
February 21, 2001 14:40 g65-ch9 Sheet number 1 Page number 597 cyan magenta yellow black

MATHEMATICAL

MODELING WITH

DIFFERENTIAL 

EQUATIONS

any of the principles in science and engineer-

ing concern relationships between changing quantities.

Since rates of change are represented mathematically by

derivatives, it should not be surprising that such principles

are often expressed in terms of differential equations. We

introduced the concept of a differential equation in Sec-

tion 5.2, but in this chapter we will go into more detail.

We will discuss some important mathematical models that

involve differential equations, and we will discuss some

methods for solving and approximating solutions of some

of the basic types of differential equations. However, we

will only be able to touch the surface of this topic, leaving

many important topics in differential equations to courses

that are devoted completely to the subject.
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598 Mathematical Modeling with Differential Equations

9.1 FIRST-ORDER DIFFERENTIAL EQUATIONS
AND APPLICATIONS

In this section we will introduce some basic terminology and concepts concerning

differential equations. We will also discuss methods for solving certain basic types of

differential equations, and we will give some applications of our work.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TERMINOLOGY
Recall from Section 5.2 that a differential equation is an equation involving one or more

derivatives of an unknown function. In this section we will denote the unknown function by

y = y(x) unless the differential equation arises from an applied problem involving time, in

which case we will denote it by y = y(t). The order of a differential equation is the order

of the highest derivative that it contains. Here are some examples:

dy

dx
= 3y

d2y

dx2

dy

dx
– 6      + 8y = 0

d3y

dx3

dy

dt
– t      + (t2 – 1)y = et

y ′– y = e2x

y ′′+ y ′ = cos t

differential equation order

1

2

3

1

2

In the last two equations the derivatives of y are expressed in “prime” notation. You will

usually be able to tell from the equation itself or the context in which it arises whether to

interpret y ′ as dy/dx or as dy/dt.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SOLUTIONS OF DIFFERENTIAL
EQUATIONS

A function y = y(x) is a solution of a differential equation on an open interval I if the

equation is satisfied identically on I when y and its derivatives are substituted into the

equation. For example, y = e2x is a solution of the differential equation

dy

dx
− y = e2x (1)

on the interval I = (−�,+�), since substituting y and its derivative into the left side of

this equation yields

dy

dx
− y =

d

dx
[e2x] − e2x = 2e2x − e2x = e2x

for all real values of x.However, this is not the only solution on I ; for example, the function

y = Cex + e2x (2)

is also a solution for every real value of the constant C, since

dy

dx
− y =

d

dx
[Cex + e2x] − (Cex + e2x) = (Cex + 2e2x)− (Cex + e2x) = e2x

After developing some techniques for solving equations such as (1), we will be able to

show that all solutions of (1) on I = (−�,+�) can be obtained by substituting values for

the constant C in (2). On a given interval I , a solution of a differential equation from which

all solutions on I can be derived by substituting values for arbitrary constants is called a

general solution of the equation on I . Thus (2) is a general solution of (1) on the interval

I = (−�,+�).
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REMARK. Usually, the general solution of an nth-order differential equation on an interval

will contain n arbitrary constants. Although we will not prove this, it makes sense intuitively

because n integrations are needed to recover a function from its nth derivative, and each

integration introduces an arbitrary constant. For example, (2) has one arbitrary constant,

which is consistent with the fact that it is the general solution of the first-order equation (1).

The graph of a solution of a differential equation is called an integral curve for the equa-

tion, so the general solution of a differential equation produces a family of integral curves

corresponding to the different possible choices for the arbitrary constants. For example,

Figure 9.1.1 shows some integral curves for (1), which were obtained by assigning values

to the arbitrary constant in (2).
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C = –2

C = –1

C = 0

C = 1C = 4

C = 3 C = 2

y = Cex + e2x

Integral curves for      – y = e2xdy

dx

Figure 9.1.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INITIAL-VALUE PROBLEMS
When an applied problem leads to a differential equation, there are usually conditions in

the problem that determine specific values for the arbitrary constants. As a rule of thumb,

it requires n conditions to determine values for all n arbitrary constants in the general

solution of an nth-order differential equation (one condition for each constant). For a first-

order equation, the single arbitrary constant can be determined by specifying the value of the

unknown function y(x) at an arbitrary x-value x0, say y(x0) = y0. This is called an initial

condition, and the problem of solving a first-order equation subject to an initial condition is

called a first-order initial-value problem. Geometrically, the initial condition y(x0) = y0

has the effect of isolating the integral curve that passes through the point (x0, y0) from the

complete family of integral curves.

Example 1 The solution of the initial-value problem

dy

dx
− y = e2x, y(0) = 3

can be obtained by substituting the initial condition x = 0, y = 3 in the general solution

(2) to find C. We obtain

3 = Ce0 + e0 = C + 1

Thus,C = 2, and the solution of the initial-value problem, which is obtained by substituting

this value of C in (2), is

y = 2ex + e2x

Geometrically, this solution is realized as the integral curve in Figure 9.1.1 that passes

through the point (0, 3). ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FIRST-ORDER LINEAR EQUATIONS
The simplest first-order equations are those that can be written in the form

dy

dx
= q(x) (3)

Such equations can often be solved by integration. For example, if

dy

dx
= x3 (4)

then

y =
∫

x3 dx =
x4

4
+ C

is the general solution of (4) on the interval I = (−�,+�). More generally, a first-order

differential equation is called linear if it is expressible in the form

dy

dx
+ p(x)y = q(x) (5)

Equation (3) is the special case of (5) that results when the function p(x) is identically 0.

Some other examples of first-order linear differential equations are

dy

dx
+ x2y = ex,

dy

dx
+ (sin x)y + x3 = 0,

dy

dx
+ 5y = 2

p(x) = x2, q(x) = ex p(x) = sin x, q(x) = −x3 p(x) = 5, q(x) = 2

Let us assume that the functions p(x) and q(x) are both continuous on some common

open interval I . We will now describe a procedure for finding a general solution to (5) on

I . From the Fundamental Theorem of Calculus (Theorem 5.6.3) it follows that p(x) has

an antiderivative P = P(x) on I . That is, there exists a differentiable function P(x) on

I such that dP/dx = p(x). Consequently, the function µ = µ(x) defined by µ = eP(x) is

differentiable on I with

dµ

dx
=

d

dx

(

eP(x)
)

=
dP

dx
eP(x) = µp(x)

Suppose now that y = y(x) is a solution to (5) on I . Then

d

dx
(µy) = µ

dy

dx
+
dµ

dx
y = µ

dy

dx
+ µp(x)y = µ

(

dy

dx
+ p(x)y

)

= µq(x)

That is, the function µy is an antiderivative (or integral) of the known function µq(x). For

this reason, the functionµ = eP(x) is known as an integrating factor for Equation (5). On the

other hand, the function µq(x) is continuous on I and therefore possesses an antiderivative

H(x). It then follows from Theorem 5.2.2 that µy = H(x) + C for some constant C or,

equivalently, that

y =
1

µ
[H(x)+ C] (6)

Conversely, it is straightforward to check that for any choice of C, Equation (6) defines a

solution to (5) on I [Exercise 58(a)]. We conclude that a general solution to (5) on I is given

by (6). Since
∫

µq(x) dx = H(x)+ C

this general solution can be expressed as

y =
1

µ

∫

µq(x) dx (7)

We will refer to this process for solving Equation (5) as the method of integrating factors.
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Example 2 Solve the differential equation

dy

dx
− y = e2x

Solution. This is a first-order linear differential equation with the functions p(x) = −1

and q(x) = e2x that are both continuous on the interval I = (−�,+�). Thus, we can choose

P(x) = −x, with µ = e−x , and µq(x) = e−xe2x = ex so that the general solution to this

equation on I is given by

y =
1

µ

∫

µq(x) dx =
1

e−x

∫

ex dx = ex[ex + C] = e2x + Cex

Note that this solution is in agreement with Equation (2) discussed earlier. ◭

It is not necessary to memorize Equation (7) to apply the method of integrating factors;

you need only remember the integrating factor µ = eP(x) and the steps used to derive

Equation (7).

Example 3 Solve the initial-value problem

x
dy

dx
− y = x, y(1) = 2

Solution. This differential equation can be written in the form of (5) by dividing through

by x. This yields

dy

dx
−

1

x
y = 1 (8)

where q(x) = 1 is continuous on (−�,+�) and p(x) = −1/x is continuous on (−�, 0)

and (0,+�). Since we need p(x) and q(x) to be continuous on a common interval, and

since our initial condition presumes a solution for x = 1, we will find the general solution

of (8) on the interval (0,+�). On this interval
∫

1

x
dx = ln x + C

so that we can take P(x) = − ln x with µ = eP(x) = e− ln x = 1/x the corresponding

integrating factor. Multiplying both sides of Equation (8) by this integrating factor yields

1

x

dy

dx
−

1

x2
y =

1

x
or

d

dx

[

1

x
y

]

=
1

x

Therefore, on the interval (0,+�),

1

x
y =

∫

1

x
dx = ln x + C

from which it follows that

y = x ln x + Cx (9)

The initial condition y(1) = 2 requires that y = 2 if x = 1. Substituting these values into

(9) and solving for C yields C = 2 (verify), so the solution of the initial-value problem is

y = x ln x + 2x ◭

The result of Example 3 illustrates an important property of first-order linear initial-value

problems: Given any x0 in I and any value of y0, there will always exist a solution y = y(x)

to (5) on I with y(x0) = y0; furthermore, this solution will be unique [Exercise 58(b)].

Such existence and uniqueness results need not hold for nonlinear equations (Exercise 60).
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FIRST-ORDER SEPARABLE
EQUATIONS

Solving a first-order linear differential equation involves only the integration of functions

of x. We will now consider a collection of equations whose solutions require integration

of functions of y as well. A first-order separable differential equation is one that can be

written in the form

h(y)
dy

dx
= g(x) (10)

For example, the equation

(4y − cos y)
dy

dx
= 3x2

is a separable equation with

h(y) = 4y − cos y and g(x) = 3x2

We will assume that the functions h(y) and g(x) both possess antiderivatives in their

respective variables y and x. That is, there exists a differentiable function H(y) with

dH/dy = h(y) and there exists a differentiable function G(x) with dG/dx = g(x).

Suppose now that y = y(x) is a solution to (10) on an open interval I . Then it follows

from the chain rule that

d

dx
[H(y)] =

dH

dy

dy

dx
= h(y)

dy

dx
= g(x)

In other words, the functionH(y(x)) is an antiderivative of g(x) on the interval I . By Theo-

rem 5.2.2, there must exist a constant C such thatH(y(x)) = G(x)+C on I . Equivalently,

the solution y = y(x) to (10) is defined implicitly by the equation

H(y) = G(x)+ C (11)

Conversely, suppose that for some choice ofC a differentiable function y = y(x) is defined

implicitly by (11), Then y(x) will be a solution to (10) (Exercise 59). We conclude that

every solution to (10) will be given implicitly by Equation (11) for some appropriate choice

of C.

We can express Equation (11) symbolically by writing
∫

h(y) dy =
∫

g(x) dx (12)

Informally, we first “multiply” both sides of Equation (10) by dx to “separate” the variables

into the equation h(y) dy = g(x) dx. Integrating both sides of this equation then gives

Equation (12). This process is called the method of separation of variables. Although

separation of variables provides us with a convenient way of recovering Equation (11), it

must be interpreted with care. For example, the constant C in Equation (11) is often not

arbitrary; some choices of C may yield solutions, and others may not. Furthermore, even

when solutions do exist, their domains can vary in unexpected ways with the choice of C.

It is for reasons such as these that we will not refer to a “general” solution of a separable

equation.

In some cases Equation (11) can be solved to yield explicit solutions to (10).

Example 4 Solve the differential equation

dy

dx
= −4xy2

and then solve the initial-value problem

dy

dx
= −4xy2, y(0) = 1

Solution. For y �= 0 we can write this equation in the form of (10) as

1

y2

dy

dx
= −4x
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Separating variables and integrating yields

1

y2
dy = −4x dx

∫

1

y2
dy =

∫

−4x dx

which is a symbolic expression of the equation

−
1

y
= −2x2 + C

Solving for y as a function of x, we obtain

y =
1

2x2 − C

The initial condition y(0) = 1 requires that y = 1 when x = 0. Substituting these values

into our solution yields C = −1 (verify). Thus, a solution to the initial-value problem is

y =
1

2x2 + 1

Some integral curves and our solution of the initial-value problem are graphed in Fig-

ure 9.1.2. ◭

-2 -1 1 2

1

2

x

y

Integral curves for        = –4xy2dy

dx

Figure 9.1.2

One aspect of our solution to Example 4 deserves special comment. Had the initial

condition been y(0) = 0 instead of y(0) = 1, the method we used would have failed to

yield a solution to the resulting initial-value problem (Exercise 39). This is due to the fact

that we assumed y �= 0 in order to rewrite the equation dy/dx = −4xy2 in the form

1

y2

dy

dx
= −4x

It is important to be aware of such assumptions when manipulating a differential equation

algebraically.

As a second example, consider the first-order linear equation dy/dx − 3y = 0. Using

the method of integrating factors, it is easy to see that the general solution of this equation

is y = Ce3x (verify). On the other hand, we can also apply the method of separation of

variables to this differential equation. For y �= 0 the equation can be written in the form

1

y

dy

dx
= 3

Separating the variables and integrating yields
∫

dy

y
=

∫

3 dx

ln |y| = 3x + c

|y| = e3x+c = ece3x We have used c as the constant of integration here to
reserve C for the constant in the final result.

y = ±ece3x = Ce3x Letting C = ±ec

This appears to be the same solution that we obtained using the method of integrating

factors. However, the careful reader may have observed that the constant C = ±ec is not

truly arbitrary, since C = 0 is not an allowable value. Thus, separation of variables missed

the solution y = 0, which the method of integrating factors did not. The problem occurred

because we had to divide by y to separate the variables. (Exercises 7 and 8 ask you to

compare the two methods with some other first-order linear equations.)

It is often not possible to solve Equation (11) for y as an explicit function of x. In such

cases, it is common to refer to Equation (11) as a “solution” to (10).
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Example 5 Solve the initial-value problem

(4y − cos y)
dy

dx
− 3x2 = 0, y(0) = 0

Solution. We can write this equation in the form of (10) as

(4y − cos y)
dy

dx
= 3x2

Separating variables and integrating yields

(4y − cos y) dy = 3x2 dx
∫

(4y − cos y) dy =
∫

3x2 dx

which is a symbolic expression of the equation

2y2 − sin y = x3 + C (13)

Equation (13) defines solutions of the differential equation implicitly; it cannot be solved

explicitly for y as a function of x.

