
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

 Defining Process

 Process Scheduling

 Operations on Processes

 Interprocess Communication (IPC)

 Examples of IPC Systems

 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To introduce the notion of a process -- a program in

execution, which forms the basis of all computation

 To describe the various features of processes, including:

 scheduling

 creation and termination

 and communication

 To explore interprocess communication using

 shared memory, and

 message passing

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – “jobs”

 Time-shared systems – “user programs” or “tasks”

 We will use the terms job and process almost interchangeably

 Process – is a program in execution (informal definition)

 Program is passive entity stored on disk (executable file), process

is active

 Program becomes process when executable file loaded into

memory

 Execution of program started via GUI, command line entry of its

name, etc

 One program can be several processes

 Consider multiple users executing the same program

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process In Memory

 In memory, a process consists of multiple

parts:

 Program code, also called text section

 Current activity including

 program counter

 processor registers

 Stack containing temporary data

 Function parameters, return

addresses, local variables

 Data section containing global

variables

 Heap containing memory dynamically

allocated during run time

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

 As a process executes, it changes state

 new: The process is being created

 ready: The process is waiting to be assigned to a processor

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Each process is represented in OS by PCB

 PCB - info associated with the process

 Also called task control block

 Process state – running, waiting, etc

 Program counter – location of

instruction to next execute

 CPU registers – contents of all process-

centric registers

 CPU scheduling information- priorities,

scheduling queue pointers

 Memory-management information –

memory allocated to the process

 Accounting information – CPU used,

clock time elapsed since start, time

limits

 I/O status information – I/O devices

allocated to process, list of open files

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threads

 So far, process has a single thread of execution

 One task at a time

 Consider having multiple program counters per process

 Multiple locations can execute at once

 Multiple tasks at a time

 Multiple threads of control -> threads

 PCB must be extended to handle threads:

 Store thread details

 Multiple program counters

 Details on threads in the next chapter

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

 Goa of multiprogramming:

 Maximize CPU use

 Goal of time sharing:

 Quickly switch processes onto CPU for time sharing

 Process scheduler – needed to meet these goals

 Selects 1 process to be executed next on CPU

 Among available processes

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main

memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queuing diagram

 a common representation of process scheduling

 represents queues, resources, flows

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

 Scheduler – component that decides how processes are selected from these

queues for scheduling purposes

 Long-term scheduler (or job scheduler)

 On this slide - “LTS” (LTS is not a common notation)

 In a batch system, more processes are submitted then can be executed in

memory

 They are spooled to disk

 LTS selects which processes should be brought into the ready queue

 LTS is invoked infrequently

 (seconds, minutes) (may be slow, hence can use advanced algorithms)

 LTS controls the degree of multiprogramming

 The number of processes in memory

 Processes can be described as either:

 I/O-bound process

 Spends more time doing I/O than computations, many short CPU bursts

 CPU-bound process

 Spends more time doing computations; few very long CPU bursts

 LTS strives for good process mix

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Short-Term Scheduler

 Short-term scheduler (or CPU scheduler)

 Selects 1 process to be executed next

 Among ready-to-execute processes

– From the ready queue

 Allocates CPU to this process

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked frequently

 (milliseconds) (must be fast)

 Hence cannot use costly selection logic

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple

programming needs to decrease

 Used by time-sharing OSes, etc

 Too many programs poor performance users quit

 Key idea:

 Reduce the degree of multiprogramming by swapping

 Swapping removes a process from memory, stores on

disk, brings back in from disk to continue execution

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

 Context of a process represented in its PCB

 Context switch

 When CPU switches to another process, the system must:

1. save the state of the old process, and

2. load the saved state for the new process

 Context-switch time is overhead

 The system does no useful work while switching

 The more complex the OS and the PCB

 the longer the context switch

 more details in Chapter 8

 This overhead time is dependent on hardware support

 Some hardware provides multiple sets of registers per CPU

 multiple contexts are loaded at once

 switch requires only changing pointer to the right set

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

 System must provide mechanisms for:

 process creation,

 process termination,

 and so on as detailed next

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

 A (parent) process can create several (children) processes

 Children can, in turn, create other processes

 Hence, a tree of processes forms

 Generally, process identified and managed via a process

identifier (pid)

 Resource sharing options (of process creation)

 Parent and children share all resources

 Children share subset of parent’s resources

 One usage is to prevent system overload by too many

child processes

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

 Address space options

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 Child is a copy of parent’s address space

– except fork() returns 0 to child and nonzero to parent

 exec() system call used after a fork() to replace the

process’ memory space with a new program

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.

