
Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

SYNCHRONIZATION

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

How can threads communicate?
1.  Message passing

•  Communication is explicit
+ Easier to reason about
- Copy overhead

2.  Shared memory
•  Communication is implicit on data access
+ No copy overhead
- Correctness often requires explicit thread synchronization

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multi versus single threaded programs
• Execution may depend on the possible interleavings of

the thread’s access to shared data

• Execution may be non-deterministic

• More sensible to hardware and compiler instruction
reordering optimizations

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Synchronization Motivation
Thread 1

p	 =	 someFn();	
isInitialized	 =	 true;	 	

Thread 2
	
while	 (!	 isInitialized)	 	
	 	 ;	 	
q	 =	 aFn(p);	 	

if	 q	 !=	 aFn(someFn())	
	 	 	 panic	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Definitions
•  Race condition:

•  Output of a concurrent program depends on the order of operations
between threads

•  Data race:
•  Two threads are accessing shared data and at least one of them is

performing a write operation
•  Critical section:

•  Piece of code that only one thread can execute at once
•  Mutual exclusion:

•  Only one thread does a particular thing at a time
•  Lock:

•  Prevent someone from doing something
•  Lock before entering critical section, before accessing shared data
•  unlock when leaving, after done accessing shared data
•  wait if locked (all synch involves waiting!)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk Example
Person A Person B

12:30 Look in fridge. Out of milk.

12:35 Leave for store.

12:40 Arrive at store. Look in fridge. Out of milk.

12:45 Buy milk. Leave for store.

12:50 Arrive home, put milk away. Arrive at store.

12:55 Buy milk.

 1:00 Arrive home, put milk away.
Oh no!

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk, Try #1
• Correctness property

•  Someone buys if needed (liveness)
•  At most one person buys (safety)

•  Try #1: leave a note
if	 !note	
	 if	 !milk	 {	
	 	 	 	 	 	 	 	 leave	 note	
	 	 	 	 	 	 	 	 buy	 milk	
	 	 	 	 	 	 	 	 remove	 note	
	 	 }	

Safety sensible
to context switch

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk, Try #2
Thread A

leave	 note	 A	
if	 (!note	 B)	 {	
	 	 if	 (!milk)	
	 	 	 	 buy	 milk	
	 	 }	
remove	 note	 A	 	

Thread B

leave	 note	 B	
if	 (!noteA)	 {	 	
	 	 if	 (!milk)	
	 	 	 	 buy	 milk	
	 	 }	
remove	 note	 B	 	

Liveness sensible to context switch

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk, Try #3
Thread A

leave	 note	 A	
while	 (note	 B)	 //	 X	
	 	 	 do	 nothing;	 	
if	 (!milk)	
	 	 	 buy	 milk;	
remove	 note	 A	

Thread B

leave	 note	 B	
if	 (!noteA)	 {	 	 	 //	 Y	
	 	 if	 (!milk)	
	 	 	 	 buy	 milk	
	 	 }	
remove	 note	 B	 	

Can guarantee at X and Y that either:
1.  Safe for me to buy
2.  Other will buy, ok to quit

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lessons
• Solution is complicated

•  “obvious” code often has bugs

• Modern compilers/architectures reorder instructions
•  Making reasoning even more difficult
•  Memory barriers are needed

• Generalizing to many threads/processors
•  Peterson’s algorithm: even more complex

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Locks
•  lock_acquire

•  wait until lock is free, then take it

•  lock_release
•  release lock, waking up anyone waiting for it

• At most one lock holder at a time (safety)
•  If no one holding, acquire gets lock (progress)
•  If all lock holders finish and no higher priority waiters,

waiter eventually gets lock (progress)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk, #4
•  Locks allow concurrent code to be much simpler:

lock_acquire()	
if	 (!milk)	 buy	 milk	
lock_release()	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Rules for Using Locks
•  Lock is initially free

• Always acquire before accessing shared data structure
•  Beginning of procedure!

• Always release after finishing with shared data
•  End of procedure!
•  DO NOT throw lock for someone else to release

• Never access shared data without lock
•  Danger!