For the initial-value problem, the initial condition y(0) = 0 requires that y = 0 if x = 0.

Substituting these values into (13) to determine the constant of integration yields C = 0

(verify). Thus, the solution of the initial-value problem is

2y2 − sin y = x3
◭

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Some computer algebra systems can graph implicit equations. For

example, Figure 9.1.3 shows the graphs of (13) for C = 0,±1,±2, and ±3, with em-

phasis on the solution of the initial-value problem. If you have a CAS that can graph implicit

equations, read the documentation on graphing them and try to duplicate this figure. Also,

try to determine which values of C produce which curves.

x

y

-2 -1 1 2 3

-3

-2

-1

1

2

3

Integral curves for

 (4y – cos y)       – 3x2 = 0
dy

dx

Figure 9.1.3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

APPLICATIONS IN GEOMETRY
We conclude this section with some applications of first-order differential equations.

Example 6 Find a curve in the xy-plane that passes through (0, 3) and whose tangent

line at a point (x, y) has slope 2x/y2.

Solution. Since the slope of the tangent line is dy/dx, we have

dy

dx
=

2x

y2
(14)

and, since the curve passes through (0, 3), we have the initial condition

y(0) = 3 (15)

Equation (14) is separable and can be written as

y2 dy = 2x dx

so
∫

y2 dy =
∫

2x dx or 1
3
y3 = x2 + C

It follows from the initial condition (15) that y = 3 if x = 0. Substituting these values into

the last equation yields C = 9 (verify), so the equation of the desired curve is

1
3
y3 = x2 + 9 or y = (3x2 + 27)1/3 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MIXING PROBLEMS
In a typical mixing problem, a tank is filled to a specified level with a solution that contains

a known amount of some soluble substance (say salt). The thoroughly stirred solution is

allowed to drain from the tank at a known rate, and at the same time a solution with a known
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concentration of the soluble substance is added to the tank at a known rate that may or may

not differ from the draining rate. As time progresses, the amount of the soluble substance

in the tank will generally change, and the usual mixing problem seeks to determine the

amount of the substance in the tank at a specified time. This type of problem serves as a

model for many kinds of problems: discharge and filtration of pollutants in a river, injection

and absorption of medication in the bloodstream, and migrations of species into and out of

an ecological system, for example.

5 gal/min

100 gal

5 gal/min

Figure 9.1.4

Example 7 At time t = 0, a tank contains 4 lb of salt dissolved in 100 gal of water.

Suppose that brine containing 2 lb of salt per gallon of brine is allowed to enter the tank

at a rate of 5 gal/min and that the mixed solution is drained from the tank at the same rate

(Figure 9.1.4). Find the amount of salt in the tank after 10 minutes.

Solution. Let y(t) be the amount of salt (in pounds) after t minutes. We are given that

y(0) = 4, and we want to find y(10). We will begin by finding a differential equation that

is satisfied by y(t). To do this, observe that dy/dt , which is the rate at which the amount

of salt in the tank changes with time, can be expressed as

dy

dt
= rate in − rate out (16)

where rate in is the rate at which salt enters the tank and rate out is the rate at which salt

leaves the tank. But the rate at which salt enters the tank is

rate in = (2 lb/gal) · (5 gal/min) = 10 lb/min

Since brine enters and drains from the tank at the same rate, the volume of brine in the tank

stays constant at 100 gal. Thus, after t minutes have elapsed, the tank contains y(t) lb of

salt per 100 gal of brine, and hence the rate at which salt leaves the tank at that instant is

rate out =
(

y(t)

100
lb/gal

)

· (5 gal/min) =
y(t)

20
lb/min

Therefore, (16) can be written as

dy

dt
= 10 −

y

20
or

dy

dt
+

y

20
= 10

which is a first-order linear differential equation satisfied by y(t). Since we are given that

y(0) = 4, the function y(t) can be obtained by solving the initial-value problem

dy

dt
+

y

20
= 10, y(0) = 4

The integrating factor for the differential equation is

µ = et
/20

If we multiply the differential equation through by µ, then we obtain

d

dt
(et

/20y) = 10et
/20

et
/20y =

∫

10et
/20dt = 200et

/20 + C

y(t) = 200 + Ce−t/20 (17)

The initial condition states that y = 4 when t = 0. Substituting these values into (17) and

solving for C yields C = −196 (verify), so

y(t) = 200 − 196e−t/20 (18)

Thus, at time t = 10 the amount of salt in the tank is

y(10) = 200 − 196e−0.5 ≈ 81.1 lb ◭
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FOR THE READER. Figure 9.1.5 shows the graph of (18). Observe that y(t) → 200 as

t →+�, which means that over an extended period of time the amount of salt in the tank

tends toward 200 lb. Give an informal physical argument to explain why this result is to be

expected.
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Figure 9.1.5

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A MODEL OF FREE-FALL MOTION
RETARDED BY AIR RESISTANCE

In Section 4.4 we considered the free-fall model of an object moving along a vertical axis

near the surface of the Earth. It was assumed in that model that there is no air resistance and

that the only force acting on the object is the Earth’s gravity. Our goal here is to find a model

that takes air resistance into account. For this purpose we make the following assumptions:

• The object moves along a vertical s-axis whose origin is at the surface of the Earth and

whose positive direction is up (Figure 4.4.8).

• At time t = 0 the height of the object is s0 and the velocity is v0.

• The only forces on the object are the force FG = −mg of the Earth’s gravity acting

down and the force FR of air resistance acting opposite to the direction of motion. The

force FR is called the drag force.

We will also need the following result from physics:

9.1.1 NEWTON’S SECOND LAW OF MOTION. If an object with mass m is subjected to

a force F, then the object undergoes an acceleration a that satisfies the equation

F = ma (19)

In the case of free-fall motion retarded by air resistance, the net force acting on the object

is

FG + FR = −mg + FR

and the acceleration is d2s/dt2, so Newton’s second law implies that

−mg + FR = m
d2s

dt2
(20)

Experimentation has shown that the force FR of air resistance depends on the shape of

the object and its speed—the greater the speed, the greater the drag force. There are many

possible models for air resistance, but one of the most basic assumes that the drag force FR
is proportional to the velocity of the object, that is,

FR = −cv

where c is a positive constant that depends on the object’s shape and properties of the

air.
∗

(The minus sign ensures that the drag force is opposite to the direction of motion.)

Substituting this in (20) and writing d2s/dt2 as dv/dt , we obtain

−mg − cv = m
dv

dt

or on dividing by m and rearranging we obtain

dv

dt
+

c

m
v = −g

which is a first-order linear differential equation in the unknown function v = v(t) with

p(t) = c/m and q(t) = −g [see (5)]. For a specific object, the coefficient c can be

determined experimentally, so we can assume that m, g, and c are known constants. Thus,

∗
Other common models assume that FR = −cv2 or, more generally, FR = −cvp for some value of p.
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the velocity function v = v(t) can be obtained by solving the initial-value problem

dv

dt
+

c

m
v = −g, v(0) = v0 (21)

Once the velocity function is found, the position function s = s(t) can be obtained by

solving the initial-value problem

ds

dt
= v(t), s(0) = s0 (22)

In Exercise 47 we will ask you to solve (21) and show that

v(t) = e−ct/m
(

v0 +
mg

c

)

−
mg

c
(23)

Note that

lim
t→+�

v(t) = −
mg

c
(24)

(verify). Thus, the speed |v(t)| does not increase indefinitely, as in free fall; rather, because

of the air resistance, it approaches a finite limiting speed vτ given by

vτ =
∣

∣

∣
−
mg

c

∣

∣

∣
=
mg

c
(25)

This is called the terminal speed of the object, and (24) is called its terminal velocity.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Intuition suggests that near the limiting velocity, the velocity v(t) changes very

slowly; that is, dv/dt ≈ 0. Thus, it should not be surprising that the limiting velocity can be

obtained informally from (21) by setting dv/dt = 0 in the differential equation and solving

for v. This yields

v = −
mg

c

which agrees with (24).

EXERCISE SET 9.1 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Confirm that y = 2ex
3/3 is a solution of the initial-value

problem y ′ = x2y, y(0) = 2.

2. Confirm that y = 1
4
x4 + 2 cos x + 1 is a solution of the

initial-value problem y ′ = x3 − 2 sin x, y(0) = 3.

In Exercises 3 and 4, state the order of the differential equa-

tion, and confirm that the functions in the given family are

solutions.

3. (a) (1 + x)
dy

dx
= y; y = c(1 + x)

(b) y ′′ + y = 0; y = c1 sin t + c2 cos t

4. (a) 2
dy

dx
+ y = x − 1; y = ce−x/2 + x − 3

(b) y ′′ − y = 0; y = c1e
t + c2e

−t

In Exercises 5 and 6, use implicit differentiation to confirm

that the equation defines implicit solutions of the differential

equation.

5. ln y = xy + C;
dy

dx
=

y2

1 − xy

6. x2 + xy2 = C; 2x + y2 + 2xy
dy

dx
= 0

The first-order linear equations in Exercises 7 and 8 can be

rewritten as first-order separable equations. Solve the equa-

tions using both the method of integrating factors and the

method of separation of variables, and determine whether

the solutions produced are the same.

7. (a)
dy

dx
+ 3y = 0 (b)

dy

dt
− 2y = 0

8. (a)
dy

dx
− 4xy = 0 (b)

dy

dt
+ y = 0

In Exercises 9–14, solve the differential equation by the

method of integrating factors.
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9.
dy

dx
+ 3y = e−2x 10.

dy

dx
+ 2xy = x

11. y ′ + y = cos(ex) 12. 2
dy

dx
+ 4y = 1

13. (x2 + 1)
dy

dx
+ xy = 0 14.

dy

dx
+ y −

1

1 + ex
= 0

In Exercises 15–24, solve the differential equation by sepa-

ration of variables. Where reasonable, express the family of

solutions as explicit functions of x.

15.
dy

dx
=
y

x
16.

dy

dx
= (1 + y2)x2

17.

√

1 + x2

1 + y

dy

dx
= −x 18. (1 + x4)

dy

dx
=
x3

y

19. (1 + y2)y ′ = exy 20. y ′ = −xy
21. e−y sin x − y ′ cos2 x = 0 22. y ′ − (1 + x)(1 + y2) = 0

23.
dy

dx
−
y2 − y

sin x
= 0 24. 3 tan y−

dy

dx
sec x = 0

25. In each part, find the solution of the differential equation

x
dy

dx
+ y = x

that satisfies the initial condition.

(a) y(1) = 2 (b) y(−1) = 2

26. In each part, find the solution of the differential equation

dy

dx
= xy

that satisfies the initial condition.

(a) y(0) = 1 (b) y(0) = 1
2

In Exercises 27–32, solve the initial-value problem by any

method.

27.
dy

dx
− xy = x, y(0) = 3

28.
dy

dt
+ y = 2, y(0) = 1

29. y ′ =
4x2

y + cos y
, y(1) = π

30. y ′ − xey = 2ey, y(0) = 0

31.
dy

dt
=

2t + 1

2y − 2
, y(0) = −1

32. y ′ cosh x + y sinh x = cosh2 x, y(0) = 1
4

33. (a) Sketch some typical integral curves of the differential

equation y ′ = y/2x.

(b) Find an equation for the integral curve that passes

through the point (2, 1).

34. (a) Sketch some typical integral curves of the differential

equation y ′ = −x/y.
(b) Find an equation for the integral curve that passes

through the point (3, 4).

In Exercises 35 and 36, solve the differential equation, and

then use a graphing utility to generate five integral curves for

the equation.

35. (x2 + 4)
dy

dx
+ xy = 0 36. y ′ + 2y − 3et = 0

If you have a CAS that can graph implicit equations, solve

the differential equations in Exercises 37 and 38, and then

use the CAS to generate five integral curves for the equation.

C 37. y ′ =
x2

1 − y2 C 38. y ′ =
y

1 + y2

39. Suppose that the initial condition in Example 4 had been

y(0) = 0. Show that none of the solutions generated in

Example 4 satisfy this initial condition, and then solve the

initial-value problem

dy

dx
= −4xy2, y(0) = 0

Why does the method of Example 4 fail to produce this par-

ticular solution?

40. Find all ordered pairs (x0, y0) such that if the initial condi-

tion in Example 4 is replaced by y(x0) = y0, the solution

of the resulting initial-value problem is defined for all real

numbers.

41. Find an equation of a curve with x-intercept 2 whose tangent

line at any point (x, y) has slope xey .

42. Use a graphing utility to generate a curve that passes through

the point (1, 1) and whose tangent line at (x, y) is perpen-

dicular to the line through (x, y) with slope −2y/(3x2).

43. At time t = 0, a tank contains 25 ounces of salt dissolved

in 50 gal of water. Then brine containing 4 ounces of salt

per gallon of brine is allowed to enter the tank at a rate of 2

gal/min and the mixed solution is drained from the tank at

the same rate.

(a) How much salt is in the tank at an arbitrary time t?

(b) How much salt is in the tank after 25 min?

44. A tank initially contains 200 gal of pure water. Then at time

t = 0 brine containing 5 lb of salt per gallon of brine is

allowed to enter the tank at a rate of 10 gal/min and the

mixed solution is drained from the tank at the same rate.

(a) How much salt is in the tank at an arbitrary time t?

(b) How much salt is in the tank after 30 min?

45. A tank with a 1000-gal capacity initially contains 500 gal

of water that is polluted with 50 lb of particulate matter. At

time t = 0, pure water is added at a rate of 20 gal/min and

the mixed solution is drained off at a rate of 10 gal/min.

How much particulate matter is in the tank when it reaches

the point of overflowing?

46. The water in a polluted lake initially contains 1 lb of mercury

salts per 100,000 gal of water. The lake is circular with diam-

eter 30 m and uniform depth 3 m. Polluted water is pumped
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from the lake at a rate of 1000 gal/h and is replaced with

fresh water at the same rate. Construct a table that shows

the amount of mercury in the lake (in lb) at the end of each

hour over a 12-hour period. Discuss any assumptions you

made. [Use 264 gal/m3.]

47. (a) Use the method of integrating factors to derive solution

(23) to the initial-value problem (21). [Note: Keep in

mind that c,m, and g are constants.]

