 150 × 106 km, the perihelion and aphelion distances in kilometers are

r0 = 18.1(1 − 0.97)(150 × 106) ≈ 81,500,000 km

r1 = 18.1(1 + 0.97)(150 × 106) ≈ 5,350,000,000 km ◭

Halley’s comet photographed 

April 21, 1910 in Peru

•
•
•
•
•
•
•
•

FOR THE READER. Use the polar equation of the orbit of Halley’s comet to check the

values of r0 and r1.

Example 5 An Apollo lunar lander orbits the Moon in an elliptic orbit with eccentricity

e = 0.12 and semimajor axis a = 2015 km. Assuming the Moon to be a sphere of radius

1740 km, find the minimum and maximum heights of the lander above the lunar surface

(Figure 11.6.13).

Maximum

distance

Minimum

distance

Figure 11.6.13

Solution. If we let r0 and r1 denote the minimum and maximum distances from the center

of the Moon, then the minimum and maximum distances from the surface of the Moon will

be

dmin = r0 − 1740

dmax = r1 − 1740

or from Formulas (19) and (20)

dmin = r0 − 1740 = a(1 − e)− 1740 = 2015(0.88)− 1740 = 33.2 km

dmax = r1 − 1740 = a(1 + e)− 1740 = 2015(1.12)− 1740 = 516.8 km ◭

EXERCISE SET 11.6 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

For the conics in Exercises 1 and 2, find the eccentricity and

the distance from the pole to the directrix, and sketch the

graph in polar coordinates.

1. (a) r =
3

2 − 2 cos θ
(b) r =

3

2 + sin θ

(c) r =
4

2 + 3 cos θ
(d) r =

5

3 + 3 sin θ

2. (a) r =
4

3 − 2 cos θ
(b) r =

3

3 − 4 sin θ

(c) r =
1

3 + 3 sin θ
(d) r =

1

2 + 6 sin θ

In Exercises 3 and 4, use Formulas (3)–(6) to name and de-

scribe the orientation of the conic, and then check your answer

by generating the graph with a graphing utility.

3. (a) r =
8

1 − sin θ
(b) r =

16

4 + 3 sin θ

(c) r =
4

2 − 3 sin θ
(d) r =

12

4 + cos θ

4. (a) r =
15

1 + cos θ
(b) r =

2

3 + 3 cos θ

(c) r =
64

7 − 12 sin θ
(d) r =

12

3 − 2 cos θ
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In Exercises 5–8, find a polar equation for the conic that has

its focus at the pole and satisfies the stated conditions. Points

are in polar coordinates and directrices in rectangular coor-

dinates for simplicity. (In some cases there may be more than

one conic that satisfies the conditions.)

5. (a) Ellipse; e = 2
3
; directrix x = 1.

(b) Parabola; directrix x = −1.

(c) Hyperbola; e = 3
2
; directrix y = 1.

6. (a) Ellipse; e = 2
3
; directrix y = −1.

(b) Parabola; directrix y = 1.

(c) Hyperbola; e = 4
3
; directrix x = −1.

7. (a) Ellipse; vertices (6, 0) and (4, π).

(b) Parabola; vertex (1, 3π/2).

(c) Hyperbola; vertices (3, π/2) and (−7, 3π/2).

8. (a) Ellipse; ends of major axis (1, π/2) and (4, 3π/2).

(b) Parabola; vertex (3, π).

(c) Hyperbola; equilateral; vertex (5, 0).

In Exercises 9 and 10, find the distances from the pole to

the vertices, and then apply Formulas (8)–(10) to find the

equation of the ellipse in rectangular coordinates.

9. (a) r =
6

2 + sin θ
(b) r =

1

2 − cos θ

10. (a) r =
6

5 + 2 cos θ
(b) r =

8

4 − 3 sin θ

In Exercises 11 and 12, find the distances from the pole to

the vertices, and then apply Formulas (12)–(14) to find the

equation of the hyperbola in rectangular coordinates.

11. (a) r =
2

1 + 3 sin θ
(b) r =

10

6 − 9 cos θ

12. (a) r =
4

1 − 2 sin θ
(b) r =

15

2 + 8 cos θ

In Exercises 13 and 14, find a polar equation for the ellipse

that has its focus at the pole and satisfies the stated conditions.

