
Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini Venkatasubramanian.Operating System Concepts – 9th Ed.

Chapter 8: Main Memory

2

Chapter 8: Memory Management

 Background
 Swapping
 Contiguous Memory Allocation
 Segmentation
 Paging
 Structure of the Page Table

3

Objectives

 To provide a detailed description of various ways of organizing
memory hardware

 To discuss various memory-management techniques, including:
 Paging, and
 Segmentation

4

Background

 For it to be run, a program must be brought (from disk) into
memory and placed within a process

 Input queue – stores which programs on disk are ready to
be brought into memory to execute

 Main memory and registers are only storage CPU can
access directly

 Memory unit only sees:
 read requests + the correspond addresses
 write requests + the correspond addresses and data

5

Recap: Storage Hierarchy

 Storage systems organized in
hierarchy
 Speed
 Cost (per byte of storage)
 Volatility

6

Recap: Performance of Various Levels of Storage

 Register access in 1 CPU clock (or less)
 0.25 – 0.50 ns (1 nanosec = 10-9 sec)

 Main memory can take many cycles, causing the CPU to stall
 80-250 ns (160-1000 times slower)
 How to solve? -- caching

 Cache sits between main memory and CPU registers

7

Base and Limit Registers

 Protection of memory is required to
ensure correct operation
 Protect OS from processes
 Protect processes from other

processes
 How to implement memory protection?

 Example of one simple solution using
basic hardware

 A pair of base and limit registers
define the logical address space

 CPU must check every memory access
generated in user mode to be sure it is
between base and limit for that user

8

Hardware Address Protection

9

Address Binding
 In most cases, a user program goes through several steps before being

executed
 Compilation, linking, executable file, loader creates a process
 Some of which may be optional

 Addresses are represented in different ways at different stages of a
program’s life
 Each binding maps one address space to another

 Source code -- addresses are usually symbolic
 E.g., variable count

 A compiler typically binds these symbolic addresses to relocatable
addresses
 E.g., “14 bytes from beginning of this module”

 Linker or loader will bind relocatable addresses to absolute addresses
 E.g., 74014

10

Binding of Instructions and Data to Memory
 Address binding of instructions and data to memory addresses can happen

at 3 different stages:
1. Compile time:

 If you know at compile time where the process will reside in memory,
then absolute code can be generated.

 Must recompile the code if starting location changes
 Example: MS DOS .com programs

2. Load time:
 Compiler must generate relocatable code if memory location is not

known at compile time
 If the starting address changes, we need only reload the user code to

incorporate this changed value.
3. Execution time:

 If the process can be moved during its execution from one memory
segment to another, then binding must be delayed until run time

 Special hardware must be available for this scheme to work
 Most general-purpose operating systems use this method

11

Logical vs. Physical Address Space
 The concept of a logical address space that is bound to a separate physical

address space is central to proper memory management
 Logical address (=virtual address) – generated by the CPU

 This is what a process sees and uses
 Physical address – address seen by the memory unit

 Virtual addresses are mapped into physical addresses by the system
 Logical address space

 is the set of all logical addresses generated by a program
 Physical address space

 is the set of all physical addresses generated by a program

12

Logical vs. Physical Address Space
 Logical addresses and physical addresses

 Are the same for
 compile-time and load-time address-binding schemes

 Different for
 execution-time address-binding scheme

13

Memory-Management Unit (MMU)
 Memory-Management Unit (MMU)

 Hardware device that (at run time) maps virtual to physical address
 Many methods for such a mapping are possible

 Some are considered next

 To start, consider simple scheme:
 The value in the relocation register is added to every address generated by a

user process at the time it is sent to memory
 Base register is now called relocation register
 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses
 It never sees the real physical addresses
 Execution-time binding occurs when reference is made to location in memory
 Logical address bound to physical addresses

14

Dynamic relocation using a relocation register

15

Dynamic Loading
 In our discussion so far, it has been necessary for the entire program and

all data of a process to be in physical memory for the process to execute.
 Dynamic Loading -- routine is not loaded (from disk) until it is called
 Better memory-space utilization; unused routine is never loaded
 All routines kept on disk in relocatable load format
 Useful when large amounts of code are needed to handle infrequently

occurring cases
 No special support from the operating system is required

 Implemented through program design
 OS can help by providing libraries to implement dynamic loading