(b) Show that (23) can be expressed in terms of the terminal

speed (25) as

v(t) = e−gt/vτ (v0 + vτ )− vτ

(c) Show that if s(0) = s0, then the position function of

the object can be expressed as

s(t) = s0 − vτ t +
vτ

g
(v0 + vτ )(1 − e−gt/vτ )

48. Suppose a fully equipped sky diver weighing 240 lb has a

terminal speed of 120 ft/s with a closed parachute and 24

ft/s with an open parachute. Suppose further that this sky

diver is dropped from an airplane at an altitude of 10,000 ft,

falls for 25 s with a closed parachute, and then falls the rest

of the way with an open parachute.

(a) Assuming that the sky diver’s initial vertical velocity is

zero, use Exercise 47 to find the sky diver’s vertical ve-

locity and height at the time the parachute opens. [Take

g = 32 ft/s2.]

(b) Use a calculating utility to find a numerical solution for

the total time that the sky diver is in the air.

49. The accompanying figure is a schematic diagram of a basic

RL series electrical circuit that contains a power source with

a time-dependent voltage of V (t) volts (V), a resistor with

a constant resistance of R ohms (!), and an inductor with

a constant inductance of L henrys (H). If you don’t know

anything about electrical circuits, don’t worry; all you need

to know is that electrical theory states that a current of I (t)

amperes (A) flows through the circuit where I (t) satisfies

the differential equation

L
dI

dt
+ RI = V (t)

(a) Find I (t) if R = 10!,L = 4 H, V is a constant 12 V,

and I (0) = 0 A.

(b) What happens to the current over a long period of time?

L

R

V(t)

Figure Ex-49

50. Find I (t) for the electrical circuit in Exercise 49 ifR = 6!,

L = 3 H, V (t) = 3 sin t V, and I (0) = 15 A.

51. A rocket, fired upward from rest at time t = 0, has an initial

mass of m0 (including its fuel). Assuming that the fuel is

consumed at a constant rate k, the mass m of the rocket,

while fuel is being burned, will be given bym = m0 −kt. It

can be shown that if air resistance is neglected and the fuel

gases are expelled at a constant speed c relative to the rocket,

then the velocity v of the rocket will satisfy the equation

m
dv

dt
= ck −mg

where g is the acceleration due to gravity.

(a) Find v(t) keeping in mind that the mass m is a function

of t.
(b) Suppose that the fuel accounts for 80% of the initial

mass of the rocket and that all of the fuel is consumed

in 100 s. Find the velocity of the rocket in meters per

second at the instant the fuel is exhausted. [Takeg = 9.8

m/s2 and c = 2500 m/s.]

52. A bullet of mass m, fired straight up with an initial velocity

of v0, is slowed by the force of gravity and a drag force of

air resistance kv2, where g is the constant acceleration due

to gravity and k is a positive constant. As the bullet moves

upward, its velocity v satisfies the equation

m
dv

dt
= −(kv2 +mg)

(a) Show that if x = x(t) is the height of the bullet above

the barrel opening at time t, then

mv
dv

dx
= −(kv2 +mg)

(b) Express x in terms of v given that x = 0 when v = v0.

(c) Assuming that

v0 = 988 m/s, g = 9.8 m/s
2

m = 3.56 × 10−3 kg, k = 7.3 × 10−6 kg/m

use the result in part (b) to find out how high the bullet

rises. [Hint: Find the velocity of the bullet at its highest

point.]

The following discussion is needed for Exercises 53 and 54.

Suppose that a tank containing a liquid is vented to the air

at the top and has an outlet at the bottom through which the

liquid can drain. It follows from Torricelli’s law in physics

that if the outlet is opened at time t = 0, then at each instant

the depth of the liquid h(t) and the area A(h) of the liquid’s

surface are related by

A(h)
dh

dt
= −k

√
h

where k is a positive constant that depends on such factors as

the viscosity of the liquid and the cross-sectional area of the

outlet. Use this result in Exercises 53 and 54, assuming that

h is in feet, A(h) is in square feet, and t is in seconds.
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53. Suppose that the cylindrical tank in the accompanying fig-

ure is filled to a depth of 4 feet at time t = 0 and that the

constant in Torricelli’s law is k = 0.025.

(a) Find h(t).
(b) How many minutes will it take for the tank to drain

completely?

54. Follow the directions of Exercise 53 for the cylindrical tank

in the accompanying figure, assuming that the tank is filled

to a depth of 4 feet at time t = 0 and that the constant in

Torricelli’s law is k = 0.025.

1 ft

4 ft

Figure Ex-53

4 ft

6 ft

Figure Ex-54

55. Suppose that a particle moving along the x-axis encoun-

ters a resisting force that results in an acceleration of

a = dv/dt = −0.04v2. Given that x = 0 cm and v = 50

cm/s at time t = 0, find the velocity v and position x as a

function of t for t ≥ 0.

56. Suppose that a particle moving along the x-axis encoun-

ters a resisting force that results in an acceleration of

a = dv/dt = −0.02
√
v. Given that x = 0 cm and v = 9

cm/s at time t = 0, find the velocity v and position x as a

function of t for t ≥ 0.

57. Find an initial-value problem whose solution is

y = cos x +
∫ x

0

e−t2 dt

58. (a) Prove that if C is an arbitrary constant, then any func-

tion y = y(x) defined by Equation (6) will be a solution

to (5) on the interval I .

(b) Consider the initial-value problem

dy

dx
+ p(x)y = q(x), y(x0) = y0

where the functions p(x) and q(x) are both continuous

on some open interval I . Using the general solution for

a first-order linear equation, prove that this initial-value

problem has a unique solution on I .

59. Use implicit differentiation to prove that any differentiable

function defined implicitly by Equation (11) will be a solu-

tion to (10).

60. (a) Prove that solutions need not be unique for nonlinear

initial-value problems by finding two solutions to

y
dy

dx
= x, y(0) = 0

(b) Prove that solutions need not exist for nonlinear initial-

value problems by showing that there is no solution for

y
dy

dx
= −x, y(0) = 0

61. In our derivation of Equation (6) we did not consider the

possibility of a solution y = y(x) to (5) that was defined on

an open subset I1 ⊆ I, I1 �= I . Prove that there was no loss

of generality in our analysis by showing that any such solu-

tion must extend to a solution to (5) on the entire interval I .

9.2 DIRECTION FIELDS; EULER’S METHOD

In this section we will reexamine the concept of a direction field, and we will discuss

a method for approximating solutions of first-order equations numerically. Numerical

approximations are important in cases where the differential equation cannot be solved

exactly.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

FUNCTIONS OF TWO VARIABLES
We will be concerned here with first-order equations that are expressed with the derivative

by itself on one side of the equation. For example,

y ′ = x3 and y ′ = sin(xy)

The first of these equations involves only x on the right side, so it has the form y ′ = f(x).

However, the second equation involves both x and y on the right side, so it has the form

y ′ = f(x, y), where the symbol f(x, y) stands for a function of the two variables x and y.

Later in the text we will study functions of two variables in more depth, but for now it will

suffice to think of f(x, y) as a formula that produces a unique output when values of x and
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y are given as inputs. For example, if

f(x, y) = x2 + 3y

and if the inputs are x = 2 and y = −4, then the output is

f(2,−4) = 22 + 3(−4) = 4 − 12 = −8

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In applied problems involving time, it is usual to use t as the independent

variable, in which case we would be concerned with equations of the form y ′ = f(t, y),

where y ′ = dy/dt.

x

y

Slope =  f (x, y)

(x, y)

At each point (x, y) on an integral 

curve of y′ =  f (x, y), the tangent 

line has slope f (x, y).

Figure 9.2.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIRECTION FIELDS
In Section 5.2 we introduced the concept of a direction field in the context of differential

equations of the form y ′ = f(x); the same principles apply to differential equations of the

form

y ′ = f(x, y)

To see why this is so, let us review the basic idea. If we interpret y ′ as the slope of a tangent

line, then the differential equation states that at each point (x, y) on an integral curve, the

slope of the tangent line is equal to the value of f at that point (Figure 9.2.1). For example,

suppose that f(x, y) = y − x, in which case we have the differential equation

y ′ = y − x (1)

A geometric description of the set of integral curves can be obtained by choosing a rectan-

gular grid of points in the xy-plane, calculating the slopes of the tangent lines to the integral

curves at the gridpoints, and drawing small segments of the tangent lines at those points.

The resulting picture is called a direction field or a slope field for the differential equation

because it shows the “direction” or “slope” of the integral curves at the gridpoints. The

more gridpoints that are used, the better the description of the integral curves. For example,

Figure 9.2.2 shows two direction fields for (1)—the first was obtained by hand calculation

using the 49 gridpoints shown in the accompanying table, and the second, which gives a

clearer picture of the integral curves, was obtained using 625 gridpoints and a CAS.
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y
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  3
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1

0

–1
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y = 0

  4

3

2

1

0

–1

–2

y = 1

  5

4

3

2

1

0

–1

y = 2

6

5

4

3

2

1

0

y = 3

values of f (x, y) = y – x

Figure 9.2.2

It so happens that Equation (1) can be solved exactly, since it can be written as

y ′ − y = −x

which, by comparison with Equation (5) in Section 9.1, is a first-order linear equation with

p(x) = −1 and q(x) = −x. We leave it for you to use the method of integrating factors to

show that the general solution of this equation is

y = x + 1 + Cex (2)
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Figure 9.2.3 shows some of the integral curves superimposed on the direction field. Observe,

however, that it was not necessary to have the general solution to construct the direction

field. Indeed, direction fields are important precisely because they can be constructed in

cases where the differential equation cannot be solved exactly.

•
•
•
•
•
•
•
•

FOR THE READER. Confirm that the first direction field in Figure 9.2.2 is consistent with

the values in the accompanying table.-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x

y

Figure 9.2.3

Example 1 In Example 7 of Section 9.1 we considered a mixing problem in which the

amount of salt y(t) in a tank at time t was shown to satisfy the differential equation

dy

dt
+

y

20
= 10

which can be rewritten as

y ′ = 10 −
y

20
(3)

We subsequently found the general solution of this equation to be

y(t) = 200 + Ce−t/20 (4)

and then we found the value of the arbitrary constant C from the initial condition in the

problem [the known amount of salt y(0) at time t = 0]. However, it follows from (4) that

lim
t→+�

y(t) = 200

for all values of C, so regardless of the amount of salt that is present in the tank initially,

the amount of salt in the tank will eventually begin to stabilize at 200 lb. This can also be

seen geometrically from the direction field for (3) shown in Figure 9.2.4. This direction

field suggests that if the amount of salt present in the tank is greater than 200 lb initially,

then the amount of salt will decrease steadily over time toward a limiting value of 200 lb;

and if it is less than 200 lb initially, then it will increase steadily toward a limiting value of

200 lb. The direction field also suggests that if the amount present initially is exactly 200

lb, then the amount of salt in the tank will stay constant at 200 lb. This can also be seen

from (4), since C = 0 in this case (verify). ◭

Observe that for the direction field shown in Figure 9.2.4 the tangent segments along

any horizontal line are parallel. This occurs because the differential equation has the form

y ′ = f(y)with t absent from the right side [see (3)]. Thus, for a fixed y the slope y ′ does not

change as time varies. Because of this time independence of slope, differential equations of

the form y ′ = f(y) are said to be autonomous (from the Greek word autonomous, meaning

“independent”).

500 100 150
100

150

200

250

300

t

y

Figure 9.2.4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EULER’S METHOD
Our next objective is to develop a method for approximating the solution of an initial-value

problem of the form

y ′ = f(x, y), y(x0) = y0

We will not attempt to approximate y(x) for all values of x; rather, we will choose some

small increment %x and focus on approximating the values of y(x) at a succession of
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x-values spaced %x units apart, starting from x0. We will denote these x-values by

x1 = x0 +%x, x2 = x1 +%x, x3 = x2 +%x, x4 = x3 +%x, . . .

and we will denote the approximations of y(x) at these points by

y1 ≈ y(x1), y2 ≈ y(x2), y3 ≈ y(x3), y4 ≈ y(x4), . . .

The technique that we will describe for obtaining these approximations is called Euler’s

Method. Although there are better approximation methods available, many of them use

Euler’s Method as a starting point, so the underlying concepts are important to understand.

The basic idea behind Euler’s Method is to start at the known initial point (x0, y0) and

draw a line segment in the direction determined by the direction field until we reach the point

(x1, y1)with x-coordinate x1 = x0 +%x (Figure 9.2.5). If%x is small, then it is reasonable

to expect that this line segment will not deviate much from the integral curve y = y(x), and

thus y1 should closely approximate y(x1). To obtain the subsequent approximations, we

repeat the process using the direction field as a guide at each step. Starting at the endpoint

(x1, y1), we draw a line segment determined by the direction field until we reach the point

(x2, y2) with x-coordinate x2 = x1 + %x, and from that point we draw a line segment

determined by the direction field to the point (x3, y3) with x-coordinate x3 = x2 +%x, and

so forth. As indicated in Figure 9.2.5, this procedure produces a polygonal path that tends to

follow the integral curve closely, so it is reasonable to expect that the y-values y2, y3, y4, . . .

will closely approximate y(x2), y(x3), y(x4), . . . .

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)
(x4, y4)

Figure 9.2.5

(xn, yn)

(xn+1, yn+1)

yn+1 – yn
Slope = f (xn, yn)

∆x

Figure 9.2.6

To explain how the approximations y1, y2, y3, . . . can be computed, let us focus on

a typical line segment. As indicated in Figure 9.2.6, assume that we have found the point

(xn, yn), and we are trying to determine the next point (xn+1, yn+1),where xn+1 = xn+%x.

Since the slope of the line segment joining the points is determined by the direction field at

the starting point, the slope is f(xn, yn), and hence

yn+1 − yn

xn+1 − xn
=
yn+1 − yn

%x
= f(xn, yn)

which we can rewrite as

yn+1 = yn + f(xn, yn)%x

This formula, which is the heart of Euler’s Method, tells us how to use each approximation

to compute the next approximation.

Euler’s Method

To approximate the solution of the initial-value problem

y ′ = f(x, y), y(x0) = y0

proceed as follows:

Step 1. Choose a nonzero number %x to serve as an increment or step size

along the x-axis, and let

x1 = x0 +%x, x2 = x1 +%x, x3 = x2 +%x, . . .

