VIRTUAL MACHINES

It's 1964 ...

- IBM wants a multiuser time-sharing system
 - CMS
 - single-user time-sharing system for IBM 360
 - CP67
 - virtual machine monitor (VMM)
 - supports multiple virtual IBM 360s
 - Put the two together ...
 - a (working) multiuser time-sharing system

Virtual Machines

Why?

- Structuring technique for a multi-user system
- OS debugging and testing
- Multiple OSes on one machine
- Adapt to hardware changes in software
- Server consolidation and service isolation

Issues

- Multiplex the processor among virtual machines
 - Instructions are executed directly on the processor
- Make each virtual machine behave just like a "real one"
 - Handle interrupts generated both by real and virtual devices
 - Should the guest OS run in privileged or user mode?

Sensitive and Privileged Instructions

- Popek and Goldberg 1974
- Sensitive instructions
 - Control-sensitive instructions
 - affect the allocation of resources available to the virtual machine
 - change processor mode without causing a trap
 - Behavior-sensitive instructions
 - effect of execution depends upon location in real memory or on processor mode
- Privileged instructions
 - Cause a fault in user mode
 - Work fine in privileged mode

Sensitive and Privileged Instructions

- Popek and Goldberg 1974
- Set of sensitive instructions is subset of set of privileged instructions then then a virtual machine monitor can be constructed for it.
- If not, it is possible to build a virtualization infrastructure, but it is more complex

Intel x86

- Four execution modes
 - rings 0 through 3
 - not all sensitive instructions are privileged instructions
- Memory is protectable: segment system + virtual memory
- Special register points to interrupt table
- I/O done via memory-mapped registers
- Virtual memory is standard

A Sensitive x86 Instruction

- popf
 - pops word off stack, setting processor flags according to word's content
 - Ring 0: sets all including interrupt-disable flag
 - Other rings: just some of them ignores interrupt-disable flag

Solution 1 – Binary Rewriting

- Rewrite kernel binaries of guest OSes
- Privilege-mode code run via binary translator
 - Replaces sensitive instructions with hypercalls
 - Done dynamically
 - Translated code is cached
 - usually translated just once
- VMWare Workstation (32 bit guests), IBM System/370, VirtualBox, …

Solution 2 – Hardware-assisted Virtualization

- Fix the hardware so it's virtualizable
- Intel Vanderpool technology: VT-x
 - Two modes of operation orthogonal to the four rings:
 - root mode (in which the VMM runs)
 - non-root mode
 - Certain events in non-root mode cause VM-exit to root mode
 - essentially a hypercall
 - code in root mode specifies which events cause VM-exits
 - Non-VMM OSes must not be written to use root mode!
- VMWare workstation (64-bit guests), Xen 3.x, KVM, ...

CPU Virtualization

- Scheduling problem
- Issues:
 - Detect when the VMs processor is idle
 - Some OSs execute idle processes (to check for work)
 - →Time slicing
 - Double multiplexing
 - Virtualize timer \rightarrow virtual time
 - What about time-outs?
 - · Cannot provide both virtual and real time transparently

I/O Virtualization

- Lots and lots and lots of device drivers
- Must VMM handle all of them?

Real-Machine OS Structure

On a Virtual Machine ...

VMware Workstation

Solution 3 - Paravirtualization

- Virtual machine differs from real machine
 - Provides more convenient interfaces for virtualization
 - *Hypervisor* interface between virtual and real machines
 - Guest OS source code is modified
- Sensitive instructions replaced with hypervisor calls
 traps to VMM
- Virtual machine provides higher-level device interface
 - guest machine has no device drivers

Xen

Additional Applications

- Sandboxing
 - Isolate web servers
 - Isolate device drivers
- Migration
 - VM not tied to particular hardware
 - Easy to move from one (real) platform to another

Xen with Isolated Driver

