
Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

MAIN MEMORY

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Memory Management
• Background
• Swapping
• Contiguous Memory Allocation
• Segmentation
• Paging
• Structure of the Page Table
• Example: The Intel 32 and 64-bit Architectures
• Example: ARM Architecture

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Objectives
• To provide a detailed description of various ways of

organizing memory hardware

• To discuss various memory-management techniques,
including paging and segmentation

• To provide a detailed description of the Intel Pentium,
which supports both pure segmentation and segmentation
with paging

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Background
• Program must be brought (from disk) into memory and

placed within a process for it to be run
• Main memory and registers are only storage CPU can

access directly
• Memory unit only sees a stream of addresses + read

requests, or address + data and write requests
• Register access in one CPU clock (or less)
• Main memory can take many cycles, causing a stall
• Cache sits between main memory and CPU registers
• Protection of memory required to ensure correct operation

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Memory Hierarchy

i7 has 8MB as shared 3rd level cache;
2nd level cache is per-core

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Base and Limit Registers
• A pair of base and limit
registers define the
logical address space

• CPU must check every
memory access
generated in user
mode to be sure it is
between base and limit
for that user

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hardware Address Protection

base

memory
trap to operating system

monitor—addressing error

address yesyes

nono

CPU

base ! limit

≥ <

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Address Binding
• Programs on disk, ready to be brought into memory to

execute form an input queue
•  Without support, must be loaded into address 0000

•  Inconvenient to have first user process physical address
always at 0000?

•  Further, addresses represented in different ways at
different stages of a program’s life
•  Source code addresses usually symbolic
•  Compiled code addresses bind to relocatable addresses

•  i.e. “14 bytes from beginning of this module”
•  Linker or loader will bind relocatable addresses to absolute

addresses
•  i.e. 74014

•  Each binding maps one address space to another

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Binding of Instructions and Data to Memory
• Address binding of instructions and data to memory

addresses can happen at three different stages
•  Compile time: If memory location known a priori, absolute code

can be generated; must recompile code if starting location changes

•  Load time: Must generate relocatable code if memory location is
not known at compile time

•  Execution time: Binding delayed until run time if the process can
be moved during its execution from one memory segment to
another
•  Need hardware support for address maps (e.g., base and limit registers)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multistep Processing of a User Program

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Logical vs. Physical Address Space
• The concept of a logical address space that is bound to a

separate physical address space is central to proper
memory management
•  Logical address – generated by the CPU; also referred to as

virtual address
•  Physical address – address seen by the memory unit

•  Logical address space is the set of all logical addresses
generated by a program

• Physical address space is the set of all physical
addresses generated by a program

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Memory-Management Unit (MMU)
• Hardware device that at run time maps virtual to physical

address
• Many methods possible, covered in the rest of this chapter
•  To start, consider simple scheme where the value in the

relocation register is added to every address generated by a
user process at the time it is sent to memory
•  Base register now called relocation register
•  MS-DOS on Intel 80x86 used 4 relocation registers

•  The user program deals with logical addresses; it never
sees the real physical addresses
•  Execution-time binding occurs when reference is made to location in

memory
•  Logical address bound to physical addresses

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Dynamic relocation using a relocation
register
•  Routine is not loaded until it

is called
•  Better memory-space

utilization; unused routine is
never loaded

•  All routines kept on disk in
relocatable load format

•  Useful when large amounts
of code are needed to handle
infrequently occurring cases

•  No special support from the
operating system is required
•  Implemented through program

design
•  OS can help by providing

libraries to implement dynamic
loading

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Dynamic Linking
•  Static linking – system libraries and program code combined

by the loader into the binary program image
•  Dynamic linking –linking postponed until execution time
•  Small piece of code, stub, used to locate the appropriate

memory-resident library routine
•  Stub replaces itself with the address of the routine, and

executes the routine
•  Operating system checks if routine is in processes’ memory

address
•  If not in address space, add to address space

•  Dynamic linking is particularly useful for libraries
•  System also known as shared libraries
•  Consider applicability to patching system libraries

•  Versioning may be needed

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Swapping
•  A process can be swapped temporarily out of memory to a

backing store, and then brought back into memory for
continued execution

•  Backing store – fast disk large enough to accommodate
copies of all memory images for all users; must provide direct
access to these memory images

•  Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed

•  Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

•  System maintains a ready queue of ready-to-run processes
which have memory images on disk

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Swapping (Cont.)
• Does the swapped out process need to swap back in to

same physical addresses?