16

Dynamic Linking
 Some OS’es support only static linking
 Static linking – system libraries and program code combined by the loader

into the binary program image
 Dynamic linking
 Linking is postponed until execution time
 Similar to dynamic loading, but linking, rather than loading, is postponed
 Usually used with system libraries, such as language subroutine libraries
 Without this, each program must include a copy of its language library (or at

least the routines referenced by the program) in the executable image.
 This wastes both disk space and main memory

17

Dynamic Linking (cont. 1)
 Dynamically linked libraries are system libraries that are linked to user

programs when the programs are run
 With dynamic linking, a stub is included in the image for each library routine

reference.
 The stub is a small piece of code that indicates:

 how to locate the appropriate memory-resident library routine, or
 how to load the library if the routine is not already present

 Stub replaces itself with the address of the routine, and executes the routine
 Thus, the next time that particular code segment is reached, the library

routine is executed directly, incurring no cost for dynamic linking.
 Under this scheme, all processes that use a language library execute

only 1 copy of the library code

18

Dynamic Linking (cont. 2)
 Dynamic linking is particularly useful for libraries
 System also known as shared libraries

 Extensions to handle library updates (such as bug fixes)
 A library may be replaced by a new version, and all programs that

reference the library will automatically use the new version
 No relinking is necessary

 Versioning may be needed
 In case the new library is incompatible with the old ones
 More than one version of a library may be loaded into memory

 each program uses its version information to decide which copy of the
library to use.

 Versions with minor changes retain the same version number, whereas
versions with major changes increment the number.

19

Dynamic Linking (cont. 3)
 Unlike dynamic loading, dynamic linking and shared libraries generally

require help from the OS.
 If the processes in memory are protected from one another, then the OS

is the only entity that can check to see whether the needed routine is in
another process’s memory space

 or that can allow multiple processes to access the same memory
addresses

 We elaborate on this concept when we discuss paging

20

Swapping
 A process can be swapped temporarily out of memory to a backing store,

and then brought back into memory for continued execution
 Total physical memory space of processes can exceed physical memory
 This increases the degree of multiprogramming in a system

 Backing store – fast disk,
 large enough to accommodate copies of all memory images for all users;
 must provide direct access to these memory images

 System maintains a ready queue of ready-to-run processes which have
memory images on disk or in memory

 Roll out, roll in – swapping variant used for priority-based scheduling
algorithms;
 lower-priority process is swapped out so higher-priority process can be

loaded and executed
 Major part of swap time is transfer time; total transfer time is directly

proportional to the amount of memory swapped

21

Swapping (Cont.)
 Modified versions of swapping are found on many systems

 For example, UNIX, Linux, and Windows
 Swapping normally disabled
 Started if more than threshold amount of memory allocated
 Disabled again once memory demand reduced below threshold

22

Schematic View of Swapping

26

Contiguous Allocation

 Main memory must support both OS and user processes
 Limited resource, must allocate efficiently
 How? -- Many methods

 Contiguous memory allocation is one early method
 each process is contained in a single section of memory that is

contiguous to the section containing the next process.
 Main memory is usually divided into 2 partitions:

1. Resident operating system
 usually held in low memory

2. User processes
 usually held in high memory
 each process contained in single contiguous section of memory

27

Contiguous Allocation: Memory Protection

 Relocation registers used to protect user processes from each other, and
from changing operating-system code and data
 Relocation register contains the value of the smallest physical address for

the process
 Limit register contains range of logical addresses for the process

 each logical address must be less than the limit register
 MMU maps logical address dynamically

28

Hardware Support for Relocation and Limit Registers

29

Contiguous Allocation: Memory Allocation
 Multiple-partition allocation

 One of the simplest methods
 Originally used by the IBM OS/360 operating system (called MFT)

 no longer in use.
 Divide memory into several fixed-sized partitions
 Each partition may contain exactly 1 process

 Thus, the degree of multiprogramming is limited by the number
of partitions

 When a partition is free, a process is selected from the input queue
and is loaded into the free partition.

