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Memory Management 
• Background 
• Swapping  
• Contiguous Memory Allocation 
• Segmentation 
• Paging 
• Structure of the Page Table 
• Example: The Intel 32 and 64-bit Architectures 
• Example: ARM Architecture 
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Objectives 
• To provide a detailed description of various ways of 

organizing memory hardware 

• To discuss various memory-management techniques, 
including paging and segmentation 

• To provide a detailed description of the Intel Pentium, 
which supports both pure segmentation and segmentation 
with paging 
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Background 
• Program must be brought (from disk)  into memory and 

placed within a process for it to be run 
• Main memory and registers are only storage CPU can 

access directly 
• Memory unit only sees a stream of addresses + read 

requests, or address + data and write requests 
• Register access in one CPU clock (or less) 
• Main memory can take many cycles, causing a stall 
• Cache sits between main memory and CPU registers 
• Protection of memory required to ensure correct operation 



Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice” 

Memory Hierarchy 

i7 has 8MB as shared 3rd level cache;  
2nd level cache is per-core 
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Base and Limit Registers 
• A pair of base and limit 
registers define the 
logical address space 

• CPU must check every 
memory access 
generated in user 
mode to be sure it is 
between base and limit 
for that user 
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Hardware Address Protection 
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Address Binding 
• Programs on disk, ready to be brought into memory to 

execute form an input queue 
•  Without support, must be loaded into address 0000 

•  Inconvenient to have first user process physical address 
always at 0000?  

•  Further, addresses represented in different ways at 
different stages of a program’s life 
•  Source code addresses usually symbolic 
•  Compiled code addresses bind to relocatable addresses 

•  i.e. “14 bytes from beginning of this module” 
•  Linker or loader will bind relocatable addresses to absolute 

addresses 
•  i.e. 74014 

•  Each binding maps one address space to another 
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Binding of Instructions and Data to Memory 
• Address binding of instructions and data to memory 

addresses can happen at three different stages 
•  Compile time:  If memory location known a priori, absolute code 

can be generated; must recompile code if starting location changes 

•  Load time:  Must generate relocatable code if memory location is 
not known at compile time 

•  Execution time:  Binding delayed until run time if the process can 
be moved during its execution from one memory segment to 
another 
•  Need hardware support for address maps (e.g., base and limit registers) 



Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice” 

Multistep Processing of a User Program  
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Logical vs. Physical Address Space 
• The concept of a logical address space that is bound to a 

separate physical address space is central to proper 
memory management 
•  Logical address – generated by the CPU; also referred to as 

virtual address 
•  Physical address – address seen by the memory unit 

•  Logical address space is the set of all logical addresses 
generated by a program 

• Physical address space is the set of all physical 
addresses generated by a program 
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Memory-Management Unit (MMU) 
• Hardware device that at run time maps virtual to physical 

address 
• Many methods possible, covered in the rest of this chapter 
•  To start, consider simple scheme where the value in the 

relocation register is added to every address generated by a 
user process at the time it is sent to memory 
•  Base register now called relocation register 
•  MS-DOS on Intel 80x86 used 4 relocation registers 

•  The user program deals with logical addresses; it never 
sees the real physical addresses 
•  Execution-time binding occurs when reference is made to location in 

memory 
•  Logical address bound to physical addresses 
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Dynamic relocation using a relocation 
register 
•  Routine is not loaded until it 

is called 
•  Better memory-space 

utilization; unused routine is 
never loaded 

•  All routines kept on disk in 
relocatable load format 

•  Useful when large amounts 
of code are needed to handle 
infrequently occurring cases 

•  No special support from the 
operating system is required 
•  Implemented through program 

design 
•  OS can help by providing 

libraries to implement dynamic 
loading 
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Dynamic Linking 
•  Static linking – system libraries and program code combined 

by the loader into the binary program image 
•  Dynamic linking –linking postponed until execution time 
•  Small piece of code, stub, used to locate the appropriate 

memory-resident library routine 
•  Stub replaces itself with the address of the routine, and 

executes the routine 
•  Operating system checks if routine is in processes’ memory 

address 
•  If not in address space, add to address space 

•  Dynamic linking is particularly useful for libraries 
•  System also known as shared libraries 
•  Consider applicability to patching system libraries 