13. (a) Directrix to the right of the pole; a = 8; e = 1
2
.

(b) Directrix below the pole; a = 4; e = 3
5
.

(c) Directrix to the left of the pole; b = 4; e = 3
5
.

(d) Directrix above the pole; c = 5; e = 1
5
.

14. (a) Directrix above the pole; a = 10; e = 1
2
.

(b) Directrix to the left of the pole; a = 6; e = 1
5
.

(c) Directrix below the pole; b = 4; e = 3
4
.

(d) Directrix to the right of the pole; c = 10; e = 4
5
.

15. (a) Show that the eccentricity of an ellipse can be expressed

in terms of r0 and r1 as

e =
r1 − r0
r1 + r0

(b) Show that

r1

r0
=

1 + e
1 − e

16. (a) Show that the eccentricity of a hyperbola can be ex-

pressed in terms of r0 and r1 as

e =
r1 + r0
r1 − r0

(b) Show that

r1

r0
=
e + 1

e − 1

In Exercises 17–22, use the following values, where needed:

radius of the Earth = 4000 mi = 6440 km

1 year (Earth year) = 365 days (Earth days)

1 AU = 92.9 × 106 mi = 150 × 106 km

17. The planet Pluto has eccentricity e = 0.249 and semimajor

axis a = 39.5 AU.

(a) Find the period T in years.

(b) Find the perihelion and aphelion distances.

(c) Choose a polar coordinate system with the center of the

Sun at the pole, and find a polar equation of Pluto’s orbit

in that coordinate system.

(d) Make a sketch of the orbit with reasonably accurate

proportions.

18. (a) Let a be the semimajor axis of a planet’s orbit around

the Sun, and let T be its period. Show that if T is mea-

sured in days and a in kilometers, then

T = (365 × 10−9)(a/150)3/2.

(b) Use the result in part (a) to find the period of the

planet Mercury in days, given that its semimajor axis is

a = 57.95 × 106 km.

(c) Choose a polar coordinate system with the Sun at the

pole, and find an equation for the orbit of Mercury in

that coordinate system given that the eccentricity of the

orbit is e = 0.206.

(d) Use a graphing utility to generate the orbit of Mercury

from the equation obtained in part (c).

19. The Hale–Bopp comet, discovered independently on July

23, 1995 by Alan Hale and Thomas Bopp, has an orbital

eccentricity of e = 0.9951 and a period of 2380 years.

(a) Find its semimajor axis in astronomical units (AU).

(b) Find its perihelion and aphelion distances.

(c) Choose a polar coordinate system with the center of the

Sun at the pole, and find an equation for the Hale–Bopp

orbit in that coordinate system.

(d) Make a sketch of the Hale–Bopp orbit with reasonably

accurate proportions.

20. Mars has a perihelion distance of 204,520,000 km and an

aphelion distance of 246,280,000 km.

(a) Use these data to calculate the eccentricity, and compare

your answer to the value given in Table 11.6.1.
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(b) Find the period of Mars.
(c) Choose a polar coordinate system with the center of the

Sun at the pole, and find an equation for the orbit of

Mars in that coordinate system.
(d) Use a graphing utility to generate the orbit of Mars from

the equation obtained in part (c).

21. Vanguard 1 was launched in March 1958 into an orbit around

the Earth with eccentricity e = 0.21 and semimajor axis

8864.5 km. Find the minimum and maximum heights of

Vanguard 1 above the surface of the Earth.

22. The planet Jupiter is believed to have a rocky core of ra-

dius 10,000 km surrounded by two layers of hydrogen—a

40,000-km-thick layer of compressed metallic-like hydro-

gen and a 20,000-km-thick layer of ordinary molecular hy-

drogen. The visible features, such as the Great Red Spot,

are at the outer surface of the molecular hydrogen layer.

On November 6, 1997 the spacecraft Galileo was placed

in a Jovian orbit to study the moon Europa. The orbit had

eccentricity 0.814580 and semimajor axis 3,514,918.9 km.