Step 2. Compute successively

y1 = y0 + f(x0, y0)%x

y2 = y1 + f(x1, y1)%x

y3 = y2 + f(x2, y2)%x

...

yn+1 = yn + f(xn, yn)%x

The numbers y1, y2, y3, . . . in these equations are the approximations

of y(x1), y(x2), y(x3), . . . .
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Example 2 Use Euler’s Method with a step size of 0.1 to make a table of approximate

values of the solution of the initial-value problem

y ′ = y − x, y(0) = 2 (5)

over the interval 0 ≤ x ≤ 1.

Solution. In this problem we have f(x, y) = y−x, x0 = 0, and y0 = 2.Moreover, since

the step size is 0.1, the x-values at which the approximate values will be obtained are

x1 = 0.1, x2 = 0.2, x3 = 0.3, . . . , x9 = 0.9, x10 = 1

The first three approximations are

y1 = y0 + f(x0, y0)%x = 2 + (2 − 0)(0.1) = 2.2

y2 = y1 + f(x1, y1)%x = 2.2 + (2.2 − 0.1)(0.1) = 2.41

y3 = y2 + f(x2, y2)%x = 2.41 + (2.41 − 0.2)(0.1) = 2.631

Here is a way of organizing all 10 approximations rounded to five decimal places:

xnn yn

0

1

2

3

4

5

6

7

8

9

10

yn+1 = yn + f (xn, yn)∆x

2.20000

2.41000

2.63100

2.86410

3.11051

3.37156

3.64872

3.94359

4.25795

4.59374

—

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2.00000

2.20000

2.41000

2.63100

2.86410

3.11051

3.37156

3.64872

3.94359

4.25795

4.59374

f (xn, yn)∆x

0.20000

0.21000

0.22100

0.23310

0.24641

0.26105

0.27716

0.29487

0.31436

0.33579

—

euler's method for y′ = y – x, y(0) = 2  with ∆x = 0.1

Observe that each entry in the last column becomes the next entry in the third column. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ACCURACY OF EULER’S METHOD
It follows from (5) and the initial condition y(0) = 2 that the exact solution of the initial-

value problem in Example 2 is

y = x + 1 + ex

Thus, in this case we can compare the approximate values of y(x) produced by Euler’s

Method with decimal approximations of the exact values (Table 9.2.1). In Table 9.2.1 the

absolute error is calculated as

|exact value − approximation|

and the percentage error as

|exact value − approximation|
|exact value|

× 100%

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. As a rough rule of thumb, the absolute error in an approximation produced by

Euler’s Method is proportional to the step size; thus, reducing the step size by half reduces

the absolute error (and hence the percentage error) by roughly half. However, reducing

the step size also increases the amount of computation, thereby increasing the potential

for roundoff error. We will leave a detailed study of error issues for courses in differential

equations or numerical analysis.
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Table 9.2.1

x
exact

solution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

absolute

error

percentage

error

0.00000

0.00517

0.01140

0.01886

0.02772

0.03821

0.05056

0.06503

0.08195

0.10165

0.12454

0.00

0.23

0.47

0.71

0.96

1.21

1.48

1.75

2.04

2.33

2.64

2.00000

2.20517

2.42140

2.64986

2.89182

3.14872

3.42212

3.71375

4.02554

4.35960

4.71828

euler

approximation

2.00000

2.20000

2.41000

2.63100

2.86410

3.11051

3.37156

3.64872

3.94359

4.25795

4.59374

EXERCISE SET 9.2 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Sketch the direction field for y ′ = xy/8 at the gridpoints

(x, y), where x = 0, 1, . . . , 4 and y = 0, 1, . . . , 4.

2. Sketch the direction field for y ′ + y = 2 at the gridpoints

(x, y), where x = 0, 1, . . . , 4 and y = 0, 1, . . . , 4.

3. A direction field for the differential equation y ′ = 1 − y is

shown in the accompanying figure. In each part, sketch the

graph of the solution that satisfies the initial condition.

(a) y(0) = −1 (b) y(0) = 1 (c) y(0) = 2

x

y

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure Ex-3

4. Solve the initial-value problems in Exercise 3, and use a

graphing utility to confirm that the integral curves for these

solutions are consistent with the sketches you obtained from

the direction field.

5. A direction field for the differential equation y ′ = 2y − x

is shown in the accompanying figure. In each part, sketch

the graph of the solution that satisfies the initial condition.

(a) y(1) = 1 (b) y(0) = −1 (c) y(−1) = 0

-2 -1 1 2

-2

-1

1

2

x

y

Figure Ex-5

6. Solve the initial-value problems in Exercise 5, and use a

graphing utility to confirm that the integral curves for these

solutions are consistent with the sketches you obtained from

the direction field.

7. Use the direction field in Exercise 3 to make a conjecture

about the behavior of the solutions of y ′ = 1−y as x→+�,

and confirm your conjecture by examining the general so-

lution of the equation.

8. Use the direction field in Exercise 5 to make a conjecture

about the effect of y0 on the behavior of the solution of the

initial-value problem y ′ = 2y − x, y(0) = y0 as x→+�,

and check your conjecture by examining the solution of the

initial-value problem.

9. In each part, match the differential equation with the direc-

tion field (see next page), and explain your reasoning.

(a) y ′ = 1/x (b) y ′ = 1/y (c) y ′ = e−x2

(d) y ′ = y2 − 1 (e) y ′ =
x + y

x − y
(f ) y ′ = (sin x)(sin y)
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y

x

y

x

y

x

y

x

I

III IV

II

y

x

y

x

V VI

Figure Ex-9

C 10. If you have a CAS or a graphing utility that can generate

direction fields, read the documentation on how to do it and

check your answers in Exercise 9 by generating the direction

fields for the differential equations.

11. (a) Use Euler’s Method with a step size of %x = 0.2 to

approximate the solution of the initial-value problem

y ′ = x + y, y(0) = 1

over the interval 0 ≤ x ≤ 1.

(b) Solve the initial-value problem exactly, and calculate

the error and the percentage error in each of the ap-

proximations in part (a).

(c) Sketch the exact solution and the approximate solution

together.

12. It was stated at the end of this section that reducing the step

size in Euler’s Method by half reduces the error in each ap-

proximation by about half. Confirm that the error in y(1) is

reduced by about half if a step size of %x = 0.1 is used in

Exercise 11.

In Exercises 13–16, use Euler’s Method with the given step

size %x to approximate the solution of the initial-value prob-

lem over the stated interval. Present your answer as a table

and as a graph.

13. dy/dx = √
y, y(0) = 1, 0 ≤ x ≤ 4, %x = 0.5

14. dy/dx = x − y2, y(0) = 1, 0 ≤ x ≤ 2, %x = 0.25

15. dy/dt = sin y, y(0) = 1, 0 ≤ t ≤ 2, %x = 0.5

16. dy/dt = e−y, y(0) = 0, 0 ≤ t ≤ 1, %x = 0.1

17. Consider the initial-value problem

y ′ = cos 2πt, y(0) = 1

Use Euler’s Method with five steps to approximate y(1).

18. (a) Show that the solution of the initial-value problem

y ′ = e−x2

, y(0) = 0 is

y(x) =
∫ x

0

e−t2

dt

(b) Use Euler’s Method with %x = 0.05 to approximate

the value of

y(1) =
∫ 1

0

e−t2

dt

and compare the answer to that produced by a calculat-

ing utility with a numerical integration capability.

19. The accompanying figure shows a direction field for the

differential equation y ′ = −x/y.

(a) Use the direction field to estimate y
(

1
2

)

for the solution

that satisfies the given initial condition y(0) = 1.

(b) Compare your estimate to the exact value of y
(

1
2

)

.

x

y

-2 -1 1 2

-2

-1

1

2

Figure Ex-19

20. Consider the initial-value problem

dy

dx
=

√
y

2
, y(0) = 1

(a) Use Euler’s Method with step sizes of %x = 0.2, 0.1,

and 0.05 to obtain three approximations of y(1).

(b) Plot the three approximations versus %x, and make a

conjecture about the exact value of y(1). Explain your

reasoning.

(c) Check your conjecture by finding y(1) exactly.
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9.3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

Since many of the fundamental laws of the physical and social sciences involve rates

of change, it should not be surprising that such laws are modeled by differential equa-

tions. In this section we will discuss the general idea of modeling with differential

equations, and we will investigate some important models that can be applied to popu-

lation growth, carbon dating, medicine, and ecology.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

POPULATION GROWTH
One of the simplest models of population growth is based on the observation that when

populations (people, plants, bacteria, and fruit flies, for example) are not constrained by

environmental limitations, they tend to grow at a rate that is proportional to the size of the

population—the larger the population, the more rapidly it grows.

To translate this principle into a mathematical model, suppose that y = y(t) denotes the

population at time t.At each point in time, the rate of increase of the population with respect

to time is dy/dt , so the assumption that the rate of growth is proportional to the population

is described by the differential equation

dy

dt
= ky (1)

where k is a positive constant of proportionality that can usually be determined experimen-

tally. Thus, if the population is known at some point in time, say y = y0 at time t = 0,

then a general formula for the population y(t) can be obtained by solving the initial-value

problem

dy

dt
= ky, y(0) = y0

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PHARMACOLOGY
When a drug (say, penicillin or aspirin) is administered to an individual, it enters the blood-

stream and then is absorbed by the body over time. Medical research has shown that the

amount of a drug that is present in the bloodstream tends to decrease at a rate that is pro-

portional to the amount of the drug present—the more of the drug that is present in the

bloodstream, the more rapidly it is absorbed by the body.

To translate this principle into a mathematical model, suppose that y = y(t) is the amount

of the drug present in the bloodstream at time t. At each point in time, the rate of change in

y with respect to t is dy/dt , so the assumption that the rate of decrease is proportional to

the amount y in the bloodstream translates into the differential equation

dy

dt
= −ky (2)

where k is a positive constant of proportionality that depends on the drug and can be deter-

mined experimentally. The negative sign is required because y decreases with time. Thus,

if the initial dosage of the drug is known, say y = y0 at time t = 0, then a general formula

for y(t) can be obtained by solving the initial-value problem

dy

dt
= −ky, y(0) = y0

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SPREAD OF DISEASE
Suppose that a disease begins to spread in a population of L individuals. Logic suggests

that at each point in time the rate at which the disease spreads will depend on how many

individuals are already affected and how many are not—as more individuals are affected,

the opportunity to spread the disease tends to increase, but at the same time there are fewer

individuals who are not affected, so the opportunity to spread the disease tends to decrease.

Thus, there are two conflicting influences on the rate at which the disease spreads.

To translate this into a mathematical model, suppose that y = y(t) is the number of

individuals who have the disease at time t, so of necessity the number of individuals who

do not have the disease at time t is L− y. As the value of y increases, the value of L− y
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decreases, so the conflicting influences of the two factors on the rate of spread dy/dt are

taken into account by the differential equation

dy

dt
= ky(L− y)

where k is a positive constant of proportionality that depends on the nature of the disease

and the behavior patterns of the individuals and can be determined experimentally. Thus,

if the number of affected individuals is known at some point in time, say y = y0 at time

t = 0, then a general formula for y(t) can be obtained by solving the initial-value problem

dy

dt
= ky(L− y), y(0) = y0 (3)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INHIBITED POPULATION GROWTH
The population growth model that we discussed at the beginning of this section was predi-

cated on the assumption that the population y = y(t) is not constrained by the environment.

For this reason, it is sometimes called the uninhibited growth model. However, in the real

world this assumption is usually not valid—populations generally grow within ecological

systems that can only support a certain number of individuals; the number L of such indi-

viduals is called the carrying capacity of the system. Thus, when y > L, the population

exceeds the capacity of the ecological system and tends to decrease towardL; when y < L,

the population is below the capacity of the ecological system and tends to increase toward

L; and when y = L, the population is in balance with the capacity of the ecological system

and tends to remain stable.

To translate this into a mathematical model, we must look for a differential equation in

which

dy

dt
< 0 if

y

L
> 1

dy

dt
> 0 if

y

L
< 1

dy

dt
= 0 if

y

L
= 1

Moreover, logic suggests that when the population is far below the carrying capacity (i.e.,

y/L ≈ 0), then the environmental constraints should have little effect, and the growth rate

should behave very much like the uninhibited model. Thus, we want

dy

dt
≈ ky if

y

L
≈ 0

A simple differential equation that meets all of these requirements is

dy

dt
= k

(

1 −
y

L

)

y

where k is a positive constant of proportionality. Thus, if k and L can be determined

experimentally, and if the population is known at some point in time, say y(0) = y0, then

a general formula for the population y(t) can be determined by solving the initial-value

problem

dy

dt
= k

(

1 −
y

L

)

y, y(0) = y0 (4)

This theory of population growth is due to the Belgian mathematician, P. F. Verhulst

(1804–1849), who introduced it in 1838 and described it as “logistic growth.”
∗

Thus, the

differential equation in (4) is called the logistic differential equation, and the growth model

described by (4) is called the logistic model or the inhibited growth model.

∗
Verhulst’s model fell into obscurity for nearly a hundred years because he did not have sufficient census data

to test its validity. However, interest in the model was revived in the 1930s when biologists used it successfully

to describe the growth of fruit fly and flour beetle populations. Verhulst himself used the model to predict that

an upper limit on Belgium’s population would be approximately 9,400,000. In 1998 the population was about

10,175,000.
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that the differential equation in (3) can be expressed as

dy

dt
= kL

(

1 −
y

L

)

y

which is a logistic equation with kL rather than k as the constant of proportionality. Thus,

this model for the spread of disease is also a logistic or inhibited growth model.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EXPONENTIAL GROWTH AND
DECAY MODELS

Equations (1) and (2) are examples of a general class of models called exponential models.

In general, exponential models arise in situations where a quantity increases or decreases

at a rate that is proportional to the amount of the quantity present. More precisely, we make

the following definition:

9.3.1 DEFINITION. A quantity y = y(t) is said to have an exponential growth model

if it increases at a rate that is proportional to the amount of the quantity present, and it is

said to have an exponential decay model if it decreases at a rate that is proportional to

the amount of the quantity present. Thus, for an exponential growth model, the quantity

y(t) satisfies an equation of the form

dy

dt
= ky (k > 0) (5)

and for an exponential decay model, the quantity y(t) satisfies an equation of the form

dy

dt
= −ky (k > 0) (6)

The constant k is called the growth constant or the decay constant, as appropriate.

