

ONLINE ACCESS

Thank you for purchasing a new copy of Operating Systems: Internals and Design
Principles, Eighth Edition. Your textbook includes six months of prepaid access to the
book’s Premium Content. This prepaid subscription provides you with full access to the
following student support areas:

Animations and Videonotes

Supplemental Chapters

Supplemental Appendices

Supplemental homework problems with solutions

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Operating Systems: Internals and Design Principles, Eighth Edition,
Premium Content for the first time, you will need to register online using a computer with
an Internet connection and a web browser. The process takes just a couple of minutes and
only needs to be completed once.

1. Go to http://www.pearsonhighered.com/stallings/

2. Click on the Premium Content.

3. Click on the Register button.

4. On the registration page, enter your student access code* found beneath the scratch-
off panel. Do not type the dashes. You can use lower- or uppercase.

5. Follow the on-screen instructions. If you need help at any time during the online
registration process, simply click the Need Help? icon.

6. Once your personal Login Name and Password are confirmed, you can begin using
the Operating Systems: Internals and Design Principles Premium Content Website!

To log in after you have registered:

You only need to register for this Premium Content once. After that, you can log in any
time at http://www.pearsonhighered.com/stallings/ by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for six
months upon activation and is not transferable. If this access code has already been re-
vealed, it may no longer be valid.

If this is the case, you can purchase a subscription by going to
http://www.pearsonhighered.com/stallings/ and following the on-screen instructions.

http://www.pearsonhighered.com/stallings/
http://www.pearsonhighered.com/stallings/
http://www.pearsonhighered.com/stallings/

OPERATING SYSTEMS
INTERNALS AND DESIGN
PRINCIPLES

This page intentionally left blank

OPERATING SYSTEMS
INTERNALS AND DESIGN
PRINCIPLES

EIGHTH EDITION

William Stallings

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Jenah Blitz-Stoehr
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Assistant: Jon Bryant
Director of Program Management: Erin Gregg
Program Management-Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Management-Team Lead: Laura Burgess
Project Manager: Robert Engelhardt

Procurement Specialist: Linda Sager
Cover Designer: Bruce Kenselaar
Permissions Supervisor: Michael Joyce
Permissions Administrator: William Opaluch
Director, Image Asset Services: Annie Atherton
Manager, Visual Research: Karen Sanatar
Cover Art: © Fixer00/Shutterstock
Media Project Manager: Renata Butera
Full-Service Project Management: Integra Software Services

Pvt. Ltd. /Allan Rayer

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the
appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the United States of America
and other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation. This book is not
sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., publishing as Prentice Hall, one Lake Street, Upper Saddle River,
New Jersey, 07458. All rights reserved. Printed in the United States of America. This publication is protected by Copyright,
and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Library of Congress Cataloging-in-Publication Data on File

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-380591-3
ISBN 13: 978-0-13-380591-8

For Tricia

This page intentionally left blank

Online Resources xiii

VideoNotes xv

Preface xvii

About the Author xxvii

Chapter 0 Guide for Readers and Instructors 1

 0.1 Outline of this Book 2
 0.2 Example Systems 2
 0.3 A Roadmap for Readers and Instructors 3
 0.4 Internet and Web Resources 4

PART 1 BACKGROUND 7

Chapter 1 Computer System Overview 7

 1.1 Basic Elements 8
 1.2 Evolution of the Microprocessor 10
 1.3 Instruction Execution 10
 1.4 Interrupts 13
 1.5 The Memory Hierarchy 24
 1.6 Cache Memory 27
 1.7 Direct Memory Access 31
 1.8 Multiprocessor and Multicore Organization 32
 1.9 Recommended Reading 36
 1.10 Key Terms, Review Questions, and Problems 36
 1A Performance Characteristics of Two-Level Memories 39

Chapter 2 Operating System Overview 46

 2.1 Operating System Objectives and Functions 47
 2.2 The Evolution of Operating Systems 52
 2.3 Major Achievements 61
 2.4 Developments Leading to Modern Operating Systems 70
 2.5 Fault Tolerance 73
 2.6 OS Design Considerations for Multiprocessor and Multicore 76
 2.7 Microsoft Windows Overview 79
 2.8 Traditional UNIX Systems 86
 2.9 Modern UNIX Systems 89
 2.10 Linux 91
 2.11 Android 96
 2.12 Recommended Reading and Animations 102
 2.13 Key Terms, Review Questions, and Problems 103