Find Galileo’s minimum and maximum heights above the

molecular hydrogen layer (see the accompanying figure).

Not to scale

Figure Ex-22

23. What happens to the distance between the directrix and the

center of an ellipse if the foci remain fixed and e→0?

24. (a) Show that the coordinates of the point P on the hyper-

bola in Figure 11.6.1 satisfy the equation

√

(x − c)2 + y2 =
c

a
x − a

(b) Use the result in part (a) to show that PF/PD = c/a.

SUPPLEMENTARY EXERCISES

Graphing Utility C CAS

1. Under what conditions does a parametric curve x = f(t),

y = g(t) have a horizontal tangent line? A vertical tangent

line? A singular point?

2. Express the point whose xy-coordinates are (−1, 1) in polar

coordinates with

(a) r > 0, 0 ≤ θ < 2π (b) r < 0, 0 ≤ θ < 2π

(c) r > 0, −π < θ ≤ π (d) r < 0, −π < θ ≤ π.

3. In each part, state the name that describes the polar curve

most precisely: a rose, a line, a circle, a limaçon, a cardioid,

a spiral, a lemniscate, or none of these.

(a) r = 3 cos θ (b) r = cos 3θ

(c) r =
3

cos θ
(d) r = 3 − cos θ

(e) r = 1 − 3 cos θ (f ) r2 = 3 cos θ

(g) r = (3 cos θ)2 (h) r = 1 + 3θ

4. In each part: (i) Identify the polar graph as a parabola, an

ellipse, or a hyperbola; (ii) state whether the directrix is

above, below, to the left, or to the right of the pole; and (iii)

find the distance from the pole to the directrix.

(a) r =
1

3 + cos θ
(b) r =

1

1 − 3 cos θ

(c) r =
1

3(1 + sin θ)
(d) r =

3

1 − sin θ

5. The accompanying figure shows the polar graph of the

equation r = f(θ). Sketch the graph of

(a) r = f(−θ) (b) r = f
(

θ −
π

2

)

(c) r = f
(

θ +
π

2

)

(d) r = −f(θ)

(e) r = f(θ)+ 1.

p/2

0

(1, p/4)

Figure Ex-5

6. Find equations for the two families of circles in the accom-

panying figure.

p/2

0

III

p/2

0

Figure Ex-6
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7. In each part, identify the curve by converting the polar

equation to rectangular coordinates. Assume that a > 0.

(a) r = a sec2 θ

2
(b) r2 cos 2θ = a2

(c) r = 4 csc
(

θ −
π

4

)

(d) r = 4 cos θ + 8 sin θ

8. Use a graphing utility to investigate how the family of polar

curves r = 1 + a cos nθ is affected by changing the val-

ues of a and n, where a is a positive real number and n is

a positive integer. Write a brief paragraph to explain your

conclusions.

In Exercises 9 and 10, find an equation in xy-coordinates for

the conic section that satisfies the given conditions.

9. (a) Ellipse with eccentricity e = 2
7

and ends of the minor

axis at the points (0,±3).

(b) Parabola with vertex at the origin, focus on the y-axis,

and directrix passing through the point (7, 4).

(c) Hyperbola that has the same foci as the ellipse

3x2 + 16y2 = 48 and asymptotes y = ±2x/3.

10. (a) Ellipse with center (−3, 2), vertex (2, 2), and eccen-

tricity e = 4
5
.

(b) Parabola with focus (−2,−2) and vertex (−2, 0).

(c) Hyperbola with vertex (−1, 7) and asymptotes

y − 5 = ±8(x + 1).

11. In each part, sketch the graph of the conic section with rea-

sonably accurate proportions.

(a) x2 − 4x + 8y + 36 = 0

(b) 3x2 + 4y2 − 30x − 8y + 67 = 0

(c) 4x2 − 5y2 − 8x − 30y − 21 = 0

(d) x2 + y2 − 3xy − 3 = 0

C 12. If you have a CAS that can graph implicit equations, use it

to check your work in Exercise 11.