Equations (5) and (6) are first-order linear equations, since they can be rewritten as

dy

dt
− ky = 0 and

dy

dt
+ ky = 0

both of which have the form of Equation (5) in Section 9.1 (but with t rather than x as the

independent variable); in the first equation we have p(t) = −k and q(t) = 0, and in the

second we have p(t) = k and q(t) = 0.

To illustrate how these equations can be solved, suppose that a quantity y = y(t) has an

exponential growth model and we know the amount of the quantity at some point in time,

say y = y0 when t = 0. Thus, a general formula for y(t) can be obtained by solving the

initial-value problem

dy

dt
− ky = 0, y(0) = y0

Multiplying the differential equation through by the integrating factor

µ = e−kt

yields

d

dt
(e−kty) = 0

and then integrating with respect to t yields

e−kty = C or y = Cekt

The initial condition implies that y = y0 when t = 0, from which it follows that C = y0

(verify). Thus, the solution of the initial-value problem is

y = y0e
kt (7)

We leave it for you to show that if y = y(t) has an exponential decay model, and if

y(0) = y0, then

y = y0e
−kt (8)
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTERPRETING THE GROWTH AND
DECAY CONSTANTS

The significance of the constant k in Formulas (7) and (8) can be understood by reexamining

the differential equations that gave rise to these formulas. For example, in the case of the

exponential growth model, Equation (5) can be rewritten as

k =
dy/dt

y

which states that the growth rate as a fraction of the entire population remains constant

over time, and this constant is k. For this reason, k is called the relative growth rate of the

population. It is usual to express the relative growth rate as a percentage. Thus, a relative

growth rate of 3% per unit of time in an exponential growth model means that k = 0.03.

Similarly, the constant k in an exponential decay model is called the relative decay rate.

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. It is standard practice in applications to call the relative growth rate the growth

rate, even though it is not really correct (the growth rate is dy/dt). However, the practice is

so common that we will follow it here.

Example 1 According to United Nations data, the world population in 1998 was approx-

imately 5.9 billion and growing at a rate of about 1.33% per year. Assuming an exponential

growth model, estimate the world population at the beginning of the year 2023.

Solution. We assume that the population at the beginning of 1998 was 5.9 billion and let

t = time elapsed from the beginning of 1998 (in years)

y = world population (in billions)

Since the beginning of 1998 corresponds to t = 0, it follows from the given data that

y0 = y(0) = 5.9 (billion)

Since the growth rate is 1.33% (k = 0.0133), it follows from (7) that the world population

at time t will be

y(t) = y0e
kt = 5.9e0.0133t (9)

Since the beginning of the year 2023 corresponds to an elapsed time of t = 25 years

(2023 − 1998 = 25), it follows from (9) that the world population by the year 2023 will be

y(25) = 5.9e0.0133(25) ≈ 8.2

which is a population of approximately 8.2 billion. ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. In this example, the growth rate was given, so there was no need to calculate it.

If the growth rate or decay rate in an exponential model is unknown, then it can be calculated

using the initial condition and the value of y at one other point in time (Exercise 34).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DOUBLING TIME AND HALF-LIFE
If a quantity y has an exponential growth model, then the time required for the original size

to double is called the doubling time, and if y has an exponential decay model, then the

time required for the original size to reduce by half is called the half-life. As it turns out,

doubling time and half-life depend only on the growth or decay rate and not on the amount

present initially. To see why this is so, suppose that y = y(t) has an exponential growth

model

y = y0e
kt (10)

and let T denote the amount of time required for y to double in size. Thus, at time t = T

the value of y will be 2y0, and hence from (10)

2y0 = y0e
kT or ekT = 2

Taking the natural logarithm of both sides yields kT = ln 2, which implies that the doubling
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time is

T =
1

k
ln 2 (11)

We leave it as an exercise to show that Formula (11) also gives the half-life of an

exponential decay model. Observe that this formula does not involve the initial amount y0,

so that in an exponential growth or decay model, the quantity y doubles (or reduces by half)

every T units (Figure 9.3.1).

Figure 9.3.1

T 2T 3T

y0

4y0

2y0

8y0

t 

y y

Exponential growth model 

with doubling time T

T 2T 3T

y0/8

y0/2

y0/4

 y0

t 

Exponential decay model 

with half-life T

Example 2 It follows from (11) that with a continued growth rate of 1.33% per year, the

doubling time for the world population will be

T =
1

0.0133
ln 2 ≈ 52.116

or approximately 52 years. Thus, with a continued 1.33% annual growth rate the population

of 5.9 billion in 1998 will double to 11.8 billion by the year 2050 and will double again to

23.6 billion by 2102. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RADIOACTIVE DECAY
It is a fact of physics that radioactive elements disintegrate spontaneously in a process called

radioactive decay. Experimentation has shown that the rate of disintegration is proportional

to the amount of the element present, which implies that the amount y = y(t) of a radioactive

element present as a function of time has an exponential decay model.

Every radioactive element has a specific half-life; for example, the half-life of radioactive

carbon-14 is about 5730 years. Thus, from (11), the decay constant for this element is

k =
1

T
ln 2 =

ln 2

5730
≈ 0.000121

and this implies that if there are y0 units of carbon-14 present at time t = 0, then the number

of units present after t years will be approximately

y(t) = y0e
−0.000121t (12)

Example 3 If 100 grams of radioactive carbon-14 are stored in a cave for 1000 years,

how many grams will be left at that time?

Solution. From (12) with y0 = 100 and t = 1000, we obtain

y(1000) = 100e−0.000121(1000) = 100e−0.121 ≈ 88.6

Thus, about 88.6 grams will be left. ◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CARBON DATING
When the nitrogen in the Earth’s upper atmosphere is bombarded by cosmic radiation, the

radioactive element carbon-14 is produced. This carbon-14 combines with oxygen to form

carbon dioxide, which is ingested by plants, which in turn are eaten by animals. In this

way all living plants and animals absorb quantities of radioactive carbon-14. In 1947 the

American nuclear scientist W. F. Libby
∗

proposed the theory that the percentage of carbon-

14 in the atmosphere and in living tissues of plants is the same. When a plant or animal

dies, the carbon-14 in the tissue begins to decay. Thus, the age of an artifact that contains

plant or animal material can be estimated by determining what percentage of its original

carbon-14 content remains. Various procedures, called carbon dating or carbon-14 dating,

have been developed for measuring this percentage.

Example 4 In 1988 the Vatican authorized the British Museum to date a cloth relic

known as the Shroud of Turin, possibly the burial shroud of Jesus of Nazareth. This cloth,

which first surfaced in 1356, contains the negative image of a human body that was widely

believed to be that of Jesus. The report of the British Museum showed that the fibers in the

cloth contained between 92% and 93% of their original carbon-14. Use this information to

estimate the age of the shroud.

The Shroud of Turin

Solution. From (12), the fraction of the original carbon-14 that remains after t years is

y(t)

y0

= e−0.000121t

Taking the natural logarithm of both sides and solving for t , we obtain

t = −
1

0.000121
ln

(

y(t)

y0

)

Thus, taking y(t)/y0 to be 0.93 and 0.92, we obtain

t = −
1

0.000121
ln(0.93) ≈ 600

t = −
1

0.000121
ln(0.92) ≈ 689

This means that when the test was done in 1988, the shroud was between 600 and 689 years

old, thereby placing its origin between 1299 A.D. and 1388 A.D. Thus, if one accepts the

validity of carbon-14 dating, the Shroud of Turin cannot be the burial shroud of Jesus of

Nazareth. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LOGISTIC MODELS
Recall that the logistic model of population growth in an ecological system with carrying

capacity L is determined by initial-value problem (4). To illustrate how this initial-value

problem can be solved for y(t), let us focus on the differential equation

dy

dt
= k

(

1 −
y

L

)

y (13)

Note that the constant functions y = 0 and y = L are particular solutions of (13). To find

nonconstant solutions, it will be convenient to rewrite Equation (13) as

dy

dt
=

k

L
(L− y)y =

k

L
y(L− y)

This equation is separable, since it can be rewritten in differential form as

L

y(L− y)
dy = k dt

Integrating both sides yields the equation
∫

L

y(L− y)
dy =

∫

k dt

∗
W. F. Libby, “Radiocarbon Dating,” American Scientist, Vol. 44, 1956, pp. 98–112.
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Using partial fractions on the left side, we can rewrite this equation as (verify)
∫ (

1

y
+

1

L− y

)

dy =
∫

k dt

Integrating and rearranging the form of the result, we obtain

ln |y| − ln |L− y| = kt + C

ln

∣

∣

∣

∣

y

L− y

∣

∣

∣

∣

= kt + C

∣

∣

∣

∣

y

L− y

∣

∣

∣

∣

= ekt+C

∣

∣

∣

∣

L− y

y

∣

∣

∣

∣

= e−kt−C = e−Ce−kt

L− y

y
= ±e−Ce−kt

L

y
− 1 = Ae−kt (where A = ±e−C)

Solving this equation for y yields (verify)

y =
L

1 + Ae−kt (14)

As the final step, we want to use the initial condition in (4) to determine the constantA. But

the initial condition implies that y = y0 if t = 0, so from (14)

y0 =
L

1 + A

from which we obtain

A =
L− y0

y0

Thus, the solution of the initial-value problem (4) is

y =
L

1 +
(

L− y0

y0

)

e−kt

which can be rewritten more simply as

y =
y0L

y0 + (L− y0)e−kt (15)

Note that the constant solutions of (13) are also given in (15); they correspond to the initial

conditions Y0 = 0 and y0 = L.

The graph of (15) has one of four general shapes, depending on the relationship between

the initial population y0 and the carrying capacity L (Figure 9.3.2).

t

y

L

y0 > L

y0 = L

0 < y0 < L/2
L/2 ≤ y0 < L

Typical solutions of the logistic 

differential equation

Figure 9.3.2

Example 5 Figure 9.3.3 shows the graph of a population y = y(t)with a logistic growth

model. Estimate the values of y0, L, and k, and use the estimates to deduce a formula for

y as a function of t.

1 2 3 4 5 6

1

2

3

4

5

6

t

y

Figure 9.3.3

Solution. The graph suggests that the carrying capacity is L = 5, and the population at

time t = 0 is y0 = 1. Thus, from (15), the equation has the form

y =
5

1 + 4e−kt (16)

where k must still be determined. However, the graph passes through the point (1, 2), which

tells us that y = 2 if t = 1. Substituting these values in (16) yields

2 =
5

1 + 4e−k
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Solving for k we obtain (verify)

k = ln 8
3

≈ 0.98

and substituting this in (16) yields

y =
5

1 + 4e−0.98t
◭

EXERCISE SET 9.3 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. (a) Suppose that a quantity y = y(t) increases at a rate that

is proportional to the square of the amount present, and

suppose that at time t = 0, the amount present is y0.

Find an initial-value problem whose solution is y(t).

(b) Suppose that a quantity y = y(t) decreases at a rate that

is proportional to the square of the amount present, and

suppose that at a time t = 0, the amount present is y0.

Find an initial-value problem whose solution is y(t).

2. (a) Suppose that a quantity y = y(t) changes in such a

way that dy/dt = k
√
y, where k > 0. Describe how

y changes in words.

(b) Suppose that a quantity y = y(t) changes in such a

way that dy/dt = −ky3,where k > 0.Describe how y

changes in words.

3. (a) Suppose that a particle moves along an s-axis in such

a way that its velocity v(t) is always half of s(t). Find

a differential equation whose solution is s(t).

(b) Suppose that an object moves along an s-axis in such a

way that its acceleration a(t) is always twice the veloc-

ity. Find a differential equation whose solution is s(t).

4. Suppose that a body moves along an s-axis through a re-

sistive medium in such a way that the velocity v = v(t)

decreases at a rate that is twice the square of the velocity.

(a) Find a differential equation whose solution is the veloc-

ity v(t).

(b) Find a differential equation whose solution is the posi-

tion s(t).

5. Suppose that an initial population of 10,000 bacteria grows

exponentially at a rate of 1% per hour and that y = y(t) is

the number of bacteria present t hours later.

(a) Find an initial-value problem whose solution is y(t).

(b) Find a formula for y(t).

(c) How long does it take for the initial population of bac-

teria to double?

(d) How long does it take for the population of bacteria to

reach 45,000?

6. A cell of the bacterium E. coli divides into two cells every

20 minutes when placed in a nutrient culture. Let y = y(t)

be the number of cells that are present t minutes after a sin-

gle cell is placed in the culture. Assume that the growth of

the bacteria is approximated by a continuous exponential

growth model.

(a) Find an initial-value problem whose solution is y(t).

(b) Find a formula for y(t).
(c) How many cells are present after 2 hours?
(d) How long does it take for the number of cells to reach

1,000,000?

7. Radon-222 is a radioactive gas with a half-life of 3.83 days.

This gas is a health hazard because it tends to get trapped in

the basements of houses, and many health officials suggest

that homeowners seal their basements to prevent entry of

the gas. Assume that 5.0×107 radon atoms are trapped in a

basement at the time it is sealed and that y(t) is the number

of atoms present t days later.

(a) Find an initial-value problem whose solution is y(t).
(b) Find a formula for y(t).
(c) How many atoms will be present after 30 days?
(d) How long will it take for 90% of the original quantity

of gas to decay?

8. Polonium-210 is a radioactive element with a half-life of

140 days. Assume that 10 milligrams of the element are

placed in a lead container and that y(t) is the number of

milligrams present t days later.

(a) Find an initial-value problem whose solution is y(t).
(b) Find a formula for y(t).
(c) How many milligrams will be present after 10 weeks?
(d) How long will it take for 70% of the original sample to

decay?

9. Suppose that 100 fruit flies are placed in a breeding con-

tainer that can support at most 5000 flies. Assuming that the

population grows exponentially at a rate of 2% per day, how

long will it take for the container to reach capacity?

10. Suppose that the town of Grayrock had a population of

10,000 in 1987 and a population of 12,000 in 1997. As-

suming an exponential growth model, in what year will the

population reach 20,000?

11. A scientist wants to determine the half-life of a certain ra-

dioactive substance. She determines that in exactly 5 days a

10.0-milligram sample of the substance decays to 3.5 mil-

ligrams. Based on these data, what is the half-life?

12. Suppose that 40% of a certain radioactive substance decays

in 5 years.

(a) What is the half-life of the substance in years?
(b) Suppose that a certain quantity of this substance is

stored in a cave. What percentage of it will remain after

t years?