 When the process terminates, the partition becomes available for
another process

30

Contiguous Allocation: Memory Allocation
 Variable-partition scheme

 Generalization of the previous method
 Idea: Variable-partition sizes for efficiency

 Sized to a given process’ needs
 Initially, all memory is available for user processes and is

considered one large block of available memory (a hole).
 Hole – block of available memory;

 Holes of various size are scattered throughout memory
 Operating system maintains information about:

a) allocated partitions b) free partitions (holes)
 When a process arrives, it is allocated memory from a hole large

enough to accommodate it
 Process exiting frees its partition

 adjacent free partitions combined

31

Contiguous Allocation: Memory Allocation

32

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough
 Must search entire list, unless ordered by size
 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole
 Must also search entire list
 Produces the largest leftover hole

 First-fit and best-fit are better than worst-fit in terms of speed
and storage utilization

How to satisfy a request of size n from a list of free holes?

33

Fragmentation

 Memory allocation can cause fragmentation problems:
1. External Fragmentation
2. Internal Fragmentation

34

External Fragmentation

 Both the first-fit and best-fit strategies for memory allocation
suffer from external fragmentation.

 As processes are loaded and removed from memory, the
free memory space is broken into little pieces

 External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous
 If all these small pieces of memory were in one big free

block instead, we might be able to run several more
processes.

 Analysis of the first-fit strategy reveals that, given N blocks
allocated, another 0.5 N blocks will be lost to fragmentation
 That is, 1/3 of memory may be unusable!
 This is known as 50-percent rule

Free

Free

Free

Free

35

Fragmentation (Cont.)
 Some of the solutions to external fragmentation:

1. Compaction
2. Segmentation
3. Paging

36

Fragmentation: Compaction
 Compaction

 Shuffle memory contents to place all free memory together in 1 large block
 Compaction is possible only if relocation is dynamic, and is done at

execution time
 If addresses are relocated dynamically, relocation requires only:

1. moving the program and data, and then
2. changing the base register to reflect the new base address.

 I/O can cause problems
 Latch job in memory while it is involved in I/O
 Do I/O only into OS buffers

37

Internal Fragmentation
 Example:

 Consider a multiple-partition allocation scheme with a hole of 10,002 bytes
 Suppose that the next process requests 10,000 bytes.
 If we allocate exactly the requested block, we are left with a hole of 2 bytes.
 Problem: The overhead to keep track of this hole will be substantially

larger than the hole itself.
 Solution:

 Break the physical memory into fixed-sized blocks
 Allocate memory in units based on block size.

 Issue: With this approach, the memory allocated to a process may be slightly
larger than the requested memory.
 The difference between these two numbers is internal fragmentation—

unused memory that is internal to a partition.
 Example:

 Block size is 4K
 Process request 16K + 2Bytes space
 5 blocks will be allocated, (4K – 2) bytes are wasted in the last block

38

Segmentation: a Memory-Management Scheme
 Motivation: Do programmers think of memory as a linear array of

bytes, some containing instructions and others containing data?
 Most programmers would say “no.”
 Rather, they prefer to view memory as a collection of variable-

sized segments,
 with no necessary ordering among the segments

 The programmer talks about “the stack,” “the math library,” and
“the main program” without caring what addresses in memory
these elements occupy.

 The programmer is not concerned with whether the stack is stored
before or after the sqrt() function.

 What if the hardware could provide a memory mechanism that
mapped the programmer’s view to the actual physical memory?

39

User’s View of a Program

40

Segmentation
 Solution: Segmentation – a memory-management scheme that

supports “programmer/user view” of memory
 A logical address space is a collection of segments.
 A segment is a logical unit, such as:

 main program, procedure, function, method,
 object, local variables, global variables, common block,
 stack, symbol table, arrays

 Each segment has a name and a length.
 The addresses specify both

 the segment name, and
 the offset within the segment.

 For simplicity of implementation, segments are numbered and are
referred to by a segment number, rather than by a segment name.