• Depends on address binding method
•  Plus consider pending I/O to / from process memory space

• Modified versions of swapping are found on many
systems (i.e., UNIX, Linux, and Windows)
•  Swapping normally disabled
•  Started if more than threshold amount of memory allocated
•  Disabled again once memory demand reduced below threshold

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Schematic View of Swapping

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Context Switch Time including Swapping
•  If next processes to be put on CPU is not in memory,

need to swap out a process and swap in target process
• Context switch time can then be very high
•  100MB process swapping to hard disk with transfer rate of

50MB/sec
•  Swap out time of 2000 ms
•  Plus swap in of same sized process
•  Total context switch swapping component time of 4000ms (4

seconds)
• Can reduce if reduce size of memory swapped – by

knowing how much memory really being used
•  System calls to inform OS of memory use via request_memory()

and release_memory()

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Context Switch Time and Swapping
(Cont.)
• Other constraints as well on swapping

•  Pending I/O – can’t swap out as I/O would occur to wrong process
•  Or always transfer I/O to kernel space, then to I/O device

•  Known as double buffering, adds overhead

• Standard swapping not used in modern operating systems
•  But modified version common

•  Swap only when free memory extremely low

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Swapping on Mobile Systems
• Not typically supported

•  Flash memory based
•  Small amount of space
•  Limited number of write cycles
•  Poor throughput between flash memory and CPU on mobile platform

•  Instead use other methods to free memory if low
•  iOS asks apps to voluntarily relinquish allocated memory

•  Read-only data thrown out and reloaded from flash if needed
•  Failure to free can result in termination

•  Android terminates apps if low free memory, but first writes
application state to flash for fast restart

•  Both OSes support paging as discussed below

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Contiguous Allocation
• Main memory must support both OS and user processes

•  Limited resource, must allocate efficiently

• Contiguous allocation is one early method

• Main memory usually into two partitions:
•  Resident operating system, usually held in low memory with

interrupt vector
•  User processes then held in high memory
•  Each process contained in single contiguous section of memory

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Contiguous Allocation (Cont.)
• Relocation registers used to protect user processes from

each other, and from changing operating-system code
and data
•  Base register contains value of smallest physical address
•  Limit register contains range of logical addresses – each logical

address must be less than the limit register
•  MMU maps logical address dynamically
•  Can then allow actions such as kernel code being transient and

kernel changing size

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hardware Support for Relocation and
Limit Registers

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multiple-partition allocation
• Degree of multiprogramming limited by number of partitions
• Variable-partition sizes for efficiency (sized to a given

process’ needs)
• Hole – block of available memory; holes of various size are

scattered throughout memory
• When a process arrives, it is allocated memory from a hole

large enough to accommodate it
• Process exiting frees its partition, adjacent free partitions

combined
• Operating system maintains information about:

1.  allocated partitions
2.  free partitions (hole)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multiple-partition allocation

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Dynamic Storage-Allocation Problem
• How to satisfy a request of size n from a list of free holes?

•  First-fit: Allocate the first hole that is big enough

•  Best-fit: Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size

•  Produces the smallest leftover hole

•  Worst-fit: Allocate the largest hole; must also search entire list
•  Produces the largest leftover hole

• First-fit and best-fit better than worst-fit in terms of speed
and storage utilization

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Fragmentation
• External Fragmentation – total memory space exists to

satisfy a request, but it is not contiguous

•  Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size difference
is memory internal to a partition, but not being used

• First fit analysis reveals that given N blocks allocated, 0.5
N blocks lost to fragmentation
•  1/3 may be unusable à 50-percent rule

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Fragmentation (Cont.)
• Reduce external fragmentation by compaction

•  Shuffle memory contents to place all free memory together in one
large block

•  Compaction is possible only if relocation is dynamic, and is done at
execution time

•  I/O problem
•  Latch job in memory while it is involved in I/O
•  Do I/O only into OS buffers

• Now consider that backing store has same fragmentation
problems

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Segmentation
• Memory-management scheme that supports user view of

memory
• A program is a collection of segments

•  A segment is a logical unit such as:
•  main program
•  procedure
•  Function
•  Method
•  Object
•  local variables, global variables
•  common block
•  Stack
•  symbol table
•  arrays

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

User’s View of a Program

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Segmentation Architecture
•  Logical address consists of a two tuple:

 <segment-number, offset>

•  Segment table – maps two-dimensional physical addresses;
each table entry has:
•  base – contains the starting physical address where the segments

reside in memory
•  limit – specifies the length of the segment

•  Segment-table base register (STBR) points to the segment
table’s location in memory

•  Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Segmentation Architecture (Cont.)
• Protection

•  With each entry in segment table associate:
•  validation bit = 0 ⇒ illegal segment
•  read/write/execute privileges