February 21, 2001 14:40 g65-ch9 Sheet number 29 Page number 625 cyan magenta yellow black

9.3 Modeling with First-Order Differential Equations 625

13. In each part, find an exponential growth model y = y0e
kt

that satisfies the stated conditions.

(a) y0 = 2; doubling time T = 5

(b) y(0) = 5; growth rate 1.5%

(c) y(1) = 1; y(10) = 100

(d) y(1) = 1; doubling time T = 5

14. In each part, find an exponential decay model y = y0e
−kt

that satisfies the stated conditions.

(a) y0 = 10; half-life T = 5

(b) y(0) = 10; decay rate 1.5%

(c) y(1) = 100; y(10) = 1

(d) y(1) = 10; half-life T = 5

15. (a) Make a conjecture about the effect on the graphs of

y = y0e
kt and y = y0e

−kt of varying k and keeping y0

fixed. Confirm your conjecture with a graphing utility.

(b) Make a conjecture about the effect on the graphs of

y = y0e
kt and y = y0e

−kt of varying y0 and keeping k

fixed. Confirm your conjecture with a graphing utility.

16. (a) What effect does increasing y0 and keeping k fixed

have on the doubling time or half-life of an exponential

model? Justify your answer.

(b) What effect does increasing k and keeping y0 fixed have

on the doubling time and half-life of an exponential

model? Justify your answer.

17. (a) There is a trick, called the Rule of 70, that can be used

to get a quick estimate of the doubling time or half-

life of an exponential model. According to this rule,

the doubling time or half-life is roughly 70 divided by

the percentage growth or decay rate. For example, we

showed in Example 2 that with a continued growth rate

of 1.33% per year the world population would double

every 52 years. This result agrees with the Rule of 70,

since 70/1.33 ≈ 52.6. Explain why this rule works.

(b) Use the Rule of 70 to estimate the doubling time of a

population that grows exponentially at a rate of 1% per

year.

(c) Use the Rule of 70 to estimate the half-life of a popula-

tion that decreases exponentially at a rate of 3.5% per

hour.

(d) Use the Rule of 70 to estimate the growth rate that would

be required for a population growing exponentially to

double every 10 years.

18. Find a formula for the tripling time of an exponential growth

model.

19. In 1950, a research team digging near Folsom, New Mex-

ico, found charred bison bones along with some leaf-shaped

projectile points (called the “Folsom points”) that had been

made by a Paleo-Indian hunting culture. It was clear from

the evidence that the bison had been cooked and eaten by

the makers of the points, so that carbon-14 dating of the

bones made it possible for the researchers to determine when

the hunters roamed North America. Tests showed that the

bones contained between 27% and 30% of their original

carbon-14. Use this information to show that the hunters

lived roughly between 9000 B.C. and 8000 B.C.

20. (a) Use a graphing utility to make a graph of prem versus t,

where prem is the percentage of carbon-14 that remains

in an artifact after t years.

(b) Use the graph to estimate the percentage of carbon-14

that would have to have been present in the 1988 test of

the Shroud of Turin for it to have been the burial shroud

of Jesus. [See Example 4.]

In Exercises 21 and 22, the graph of a logistic model

y =
y0L

y0 + (L− y0)e−kt

is shown. Estimate y0, L, and k.

21.

2 4 6 8 10

2

4

6

8

10

t

y 22.

200 600 1000

200

600

1000

t

y

23. Suppose that the growth of a population y = y(t) is given

by the logistic equation

y =
60

5 + 7e−t

(a) What is the population at time t = 0?

(b) What is the carrying capacity L?

(c) What is the constant k?

(d) When does the population reach half of the carrying

capacity?

(e) Find an initial-value problem whose solution is y(t).

24. Suppose that the growth of a population y = y(t) is given

by the logistic equation

y =
1000

1 + 999e−0.9t

(a) What is the population at time t = 0?

(b) What is the carrying capacity L?

(c) What is the constant k?

(d) When does the population reach 75% of the carrying

capacity?

(e) Find an initial-value problem whose solution is y(t).

25. Suppose that a population y(t) grows in accordance with

the logistic model

dy

dt
= 10(1 − 0.1y)y

(a) What is the carrying capacity?

(b) What is the value of k?

(c) For what value of y is the population growing most

rapidly?
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26. Suppose that a population y(t) grows in accordance with

the logistic model

dy

dt
= 50y − 0.001y2

(a) What is the carrying capacity?

(b) What is the value of k?

(c) For what value of y is the population growing most

rapidly?

27. Suppose that a college residence hall houses 1000 students.

Following the semester break, 20 students in the hall return

with the flu, and 5 days later 35 students have the flu.

(a) Use model (4) to set up an initial-value problem whose

solution is the number of students who will have had

the flu t days after the return from the break. [Note: The

differential equation in this case will involve a constant

of proportionality.]

(b) Solve the initial-value problem, and use the given data

to find the constant of proportionality.

(c) Make a table that illustrates how the flu spreads day to

day over a 2-week period.

(d) Use a graphing utility to generate a graph that illustrates

how the flu spreads over a 2-week period.

28. It has been observed experimentally that at a constant tem-

perature the rate of change of the atmospheric pressure p

with respect to the altitude h above sea level is proportional

to the pressure.

(a) Assuming that the pressure at sea level is p0, find an

initial-value problem whose solution isp(h). [Note: The

differential equation in this case will involve a constant

of proportionality.]

(b) Find a formula for p(h) in atmospheres (atm) if the

pressure at sea level is 1 atm and the pressure at 5000

ft above sea level is 0.83 atm.

Newton’s Law of Cooling states that the rate at which the tem-

perature of a cooling object decreases and the rate at which

a warming object increases are proportional to the difference

between the temperature of the object and the temperature of

the surrounding medium. Use this result in Exercises 29–32.

29. A cup of water with a temperature of 95◦C is placed in a

room with a constant temperature 21◦C.

(a) Assuming that Newton’s Law of Cooling applies, set up

and solve an initial-value problem whose solution is the

temperature of the water t minutes after it is placed in

the room. [Note: The differential equation will involve

a constant of proportionality.]

(b) How many minutes will it take for the water to reach a

temperature of 51◦C if it cools to 85◦C in 1 minute?

30. A glass of lemonade with a temperature of 40◦F is placed in

a room with a constant temperature of 70◦F, and 1 hour later

its temperature is 52◦F. We stated in Example 4 of Section

7.4 that t hours after the lemonade is placed in the room its

temperature is approximated by T = 70 − 30e−0.5t . Con-

firm this using Newton’s Law of Cooling and the method

used in Exercise 29.

31. The great detective Sherlock Holmes and his assistant

Dr. Watson are discussing the murder of actor Cornelius

McHam. McHam was shot in the head, and his understudy,

Barry Moore, was found standing over the body with the

murder weapon in hand. Let’s listen in.

Watson: Open-and-shut case Holmes—Moore is the

murderer.

Holmes: Not so fast Watson—you are forgetting New-

ton’s Law of Cooling!

Watson: Huh?

Holmes: Elementary my dear Watson—Moore was found

standing over McHam at 10:06 P.M., at which

time the coroner recorded a body temperature

of 77.9◦F and noted that the room thermostat

was set to 72◦F. At 11:06 P.M. the coroner took

another reading and recorded a body tempera-

ture of 75.6◦F. Since McHam’s normal temper-

ature is 98.6◦F, and since Moore was on stage

between 6:00 P.M. and 8:00 P.M., Moore is obvi-

ously innocent.

Watson: Huh?

Holmes: Sometimes you are so dull Watson. Ask any cal-

culus student to figure it out for you.

Watson: Hrrumph. . . .

32. Suppose that at time t = 0 an object with temperature T0 is

placed in a room with constant temperature Ta . If T0 < Ta,

then the temperature of the object will increase, and if

T0 > Ta, then the temperature will decrease. Assuming

that Newton’s Law of Cooling applies, show that in both

cases the temperature T (t) at time t is given by

T (t) = Ta + (T0 − Ta)e
−kt

where k is a positive constant.

33. (a) Show that if b > 1, then the equation y = y0b
t can

be expressed as y = y0e
kt for some positive constant

k. [Note: This shows that if b > 1, and if y grows in

accordance with the equation y = y0b
t , then y has an

exponential growth model.]
(b) Show that if 0 < b < 1, then the equation y = y0b

t can

be expressed as y = y0e
−kt for some positive constant

k. [Note: This shows that if 0 < b < 1, and if y decays

in accordance with the equation y = y0b
t , then y has

an exponential decay model.]
(c) Express y = 4(2t ) in the form y = y0e

kt .

(d) Express y = 4(0.5t ) in the form y = y0e
−kt .

34. Suppose that a quantity y has an exponential growth model

y = y0e
kt or an exponential decay model y = y0e

−kt , and

it is known that y = y1 if t = t1. In each case find a formula

for k in terms of y0, y1, and t1, assuming that t1
�
= 0.
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9.4 SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL
EQUATIONS; THE VIBRATING SPRING

In this section we will show how to solve an important collection of second-order dif-

ferential equations. As an application, we will study the motion of a vibrating spring.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SECOND-ORDER LINEAR
HOMOGENEOUS DIFFERENTIAL
EQUATIONS WITH CONSTANT
COEFFICIENTS

A second-order linear differential equation is one of the form

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x) (1)

or in alternative notation,

y ′′ + p(x)y ′ + q(x)y = r(x)

If r(x) is identically 0, then (1) reduces to

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0

which is called the second-order linear homogeneous differential equation.

In order to discuss the solutions to a second-order linear homogeneous differential equa-

tion, it will be useful to introduce some terminology. Two functions f and g are said to be

linearly dependent if one is a constant multiple of the other. If neither is a constant multiple

of the other, then they are called linearly independent. Thus,

f(x) = sin x and g(x) = 3 sin x

are linearly dependent, but

f(x) = x and g(x) = x2

are linearly independent. The following theorem is central to the study of second-order

linear homogeneous differential equations.

9.4.1 THEOREM. Consider the homogeneous equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (2)

where the functions p(x) and q(x) are continuous on some common open interval I .

Then there exist linearly independent solutions y1(x) and y2(x) to (2) on I . Furthermore,

given any such pair of linearly independent solutions y1(x) and y2(x), a general solution

of (2) on I is given by

y(x) = c1y1(x)+ c2y2(x) (3)

That is, every solution of (2) on I can be obtained from (3) by choosing appropriate

values of the constants c1 and c2; conversely, (3) is a solution of (2) for all choices of c1

and c2.

A complete proof of this theorem is best left for a course in differential equations. (Readers

interested in portions of the argument are referred to Chapter 3 of Elementary Differential

Equations, 6th ed., John Wiley & Sons, New York, 1997, by William E. Boyce and Richard

C. DiPrima.)

We will restrict our attention to second-order linear homogeneous equations of the form

d2y

dx2
+ p

dy

dx
+ qy = 0 (4)

where p and q are constants. Since the constant functions p(x) = p and q(x) = q are

continuous on I = (−�,+�), it follows from Theorem 9.4.1 that to determine a general
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solution to (4) we need only find two linearly independent solutions y1(x) and y2(x) on I .

The general solution will then be given by y(x) = c1y1(x)+ c2y2(x), where c1 and c2 are

arbitrary constants.

We will start by looking for solutions to (4) of the form y = emx . This is motivated by the

fact that the first and second derivatives of this function are multiples of y, suggesting that

a solution of (4) might result by choosing m appropriately. To find such an m, we substitute

y = emx,
dy

dx
= memx,

d2y

dx2
= m2emx (5)

into (4) to obtain

(m2 + pm+ q)emx = 0 (6)

which is satisfied if and only if

m2 + pm+ q = 0 (7)

since emx �= 0 for every x.

Equation (7), which is called the auxiliary equation for (4), can be obtained from (4)

by replacing d2y/dx2 by m2, dy/dx by m(= m1), and y by 1 (= m0). The solutions, m1

and m2, of the auxiliary equation can be obtained by factoring or by the quadratic formula.

These solutions are

m1 =
−p +

√

p2 − 4q

2
, m2 =

−p −
√

p2 − 4q

2
(8)

Depending on whether p2 − 4q is positive, zero, or negative, these roots will be distinct

and real, equal and real, or complex conjugates.
∗

We will consider each of these cases

separately.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DISTINCT REAL ROOTS
If m1 and m2 are distinct real roots, then (4) has the two solutions

y1 = em1x, y2 = em2x

Neither of the functions em1x and em2x is a constant multiple of the other (Exercise 29), so

the general solution of (4) in this case is

y(x) = c1e
m1x + c2e

m2x (9)

Example 1 Find the general solution of y ′′ − y ′ − 6y = 0.

Solution. The auxiliary equation is

m2 −m− 6 = 0 or equivalently, (m+ 2)(m− 3) = 0

so its roots arem = −2,m = 3. Thus, from (9) the general solution of the differential equa-

tion is

y = c1e
−2x + c2e

3x

where c1 and c2 are arbitrary constants. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EQUAL REAL ROOTS
If m1 and m2 are equal real roots, say m1 = m2 (= m), then the auxiliary equation yields

only one solution of (4):

y1(x) = emx

We will now show that

y2(x) = xemx (10)

is a second linearly independent solution. To see that this is so, note that p2 − 4q = 0 in

∗
Recall that the complex solutions of a polynomial equation, and in particular of a quadratic equation, occur as

conjugate pairs a + bi and a − bi.
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(8) since the roots are equal. Thus,

m = m1 = m2 = −p/2

and (10) becomes

y2(x) = xe(−p
/2)x

Differentiating yields

y ′
2(x) =

(

1 −
p

2
x
)

e(−p
/2)x and y ′′

2 (x) =
(

p2

4
x − p

)

e−(p/2)x

so

y ′′
2 (x)+ py ′

2(x)+ qy2(x) =
[(

p2

4
x − p

)

+ p
(

1 −
p

2
x
)

+ qx

]

e(−p
/2)x

=
[

−
p2

4
+ q

]

xe(−p
/2)x (11)

But p2 − 4q = 0 implies that (−p2/4)+ q = 0, so (11) becomes

y ′′
2 (x)+ py ′

2(x)+ qy2(x) = 0

which tells us that y2(x) is a solution of (4). It can be shown that

y1(x) = emx and y2(x) = xemx

are linearly independent (Exercise 29), so the general solution of (4) in this case is

y = c1e
mx + c2xe

mx (12)

Example 2 Find the general solution of y ′′ − 8y ′ + 16y = 0.