CONTENTS

vii

viii CONTENTS

PART 2 PROCESSES 105

Chapter 3 Process Description and Control 105

 3.1 What Is a Process? 107
 3.2 Process States 109
 3.3 Process Description 124
 3.4 Process Control 133
 3.5 Execution of the Operating System 139
 3.6 UNIX SVR4 Process Management 142
 3.7 Summary 147
 3.8 Recommended Reading and Animations 147
 3.9 Key Terms, Review Questions, and Problems 148

Chapter 4 Threads 152

 4.1 Processes and Threads 153
 4.2 Types of Threads 159
 4.3 Multicore and Multithreading 166
 4.4 Windows 8 Process and Thread Management 171
 4.5 Solaris Thread and SMP Management 178
 4.6 Linux Process and Thread Management 182
 4.7 Android Process and Thread Management 186
 4.8 Mac OS X Grand Central Dispatch 190
 4.9 Summary 193
 4.10 Recommended Reading 193
 4.11 Key Terms, Review Questions, and Problems 194

Chapter 5 Concurrency: Mutual Exclusion
and Synchronization 199

 5.1 Principles of Concurrency 202
 5.2 Mutual Exclusion: Hardware Support 210
 5.3 Semaphores 214
 5.4 Monitors 227
 5.5 Message Passing 233
 5.6 Readers/Writers Problem 240
 5.7 Summary 244
 5.8 Recommended Reading and Animations 245
 5.9 Key Terms, Review Questions, and Problems 246

Chapter 6 Concurrency: Deadlock and Starvation 259

 6.1 Principles of Deadlock 260
 6.2 Deadlock Prevention 269
 6.3 Deadlock Avoidance 271
 6.4 Deadlock Detection 277
 6.5 An Integrated Deadlock Strategy 279
 6.6 Dining Philosophers Problem 280
 6.7 UNIX Concurrency Mechanisms 282
 6.8 Linux Kernel Concurrency Mechanisms 286

CONTENTS ix

 6.9 Solaris Thread Synchronization Primitives 293
 6.10 Windows 7 Concurrency Mechanisms 295
 6.11 Android Interprocess Communication 299
 6.12 Summary 300
 6.13 Recommended Reading and Animations 301
 6.14 Key Terms, Review Questions, and Problems 302

PART 3 MEMORY 309

Chapter 7 Memory Management 309

 7.1 Memory Management Requirements 310
 7.2 Memory Partitioning 314
 7.3 Paging 325
 7.4 Segmentation 328
 7.5 Summary 330
 7.6 Recommended Reading and Animations 330
 7.7 Key Terms, Review Questions, and Problems 330
 7A Loading and Linking 333

Chapter 8 Virtual Memory 340

 8.1 Hardware and Control Structures 341
 8.2 Operating System Software 358
 8.3 UNIX and Solaris Memory Management 377
 8.4 Linux Memory Management 383
 8.5 Windows Memory Management 386
 8.6 Android Memory Management 389
 8.7 Summary 389
 8.8 Recommended Reading and Animations 390
 8.9 Key Terms, Review Questions, and Problems 391

PART 4 SCHEDULING 397

Chapter 9 Uniprocessor Scheduling 397

 9.1 Types of Processor Scheduling 398
 9.2 Scheduling Algorithms 402
 9.3 Traditional UNIX Scheduling 424
 9.4 Summary 426
 9.5 Recommended Reading and Animations 427
 9.6 Key Terms, Review Questions, and Problems 428

Chapter 10 Multiprocessor, Multicore, and Real-Time
Scheduling 432

 10.1 Multiprocessor and Multicore Scheduling 433
 10.2 Real-Time Scheduling 446
 10.3 Linux Scheduling 461
 10.4 UNIX SVR4 Scheduling 465
 10.5 UNIX FreeBSD Scheduling 466

 10.6 Windows Scheduling 470
 10.7 Summary 472
 10.8 Recommended Reading 473
 10.9 Key Terms, Review Questions, and Problems 473

PART 5 INPUT/OUTPUT AND FILES 477

Chapter 11 I/O Management and Disk Scheduling 477

 11.1 I/O Devices 478
 11.2 Organization of the I/O Function 480
 11.3 Operating System Design Issues 483
 11.4 I/O Buffering 486
 11.5 Disk Scheduling 489
 11.6 RAID 496
 11.7 Disk Cache 505
 11.8 UNIX SVR4 I/O 509
 11.9 Linux I/O 512
 11.10 Windows I/O 515
 11.11 Summary 517
 11.12 Recommended Reading and Animations 518
 11.13 Key Terms, Review Questions, and Problems 519

