
Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini VenkatasubramanianOperating System Concepts – 9th Ed

Chapter 11:
File-System Interface

2

Chapter 11: File-System Interface

 File Concept
 Access Methods
 Disk and Directory Structure
 File-System Mounting
 File Sharing
 Protection

3

Objectives

 To explain the function of file systems
 To describe the interfaces to file systems
 To discuss file-system design tradeoffs, including

 access methods,
 file sharing,
 directory structures

 To explore file-system protection

4

File Concept
 Computers can store information on various storage media, such as:

 SSDs
 magnetic disks,
 magnetic tapes, and
 optical disks.

 These storage devices are usually nonvolatile
 so the contents are persistent between system reboots

 OS provides a uniform logical view of stored information
 OS abstracts from the physical properties of its storage devices to define a

logical storage unit, the file.
 Files are mapped by the OS onto physical devices
 A file is a named collection of related information that is recorded on

secondary storage.
 From a user’s perspective, a file is the smallest allotment of logical secondary

storage;
 that is, data cannot be written to secondary storage unless they are within

a file.

5

File Concept
 File types: Commonly, files represent

 Programs
 Both source and object forms

 Data
 Numeric, character, binary

 Contents defined by file’s creator
 Many types: text file, source file, executable file, etc

6

File Attributes

 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection, security,

and usage monitoring
 Information about files are kept in the directory structure, which is

maintained on the disk

7

File info Window on Mac OS X

8

File Operations
 File is an abstract data type.

 To define a file properly, we need to consider the operations that can be
performed on files.

 Create
 Write – at write pointer location
 Read – at read pointer location
 Reposition within file - seek
 Delete
 Truncate

9

File Operations: Opening a File
 Most of the file operations mentioned involve searching the directory for the

entry associated with the named file.
 To avoid this constant searching, many systems require that an open()

system call be made before a file is first used.

 Open(Fi)
 search the directory structure on disk for entry Fi, and
 move the content of entry to memory

 Close (Fi)
 move the content of entry Fi in memory to directory structure on disk

10

Open Files
 Several pieces of data are needed to manage open files:
 Open-file table:

 Tracks open files
 When a file operation is requested, the file is specified via an index into

this table,
 so no searching is required

 File pointer: pointer to last read/write location,
 per process that has the file open

 File-open count: counter of number of times a file is open
 to allow removal of data from open-file table when last processes closes it

 Disk location of the file: cache of data access information
 The information (needed to locate the file on disk) is kept in memory so

that the system does not have to read it from disk for each operation.
 Access rights: per-process access mode information

14

File Types – Name, Extension

 One can specify an extension to indicated the file type
 but an extension is not required in general

 An extension may serve as a hint to the OS on what to do with the file
 e.g., on double clicking it

15

File Structure
 File types also can be used to indicate the internal structure of the file.
 Source and object files have structures that match the expectations of the

programs that read them.
 Further, certain files must conform to a required structure that is understood

by the operating system.
 E.g., OS requires that an executable file have a specific structure

 so that it can determine where in memory to load the file and
 what the location of the first instruction is.

16

File Structure
 In general, file structure can be:

 None
 Sequence of words, bytes

 Simple record structure
 Lines
 Fixed length
 Variable length

 Complex Structures
 Formatted document
 Relocatable load file

 Can simulate last two with first method by inserting appropriate control
characters

 Who decides:
 Operating system
 Program

17

Sequential-access File

18

Access Methods
 Sequential Access

 Simplest access method
 Based on a tape model of a file

 works on both sequential-access devices and random-access ones.
 Information in the file is processed in order,

 one record after the other.
 Most common method

 E.g., editors and compilers usually access files in this fashion.
 read next

 reads the next portion of the file and
 automatically advances a file pointer, which tracks the I/O location

 write next

 appends to the end of the file and advances to the end of the newly
written material (the new end of file)

 Reset

 a file can be reset to the beginning, and
 on some systems, skip forward/backward n records

19

Access Methods
 Direct Access (= relative access).

