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Objectives

 To introduce CPU scheduling, which is the basis for 
multiprogrammed operating systems

 To describe various algorithms for CPU-scheduling 
 To discuss evaluation criteria for selecting a CPU-scheduling 

algorithm for a particular system
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Basic Concepts

 Maximum CPU utilization obtained with 
multiprogramming
 waiting for I/O is wasteful
 1 thread will utilize only 1 core

 CPU–I/O Burst Cycle 
 Process execution consists of:

 a cycle of CPU execution 
 and I/O wait

 CPU burst followed by I/O burst
 CPU burst distribution is of main concern
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Histogram of CPU-burst Times of a Process

 Large number of short CPU bursts
 Small number of large CPU bursts
 Distribution can dictate a choice of an CPU-scheduling algo
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Recap: Diagram of Process State

 As a process executes, it changes state
 new:  The process is being created
 ready:  The process is waiting to be assigned to a processor
 running:  Instructions are being executed
 waiting:  The process is waiting for some event to occur
 terminated:  The process has finished execution
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Levels of Scheduling

 High-Level Scheduling 
 See Long-term scheduler or Job Scheduling from Chapter 3
 Selects jobs allowed to compete for CPU and other system resources.

 Intermediate-Level Scheduling 
 See Medium-Term Scheduling from Chapter 3 
 Selects which jobs to temporarily suspend/resume to smooth 

fluctuations in system load.
 Low-Level (CPU) Scheduling or Dispatching

 Selects the ready process that will be assigned the CPU.
 Ready Queue contains PCBs of processes.
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CPU Scheduler
 Short-term scheduler 

 Selects 1 process from the ready queue
 then allocates the CPU to it

 Queue may be ordered in various ways
 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Scheduling under 1 and 4 is called nonpreemptive (=cooperative)
 All other scheduling is called preemptive

 Process can be interrupted and must release the CPU
 Special care should be taken to prevent problems that can arise

 Access to shared data – race condition can happen, if not handled 
 Etc.
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Dispatcher

 Dispatcher
 a module that gives control of the CPU to the process 

selected by the short-term scheduler; this involves:
 switching context
 switching to user mode
 jumping to the proper location in the user program to 

restart that program
 Dispatch latency 

 Time it takes for the dispatcher to stop one process and 
start another running

 This time should be as small as possible
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Scheduling Criteria

 How do we decide which scheduling algorithm is good?
 Many criteria for judging this has been suggested

 Which characteristics considered can change significantly 
which algo is considered the best

 CPU utilization – keep the CPU as busy as possible
 Throughput – # of processes that complete their execution per 

time unit
 Turnaround time – amount of time to execute a particular 

process
 Waiting time – amount of time a process has been waiting in the 

ready queue
 Response time – amount of time it takes to stat responding

 Used for interactive systems
 Time from when a request was submitted until the first 

response is produced 
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Scheduling Algorithm Optimization Criteria

 Max CPU utilization
 Max throughput
 Min turnaround time 
 Min waiting time 
 Min response time
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time:  (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027
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FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time:   (6 + 0 + 3)/3 = 3
 Much better than previous case

 Hence, average waiting time of FCFS not minimal
 And it may vary substantially

 FCFS is nonpreemptive
 Not a good idea for timesharing systems

 FCFS suffers from the convoy effect, explained next 

P1

0 3 6 30

P2 P3
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FCFS Scheduling: Convoy Effect
 Convoy effect – when several short processes wait for long a 

process to get off the CPU
 Assume

 1 long CPU-bound process
 Many short I/O-bound processes

 Execution:
 The long one occupies CPU

 The short ones wait for it: no I/O is done at this stage
 No overlap of I/O with CPU utilizations

 The long one does its first I/O
 Releases CPU
 Short ones are scheduled, but do I/O, release CPU quickly

 The long one occupies CPU again, etc
 Hence low CPU and device utilization 
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Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst
 SJF uses these lengths to schedule the process with the shortest time

 Notice, the burst is used by SJF, 
 not the process end-to-end running time 

 implied by word “job” in SJF
 Hence, it should be called ``Shorted-Next-CPU-Burst”
 However, “job” is used for historic reasons

 Two versions of SJF: preemptive and nonpreemptive
 Assume 

 A new process Pnew arrives while the current one Pcur is still executing
 The burst of Pnew is less than what is left of Pcur 

 Nonpreemptive SJF – will let Pcur finish
 Preemptive SJF – wil preempt Pcur and let Pnew execute

 This is also called shortest-remaining-time-first scheduling
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SJF (Cont.)
 Advantage: 

 SJF is optimal  in terms of the average waiting time
 Challenge of SJF:

 Hinges on knowing the length of the next CPU burst
 But how can we know it?
 Solutions: ask user or estimate it