•  Versioning may be needed 
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Swapping 
•  A process can be swapped temporarily out of memory to a 

backing store, and then brought back into memory for 
continued execution 

•  Backing store – fast disk large enough to accommodate 
copies of all memory images for all users; must provide direct 
access to these memory images 

•  Roll out, roll in – swapping variant used for priority-based 
scheduling algorithms; lower-priority process is swapped out so 
higher-priority process can be loaded and executed 

•  Major part of swap time is transfer time; total transfer time is 
directly proportional to the amount of memory swapped 

•  System maintains a ready queue of ready-to-run processes 
which have memory images on disk 
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Swapping (Cont.) 
• Does the swapped out process need to swap back in to 

same physical addresses? 

• Depends on address binding method 
•  Plus consider pending I/O to / from process memory space 

• Modified versions of swapping are found on many 
systems (i.e., UNIX, Linux, and Windows) 
•  Swapping normally disabled 
•  Started if more than threshold amount of memory allocated 
•  Disabled again once memory demand reduced below threshold 
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Schematic View of Swapping 
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Context Switch Time including Swapping 
•  If next processes to be put on CPU is not in memory, 

need to swap out a process and swap in target process 
• Context switch time can then be very high 
•  100MB process swapping to hard disk with transfer rate of 

50MB/sec 
•  Swap out time of 2000 ms 
•  Plus swap in of same sized process 
•  Total context switch swapping component time of 4000ms (4 

seconds) 
• Can reduce if reduce size of memory swapped – by 

knowing how much memory really being used 
•  System calls to inform OS of memory use via request_memory() 

and release_memory() 
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Context Switch Time and Swapping 
(Cont.) 
• Other constraints as well on swapping 

•  Pending I/O – can’t swap out as I/O would occur to wrong process 
•  Or always transfer I/O to kernel space, then to I/O device 

•  Known as double buffering, adds overhead 

• Standard swapping not used in modern operating systems 
•  But modified version common 

•  Swap only when free memory extremely low 
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Swapping on Mobile Systems 
• Not typically supported 

•  Flash memory based 
•  Small amount of space 
•  Limited number of write cycles 
•  Poor throughput between flash memory and CPU on mobile platform 

•  Instead use other methods to free memory if low 
•  iOS asks apps to voluntarily relinquish allocated memory 

•  Read-only data thrown out and reloaded from flash if needed 
•  Failure to free can result in termination 

•  Android terminates apps if low free memory, but first writes 
application state to flash for fast restart 

•  Both OSes support paging as discussed below 
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Contiguous Allocation 
• Main memory must support both OS and user processes 

•  Limited resource, must allocate efficiently 

• Contiguous allocation is one early method 

• Main memory usually into two partitions: 
•  Resident operating system, usually held in low memory with 

interrupt vector 
•  User processes then held in high memory 
•  Each process contained in single contiguous section of memory 
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Contiguous Allocation (Cont.) 
• Relocation registers used to protect user processes from 

each other, and from changing operating-system code 
and data 
•  Base register contains value of smallest physical address 
•  Limit register contains range of logical addresses – each logical 

address must be less than the limit register  
•  MMU maps logical address dynamically 
•  Can then allow actions such as kernel code being transient and 

kernel changing size 
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Hardware Support for Relocation and 
Limit Registers 
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Multiple-partition allocation 
• Degree of multiprogramming limited by number of partitions 
• Variable-partition sizes for efficiency (sized to a given 

process’ needs) 
• Hole – block of available memory; holes of various size are 

scattered throughout memory 
• When a process arrives, it is allocated memory from a hole 

large enough to accommodate it 
• Process exiting frees its partition, adjacent free partitions 

combined 
• Operating system maintains information about: 

1.  allocated partitions     
2.  free partitions (hole) 
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Multiple-partition allocation 
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Dynamic Storage-Allocation Problem 
• How to satisfy a request of size n from a list of free holes?