 A file is made up of fixed-length logical records
 That allow programs to read and write records rapidly in no particular order
 Based on a disk model of a file,

 Since disks allow random access to any file block
 The file is viewed as a numbered sequence of blocks or records.

We may read block 14, then read block 53, and then write block 7.
 No restrictions on the order of reading or writing for a direct-access file

 n = relative block number (relative -- to the beginning of the file)
 File starts with block 0, then block 1, 2, …
 Relative block numbers allow OS to decide where file should be placed

 Read(n) – read block number n
 Write(n) – read block number n
 position to n

 read next

 write next

23

Directory Structure
 Number of files on a system can be extensive

 Break file systems into partitions
– treated as a separate storage device

 Hold information about files within partitions.
 Device Directory

 A collection of nodes containing information about all files on a partition.
 Both the directory structure and files reside on disk

24

Directory Structure

 A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

26

A Typical File-system Organization

28

Information in a Device Directory
 File Name
 File Type
 Address or Location
 Current Length
 Maximum Length
 Date
 created,
 last accessed (for archival),
 last updated (for dump)

 Owner ID,
 Protection information

29

Operations Performed on Directory

 Search for a file
 Create a file
 Delete a file
 List a directory
 Rename a file
 Traverse the file system

30

Goals of Logical Directory Organization

 Which factors to consider in deciding the logical directory organization?
 Efficiency – locating a file quickly
 Naming – convenient to users

 Two users can have same name for different files
 The same file can have several different names

 Grouping
 Logical grouping of files by properties, (e.g., all Java programs, all

games, …)

 … Let us now consider the most common schemes for defining the logical
structure of a directory

31

Single-Level Directory
 Let us start with the simplest one: A single-level directory for all users

 All files are contained in the same directory
 Pros: Easy to support and understand
 Cons: Naming problem and Grouping problem

 As the number of files increases, difficult to remember unique names
 As the number of users increase, users must use unique names for files

32

Two-Level Directory
 Introduced to remove naming problem among users
 A separate directory for each user

 1st level -- contains list of user directories
 2nd level -- contains user files
 System files kept in separate directory or Level 1.
 Need to specify Path name
 Pros:

 Can have the same file name for different user
 Efficient searching

 Cons: No grouping capability

33

Tree Structured Directories
 Arbitrary depth of directories

 leaf nodes are files
 interior nodes are

directories.
 Efficient Searching
 Grouping Capability
 Current Directory

 =working directory
 cd /spell/mail/prog, cd ..
 dir, ls

 MS-DOS uses a tree
structured directory

34

Tree-Structured Directories (Cont)

 Absolute or relative path name
 Absolute from root
 Relative paths from current working directory pointer.

 Creating a new file is done in current directory
 Delete a file

rm <file-name>

 Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: if in current directory /mail
mkdir count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

35

Acyclic-Graph Directories

 Have shared subdirectories and files

36

Acyclic Graph Directories
 Generalization of the tree-structured directory scheme
 Acyclic graphs allow sharing

 A shared directory (or file) exists in the file system in two (or more)
places at once.

 Convenient for several reasons, e.g.:
 2 programmers working on the same project might want to share a

subdirectory
 both want the subdirectory to be in their own directories

37

Acyclic Graph Directories
 Sharing can be implemented differently

 Implementation via soft links (=symbolic links)
 Links are pointers to other files or subdirectories

May be implemented as an absolute or a relative path name
We resolve the link by using that path name to locate the real file
 A link can point to a file/subfolder on a totally different volume

 Implementation via hard links
 Duplicate all information about shared files in the corresponding

directory entries
 Original and copy are indistinguishable
 Need to maintain consistency if one of them is modified.
 A link cannot point to a different volume

38

Comparison of Hard Link and Symbolic Link

From IBM.com

39

Acyclic Graph Directories
 Naming

 A single file may have multiple absolute path names
 Two different names for the same file

 Traversal
 Ensure that shared data structures are traversed only once.