41

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

42

Segmentation Architecture

 Logical address consists of a two tuple:
<segment-number, offset>

 How to map this 2D user-defined address into 1D physical address?

 Segment table – each table entry has:
 base – contains the starting physical address where the segments

reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR)
 Points to the segment table’s location in memory

 Segment-table length register (STLR)
 Indicates number of segments used by a program;
 Segment number s is legal if s < STLR

44

Segmentation Hardware

45

Paging
 Segmentation

 Pros: permits the physical address space of a process to be
noncontiguous.

 Cons: can suffer from external fragmentation and needs compaction
 Any alternatives to it?
 Paging -- another memory-management scheme

 Benefits of Paging
 Physical address space of a process can be noncontiguous
 Process is allocated physical memory whenever the latter is available
 Avoids external fragmentation
 Avoids problem of varying sized memory chunks

46

Main Idea of Paging
 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2
 Between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages
 Keep track of all free frames
 To run a program of size N pages, need to find N free frames and load

program
 Set up a page table to translate logical to physical addresses

 One table per process
 Still have internal fragmentation

47

Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory
 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

48

Paging Hardware

49

Paging Model of Logical and Physical Memory

50

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

 Process view and physical memory now very different
 By implementation a process can only access its own memory

51

Paging (Cont.)

 Calculating internal fragmentation
 Page size = 2,048 bytes
 Process size = 72,766 bytes
 35 pages + 1,086 bytes
 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte
 On average fragmentation = 1 / 2 frame size
 So small frame sizes are desirable?

 Not as simple, as each page table entry takes memory to track
 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB

52

Free Frames

Before allocation After allocation

53

Implementation of Page Table
 Page table is kept in main memory
 Page-table base register (PTBR)

 Stores the physical address of page table
 Changing page tables requires changing only this one register

 Substantially reduces context-switch time
 Page-table length register (PTLR)

 Indicates the size of the page table

54

The 2 memory access problem
 Problem:

 In this scheme every data/instruction access requires 2 memory accesses:
1. One for the page table and (to get the frame number)
2. One for the data / instruction

 Efficiency is lost

55

The 2 memory access problem
 Solution: (Use of TLB’s)

 Use of a special fast-lookup hardware cache, called:
 associative memory, or
 translation look-aside buffers (TLBs)

 TLB
 Caches (p,f) tuples for frequently used pages

 That is, the mapping from p to the corresponding f
 Small
 Very fast

56

Associative Memory

 Associative memory – parallel search

 Address translation (p, d)
 If p is in TLB then get the frame # out

 Hardware searches in parallel all entries at the same time
 Very fast

 else get the frame # from page table in memory

Page # Frame #

57

Implementation of Page Table (Cont.)
 Some TLBs store address-space identifiers (ASIDs) in each TLB entry

 ASID uniquely identifies each process to provide address-space
protection for that process

 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)
 On a TLB miss, value is loaded into the TLB for faster access next time

 Replacement policies must be considered
 Some entries can be wired down for permanent fast access

PID Page# Frame#

58

Paging Hardware With TLB

59

Effective Access Time

 Associative Lookup = ε time unit
 Can be < 10% of memory access time

 Hit ratio = α
 Percentage of times that a page number is found in the TLB
 Hit ratio is related to number of associative registers in TLB

 Effective Access Time (EAT)
EAT = (1 + ε) α + (2 + ε)(1 – α)

= 2 + ε – α
// 1 memory access plus TLB access time, or 2 memory accesses +TLB

 Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access
 EAT = 0.80 x 120 + 0.20 x 220 = 140 ns

 Consider more realistic hit ratio α = 99%, ε = 20ns for TLB search, 100ns
for memory access
 EAT = 0.99 x 120 + 0.01 x 220 = 121 ns

60

Typical Page Table Entry

Valid bitMisc bit(s)

61

Memory Protection

 Memory protection in a paged environment is accomplished by protection bits
associated with each frame.