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Condition Variables
• Called only when holding a lock

• Wait: atomically release lock and relinquish processor
until signaled

• Signal: wake up a waiter, if any
• Broadcast: wake up all waiters, if any

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Condition Variables
• ALWAYS hold lock when calling wait, signal, broadcast

•  Condition variable is sync FOR shared state
•  ALWAYS hold lock when accessing shared state

• Condition variable is memoryless
•  If signal when no one is waiting, no op
•  If wait before signal, waiter wakes up

• Wait atomically releases lock

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Condition Variables
•  When a thread is woken up from wait, it may not run immediately

•  Mesa semantics
•  Signal puts waiter on ready list
•  Signaler keeps lock and processor

•  Hoare semantics
•  Signal gives processor and lock to waiter
•  When waiter finishes, processor/lock given back to signaler
•  Nested signals possible!

•  Under Mesa semantics wait MUST be in a loop
while	 (needToWait())	

	 condition.Wait(lock);	

•  Mesa semantics simplifies implementation
•  Of condition variables and locks
•  Of code that uses condition variables and locks

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Java Manual
• When waiting upon a Condition, a “spurious wakeup” is

permitted to occur, in general, as a concession to the
underlying platform semantics. This has little practical
impact on most application programs as a Condition
should always be waited upon in a loop, testing the state
predicate that is being waited for.

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Structured Synchronization
1.  Identify objects or data structures that can be accessed

by multiple threads concurrently
2.  Add locks to object/module

•  Grab lock on start to every method/procedure
•  Release lock on finish

3.  If need to wait
•  while(needToWait())	 condition.wait(lock);	
•  Do not assume when you wake up, signaler just ran

4.  If do something that might wake someone up
•  Signal or Broadcast

5.  Always leave shared state variables in a consistent state
•  When lock is released, or when waiting

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing Synchronization

Interrupt Disable Atomic Read/Modify/Write Instructions

Hardware InterruptsMultiple Processors

Semaphores Locks Condition Variables

Concurrent Applications

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Uniprocessor
LockAcquire(){	 	
	 	 disableInterrupts	 ();	 	
	 	 if	 (value	 ==	 BUSY)	 {	 	
	 	 	 	 waiting.add(
	 	 	 	 	 	 	 current	 TCB);	
	 	 	 	 scheduler.suspend();	
	 	 }	 	
	 	 else	 	
	 	 	 	 	 value	 =	 BUSY;	 	
	 	 enableInterrupts	 ();	 	
}	

LockRelease()	 {	 	
	 	 disableInterrupts	 ();	
	 	 if	 (!waiting.Empty())	 {	 	
	 	 	 	 thread	 =	 	 	 	 	 	 	
	 	 	 	 	 	 	 waiting.remove();	 	 	 	 	 	
	 	 	 	 readyList.	
	 	 	 	 	 	 	 append(thread);	 	
	 	 }	 	
	 	 else	 	
	 	 	 value	 =	 FREE;	 	 	
	 	 enableInterrupts	 ();	 	
}	 	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multiprocessor
• Read-modify-write instructions

•  Atomically read a value from memory, operate on it, and then write
it back to memory

•  Intervening instructions prevented in hardware

• Examples
•  Test and set
•  Intel: xchgb, lock prefix
•  Compare and swap

• Does it matter which type of RMW instruction we use?
•  Not for implementing locks and condition variables!

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Spinlocks
•  Lock where the processor waits in a loop for the lock to

become free
•  Assumes lock will be held for a short time
•  Used to protect ready list to implement locks

SpinlockAcquire()	 {	
	 	 	 while	 (testAndSet(&lockValue)	 ==	 BUSY)	
	 	 	 	 	 	 ;	
}	
	
SpinlockRelease()	 {	
	 	 	 lockValue	 =	 FREE;	
}	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Multiprocessor
LockAcquire(){	 	
	 	 spinLock.acquire();	
	 	 if	 (value	 ==	 BUSY){	 	
	 	 	 	 waiting.	
	 	 	 	 	 	 add(current	 TCB);	
	 	 	 	 scheduler.	
	 	 	 	 	 	 suspend(&spinLock);	
	 	 }	 	
	 	 else	 {	 	
	 	 	 	 value	 =	 BUSY;	 	
	 	 	 	 spinLock.release();	
	 	 }	
}	