•  First-fit:  Allocate the first hole that is big enough 

•  Best-fit:  Allocate the smallest hole that is big enough; must search 
entire list, unless ordered by size   

•  Produces the smallest leftover hole 

•  Worst-fit:  Allocate the largest hole; must also search entire list   
•  Produces the largest leftover hole 

• First-fit and best-fit better than worst-fit in terms of speed 
and storage utilization



Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice” 

Fragmentation 
• External Fragmentation – total memory space exists to 

satisfy a request, but it is not contiguous 

•  Internal Fragmentation – allocated memory may be 
slightly larger than requested memory; this size difference 
is memory internal to a partition, but not being used 

• First fit analysis reveals that given N blocks allocated, 0.5 
N blocks lost to fragmentation 
•  1/3 may be unusable à 50-percent rule 
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Fragmentation (Cont.) 
• Reduce external fragmentation by compaction 

•  Shuffle memory contents to place all free memory together in one 
large block 

•  Compaction is possible only if relocation is dynamic, and is done at 
execution time 

•  I/O problem 
•  Latch job in memory while it is involved in I/O 
•  Do I/O only into OS buffers 

• Now consider that backing store has same fragmentation 
problems 
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Segmentation 
• Memory-management scheme that supports user view of 

memory  
• A program is a collection of segments 

•  A segment is a logical unit such as: 
•  main program 
•  procedure  
•  Function 
•  Method 
•  Object 
•  local variables, global variables 
•  common block 
•  Stack 
•  symbol table 
•  arrays 
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User’s View of a Program 
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Logical View of Segmentation 

1

3

2

4

1

4

2

3

user space physical memory space



Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice” 

Segmentation Architecture  
•  Logical address consists of a two tuple: 

  <segment-number, offset> 

•  Segment table – maps two-dimensional physical addresses; 
each table entry has: 
•  base – contains the starting physical address where the segments 

reside in memory 
•  limit – specifies the length of the segment 

•  Segment-table base register (STBR) points to the segment 
table’s location in memory 

•  Segment-table length register (STLR) indicates number of 
segments used by a program; 

segment number s is legal if s < STLR 
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Segmentation Architecture (Cont.) 
• Protection 

•  With each entry in segment table associate: 
•  validation bit = 0 ⇒ illegal segment 
•  read/write/execute privileges 

• Protection bits associated with segments; code sharing 
occurs at segment level 

• Since segments vary in length, memory allocation is a 
dynamic storage-allocation problem 

• A segmentation example is shown in the following 
diagram 
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Segmentation Hardware 
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Paging 
•  Physical  address space of a process can be noncontiguous; 

process is allocated physical memory whenever the latter is 
available 
•  Avoids external fragmentation 
•  Avoids problem of varying sized memory chunks 

•  Divide physical memory into fixed-sized blocks called frames 
•  Size is power of 2, between 512 bytes and 16 Mbytes 

•  Divide logical memory into blocks of same size called pages 
•  Keep track of all free frames 
•  To run a program of size N pages, need to find N free frames 

and load program 
•  Set up a page table to translate logical to physical addresses 
•  Backing store likewise split into pages 
•  Still have Internal fragmentation 
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Address Translation Scheme 
• Address generated by CPU is divided into: 

•  Page number (p) – used as an index into a page table which 
contains base address of each page in physical memory 

•  Page offset (d) – combined with base address to define the 
physical memory address that is sent to the memory unit 

•  For given logical address space 2m and page size 2n 

page	  number page	  offset

p d

m	   -‐n n
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Paging Hardware 
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Paging Model of Logical and  Physical 
Memory 
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Paging Example 

32-byte memory and 4-byte pages
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Paging (Cont.) 
•  Calculating internal fragmentation 

•  Page size = 2,048 bytes 
•  Process size = 72,766 bytes 
•  35 pages + 1,086 bytes 
•  Internal fragmentation of 2,048 - 1,086 = 962 bytes 

•  Worst case fragmentation = 1 frame – 1 byte 
•  On average fragmentation = 1 / 2 frame size 
•  So small frame sizes desirable? 
•  But each page table entry takes memory to track 
•  Page sizes growing over time 

•  Solaris supports two page sizes – 8 KB and 4 MB 

•  Process view and physical memory now very different 
•  By implementation process can only access its own memory 
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Free Frames 