13. It can be shown that hanging cables form parabolic arcs

rather than catenaries if they are subjected to uniformly dis-

tributed downward forces along their length. For example, if

the weight of the roadway in a suspension bridge is assumed

to be uniformly distributed along the supporting cables, then

the cables can be modeled by parabolas.

(a) Assuming a parabolic model, find an equation for the

cable in the accompanying figure, taking the y-axis to

be vertical and the origin at the low point of the cable.

(b) Find the length of the cable between the supports.

4200 ft

470 ft

Figure Ex-13

14. A parametric curve of the form

x = a cot t + b cos t, y = a + b sin t (0 < t < 2π)

is called a conchoid of Nicomedes (see the accompanying

figure for the case 0 < a < b).

(a) Describe how the conchoid

x = cot t + 4 cos t, y = 1 + 4 sin t

is generated as t varies over the interval 0 < t < 2π.

(b) Find the horizontal asymptote of the conchoid given in

part (a).

(c) For what values of t does the conchoid in part (a) have

a horizontal tangent line? A vertical tangent line?

(d) Find a polar equation r = f(θ) for the conchoid in part

(a), and then find polar equations for the tangent lines

to the conchoid at the pole.

x

y

Figure Ex-14

15. Find the area of the region that is common to the circles

r = 1, r = 2 cos θ , and r = 2 sin θ .

16. Find the area of the region that is inside the cardioid

r = a(1 + sin θ) and outside the circle r = a sin θ .

17. (a) Find the arc length of the polar curve r = 1/θ for

π/4 ≤ θ ≤ π/2.
(b) What can you say about the arc length of the portion of

the curve that lies inside the circle r = 1?

18. (a) If a thread is unwound from a fixed circle while being

held taut (i.e., tangent to the circle), then the end of the

thread traces a curve called an involute of a circle. Show

that if the circle is centered at the origin, has radius a,

and the end of the thread is initially at the point (a, 0),

then the involute can be expressed parametrically as

x = a(cos θ + θ sin θ), y = a(sin θ − θ cos θ)

where θ is the angle shown in part (a) of Figure Ex-18

(next page).

(b) Assuming that the dog in part (b) of Figure Ex-18 (next

page) unwinds its leash while keeping it taut, for what

values of θ in the interval 0 ≤ θ ≤ 2π will the dog be

walking North? South? East? West?

(c) Use a graphing utility to generate the curve traced by

the dog, and show that it is consistent with your answer

in part (b).

19. Let R be the region that is above the x-axis and enclosed

between the curve b2x2 − a2y2 = a2b2 and the line

x =
√
a2 + b2.

(a) Sketch the solid generated by revolving R about the

x-axis, and find its volume.
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x

y

a

(a, 0)

(a)

1

(b)

W E

N

S

u u

Figure Ex-18

(b) Sketch the solid generated by revolving R about the

y-axis, and find its volume.

20. (a) Sketch the curves

r =
1

1 + cos θ
and r =

1

1 − cos θ

(b) Find polar coordinates of the intersections of the curves

in part (a).

(c) Show that the curves are orthogonal, that is, their tan-

gent lines are perpendicular at the points of intersection.

21. How is the shape of a hyperbola affected as its eccentricity

approaches 1? As it approaches +�? Draw some pictures

to illustrate your conclusions.

22. Use the formula obtained in part (a) of Exercise 67 of Sec-

tion 11.1 to find the distance between successive tips of the

three-petal rose r = sin 3θ , and check your answer using

trigonometry.

23. (a) Find the minimum and maximum x-coordinates of

points on the cardioid r = 1 + cos θ .

(b) Find the minimum and maximum y-coordinates of

points on the cardioid in part (a).

24. (a) Show that the maximum value of the y-coordinate of

points on the curve r = 1/
√
θ for θ in the interval (0, π]

occurs when tan θ = 2θ .

(b) Use Newton’s Method to solve the equation in part (a)

for θ to at least four decimal-place accuracy.

(c) Use the result of part (b) to approximate the maximum

value of y for 0 < θ ≤ π.

25. Define the width of a petal of a rose curve to be the dimen-

sion shown in the accompanying figure. Show that the width

w of a petal of the four-petal rose r = cos 2θ isw = 2
√

6/9.

