
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 4: Threads

 Overview

 Multicore Programming

 Multithreading Models

 Thread Libraries

 Implicit Threading

 Threading Issues

 Operating System Examples

4.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To introduce the notion of a thread—a fundamental unit of CPU

utilization that forms the basis of multithreaded computer

systems

 To discuss the APIs for the Pthreads, Windows, and Java

thread libraries

 To explore several strategies that provide implicit threading

 To examine issues related to multithreaded programming

 To cover operating system support for threads in Windows and

Linux

4.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

4.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreaded Server Architecture

4.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Benefits

 Responsiveness

 may allow continued execution if part of process is blocked

 especially important for user interfaces

 Resource Sharing

 threads share resources of process: easier than shared

memory or message passing

 Economy

 Thread creation is faster than process creation

 Less new resources needed vs a new process

 Solaris: 30x faster

 Thread switching lower overhead than context switching

 5x faster

 Scalability

 Threads can run in parallel on many cores

4.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming

 Multicore or multiprocessor systems

 Putting pressure on programmers

 How to load all of them for efficiency

 Challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

4.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concurrency vs. Parallelism

 Concurrent execution on single-core system

 Parallelism on a multi-core system:

 Parallelism implies a system can perform more than one task

simultaneously

 Concurrency supports more than one task making progress

 True parallelism or an illusion of parallelism

 Single processor / core, scheduler providing concurrency

4.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming (Cont.)

 Types of parallelism

 Data parallelism – distributes subsets of the same data across

multiple cores, same operation/task on each

 Example: the task of incrementing elements by one of an array can

be split into two: incrementing its elements in the 1st and 2nd halfs

 Task parallelism – distributing threads across cores, each thread

performing unique operation

 In practice, people often follow a hybrid of the two

 Architectural support for threading grows

 CPUs have cores as well as hardware threads

 N hardware threads per core

– Means N threads can be loaded into the core for fast switching.

 Consider Oracle SPARC T4:

 8 cores

 8 hardware threads per core

4.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single and Multithreaded Processes

4.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Threads and Kernel Threads

 User threads

 Support provided at the user-level

 Managed above the kernel

 without kernel support

 Management is done by thread library

 Three primary thread libraries:

 POSIX Pthreads, Windows threads, Java threads

 Kernel threads

 Supported and managed by OS

 Virtually all modern general-purpose operating systems support them

4.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreading Models

 A relationship exists between user threads and kernel threads

 Three common ways of establishing this relationships

 Many-to-One model

 One-to-One model

 Many-to-Many model

4.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-One

 Many user-level threads mapped to single kernel

thread

 Advantage:

 Thread management in user space

 Hence, efficient

 Disadvantages:

 One thread blocking causes all to block

 Multiple threads may not run in parallel on

multicore system

 Since only 1 may be in kernel at a time

 So, few systems currently use this model

4.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

One-to-One

 Each user-level thread maps to kernel

thread

 Creating a user-level thread creates a

kernel thread

 Advantages:

 More concurrency than many-to-one

 Disadvantages:

 High overhead of creating kernel

threads

 Hence, number of threads per

process sometimes restricted

 Examples

 Windows

 Linux

 Solaris 9 and later

4.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-Many Model

 Allows many user-level threads to be

mapped to (smaller or equal number of)

kernel threads

 Allows the OS to create a sufficient number

of kernel threads

 The number is dependent on specific

machine or application

 It can be adjusted dynamically

 Many-to-one

 Any number of threads is allowed, but

low concurrency

 One-to-one

 Great concurrency, but the number of

threads is limited

 Many-to-many

 Gets rid of the shortcomings of the

precious two

4.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-level Model

 Similar to Many-to-Many,

 Except that it allows a user thread to be bound to

kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

4.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Libraries

 Thread library provides programmer with API for creating

and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

 Examples of thread libraries

 Pthreads, Java Threads, Widnows threads

4.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Many other issues (we will not consider their details)

 Signal handling

 Synchronous and asynchronous

 Thread cancellation of target thread

 Asynchronous or deferred

 Thread-local storage

 Scheduler Activations

4.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all

threads?

 Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running

process including all threads

4.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Lightweight process

 Lightweight Process (LWP)

 An intermediate data structure between user

and kernel threads

 To user-level thread library, it appears as a

virtual processor on which process can

schedule user thread to run

 Each LWP attached to a kernel thread

 LWP are used, for example, to implement

Many-to-many and two-level models

4.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Examples

 Windows Threads

 Linux Threads

4.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the

parent task (process)

 Flags control behavior

 struct task_struct points to process data structures

(shared or unique)

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 4