Before allocation After allocation
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Implementation of Page Table 
• Page table is kept in main memory 
• Page-table base register (PTBR) points to the page table 
• Page-table length register (PTLR) indicates size of the 

page table 
•  In this scheme every data/instruction access requires two 

memory accesses 
•  One for the page table and one for the data / instruction 

• The two memory access problem can be solved by the 
use of a special fast-lookup hardware cache called 
associative memory or translation look-aside buffers 
(TLBs) 
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Implementation of Page Table (Cont.) 
• Some TLBs store address-space identifiers (ASIDs) in 

each TLB entry – uniquely identifies each process to 
provide address-space protection for that process 
•  Otherwise need to flush at every context switch 

• TLBs typically small (64 to 1,024 entries) 

• On a TLB miss, value is loaded into the TLB for faster 
access next time 
•  Replacement policies must be considered 
•  Some entries can be wired down for permanent fast access 



Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice” 

Associative Memory 
• Associative memory – parallel search  

• Address translation (p, d) 
•  If p is in associative register, get frame # out 
•  Otherwise get frame # from page table in memory 

P a g e 	  # F ram e 	  #
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Paging Hardware With TLB 
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Effective Access Time 
•  Associative Lookup = ε time unit 

Can be < 10% of memory access time 
•  Hit ratio = α 

•  Hit ratio – percentage of times that a page number is found in the 
associative registers; ratio related to number of associative registers 

•  Effective Access Time (EAT) 
  EAT = (1 + ε) α + (2 + ε)(1 – α) 

            = 2 + ε – α 
•   Consider α = 80%, ε = 20ns for TLB search, 100ns for memory 

access 
•  EAT = 0.80 x 100 + 0.20 x 200 = 120ns 

•  Consider more realistic hit ratio ->  α = 99%, ε = 20ns for TLB 
search, 100ns for memory access 
•  EAT = 0.99 x 100 + 0.01 x 200 = 101ns 
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Memory Protection 
• Memory protection implemented by associating protection 

bit with each frame to indicate if read-only or read-write 
access is allowed 
•  Can also add more bits to indicate page execute-only, and so on 

• Valid-invalid bit attached to each entry in the page table: 
•  “valid” indicates that the associated page is in the process’ logical 

address space, and is thus a legal page 
•  “invalid” indicates that the page is not in the process’ logical 

address space 
•  Or use page-table length register (PTLR) 

• Any violations result in a trap to the kernel 
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Valid (v) or Invalid (i) Bit In A Page Table 
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Shared Pages 
• Shared code 

•  One copy of read-only (reentrant) code shared among processes 
(i.e., text editors, compilers, window systems) 

•  Similar to multiple threads sharing the same process space 
•  Also useful for interprocess communication if sharing of read-write 

pages is allowed 

• Private code and data  
•  Each process keeps a separate copy of the code and data 
•  The pages for the private code and data can appear anywhere in 

the logical address space 
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Shared Pages Example 
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Structure of the Page Table 
• Memory structures for paging can get huge using straight-

forward methods 
•  Consider a 32-bit logical address space as on modern computers 
•  Page size of 4 KB (212) 
•  Page table would have 1 million entries (232 / 212) 
•  If each entry is 4 bytes -> 4 MB of physical address space / 

memory for page table alone 
•  That amount of memory used to cost a lot 
•  Don’t want to allocate that contiguously in main memory 

• Hierarchical Paging 
• Hashed Page Tables 
•  Inverted Page Tables 
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Hierarchical Page Tables 
• Break up the logical address space into multiple page 

tables 
• A simple technique is a two-level page table 
• We then page the page table 
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Two-Level Page-Table Scheme 
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Two-Level Paging Example 
• A logical address (on 32-bit machine with 1K page size) is 

divided into: 
•  a page number consisting of 22 bits 
•  a page offset consisting of 10 bits 

• Since the page table is paged, the page number is further 
divided into: 
•  a 12-bit page number  
•  a 10-bit page offset 

• Thus, a logical address is as follows: 
•  where p1 is an index into the outer page table, and p2 is the 

displacement within the page of the inner page table 

• Known as forward-mapped page table 
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Address-Translation Scheme 
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64-bit Logical Address Space 
• Even two-level paging scheme not sufficient 
•  If page size is 4 KB (212) 

•  Then page table has 252 entries 
•  If two level scheme, inner page tables could be 210 4-byte entries 
•  Address would look like 