[Hint: Express y in terms of θ , and investigate the maximum

value of y.]

Petal width

Figure Ex-25

26. A nuclear cooling tower is to have a height of h feet and

the shape of the solid that is generated by revolving the

region R enclosed by the right branch of the hyperbola

1521x2−225y2 = 342,225 and the lines x = 0, y = −h/2,

and y = h/2 about the y-axis.

(a) Find the volume of the tower.

(b) Find the lateral surface area of the tower.

27. The amusement park rides illustrated in the accompanying

figure consist of two connected rotating arms of length 1—

an inner arm that rotates counterclockwise at 1 radian per

second and an outer arm that can be programmed to rotate ei-

ther clockwise at 2 radians per second (the Scrambler ride)

or counterclockwise at 2 radians per second (the Calypso

ride). The center of the rider cage is at the end of the outer

arm.

(a) Show that in the Scrambler ride the center of the cage

has parametric equations

x = cos t + cos 2t, y = sin t − sin 2t

(b) Find parametric equations for the center of the cage in

the Calypso ride, and use a graphing utility to confirm

that the center traces the curve shown in the accompa-

nying figure.

(c) Do you think that a rider travels the same distance in one

revolution of the Scrambler ride as in one revolution of

the Calypso ride? Justify your conclusion.

1 1 1 1

Scrambler ride Calypso ride

Figure Ex-27

28. Use a graphing utility to explore the effect of changing the

rotation rates and the arm lengths in Exercise 27.

29. Use the parametric equations x = a cos t , y = b sin t to

show that the circumferenceC of an ellipse with semimajor

axis a and eccentricity e is

C = 4a

∫ π/2

0

√

1 − e2 sin2 u du

30. Use Simpson’s rule or the numerical integration capability

of a graphing utility to approximate the circumference of

the ellipse 4x2 + 9y2 = 36 from the integral obtained in

Exercise 29.

31. (a) Calculate the eccentricity of the Earth’s orbit, given that

the ratio of the distance between the center of the Earth

and the center of the Sun at perihelion to the distance

between the centers at aphelion is 59
61
.

(b) Find the distance between the center of the Earth and the

center of the Sun at perihelion, given that the average
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value of the perihelion and aphelion distances between

the centers is 93 million miles.

(c) Use the result in Exercise 29 and Simpson’s rule or the

numerical integration capability of a graphing utility to

approximate the distance that the Earth travels in 1 year

(one revolution around the Sun).

32. It will be shown later in this text that if a projectile is

launched with speed v0 at an angle α with the horizontal

and at a height y0 above ground level, then the resulting

trajectory relative to the coordinate system in the accompa-

nying figure will have parametric equations

x = (v0 cosα)t, y = y0 + (v0 sinα)t − 1
2
gt2

where g is the acceleration due to gravity.

(a) Show that the trajectory is a parabola.

(b) Find the coordinates of the vertex.

x

y

a
y

0

Figure Ex-32

33. Mickey Mantle is recognized as baseball’s unofficial king

of long home runs. On April 17, 1953 Mantle blasted a pitch

by Chuck Stobbs of the hapless Washington Senators out of

Griffith Stadium, just clearing the 50-ft wall at the 391-ft

marker in left center. Assuming that the ball left the bat at a

height of 3 ft above the ground and at an angle of 45◦ , use

the parametric equations in Exercise 32 with g = 32 ft/s2

to find

(a) the speed of the ball as it left the bat

(b) the maximum height of the ball

(c) the distance along the ground from home plate where

the ball struck the ground.

C 34. Recall from Section 7.5 that the Fresnel sine and cosine

functions are defined as

S(x) =
∫ x

0

sin

(

πt2

2

)

dt and C(x) =
∫ x

0

cos

(

πt2

2

)

dt

The following parametric curve, which is used to study am-

plitudes of light waves in optics, is called a clothoid or

Cornu spiral in honor of the French scientist Marie Alfred

Cornu (1841–1902):

x = C(t) =
∫ t

0

cos

(

πu2

2

)

du

y = S(t) =
∫ t

0

sin

(

πu2

2

)

du

(−� < t < +�)

(a) Use a CAS to graph the Cornu spiral.