Solution. The auxiliary equation is

m2 − 8m+ 16 = 0 or equivalently, (m− 4)2 = 0

so m = 4 is the only root. Thus, from (12) the general solution of the differential equation

is

y = c1e
4x + c2xe

4x
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

COMPLEX ROOTS
If the auxiliary equation has complex roots m1 = a + bi and m2 = a − bi, then both

y1(x) = eax cos bx and y2(x) = eax sin bx are linearly independent solutions of (4) and

y = eax(c1 cos bx + c2 sin bx) (13)

is the general solution. The proof is discussed in the exercises (Exercise 30).

Example 3 Find the general solution of y ′′ + y ′ + y = 0.

Solution. The auxiliary equation m2 +m+ 1 = 0 has roots

m1 =
−1 +

√
1 − 4

2
= −

1

2
+

√
3

2
i

m2 =
−1 −

√
1 − 4

2
= −

1

2
−

√
3

2
i

Thus, from (13) with a = −1/2 and b =
√

3/2, the general solution of the differential

equation is

y = e−x/2

(

c1 cos

√
3

2
x + c2 sin

√
3

2
x

)

◭
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INITIAL-VALUE PROBLEMS
When a physical problem leads to a second-order differential equation, there are usually

two conditions in the problem that determine specific values for the two arbitrary constants

in the general solution of the equation. Conditions that specify the value of the solution y(x)

and its derivative y ′(x) at x = x0 are called initial conditions. A second-order differential

equation with initial conditions is called a second-order initial-value problem.

Example 4 Solve the initial-value problem

y ′′ − y = 0, y(0) = 1, y ′(0) = 0

Solution. We must first solve the differential equation. The auxiliary equation

m2 − 1 = 0

has distinct real roots m1 = 1, m2 = −1, so from (9) the general solution is

y(x) = c1e
x + c2e

−x (14)

and the derivative of this solution is

y ′(x) = c1e
x − c2e

−x (15)

Substituting x = 0 in (14) and (15) and using the initial conditions y(0) = 1 and y ′(0) = 0

yields the system of equations

c1 + c2 = 1

c1 − c2 = 0

Solving this system yields c1 = 1
2
, c2 = 1

2
, so from (14) the solution of the initial-value

problem is

y(x) = 1
2
ex + 1

2
e−x = cosh x ◭

The following summary is included as a ready reference for the solution of second-order

homogeneous linear differential equations with constant coefficients.

Summary

Distinct real roots m1, m2 of the
auxiliary equation

y = c1em1x + c2em2x

y = c1emx + c2xemx

y = eax(c1 cosbx + c2 sinbx)

Equal real roots m1 = m2 (= m) of the
auxiliary equation

Complex roots m1 = a + bi, m2 = a – bi
of the auxiliary equation

equation:  y′′ + py′ + qy = 0

auxiliary equation:  m2 + pm + q = 0

case general solution

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VIBRATIONS OF SPRINGS
We conclude this section with an engineering model that leads to a second-order differential

equation of type (4).

As shown in Figure 9.4.1, consider a block of mass M that is suspended from a vertical

spring and allowed to settle into an equilibrium position. Assume that the block is then set

into vertical vibratory motion by pulling or pushing on it and releasing it at time t = 0. We

will be interested in finding a mathematical model that describes the vibratory motion of

the block over time.

To translate this problem into mathematical form, we introduce a vertical y-axis whose

positive direction is up and whose origin is at the connection of the spring to the block when

the block is in equilibrium (Figure 9.4.2). Our goal is to find the coordinate y = y(t) of the

top of the block as a function of time. For this purpose we will need Newton’s Second Law
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Block in

equilibrium Stretched Released

Natural

position

of the spring

M

M

M

Figure 9.4.1

of Motion, which we will write as

F = Ma

rather than F = ma, as in Formula (19) of Section 9.1. This is to avoid a conflict with

the letter “m” in the auxiliary equation. We will also need the following two results from

physics:

9.4.2 HOOKE’S LAW. If a spring is stretched (or compressed) ℓ units beyond its natural

position, then it pulls (or pushes) with a force of magnitude

F = kℓ

where k is a positive constant, called the spring constant. This constant, which is mea-

sured in units of force per unit length, depends on such factors as the thickness of the

spring and its composition. The force exerted by the spring is called the restoring force.

Block in

equilibrium

y

0

Figure 9.4.2

9.4.3 WEIGHT. The gravitational force exerted by the Earth on an object is called the

object’s weight (or more precisely, its Earth weight). It follows from Newton’s Second

Law of Motion that an object with mass M has a weight w of magnitude Mg, where

g is the acceleration due to gravity. However, if the positive direction is up, as we are

assuming here, then the force of the Earth’s gravity is in the negative direction, so

w = −Mg

The weight of an object is measured in units of force.

The motion of the block in Figure 9.4.1 will depend on how far it is stretched or com-

pressed initially and the forces that act on it while it moves. In our model we will assume

that there are only two such forces: its weight w and the restoring force Fs of the spring.

In particular, we will ignore such forces as air resistance, internal frictional forces in the

spring, forces due to movement of the spring support, and so forth. With these assumptions,

the model is called the simple harmonic model and the motion of the block is called simple

harmonic motion.

Our goal is to produce a differential equation whose solution gives the position function

y(t) of the block as a function of time. We will do this by determining the net force F(t)

acting on the block at a general time t and then applying Newton’s Second Law of Motion.
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Since the only forces acting on the block are its weight w = −Mg and the restoring force

Fs of the spring, and since the acceleration of the block at time t is y ′′(t), it follows from

Newton’s Second Law that

Fs(t)−Mg = My ′′(t) (16)

To express Fs(t) in terms of y(t), we will begin by examining the forces on the block

when it is in its equilibrium position. In this position the downward force of the weight is

perfectly balanced by the upward restoring force of the spring, so that the sum of these two

forces must be zero. Thus, if we assume that the spring constant is k and that the spring is

stretched a distance of ℓ units beyond its natural length when the block is in equilibrium

(Figure 9.4.3), then

kℓ−Mg = 0 (17)

Block in

equilibrium

y

0

ℓ

distance ℓ 

Figure 9.4.3

Now let us examine the restoring force acting on the block when the connection point

has coordinate y(t). At this point the end of the spring is displaced ℓ− y(t) units from its

natural position (Figure 9.4.4), so Hooke’s law implies that the restoring force is

Fs(t) = k(ℓ− y(t)) = kℓ− ky(t)

which from (17) can be rewritten as

Fs(t) = Mg − ky(t)

Substituting this in (16) and canceling the Mg terms yields

−ky(t) = My ′′(t)

which we can rewrite as the homogeneous equation

y ′′(t)+
(

k

M

)

y(t) = 0 (18)

The auxiliary equation for (18) is

m2 +
k

M
= 0

which has imaginary roots m1 =
√
k/Mi, m2 = −

√
k/Mi (since k and M are positive). It

follows that the general solution of (18) is

y(t) = c1 cos

(

√

k

M
t

)

+ c2 sin

(

√

k

M
t

)

(19)

y

ℓ

y(t )

ℓ – y(t )

Figure 9.4.4

•
••• FOR THE READER. Confirm that the functions in family (19) are solutions of (18).

To determine the constants c1 and c2 in (19) we will take as our initial conditions the

position and velocity at time t = 0. Specifically, we will ask you to show in Exercise 40

that if the position of the block at time t = 0 is y0, and if the initial velocity of the block is

zero (i.e., it is released from rest), then

y(t) = y0 cos

(

√

k

M
t

)

(20)

This formula describes a periodic vibration with an amplitude of |y0|, a period T given by

T =
2π

√
k/M

= 2π
√

M/k (21)

and a frequency f given by

f =
1

T
=

√
k/M

2π
(22)

(Figure 9.4.5).
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T = 2p√M/k

y0

y

t

T = 2p√M/k

y0

y

t

Spring compressed initially (y0 > 0) Spring stretched initially (y0 < 0)

Figure 9.4.5

Example 5 Suppose that the block in Figure 9.4.2 stretches the spring 0.2 m in equilib-

rium. Suppose also that the block is pulled 0.5 m below its equilibrium position and released

at time t = 0.

(a) Find the position function y(t) of the block.

(b) Find the amplitude, period, and frequency of the vibration.

Solution (a). The appropriate formula is (20). Although we are not given the mass M of

the block or the spring constant k, it does not matter because we can use the equilibrium

condition (17) to find the ratio k/M without having values for k and M . Specifically, we

are given that in equilibrium the block stretches the spring ℓ = 0.2 m, and we know that

g = 9.8 m/s2. Thus, (17) implies that

k

M
=
g

ℓ
=

9.8

0.2
= 49 s−2 (23)

Substituting this in (20) yields

y(t) = y0 cos 7t

where y0 is the coordinate of the block at time t = 0. However, we are given that the block

is initially 0.5 m below the equilibrium position, so y0 = −0.5 and hence the position

function of the block is y(t) = −0.5 cos 7t .

Solution (b). The amplitude of the vibration is

amplitude = |y0| = | − 0.5| = 0.5 m

and from (21), (22), and (23) the period and frequency are

period = T = 2π

√

M

k
= 2π

√

1

49
=

2π

7
s, frequency = f =

1

T
=

7

2π
Hz ◭

EXERCISE SET 9.4 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Verify that the following are solutions of the differential

equation y ′′ − y ′ − 2y = 0 by substituting these functions

into the equation.

(a) e2x and e−x

(b) c1e
2x + c2e

−x (c1, c2 constants)

2. Verify that the following are solutions of the differential

equation y ′′ + 4y ′ + 4y = 0 by substituting these functions

into the equation.

(a) e−2x and xe−2x

(b) c1e
−2x + c2xe

−2x (c1, c2 constants)
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In Exercises 3–16, find the general solution of the differential

equation.

3. y ′′ + 3y ′ − 4y = 0 4. y ′′ + 6y ′ + 5y = 0

5. y ′′ − 2y ′ + y = 0 6. y ′′ + 6y ′ + 9y = 0

7. y ′′ + 5y = 0 8. y ′′ + y = 0

9.
d2y

dx2
−
dy

dx
= 0 10.

d2y

dx2
+ 3

dy

dx
= 0

11.
d2y

dt2
+ 4

dy

dt
+ 4y = 0 12.

d2y

dt2
− 10

dy

dt
+ 25y = 0

13.
d2y

dx2
− 4

dy

dx
+ 13y = 0 14.

d2y

dx2
− 6

dy

dx
+ 25y = 0

15. 8y ′′ − 2y ′ − y = 0 16. 9y ′′ − 6y ′ + y = 0

In Exercises 17–22, solve the initial-value problem.

17. y ′′ + 2y ′ − 3y = 0; y(0) = 1, y ′(0) = 5

18. y ′′ − 6y ′ − 7y = 0; y(0) = 5, y ′(0) = 3

19. y ′′ − 6y ′ + 9y = 0; y(0) = 2, y ′(0) = 1

20. y ′′ + 4y ′ + y = 0; y(0) = 5, y ′(0) = 4

21. y ′′ + 4y ′ + 5y = 0; y(0) = −3, y ′(0) = 0

22. y ′′ − 6y ′ + 13y = 0; y(0) = −1, y ′(0) = 1

23. In each part find a second-order linear homogeneous differ-

ential equation with constant coefficients that has the given

functions as solutions.

(a) y1 = e5x , y2 = e−2x (b) y1 = e4x , y2 = xe4x

(c) y1 = e−x cos 4x, y2 = e−x sin 4x

24. Show that if ex and e−x are solutions of a second-order lin-

ear homogeneous differential equation, then so are cosh x

and sinh x.

25. Find all values of k for which the differential equation

y ′′ + ky ′ + ky = 0 has a general solution of the given form.

(a) y = c1e
ax + c2e

bx (b) y = c1e
ax + c2xe

ax

(c) y = c1e
ax cos bx + c2e

ax sin bx

26. The equation

x2 d
2y

dx2
+ px

dy

dx
+ qy = 0 (x > 0)

where p and q are constants, is called Euler’s equidimen-

sional equation. Show that the substitution x = ez trans-

forms this equation into the equation

d2y

dz2
+ (p − 1)

dy

dz
+ qy = 0

27. Use the result in Exercise 26 to find the general solution of

(a) x2 d
2y

dx2
+ 3x

dy

dx
+ 2y = 0 (x > 0)

(b) x2 d
2y

dx2
− x

dy

dx
− 2y = 0 (x > 0).

28. Let y(x) be a solution of y ′′ + py ′ + qy = 0. Prove: If p

and q are positive constants, then lim
x→+�

y(x) = 0.

29. Prove that the following functions are linearly independent.

(a) y1 = em1x , y2 = em2x (m1 �= m2)

(b) y1 = emx , y2 = xemx

30. Prove: If the auxiliary equation of

y ′′ + py ′ + qy = 0

has complex roots a+ bi and a− bi, then the general solu-

tion of this differential equation is

y(x) = eax(c1 cos bx + c2 sin bx)

[Hint: Using substitution, verify that y1 = eax cos bx and

y2 = eax sin bx are solutions of the differential equation.

Then prove that y1 and y2 are linearly independent.]

31. Suppose that the auxiliary equation of the equation

y ′′ + py ′ + qy = 0 has distinct real roots µ and m.

(a) Show that the function

gµ(x) =
eµx − emx

µ−m

is a solution of the differential equation.

(b) Use L’Hôpital’s rule to show that

lim
µ→m

gµ(x) = xemx

[Note: Can you see how the result in part (b) makes it

plausible that the function y(x) = xemx is a solution of

y ′′ + py ′ + qy = 0 when m is a repeated root of the

auxiliary equation?]

32. Consider the problem of solving the differential equation

y ′′ + λy = 0

subject to the conditions y(0) = 0, y(π) = 0.

(a) Show that if λ ≤ 0, then y = 0 is the only solution.

(b) Show that if λ > 0, then the solution is

y = c sin
√
λx

where c is an arbitrary constant, if

λ = 1, 22, 32, 42, . . .

and the only solution is y = 0 otherwise.

Exercises 33–38 involve vibrations of the block pictured in

Figure 9.4.1. Assume that the y-axis is as shown in Fig-

ure 9.4.2 and that the simple harmonic model applies.

33. Suppose that the block has a mass of 1 kg, the spring con-

stant is k = 0.25 N/m, and the block is pushed 0.3 m above

its equilibrium position and released at time t = 0.

(a) Find the position function y(t) of the block.

(b) Find the period and frequency of the vibration.

(c) Sketch the graph of y(t).