 In a batch system and long-term scheduler
 Could ask the user for the job time limit
 The user is motivated to accurately estimate it

– Lower value means faster response
– Too low a value will cause time-limit violation and job rescheduling

 In a short-term scheduling
 Use estimation 
Will be explained shortly
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Example of SJF

ProcessArrival Time Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3

0 3 24

P4 P1

169

P2
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Estimating Length of Next CPU Burst

 For short-term scheduling SJF needs to estimate the burst length
 Then pick process with shortest predicted next CPU burst

 Idea: 
 use the length of previous CPU bursts
 apply exponential averaging

 Commonly, α set to ½
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Prediction of the Length of the Next CPU Burst
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Examples of Exponential Averaging



 α =0
 τn+1 = τn

 Recent history does not count
 α =1

 τn+1 = α tn
 Only the actual last CPU burst counts

 If we expand the formula, we get:
τn+1 = α tn+(1 - α)α tn -1 + …

+(1 - α )j α tn -j + …
+(1 - α )n +1 τ0

 Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor

( ) .1 1 nnn t ταατ −+==
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Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to 
the analysis

ProcessAarri Arrival TimeT Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 
msec

P4

0 1 26

P1 P2

10

P3P1

5 17
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Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority 
(smallest integer ≡ highest priority)
 Preemptive
 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted 
next CPU burst time

 Problem ≡ Starvation – low priority processes may never execute

 Solution ≡ Aging – as time progresses increase the priority of the 
process
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Example of Priority Scheduling

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec
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Round Robin (RR)
 Each process gets a small unit of CPU time 

 Time quantum q
 Usually 10-100 milliseconds  

 After this time has elapsed: 
 the process is preempted and 
 added to the end of the ready queue

 The process might run for ≤ q time
 For example, when it does I/O

 If
 n processes in the ready queue, and 
 the time quantum is q

 then
 “Each process gets 1/n of the CPU time”

 Incorrect statement from the textbook
 in chunks of ≤ q time units at once  
 Each process waits ≤ (n-1)q time units
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Round Robin (cont.)

 Timer interrupts every quantum to schedule next process
 Performance

 q large ⇒ FIFO
 q small ⇒ overhead of context switch time is too high

 Hence, q should be large compared to context switch time
 q usually 10ms to 100ms, 
 context switch < 10 usec
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Time Quantum and Context Switch Time

The smaller the quantum, the higher is the number of context switches.
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Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

 The Gantt chart is: 

 Typically: 
 Higher average turnaround (end-to-end running time) than SJF
 But better response than SJF

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1
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Multilevel Queue

 Another class of scheduling algorithms when processes are 
classified into groups, for example:
 foreground (interactive) processes
 background (batch) processes

 Ready queue is partitioned into separate queues, e.g.:
 Foreground and background queues

 Process is permanently assigned to one queue
 Each queue has its own scheduling algorithm, e.g.:

 foreground – RR
 background – FCFS
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Multilevel Queue

 Scheduling must be done between the queues:
 Fixed priority scheduling 

 For example, foreground queue might have absolute priority 
over background queue

– Serve all from foreground then from background
– Possibility of starvation

 Time slice scheduling
 Each queue gets a certain amount of CPU time which it can 

schedule amongst its processes, e.g.: 
– 80% to foreground in RR
– 20% to background in FCFS 
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Multilevel Queue Scheduling

No student process can run until all queues above are empty



6.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue
 The previous setup: a process is permanently assigned to one queue

 Advantage: Low scheduling overhead
 Disadvantage:  Inflexible

 Multilevel-feedback-queue scheduling algorithm
 Allows a process to move between the various queues

More flexible
 Idea: separate processes based on the characteristics of their CPU bursts
 If a process uses too much CPU time => moved to lower-priority queue

 Keeps I/O-bound and interactive processes in the high-priority queue
 A process that waits too long can be moved to a higher priority queue 

 This form of aging can prevent starvation
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Multilevel Feedback Queue
 Multilevel-feedback-queue scheduler defined by the following parameters:

 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will enter when that 

process needs service
 Multilevel-feedback-queue scheduler

 The most general CPU-scheduling algorithm
 It can be configured to match a specific system under design
 Unfortunately, it is also the most complex algorithm

 Some means are needed to select values for all the parameters
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Example of Multilevel Feedback Queue
 Three queues: 

 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS
 A process in Q1 will preempt any process from Q2, 

but will be executed only if Q0 is empty

 Scheduling
 A new job enters queue Q0 which is served FCFS

 When it gains CPU, job receives 8 ms
 If it does not finish in 8 milliseconds 

– job is moved to queue Q1

 At Q1 job is again served FCFS and receives 16 
additional milliseconds
 This happens only if is Q0 empty
 If it still does not complete, it is preempted and 

moved to queue Q2

 Processed in Q2 run only when Q0 and Q1 empty
 In this example priority is given to processes with bursts 

less than 8 ms.
 Long processed automatically sink to queue Q2
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Multiple-Processor Scheduling