 For example, protection bit to indicate if
 read-only or
 read-write access is allowed
 Can also add more bits to indicate page execute-only, and so on

 Normally, these bits are kept in the page table.
 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’ logical
address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’ logical address
space

 Some system have page-table length register (PTLR)
 Can also be used to check if address is valid

 Any violations result in a trap to the kernel

62

Valid (v) or Invalid (i) Bit In A Page Table

63

Shared Pages
 An advantage of paging is the possibility of sharing data and common code
 Shared code

 Particularly important in a time-sharing environment
 Ex: A system that supports 40 users, each executes a text editor

 A single copy of read-only (reentrant) code shared among processes
 For example, text editors, compilers, window systems
 Reentrant code is non-self-modifying code: never changes during exec.

 This is similar to multiple threads sharing the same process space
 Each process has its own copy of registers and data storage to hold the data

for the process’s execution.
 The data for two different processes will, of course, be different.

 Shared data
 Some OSes implement shared memory suing shared pages.

 Private code and data
 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear anywhere in the logical address

space

64

Shared Pages Example

65

Structure of the Page Table
 Memory structures for paging can get huge using straightforward methods

 Consider a 32-bit logical address space as on modern computers
 Page size of 1 KB (210)
 Page table would have 4 million entries (232 / 210= 222)
 Problem: If each entry is 4 bytes -> 16 MB of physical address space /

memory for page table alone
 This is per process
 That amount of memory used to cost a lot
 Do not want to allocate that contiguously in main memory

 Solution: One simple solution to this problem is to divide the page table
into smaller pieces.

 We can accomplish this division in several ways, e.g.:
 Hierarchical Paging
 Hashed Page Tables
 Inverted Page Tables

66

Hierarchical Page Tables
 Break up the logical address space into multiple page tables
 A simple technique is a two-level page table

Following several slides derived from the OS book by A Tanenbaum

67

Two-Level Paging Example

 32-bit virtual address is partitioned
 10-bit PT1 field
 10-bit PT2 field
 12-bit offset

 12-bit offset => pages are 4K(=212) and 220 of them
 The secret to the multilevel page table method is to avoid keeping all the

page tables in memory all the time.
 In particular, those that are not needed should not be kept around.

 Suppose, that a process needs 12 MB:
 the bottom 4 MB of memory for program text,
 the next 4 MB for data, and
 the top 4 MB for the stack.
 Hence, a gigantic hole that is not used

 in between the top of the data and the bottom of the stack

68

Two-Level Paging

 The top-level page table, with 1024 entries,
corresponding to the 10-bit PT1 field.

 When a virtual address is presented to the
MMU, it first extracts the PT1 field and uses
this value as an index into the top-level
page table.

 Each of these 1024 entries in the top-level
page table represents 4 MB
 4 GB (i.e., 32-bit) virtual address space

has been chopped into 1024 chunks
 4 GB / 1024 = 4 MB

69

Two-Level Paging

 The entry located by indexing into the top-
level page table yields the address or the
page frame number of a second-level page
table.

 Entry 0 of the top-level page table points to
the page table for the program text,

 Entry 1 points to the page table for the data,
 Entry 1023 points to the page table for the

stack.
 The other (shaded) entries are not used.

 No need to generate page tables for them
 Saving lots of space!

 The PT2 field is now used as an index into the
selected second-level page table to find the
page frame number for the page itself.

70

Two-Level Paging: Example
 Example: consider the 32-bit virtual address 0x00403004 (4,206,596 decimal),

 which is 12,292 bytes into the data (4,206,596 – 4,194,304= 12,292).
 Corresponds to PT1 = 1, PT2 = 3, and Offset = 4.

 The MMU first uses PT1 to index into the top level page table
 It obtains entry 1, which corresponds to addresses 4M to 8M − 1.
 It finds the corresponding 2-level page table for entry 1

 It then uses PT2 to index into the second-level page table just found
 It extract entry 3,
 which corresponds to addresses 12288(=3*4K) to 16383 within its 4M chunk
 (i.e., absolute addresses 4,206,592 to 4,210,687).

 This entry contains the page frame number of the page containing virtual
address 0x00403004.

 If that page is not in memory, the valid_bit =0, causing a page fault.
 If the page is present in memory, the page frame number taken from the second-

level page table is combined with the offset (=4) to construct the physical
address. This address is put on the bus and sent to memory.