(d) At what time does the block first pass through the equi-

librium position?

(e) At what time does the block first reach its maximum

distance below the equilibrium position?



February 21, 2001 14:40 g65-ch9 Sheet number 39 Page number 635 cyan magenta yellow black

9.4 Second-Order Linear Homogeneous Differential Equations; The Vibrating Spring 635

34. Suppose that the block has a weight of 64 lb, the spring con-

stant is k = 0.25 lb/ft, and the block is pushed 1 ft above

its equilibrium position and released at time t = 0.

(a) Find the position function y(t) of the block.

(b) Find the period and frequency of the vibration.

(c) Sketch the graph of y(t).

(d) At what time does the block first pass through the equi-

librium position?

(e) At what time does the block first reach its maximum

distance below the equilibrium position?

35. Suppose that the block stretches the spring 0.05 m in equilib-

rium, and the block is pulled 0.12 m below the equilibrium

position and released at time t = 0.

(a) Find the position function y(t) of the block.

(b) Find the period and frequency of the vibration.

(c) Sketch the graph of y(t).

(d) At what time does the block first pass through the equi-

librium position?

(e) At what time does the block first reach its maximum

distance above the equilibrium position?

36. Suppose that the block stretches the spring 0.5 ft in equi-

librium, and is pulled 1.5 ft below the equilibrium position

and released at time t = 0.

(a) Find the position function y(t) of the block.

(b) Find the period and frequency of the vibration.

(c) Sketch the graph of y(t).

(d) At what time does the block first pass through the equi-

librium position?

(e) At what time does the block first reach its maximum

distance above the equilibrium position?

37. (a) For what values of y would you expect the block in

Exercise 36 to have its maximum speed? Confirm your

answer to this question mathematically.

(b) For what values of y would you expect the block to

have its minimum speed? Confirm your answer to this

question mathematically.

38. Suppose that the block weighs w pounds and vibrates with

a period of 3 s when it is pulled below the equilibrium posi-

tion and released. Suppose also that if the process is repeated

with an additional 4 lb of weight, then the period is 5 s.

(a) Find the spring constant. (b) Find w.

39. As shown in the accompanying figure, suppose that a toy

cart of mass M is attached to a wall by a spring with spring

constant k, and let a horizontal x-axis be introduced with its

origin at the connection point of the spring and cart when

the cart is in equilibrium. Suppose that the cart is pulled or

pushed horizontally to a point x0 and then released at time

t = 0. Find an initial-value problem whose solution is the

position function of the cart, and state any assumptions you

have made.

x
M

Figure Ex-39

40. Use the initial position y(0) = y0 and the initial velocity

v(0) = 0 to find the constants c1 and c2 in (19).

The accompanying figure shows a mass–spring system in

which an object of mass M is suspended by a spring and

linked to a piston that moves in a dashpot containing a vis-

cous fluid. If there are no external forces acting on the system,

then the object is said to have free motion and the motion of

the object is completely determined by the displacement and

velocity of the object at time t = 0, the stiffness of the spring

as measured by the spring constant k, and the viscosity of

the fluid in the dashpot as measured by a damping constant

c. Mathematically, the displacement y = y(t) of the object

from its equilibrium position is the solution of an initial-value

problem of the form

y ′′ + Ay ′ + By = 0, y(0) = y0, y ′(0) = v0

where the coefficient A is determined by M and c and the

coefficient B is determined by M and k. In our derivation of

Equation (21) we considered only motion in which the coef-

ficientA is zero and in which the object is released from rest,

that is, v0 = 0. In Exercises 41–45, you are asked to consider

initial-value problems for which both the coefficient A and

the initial velocity v0 are nonzero.

M

Dashpot

41. (a) Solve the initial-value problem y ′′ +2.4y ′ +1.44y = 0,

y(0) = 1, y ′(0) = 2 and graph y = y(t) on the interval

[0, 5].

(b) Find the maximum distance above the equilibrium po-

sition attained by the object.

(c) The graph of y(t) suggests that the object does not pass

through the equilibrium position. Show that this is so.

C 42. (a) Solve the initial-value problem y ′′ + 5y ′ + 2y = 0,

y(0) = 1/2, y ′(0) = −4 and graph y = y(t) on the

interval [0, 5].

(b) Find the maximum distance below the equilibrium

position attained by the object.

(c) The graph of y(t) suggests that the object passes

through the equilibrium position exactly once. With

what speed does the object pass through the equilib-

rium position?

C 43. (a) Solve the initial-value problem y ′′ + y ′ + 5y = 0,

y(0) = 1, y ′(0) = −3.5 and graph y = y(t) on the

interval [0, 8].
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(b) Find the maximum distance below the equilibrium po-

sition attained by the object.
(c) Find the velocity of the object when it passes through

the equilibrium position the first time.
(d) Find, by inspection, the acceleration of the object when

it passes through the equilibrium position the first time.

[Hint: Examine the differential equation and use the

result in part (c).]

C 44. (a) Solve the initial-value problem y ′′ + y ′ + 3y = 0,

y(0) = −2, y ′(0) = v0.
(b) Find the largest positive value of v0 for which the object

will rise no higher than 1 unit above the equilibrium

position. [Hint: Use a trial-and-error strategy. Estimate

v0 to the nearest hundredth.]
(c) Graph the solution of the initial-value problem on the

interval [0, 8] using the value of v0 obtained in part (b).

45. (a) Solve the initial-value problem y ′′ + 3.5y ′ + 3y = 0,

y(0) = 1, y ′(0) = v0.
(b) Use the result in part (a) to find the solutions for v0 = 2,

v0 = −1, and v0 = −4 and graph all three solutions on

the interval [0, 4] in the same coordinate system.
(c) Discuss the effect of the initial velocity on the motion

of the object.

46. Consider the first-order linear homogeneous equation

dy

dx
+ p(x)y = 0

where p(x) is a continuous function on some open inter-

val I . By analogy to the results of Theorem 9.4.1, we might

expect the general solution of this equation to be of the form

y = cy1(x)

where y1(x) is a solution of the equation on the interval I

and c is an arbitrary constant. Prove this to be the case.

SUPPLEMENTARY EXERCISES

C CAS

1. We have seen that the general solution of a first-order linear

equation involves a single arbitrary constant and that the

general solution of a second-order linear differential equa-

tion involves two arbitrary constants. Give an informal ex-

planation of why one might expect the number of arbitrary

constants to equal the order of the equation.

2. Write a paragraph that describes Euler’s Method.

3. (a) List the steps in the method of integrating factors for

solving first-order linear differential equations.

(b) What would you do if you had to solve an important

initial-value problem involving a first-order linear dif-

ferential equation whose integrating factor could not be

obtained because of the complexity of the integration?

4. Which of the following differential equations are separable?

(a)
dy

dx
= f(x)g(y) (b)

dy

dx
=
f(x)

g(y)

(c)
dy

dx
= f(x)+ g(y) (d)

dy

dx
=

√

f(x)g(y)

5. Classify the following first-order differential equations as

separable, linear, both, or neither.

(a)
dy

dx
− 3y = sin x (b)

dy

dx
+ xy = x

(c) y
dy

dx
− x = 1 (d)

dy

dx
+ xy2 = sin(xy)

6. Determine whether the methods of integrating factors and

separation of variables produce the same solution of the

differential equation

dy

dx
− 4xy = x

7. Consider the model dy/dt = ky(L− y) for the spread of a

disease, where k > 0 and 0 < y ≤ L. For what value of y

is the disease spreading most rapidly, and at what rate is it

spreading?

8. (a) Show that if a quantity y = y(t) has an exponential

model, and if y(t1) = y1 and y(t2) = y2, then the dou-

bling time or the half-life T is

T =
∣

∣

∣

∣

(t2 − t1) ln 2

ln(y2/y1)

∣

∣

∣

∣

(b) In a certain 1-hour period the number of bacteria in

a colony increases by 25%. Assuming an exponential

growth model, what is the doubling time for the colony?

9. Assume that a spherical meteoroid burns up at a rate that is

proportional to its surface area. Given that the radius is orig-

inally 4 m and 1 min later its radius is 3 m, find a formula

for the radius as a function of time.

10. A tank contains 1000 gal of fresh water. At time t = 0 min,

brine containing 5 ounces of salt per gallon of brine is poured

into the tank at a rate of 10 gal/min, and the mixed solution

is drained from the tank at the same rate. After 15 min that

process is stopped and fresh water is poured into the tank

at the rate of 5 gal/min, and the mixed solution is drained

from the tank at the same rate. Find the amount of salt in

the tank at time t = 30 min.

11. Suppose that a room containing 1200 ft3 of air is free of car-

bon monoxide. At time t = 0 cigarette smoke containing

4% carbon monoxide is introduced at the rate of 0.1 ft3/min,

and the well-circulated mixture is vented from the room at

the same rate.
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(a) Find a formula for the percentage of carbon monoxide

in the room at time t .

(b) Extended exposure to air containing 0.012% carbon

monoxide is considered dangerous. How long will it

take to reach this level? [This is based on a problem

from William E. Boyce and Richard C. DiPrima, Ele-

mentary Differential Equations, 6th ed., John Wiley &

Sons, New York, 1997.]

In Exercises 12–16, solve the initial-value problem.

12. y ′ = 1 + y2, y(0) = 1

13. y ′ =
y5

x(1 + y4)
, y(1) = 1

14. xy ′ + 2y = 4x2, y(1) = 2

15. y ′ = 4y2 sec2 2x, y(π/8) = 1

16. y ′ = 6 − 5y + y2, y(0) = ln 2

C 17. (a) Solve the initial-value problem

y ′ − y = x sin 3x, y(0) = 1

by the method of integrating factors, using a CAS to

perform any difficult integrations.

(b) Use the CAS to solve the initial-value problem directly,

and confirm that the answer is consistent with that ob-

tained in part (a).

(c) Graph the solution.

C 18. Use a CAS to derive Formula (23) of Section 9.1 by solving

initial-value problem (21).

19. (a) It is currently accepted that the half-life of carbon-

14 might vary ±40 years from its nominal value of

5730 years. Does this variation make it possible that the

Shroud of Turin dates to the time of Jesus of Nazareth?

[See Example 4 of Section 9.3.]

(b) Review the subsection of Section 3.8 entitled Error

Propagation in Applications, and then estimate the per-

centage error that results in the computed age of an

artifact from an r% error in the half-life of carbon-14.

20. (a) Use Euler’s Method with a step-size of�x= 0.1 to

approximate the solution of the initial-value problem

y ′ = 1 + 5t − y, y(1) = 5

over the interval [1, 2].

(b) Find the percentage error in the values computed.

21. Find the general solution of each differential equation.

(a) y ′′ − 3y ′ + 2y = 0 (b) 4y ′′ − 4y ′ + y = 0

(c) y ′′ + y ′ + 2y = 0

22. (a) Sketch the integral curve of 2yy ′ = 1 that passes

through the point (0, 1) and the integral curve that

passes through the point (0,−1).

(b) Sketch the integral curve of y ′ = −2xy2 that passes

through the point (0, 1).

23. Suppose that a herd of 19 deer is moved to a small island

whose estimated carrying capacity is 95 deer, and assume

that the population has a logistic growth model.

(a) Given that 1 year later the population is 25, how long

will it take for the deer population to reach 80% of the

island’s carrying capacity?

(b) Find an initial-value problem whose solution gives the

deer population as a function of time.

C 24. If the block in Figure 9.4.1 is displacedy0 units from its equi-

librium position and given an initial velocity of v0, rather

than being released with an initial velocity of 0, then its posi-

tion function y(t) given in Equation (19) of Section 9.4 must

satisfy the initial conditions y(0) = y0 and y ′(0) = v0.

(a) Show that

y(t) = y0 cos

(

√

k

M
t

)

+ v0

√

M

k
sin

(

√

k

M
t

)

(b) Suppose that a block with a mass of 1 kg stretches the

spring 0.5 m in equilibrium. Use a graphing utility to

graph the position function of the block if it is set in mo-

tion by pulling it down 1 m and imparting it an initial

upward velocity of 0.25 m/s.

(c) What is the maximum displacement of the block from

the equilibrium position?

25. A block attached to a vertical spring is displaced from its

equilibrium position and released, thereby causing it to vi-

brate with amplitude |y0| and period T .

(a) Show that the velocity of the block has maximum mag-

nitude 2π|y0|/T and that the maximum occurs when

the block is at its equilibrium position.

(b) Show that the acceleration of the block has maximum

magnitude 4π2|y0|/T 2 and that the maximum occurs

when the block is at a top or bottom point of its motion.

26. Suppose that P dollars is invested at an annual interest rate

of r × 100%. If the accumulated interest is credited to the

account at the end of the year, then the interest is said to

be compounded annually; if it is credited at the end of each

6-month period, then it is said to be compounded semiannu-

ally; and if it is credited at the end of each 3-month period,

then it is said to be compounded quarterly. The more fre-

quently the interest is compounded, the better it is for the

investor since more of the interest is itself earning interest.

(a) Show that if interest is compounded n times a year at

equally spaced intervals, then the valueA of the invest-

ment after t years is

A = P
(

1 +
r

n

)nt

(b) One can imagine interest to be compounded each day,

each hour, each minute, and so forth. Carried to the limit

one can conceive of interest compounded at each instant

of time; this is called continuous compounding. Thus,

from part (a), the valueA ofP dollars after t years when

invested at an annual rate of r × 100%, compounded
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continuously, is

A = lim
n→+�

P
(

1 +
r

n

)nt

Use the fact that limx→0 (1 + x)1/x = e to prove that

A = Pert .

(c) Use the result in part (b) to show that money invested at

continuous compound interest increases at a rate pro-

portional to the amount present.

27. (a) If $1000 is invested at 8% per year compounded contin-

uously (Exercise 26), what will the investment be worth

after 5 years?

(b) If it is desired that an investment at 8% per year com-

pounded continuously should have a value of $10,000

after 10 years, how much should be invested now?
(c) How long does it take for an investment at 8% per year

compounded continuously to double in value?

28. Prove Theorem 9.4.1 in the special case where q(x) is iden-

tically zero.

29. Assume that the motion of a block of mass M is governed

by the simple harmonic model (18) in Section 9.4. Define

the potential energy of the block at time t to be 1
2
k[y(t)]2,

and define the kinetic energy of the block at time t to be
1
2
M[y ′(t)]2. Prove that the sum of the potential energy of

the block and the kinetic energy of the block is constant.