LockRelease()	 {	 	
	 	 TCB	 *next;	
	
	 	 spinLock.acquire();	
	 	 if	 (!waiting.Empty()){	 	
	 	 	 	 next	 =	 waiting.remove();	 	 	 	 	
	 	 	 	 scheduler.makeReady(next);	
	 	 }	 	
	 	 else	 {	
	 	 	 	 value	 =	 FREE;	 	
	 	 }	 	
	 	 spinLock.release();	
}	 	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Multiprocessor
Scheduler:	
	 	 Queue	 readyList;	
	 	 SpinLock	 schedSpinLock;	 	 	
	
makeReady(TCB	 *thread){	 	
	 	 disableInterrupts();	
	 	 schedSpinLock.acquire();	
	 	 readList.add(thread);	
	 	 thread-‐>state	 =	 READY;	
	 	 schedSpinLock.release();	
	 	 enableInterrupts();	
}	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Multiprocessor
suspend(SpinLock	 *lock){	 	
	 	 TCB	 *chosenTCB;	
	
	 	 disableInterrupts();	
	 	 schedSpinLock.acquire();	
	 	 lock-‐>release();	
	 	 runningThread-‐>state	 =	 WAITING;	
	 	 chosenTCB	 =	 readList.getNext();	
	 	 thread_switch(runningThread,	 chosenTCB);	
	 	 chosenTCB	 -‐>state	 =	 RUNNING;	
	 	 schedSpinLock.release();	
	 	 enableInterrupts();	
}	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Linux
•  Fast path

•  If lock is FREE, and no one is waiting, test&set

• Slow path
•  If lock is BUSY or someone is waiting, see previous slide

• User-level locks
•  Fast path: acquire lock using test&set
•  Slow path: system call to kernel, to use kernel lock

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Futexes
• Safe, efficient kernel conditional queueing in Linux
• All operations performed atomically

•  futex_wait(futex_t	 *futex,	 int	 val)	
•  if futex->val is equal to val, then sleep
•  otherwise return

•  futex_wake(futex_t	 *futex)	
•  wake up one thread from futex’s wait queue, if there are any waiting

threads

•  For more information:
http://people.redhat.com/drepper/futex.pdf

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Ancillary Functions
•  int	 atomic_inc(int	 *val)	

•  add 1 to *val, return its original value

•  int	 atomic_dec(int	 *val)	
•  subtract 1 from *val, return its original value

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Attempt 1
void	 lock(futex_t	 *futex)	 {	
	 	 int	 c;	
	 	 while	 ((c	 =	 atomic_inc(&futex-‐>val))	 !=	 0)	
	 	 	 	 futex_wait(futex,	 c+1);	
}	
	
void	 unlock(futex_t	 *futex)	 {	
	 	 futex-‐>val	 =	 0;	
	 	 futex_wake(futex);	
}	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Attempt 2
void	 lock(futex_t	 *futex)	 {	
	 	 int	 c;	
	 	 if	 ((c	 =	 CAS(&futex-‐>val,	 0,	 1)	 !=	 0)	
	 	 	 	 do	 {	
	 	 	 	 	 	 if	 (c	 ==	 2	 ||	 (CAS(&futex-‐>val,	 1,	 2)	 !=	 1))	
	 	 	 	 	 	 	 	 futex_wait(futex,	 2);	
	 	 	 	 }	
	 	 	 	 while	 ((c	 =	 CAS(&futex-‐>val,	 0,	 2))	 !=	 0))	
}	
	
void	 unlock(futex_t	 *futex)	 {	
	 	 if	 (atomic_dec(&futex-‐>val)	 !=	 1)	 {	
	 	 	 	 futex-‐>val	 =	 0;	
	 	 	 	 futex_wake(futex);	
	 	 }	
}	

State:
 0 – unlocked
 1 – No

waiting
threads

 2 – Waiting
threads

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Condition Variables and Semaphores
•  The implementation follows the same reasoning for lock

implementation