•  Outer page table has 242 entries or 244 bytes 
•  One solution is to add a 2nd outer page table 
•  But in the following example the 2nd outer page table is still 234 

bytes in size 
•  And possibly 4 memory access to get to one physical memory location 
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Three-level Paging Scheme 
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Hashed Page Tables 
•  Common in address spaces > 32 bits 
•  The virtual page number is hashed into a page table 

•  This page table contains a chain of elements hashing to the same 
location 

•  Each element contains (1) the virtual page number (2) the 
value of the mapped page frame (3) a pointer to the next 
element 

•  Virtual page numbers are compared in this chain searching for 
a match 
•  If a match is found, the corresponding physical frame is extracted 

•  Variation for 64-bit addresses is clustered page tables 
•  Similar to hashed but each entry refers to several pages (such as 16) 

rather than 1 
•  Especially useful for sparse address spaces (where memory 

references are non-contiguous and scattered)  
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Hashed Page Table 
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Inverted Page Table 
•  Rather than each process having a page table and keeping 

track of all possible logical pages, track all physical pages 
•  One entry for each real page of memory 
•  Entry consists of the virtual address of the page stored in that 

real memory location, with information about the process that 
owns that page 

•  Decreases memory needed to store each page table, but 
increases time needed to search the table when a page 
reference occurs 

•  Use hash table to limit the search to one — or at most a few — 
page-table entries 
•  TLB can accelerate access 

•  But how to implement shared memory? 
•  One mapping of a virtual address to the shared physical address 
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Inverted Page Table Architecture 
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Example: The Intel 32 and 64-bit 
Architectures 
• Dominant industry chips 

• Pentium CPUs are 32-bit and called IA-32 architecture 

• Current Intel CPUs are 64-bit and called IA-64 
architecture 

• Many variations in the chips, cover the main ideas here 
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Example: The Intel IA-32 Architecture 
• Supports both segmentation and segmentation with 

paging 
•  Each segment can be 4 GB 
•  Up to 16 K segments per process 
•  Divided into two partitions 

•  First partition of up to 8 K segments are private to process (kept in local 
descriptor table (LDT)) 

•  Second partition of up to 8K segments shared among all processes 
(kept in global descriptor table (GDT)) 
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Example: The Intel IA-32 Architecture 
(Cont.) 
• CPU generates logical address 

•  Selector given to segmentation unit 
•  Which produces linear addresses  

•  Linear address given to paging unit 
•  Which generates physical address in main memory 
•  Paging units form equivalent of MMU 
•  Pages sizes can be 4 KB or 4 MB 
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Logical to Physical Address Translation in 
IA-32 
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Intel IA-32 Segmentation 
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Intel IA-32 Paging Architecture 
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Intel IA-32 Page Address Extensions 
•  32-bit address limits led Intel to create page address 

extension (PAE), allowing 32-bit apps access to more 
than 4GB of memory space 
•  Paging went to a 3-level scheme 
•  Top two bits refer to a page directory pointer table 
•  Page-directory and page-table entries moved to 64-bits in size 
•  Net effect is increasing address space to 36 bits – 64GB of physical 

memory 
31 30 29 21 20 12 11 0

page table offsetpage directory

4-KB
page

page
table

page directory
pointer table

CR3
register page

directory
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Intel x86-64 
• Current generation Intel x86 architecture 
•  64 bits is ginormous (> 16 exabytes) 
•  In practice only implement 48 bit addressing 

•  Page sizes of 4 KB, 2 MB, 1 GB 
•  Four levels of paging hierarchy 

• Can also use PAE so virtual addresses are 48 bits and 
physical addresses are 52 bits 

unused
page map

level 4
page directory
pointer table

page
directory

page
table offset

6363 4748 39 38 30 29 21 20 12 11 0
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Example: ARM Architecture 
•  Dominant mobile platform chip 

(Apple iOS and Google Android 
devices for example) 

•  Modern, energy efficient, 32-bit 
CPU 

•  4 KB and 16 KB pages 
•  1 MB and 16 MB pages (sections) 
•  One-level paging for sections, two-

level for smaller pages 
•  Two levels of TLBs 

•  Outer level has two micro TLBs (one 
data, one instruction) 

•  Inner is single main TLB 
•  First inner is checked, on miss outers 

are checked, and on miss page table 
walk performed by CPU 

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB 
section

32 bits