 Multiple CPUs are available
 Load sharing becomes possible
 Scheduling becomes more complex

 Solutions: Have one ready queue accessed by each CPU
 Self scheduled - each CPU dispatches a job from ready Q

 Called symmetric multiprocessing (SMP)
 Virtually all modern OSes support SMP

 Master-Slave - one CPU schedules the other CPUs
 The others run user code
 Called asymmetric multiprocessing
 One processor accesses the system data structures

– Reduces the need for data sharing
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Real-Time CPU Scheduling
 Special issues need to be considered for real-time CPU scheduling

 They are different for soft vs hard real-time systems
 Soft real-time systems 

 Gives preference to critical processed over over non-critical ones
 But no guarantee as to when critical real-time process will be scheduled

 Hard real-time systems
 Task must be serviced by its deadline
 Otherwise, considered failure

 Real-time systems are often event-driven
 The system must detect the event has occurred
 Then respond to it as quickly as possible
 Event latency – amount of time from when event occurred to when it is 

services
 Different types of events will have different event latency requirements



6.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling
 Two types of latencies affect performance
1. Interrupt latency 

 time from arrival of interrupt to start of 
routine that services interrupt

 Minimize it for soft real-time system
 Bound it for hard real-time

2. Dispatch latency 
 time for scheduler to take current 

process off CPU and switch to another
 Must also be minimized



6.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling (Cont.)

 Conflict phase of 
dispatch latency:

1. Preemption of 
any process 
running in kernel 
mode

2. Release by low-
priority process 
of resources 
needed by high-
priority 
processes
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Priority Inversion and Inheritance

 Issues in real-time scheduling
 Problem: Priority Inversion

 Higher Priority Process needs kernel resource currently being 
used by another lower priority process
 higher priority process must wait.

 Solution: Priority Inheritance
 Low priority process now inherits high priority until it has 

completed use of the resource in question. 
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Many Different Real-Time Schedulers

 Priority-based scheduling
 Rate-monotonic scheduling
 Earliest-deadline scheduling
 Proportional share scheduling
 …
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Algorithm Evaluation

 How to select CPU-scheduling algorithm for an OS?
 Determine criteria, then evaluate algorithms

 Evaluation Methods
 Deterministic modeling
 Queuing models
 Simulations
 Implementation
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Deterministic Modeling

 Analytic evaluation – class of evaluation methods such that
 Given: scheduling algorithm A and system workload W
 Produces: formula or a number to evaluate the performance of A one W

 Deterministic modeling
 Type of analytic evaluation
 Takes a particular predetermined workload and defines the performance 

of each algorithm for that workload
 Consider 5 processes arriving at time 0:
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Deterministic Evaluation

 Find which algorithm gets the minimum of the average waiting time
 FCFS is 28ms:

 Non-preemptive SFJ is 13ms:

 RR is 23ms:

 Pros: Simple and fast 
 Cons: Requires exact workload, the outcomes apply only to that 

workload
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Queueing Models

 Defines a probabilistic model for 
 Arrival of processes
 CPU bursts 
 I/O bursts

 Computes stats
 Such as: average throughput, utilization, waiting time, etc
 For different scheduling algorithms
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Little’s Formula

 n = average queue length
 W = average waiting time in queue
 λ = average arrival rate into queue
 Little’s law – in steady state, processes leaving queue must equal 

processes arriving, thus:
n = λ x W

 Valid for any scheduling algorithm and arrival distribution
 For example, if on average 7 processes arrive per second, and 

normally 14 processes in queue, then average wait time per 
process = 2 seconds
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Simulations

 Simulations more accurate evaluation of scheduling algorithms
 than limited Queuing models

 Need to program a model of computer system
 Clock is represented as a variable

 As it increases, the simulator changes the state of the system
 Gather statistics indicating algorithm performance during simulation
 Data to drive simulation gathered via

 Random number generator according to probabilities
 Distributions defined mathematically or empirically
 Use trace tapes - records of sequences of real events in real systems

 This sequence is used then to drive the simulation
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Implementation

 Even simulations have limited accuracy
 Just implement new scheduler and test in real systems

 Cons: Environments vary over time – e.g., users might see a 
new scheduler and change the way their programs behaves, 
thus changing the environment

 In general, scheduling needs might be different for different sets of 
apps
 Hence, most flexible schedulers are those can be 

modified/tuned for specific apps or a set of apps
 For example, some versions of UNIX allow sysadmins to 

fine-tune the scheduling parameters 
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End of Chapter 6
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