(b) Describe the behavior of the spiral as t → +� and as

t→−�.

(c) Find the arc length of the spiral for −1 ≤ t ≤ 1.

35. As illustrated in the accompanying figure, let P(r, θ) be a

point on the polar curve r = f(θ), let ψ be the smallest

counterclockwise angle from the extended radius OP to the

tangent line at P , and let φ be the angle of inclination of the

tangent line. Derive the formula

tanψ =
r

dr/dθ

by substituting tanφ for dy/dx in Formula (7) of Section

11.2 and applying the trigonometric identity

tan(φ − θ) =
tanφ − tan θ

1 + tanφ tan θ

In Exercises 36 and 37, use the formula for ψ obtained in

Exercise 35.

36. (a) Use the trigonometric identity

tan
θ

2
=

1 − cos θ

sin θ

to show that if (r, θ) is a point on the cardioid

r = 1 − cos θ (0 ≤ θ < 2π)

then ψ = θ/2.

(b) Sketch the cardioid and show the angle ψ at the points

where the cardioid crosses the y-axis.

(c) Find the angleψ at the points where the cardioid crosses

the y-axis.

37. Show that for a logarithmic spiral r = aebθ , the angle from

the radial line to the tangent line is constant along the spiral

(see the accompanying figure). [Note: For this reason, log-

arithmic spirals are sometimes called equiangular spirals.]

u
f

c

Tangent

line

0

P(r, u)
r =  f (u)

Figure Ex-35 Figure Ex-37
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EXPANDING THE CALCULUS HORIZON

Comet Collision
The Earth lives in a cosmic shooting gallery of comets and asteroids. Although the probability that the Earth will be

hit by a comet or asteroid in any given year is small, the consequences of such a collision are so catastrophic that the

international community is now beginning to track near Earth objects (NEOs). Your job, as part of the international

NEO tracking team, is to compute the orbits of incoming comets and asteroids, determine how close they will come to

colliding with the Earth, and issue a notification if there is danger of a collision or near miss.

At the time when the Earth is at its aphelion (its farthest point from the Sun), your NEO tracking

team receives a notification from the NASA/Caltech Jet Propulsion Laboratory that a previously

unknown comet (designation Rogue 2000) is traveling in the plane of Earth’s orbit and hurtling in

the direction of the Earth. You immediately transmit a request to NASA for the orbital parameters

and the current positions of the Earth and Rogue 2000 and receive the following report:

earth rogue 2000

Eccentricity:  e1 = 0.017

Semimajor axis:  a1 = 1 AU = 1.496 × 108 km

Period:  T1 = 1 year

Eccentricity:  e2 = 0.98

Semimajor axis:  a2 = 5 AU = 7.48 × 108 km

Period:  T2 = 5√5 years

orbital parameters

The major axes of Earth and Rogue 2000 lie on the same line.

The aphelions of Earth and Rogue 2000 are on the same side of the Sun.

Initial polar angle of Earth: u = 0 radians.

Initial polar angle of Rogue 2000: u = 0.45 radian.

initial position information

The Calculation Strategy

Since the immediate concern is a possible collision at intersectionA in Figure 1, your team works

out the following plan:

Step 1. Find the polar equations for Earth and Rogue 2000.

Step 2. Find the polar coordinates of intersection A.

Step 3. Determine how long it will take the Earth to reach intersection A.

Step 4. Determine where Rogue 2000 will be when the Earth reaches intersection A.

Step 5. Determine how far Rogue 2000 will be from the Earth when the Earth is at inter-

section A.

2

0

Comet

Earth

A

Initial configuration of Earth and Rogue 2000

Figure 1
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Polar Equations of the Orbits

• • • • • • • • • • •

Exercise 1 Write polar equations of the form

r =
a(1 − e2)

1 − e cos θ

for the orbits of Earth and Rogue 2000 using AU units for r.

• • • • • • • • • • •

Exercise 2 Use a graphing utility to generate the two orbits on the same screen.

Intersection of the Orbits

The second step in your team’s calculation plan is to find the polar coordinates of intersection A

in Figure 1.