 Returns status data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Some OSes don’t allow child to exists if its parent has terminated

 cascading termination - if a process terminates, then all its

children, grandchildren, etc must also be terminated.

 The termination is initiated by the operating system

 The parent process may wait for termination of a child process by
using the wait()system call.

 The call returns status information and the pid of the terminated
process

pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a zombie

 All its resources are deallocated, but exit status is kept

 If parent terminated without invoking wait , process is an orphan

 UNIX: assigns init process as the parent

 Init calls wait periodically

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cooperating Processes

 Processes within a system may be independent or cooperating

 When processes execute they produce some computational results

 Independent process cannot affect (or be affected) by such results of

another process

 Cooperating process can affect (or be affected) by such results of

another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

 For fast exchange of information, cooperating processes need some

interprocess communication (IPC) mechanisms

 Two models of IPC

 Shared memory

 Message passing

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

 An area of memory is shared among the processes that
wish to communicate

 The communication is under the control of the users
processes, not the OS.

 Major issue is to provide mechanism that will allow the user
processes to synchronize their actions when they access
shared memory.

 Synchronization is discussed in great details in Chapter 5.

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem
 Producer-consumer problem – a common paradigm for cooperating

processes

 Used to exemplify one common generic way/scenario of

cooperation among processes

 We will use it to exemplify IPC

 Very important!

 Producer process

 produces some information

 incrementally

 Consumer process

 consumes this information

 as it becomes available

 Challenge:

 Producer and consumer should run concurrently and efficiently

 Producer and consumer must be synchronized

 Consumer cannot consume an item before it is produced

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared-memory solution to producer-consumer

 Uses a buffer in shared memory to exchange information

 unbounded-buffer: assumes no practical limit on the buffer size

 bounded-buffer assumes a fixed buffer size

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next_produced;

while (true) {

next_produced = ProduceItem();

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing, no space in buffer */

//wait for consumer to get items and

//free up some space

/* enough space in buffer */

buffer[in] = next_produced; //put item into

buffer

in = (in + 1) % BUFFER_SIZE;

}

3.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

item next_consumed;

while (true) {

while (in == out)

; /* do nothing, no new items produced

*/

//wait for items to be produced

/* some new items are in the buffer */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

ConsumeItem(&next_consumed);

}

3.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize
their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:

 send(message)

 receive(message)

 The message size is either fixed or variable

3.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:

 Establish a communication link between them

 Exchange messages via send/receive

 Implementation issues:

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity (buffer size) of a link?

 Is the size of a message that the link can accommodate fixed or

variable?

 Is a link unidirectional or bi-directional?

3.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 Logical implementation of communication link

 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering

3.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of a direct communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating

processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

3.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Messages are directed and received from mailboxes (also referred

to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of an indirect communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

3.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Operations

 create a new mailbox (port)

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

3.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Mailbox sharing issues

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive

operation

 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization

 Message passing may be either

 Blocking, or

 Non-blocking

 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is received

 Blocking receive -- the receiver is blocked until a message is

available

 Non-blocking is considered asynchronous

 Non-blocking send -- the sender sends the message and continues

 Non-blocking receive -- the receiver receives:

 A valid message, or

 Null message

 Different combinations possible

 If both send and receive are blocking – called a rendezvous

3.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization (Cont.)

 Producer-consumer is trivial via rendezvous

message next_produced;

while (true) {

ProduceItem(&next_produced);

send(next_produced);

}

message next_consumed;

while (true) {

receive(next_consumed);

ConsumeItem(&next_consumed);

}

3.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buffering in Message-Passing

 Queue of messages is attached to the link.

 Implemented in one of three ways

1. Zero capacity – no messages are queued on a link.

- Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

- Sender must wait if link full

3. Unbounded capacity – infinite length

- Sender never waits

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 3