• Protection bits associated with segments; code sharing
occurs at segment level

• Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

• A segmentation example is shown in the following
diagram

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Segmentation Hardware

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Paging
•  Physical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is
available
•  Avoids external fragmentation
•  Avoids problem of varying sized memory chunks

•  Divide physical memory into fixed-sized blocks called frames
•  Size is power of 2, between 512 bytes and 16 Mbytes

•  Divide logical memory into blocks of same size called pages
•  Keep track of all free frames
•  To run a program of size N pages, need to find N free frames

and load program
•  Set up a page table to translate logical to physical addresses
•  Backing store likewise split into pages
•  Still have Internal fragmentation

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Address Translation Scheme
• Address generated by CPU is divided into:

•  Page number (p) – used as an index into a page table which
contains base address of each page in physical memory

•  Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit

•  For given logical address space 2m and page size 2n

page	 number page	 offset

p d

m	 -‐n n

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Paging Hardware

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Paging Model of Logical and Physical
Memory

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Paging Example

32-byte memory and 4-byte pages

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Paging (Cont.)
•  Calculating internal fragmentation

•  Page size = 2,048 bytes
•  Process size = 72,766 bytes
•  35 pages + 1,086 bytes
•  Internal fragmentation of 2,048 - 1,086 = 962 bytes

•  Worst case fragmentation = 1 frame – 1 byte
•  On average fragmentation = 1 / 2 frame size
•  So small frame sizes desirable?
•  But each page table entry takes memory to track
•  Page sizes growing over time

•  Solaris supports two page sizes – 8 KB and 4 MB

•  Process view and physical memory now very different
•  By implementation process can only access its own memory

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Free Frames

Before allocation After allocation

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementation of Page Table
• Page table is kept in main memory
• Page-table base register (PTBR) points to the page table
• Page-table length register (PTLR) indicates size of the

page table
•  In this scheme every data/instruction access requires two

memory accesses
•  One for the page table and one for the data / instruction

• The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementation of Page Table (Cont.)
• Some TLBs store address-space identifiers (ASIDs) in

each TLB entry – uniquely identifies each process to
provide address-space protection for that process
•  Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster
access next time
•  Replacement policies must be considered
•  Some entries can be wired down for permanent fast access

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Associative Memory
• Associative memory – parallel search

• Address translation (p, d)
•  If p is in associative register, get frame # out
•  Otherwise get frame # from page table in memory

P a g e 	 # F ram e 	 #

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Paging Hardware With TLB

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Effective Access Time
•  Associative Lookup = ε time unit

Can be < 10% of memory access time
•  Hit ratio = α

•  Hit ratio – percentage of times that a page number is found in the
associative registers; ratio related to number of associative registers

•  Effective Access Time (EAT)
 EAT = (1 + ε) α + (2 + ε)(1 – α)

 = 2 + ε – α
•  Consider α = 80%, ε = 20ns for TLB search, 100ns for memory

access
•  EAT = 0.80 x 100 + 0.20 x 200 = 120ns

•  Consider more realistic hit ratio -> α = 99%, ε = 20ns for TLB
search, 100ns for memory access
•  EAT = 0.99 x 100 + 0.01 x 200 = 101ns

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Memory Protection
• Memory protection implemented by associating protection

bit with each frame to indicate if read-only or read-write
access is allowed
•  Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:
•  “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page
•  “invalid” indicates that the page is not in the process’ logical

address space
•  Or use page-table length register (PTLR)

• Any violations result in a trap to the kernel

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Valid (v) or Invalid (i) Bit In A Page Table

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Shared Pages
• Shared code

•  One copy of read-only (reentrant) code shared among processes
(i.e., text editors, compilers, window systems)

•  Similar to multiple threads sharing the same process space
•  Also useful for interprocess communication if sharing of read-write

pages is allowed

• Private code and data
•  Each process keeps a separate copy of the code and data
•  The pages for the private code and data can appear anywhere in

the logical address space

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Shared Pages Example

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Structure of the Page Table
• Memory structures for paging can get huge using straight-

forward methods
•  Consider a 32-bit logical address space as on modern computers
•  Page size of 4 KB (212)
•  Page table would have 1 million entries (232 / 212)
•  If each entry is 4 bytes -> 4 MB of physical address space /

memory for page table alone
•  That amount of memory used to cost a lot
•  Don’t want to allocate that contiguously in main memory

• Hierarchical Paging
• Hashed Page Tables
•  Inverted Page Tables

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hierarchical Page Tables
• Break up the logical address space into multiple page

tables
• A simple technique is a two-level page table
• We then page the page table