• • • • • • • • • • •

Exercise 3 For simplicity, let k1 = a1(1−e2
1) and k2 = a2(1−e2

2), and use the polar equations

obtained in Exercise 1 to show that the angle θ at intersection A satisfies the equation

cos θ =
k1 − k2

k1e2 − k2e1

• • • • • • • • • • •

Exercise 4 Use the result in Exercise 3 and the inverse cosine capability of a calculating utility

to show that the angle θ at intersection A in Figure 1 is θ = 0.607 radian.

• • • • • • • • • • •

Exercise 5 Use the result in Exercise 4 and either polar equation obtained in Exercise 1 to show

that if r is in AU units, then the polar coordinates of intersection A are (r, θ) = (1.014, 0.607).

Time Required for Earth to Reach Intersection A

According to Kepler’s second law (see 11.6.3), the radial line from the center of the Sun to the

center of an object orbiting around it sweeps out equal areas in equal times. Thus, if t is the time

that it takes for the radial line to sweep out an “elliptic sector” from some initial angle θI to some

final angle θF (Figure 2), and if T is the period of the object (the time for one complete revolution),

then

t

T
=

area of the “elliptic sector”

area of the entire ellipse
(1)

uI

uF

Figure 2

• • • • • • • • • • •

Exercise 6 Use Formula (1) to show that

t =
T

∫ θF

θI

r2 dθ

2πa2
√

1 − e2
(2)
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• • • • • • • • • • •

Exercise 7 Use a calculating utility with a numerical integration capability, Formula (2), and

the polar equation for the orbit of the Earth obtained in Exercise 1 to find the time t (in years)

required for the Earth to move from its initial position to intersection A.

Position of Rogue 2000 When the Earth Is at Intersection A

The fourth step in your team’s calculation strategy is to determine the position of Rogue 2000

when the Earth reaches intersection A.

• • • • • • • • • • •

Exercise 8 During the time that it takes for the Earth to move from its initial position to

intersection A, the polar angle of Rogue 2000 will change from its initial value θI = 0.45 radian

to some final value θF that remains to be determined. Apply Formula (2) using the orbital data for

Rogue 2000 and the time t obtained in Exercise 7 to show that θF satisfies the equation

∫ θF

0.45

[

a2(1 − e2
2)

1 − e2 cos θ

]2

dθ =
2tπa2

2

√

1 − e2
2

5
√

5
(3)

Your team is now faced with the problem of solving Equation (3) for the unknown upper limit

θF. Some members of the team plan to use a CAS to perform the integration, some plan to use

integration tables, and others plan to use hand calculation by making the substitution u = tan(θ/2)

and applying the formulas in (5) of Section 8.6.

• • • • • • • • • • •

Exercise 9

(a) Evaluate the integral in (3) using a CAS or by hand calculation.

(b) Use the root-finding capability of a calculating utility to find the polar angle of Rogue 2000

when the Earth is at intersection A.

Calculating the Critical Distance

It is the policy of your NEO tracking team to issue a notification to various governmental agencies

for any asteroid or comet that will be within 4 million kilometers of the Earth at an orbital

intersection. (This distance is roughly 10 times that between the Earth and the Moon.) Accordingly,

the final step in your team’s plan is to calculate the distance between the Earth and Rogue 2000

when the Earth is at intersection A, and then determine whether a notification should be issued.

• • • • • • • • • • •

Exercise 10 Use the polar equation of Rogue 2000 obtained in Exercise 1 and the result in

Exercise 9(b) to find polar coordinates of Rogue 2000 with r in AU units when the Earth is at

intersection A.

• • • • • • • • • • •

Exercise 11 Use the distance formula in Exercise 67(a) of Section 11.1 to calculate the distance

between the Earth and Rogue 2000 in AU units when the Earth is at intersection A, and then use

the conversion factor 1 AU = 1.496 × 108 km to determine whether a government notification

should be issued.

Note: One of the closest near misses in recent history occurred on October 30, 1937 when the

asteroid Hermes passed within 900,000 km of the Earth. More recently, on June 14, 1968 the

asteroid Icarus passed within 23,000,000 km of the Earth.

..................................................................................................................................
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