 For efficiency
 Deletion

 Removing file when someone deletes it may leave dangling pointers.
 Preserve file until all references to it are deleted

 Keep a list of all references to a file or
 Keep a count of the number of references

– Called reference count
– When count = 0, file can be deleted

40

General Graph Directory
 A problem with an acyclic-graph is ensuring that there are no cycles.
 When we add links

 the tree structure is destroyed
 resulting in a simple graph structure (general graph directory)

41

General Graph Directory
 The primary advantages of an acyclic graph is the simplicity of the algorithms

1. For traversing the graph and (no infinite loops)
2. For determining when there are no more references to a file.

 How do we guarantee no cycles?
 Allow only links to file; not subdirectories

 Limiting
 Every time a new link is added, use a cycle detection algorithm to

determine whether it is OK
 Computationally expensive
 High cost for disks specifically

42

General Graph Directory
 How do we deal with file deletion in general graph directory?

 A garbage collection scheme is needed, as even when file is not used
its reference count can be above zero due to self-referencing or cycles

 Garbage collection involves:
 Pass 1: Traversing the entire file system, marking everything that can be

accessed.
 Pass 2: Collecting everything that is not marked onto a list of free space.

 A similar marking procedure can be used to ensure that a traversal or search
will cover everything in the file system once and only once.

 Garbage collection for a disk-based file system, however, is
 extremely time consuming, and
 is thus seldom attempted.

 How do we ensure an effective traversal in a general graph directory then?
 One solution is to ignore links in such a traversal
 Cycles are avoided, and no extra overhead is incurred.

43

File System Mounting
 File System must be mounted before it can be available to process on the system
 The OS is given

 the name of the device and
 the mount point -- location within file structure at which files attach

 OS verifies that the device contains a valid file system.
 OS notes in its directory structure that a file system is mounted at the specified

mount point.

44

File System Mounting

 A unmounted file system (i.e., Fig. (b)) is mounted at a mount point

49

Protection

 File owner/creator should be able to control:
 what can be done
 by whom

 Types of access
 Read
 Write
 Execute
 Append
 Delete
 List

50

Access lists and groups
 Associate each file/directory with an access list

 Problem - length of access list…
 Solution - condensed version of list

 Mode of access: read, write, execute
 Three classes of users:

1. owner access - user who created the file
2. groups access - set of users who are sharing the file and need

similar access
3. public access - all other users

 In UNIX
 3 fields (of length 3 bits) are used.
 Fields are: user, group, others(u,g,o),
 Bits are: read, write, execute (r,w,x).
 E.g. chmod 761 game

51

Access Lists and Groups (contd.)

 Ask manager to create a group (unique name), say G,
 and add some users to the group.
 chgrp G game

 For a particular file (say game) or subdirectory, define an
appropriate access.

 Mode of access: read, write, execute
 Three classes of users on Unix / Linux

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

52

Windows 7 Access-Control List Management

Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini VenkatasubramanianOperating System Concepts – 9th Ed

End of Chapter 11

	Chapter 11: �File-System Interface
	Chapter 11: File-System Interface
	Objectives
	File Concept
	File Concept
	File Attributes
	File info Window on Mac OS X
	File Operations
	File Operations: Opening a File
	Open Files
	File Types – Name, Extension
	File Structure
	File Structure
	Sequential-access File
	Access Methods
	Access Methods
	Directory Structure
	Directory Structure
	A Typical File-system Organization
	Information in a Device Directory
	Operations Performed on Directory
	 Goals of Logical Directory Organization
	Single-Level Directory
	Two-Level Directory
	Tree Structured Directories
	Tree-Structured Directories (Cont)
	Acyclic-Graph Directories
	Acyclic Graph Directories
	Acyclic Graph Directories
	Comparison of Hard Link and Symbolic Link
	Acyclic Graph Directories
	General Graph Directory
	General Graph Directory
	General Graph Directory
	File System Mounting
	File System Mounting
	Protection
	Access lists and groups
	Access Lists and Groups (contd.)
	Windows 7 Access-Control List Management
	End of Chapter 11