71

Two-Level Paging

 Notice, although the address space contains over a million pages, only 4
page tables are needed:

1. the top-level table,
2. the 2nd-level table for 0 to 4M (for the program text),
3. the 2nd-level table 4M to 8M (for the data), and
4. the 2nd-level table for the top 4M (for the stack).

 Valid bits in the remaining 1021 entries of the top-level page table are =0
 forcing a page fault if they are ever accessed.

 In this example we have chosen round numbers for the various sizes and
have picked PT1 equal to PT2,
 but in actual practice other values are also possible, of course.

 The two-level page table system can be expanded to 3, 4, or more levels.
 Because address translation works from the outer page table inward, this

scheme is also known as a forward-mapped page table.

77

Hashed Page Tables

 Common in address spaces > 32 bits
 The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same
location

 Each element contains
 (1) the virtual page number
 (2) the value of the mapped page frame
 (3) a pointer to the next element

 Virtual page numbers are compared in this chain searching for a
match
 If a match is found, the corresponding physical frame is extracted

79

Hashed Page Table

80

Inverted Page Table
 Motivation: Rather than each process having a page table and keeping track

of all possible logical pages, track all physical pages
 One entry for each real page of memory

 The entry keeps track of which (process, virtual page) is located in the
page frame.

 Pros: tends to save lots of space
 Cons: virtual-to-physical translation becomes much harder
 When process n references virtual page p, the hardware can no longer find

the physical page by using p as an index into the page table.
 Instead, it must search the entire inverted page table for an entry (n, p).
 Furthermore, this search must be done on every memory reference, not just

on page faults.
 Searching a 256K table on every memory reference is slow
 Other considerations:

 TLB and hash table (key: virtual address) is used to speed up accesses
 Issues implementing shared memory when using inverted page table

81

Inverted Page Table Architecture

Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini Venkatasubramanian.Operating System Concepts – 9th Ed.

End of Chapter 8

	Chapter 8: Main Memory
	Chapter 8: Memory Management
	Objectives
	Background
	Recap: Storage Hierarchy
	Recap: Performance of Various Levels of Storage
	Base and Limit Registers
	Hardware Address Protection
	Address Binding
	Binding of Instructions and Data to Memory
	Logical vs. Physical Address Space
	Logical vs. Physical Address Space
	Memory-Management Unit (MMU)
	Dynamic relocation using a relocation register
	Dynamic Loading
	Dynamic Linking
	Dynamic Linking (cont. 1)
	Dynamic Linking (cont. 2)
	Dynamic Linking (cont. 3)
	Swapping
	Swapping (Cont.)
	Schematic View of Swapping
	Contiguous Allocation
	Contiguous Allocation: Memory Protection
	Hardware Support for Relocation and Limit Registers
	Contiguous Allocation: Memory Allocation
	Contiguous Allocation: Memory Allocation
	Contiguous Allocation: Memory Allocation
	Dynamic Storage-Allocation Problem
	Fragmentation
	External Fragmentation
	Fragmentation (Cont.)
	Fragmentation: Compaction
	Internal Fragmentation
	Segmentation: a Memory-Management Scheme
	User’s View of a Program
	Segmentation
	Logical View of Segmentation
	Segmentation Architecture
	Segmentation Hardware
	Paging
	Main Idea of Paging
	Address Translation Scheme
	Paging Hardware
	Paging Model of Logical and Physical Memory
	Paging Example
	Paging (Cont.)
	Free Frames
	Implementation of Page Table
	The 2 memory access problem
	The 2 memory access problem
	Associative Memory
	Implementation of Page Table (Cont.)
	Paging Hardware With TLB
	Effective Access Time
	Typical Page Table Entry
	Memory Protection
	Valid (v) or Invalid (i) Bit In A Page Table
	Shared Pages
	Shared Pages Example
	Structure of the Page Table
	Hierarchical Page Tables
	Two-Level Paging Example
	Two-Level Paging
	Two-Level Paging
	Two-Level Paging: Example
	Two-Level Paging
	Hashed Page Tables
	Hashed Page Table
	Inverted Page Table
	Inverted Page Table Architecture
	End of Chapter 8