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Two-Level Page-Table Scheme

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page size) is

divided into:
•  a page number consisting of 22 bits
•  a page offset consisting of 10 bits

• Since the page table is paged, the page number is further
divided into:
•  a 12-bit page number
•  a 10-bit page offset

• Thus, a logical address is as follows:
•  where p1 is an index into the outer page table, and p2 is the

displacement within the page of the inner page table

• Known as forward-mapped page table

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Address-Translation Scheme

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

64-bit Logical Address Space
• Even two-level paging scheme not sufficient
•  If page size is 4 KB (212)

•  Then page table has 252 entries
•  If two level scheme, inner page tables could be 210 4-byte entries
•  Address would look like

•  Outer page table has 242 entries or 244 bytes
•  One solution is to add a 2nd outer page table
•  But in the following example the 2nd outer page table is still 234

bytes in size
•  And possibly 4 memory access to get to one physical memory location

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Three-level Paging Scheme

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hashed Page Tables
•  Common in address spaces > 32 bits
•  The virtual page number is hashed into a page table

•  This page table contains a chain of elements hashing to the same
location

•  Each element contains (1) the virtual page number (2) the
value of the mapped page frame (3) a pointer to the next
element

•  Virtual page numbers are compared in this chain searching for
a match
•  If a match is found, the corresponding physical frame is extracted

•  Variation for 64-bit addresses is clustered page tables
•  Similar to hashed but each entry refers to several pages (such as 16)

rather than 1
•  Especially useful for sparse address spaces (where memory

references are non-contiguous and scattered)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hashed Page Table

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Inverted Page Table
•  Rather than each process having a page table and keeping

track of all possible logical pages, track all physical pages
•  One entry for each real page of memory
•  Entry consists of the virtual address of the page stored in that

real memory location, with information about the process that
owns that page

•  Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

•  Use hash table to limit the search to one — or at most a few —
page-table entries
•  TLB can accelerate access

•  But how to implement shared memory?
•  One mapping of a virtual address to the shared physical address

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Inverted Page Table Architecture

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Example: The Intel 32 and 64-bit
Architectures
• Dominant industry chips

• Pentium CPUs are 32-bit and called IA-32 architecture

• Current Intel CPUs are 64-bit and called IA-64
architecture

• Many variations in the chips, cover the main ideas here

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Example: The Intel IA-32 Architecture
• Supports both segmentation and segmentation with

paging
•  Each segment can be 4 GB
•  Up to 16 K segments per process
•  Divided into two partitions

•  First partition of up to 8 K segments are private to process (kept in local
descriptor table (LDT))

•  Second partition of up to 8K segments shared among all processes
(kept in global descriptor table (GDT))

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Example: The Intel IA-32 Architecture
(Cont.)
• CPU generates logical address

•  Selector given to segmentation unit
•  Which produces linear addresses

•  Linear address given to paging unit
•  Which generates physical address in main memory
•  Paging units form equivalent of MMU
•  Pages sizes can be 4 KB or 4 MB

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Logical to Physical Address Translation in
IA-32

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Intel IA-32 Segmentation

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Intel IA-32 Paging Architecture

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Intel IA-32 Page Address Extensions
•  32-bit address limits led Intel to create page address

extension (PAE), allowing 32-bit apps access to more
than 4GB of memory space
•  Paging went to a 3-level scheme
•  Top two bits refer to a page directory pointer table
•  Page-directory and page-table entries moved to 64-bits in size
•  Net effect is increasing address space to 36 bits – 64GB of physical

memory
31 30 29 21 20 12 11 0

page table offsetpage directory

4-KB
page

page
table

page directory
pointer table

CR3
register page

directory

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Intel x86-64
• Current generation Intel x86 architecture
•  64 bits is ginormous (> 16 exabytes)
•  In practice only implement 48 bit addressing

•  Page sizes of 4 KB, 2 MB, 1 GB
•  Four levels of paging hierarchy

• Can also use PAE so virtual addresses are 48 bits and
physical addresses are 52 bits

unused
page map

level 4
page directory
pointer table

page
directory

page
table offset

6363 4748 39 38 30 29 21 20 12 11 0

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Example: ARM Architecture
•  Dominant mobile platform chip

(Apple iOS and Google Android
devices for example)

•  Modern, energy efficient, 32-bit
CPU

•  4 KB and 16 KB pages
•  1 MB and 16 MB pages (sections)
•  One-level paging for sections, two-

level for smaller pages
•  Two levels of TLBs

•  Outer level has two micro TLBs (one
data, one instruction)

•  Inner is single main TLB
•  First inner is checked, on miss outers

are checked, and on miss page table
walk performed by CPU

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB
section

32 bits