Chapter 12 File Management 522

 12.1 Overview 523
 12.2 File Organization and Access 529
 12.3 B-Trees 533
 12.4 File Directories 536
 12.5 File Sharing 541
 12.6 Record Blocking 542
 12.7 Secondary Storage Management 544
 12.8 UNIX File Management 552
 12.9 Linux Virtual File System 557
 12.10 Windows File System 561
 12.11 Android File Management 566
 12.12 Summary 567
 12.13 Recommended Reading 568
 12.14 Key Terms, Review Questions, and Problems 568

PART 6 EMBEDDED SYSTEMS 571

Chapter 13 Embedded Operating Systems 571

 13.1 Embedded Systems 572
 13.2 Characteristics of Embedded Operating Systems 573
 13.3 Embedded Linux 576
 13.4 TinyOS 577
 13.5 Recommended Reading 587
 13.6 Key Terms, Review Questions, and Problems 587

x CONTENTS

Chapter 14 Virtual Machines 590

 14.1 Approaches to Virtualization 593
 14.2 Processor Issues 596
 14.3 Memory Management 598
 14.4 I/O Management 600
 14.5 VMware ESXi 602
 14.6 Microsoft Hyper-V and Xen Variants 604
 14.7 Java VM 606
 14.8 Linux VServer Virtual Machine Architecture 606
 14.9 Android Virtual Machine 609
 14.10 Summary 611
 14.11 Recommended Reading 612
 14.12 Key Terms, Review Questions, and Problems 613

Chapter 15 Operating System Security 614

 15.1 Intruders and Malicious Software 615
 15.2 Buffer Overflow 619
 15.3 Access Control 627
 15.4 UNIX Access Control 635
 15.5 Operating Systems Hardening 638
 15.6 Security Maintenance 642
 15.7 Windows Security 643
 15.8 Summary 648
 15.9 Recommended Reading 649
 15.10 Key Terms, Review Questions, and Problems 649

Chapter 16 Distributed Processing, Client/Server, and Clusters 652

 16.1 Client/Server Computing 653
 16.2 Distributed Message Passing 664
 16.3 Remote Procedure Calls 667
 16.4 Clusters 671
 16.5 Windows Cluster Server 676
 16.6 Beowulf and Linux Clusters 678
 16.7 Summary 680
 16.8 Recommended Reading 681
 16.9 Key Terms, Review Questions, and Problems 682

APPENDICES

Appendix A Topics in Concurrency A-1

Appendix B Programming and Operating System Projects B-1

References 685

Credits 699

Index 703

CONTENTS xi

This page intentionally left blank

Chapter 17 Network Protocols

 17.1 The Need for a Protocol Architecture 17-4
 17.2 The TCP/IP Protocol Architecture 17-9
 17.3 Sockets 17-19
 17.4 Linux Networking 17-26
 17.5 Summary 17-29
 17.6 Recommended Reading and Web Sites 17-30
 17.7 Key Terms, Review Questions, and Problems 17-31
 17A The Trivial File Transfer Protocol 17-42

Chapter 18 Distributed Process Management

 18.1 Process Migration 18-2
 18.2 Distributed Global States 18-14
 18.3 Distributed Mutual Exclusion 18-22
 18.4 Distributed Deadlock 18-41
 18.5 Summary 18-59
 18.6 Recommended Reading 18-60
 18.7 Key Terms, Review Questions, and Problems 18-61

Chapter 19 Overview of Probability and Stochastic Processes

 19.1 Probability 19-2
 19.2 Random Variables 19-10
 19.3 Elementary Concepts of Stochastic Processes 19-19
 19.4 Recommended Reading and Web Sites 19-34
 19.5 Key Terms, Review Questions, and Problems 19-35

Chapter 20 Queueing Analysis

 20.1 How Queues Behave—A Simple Example 20-3
 20.2 Why Queuing Analysis? 20-8
 20.3 Queueing Models 20-12
 20.4 Single-Server Queues 20-24
 20.5 Multiserver Queues 20-28
 20.6 Examples 20-30
 20.7 Queues with Priorities 20-38
 20.8 Networks of Queues 20-40
 20.9 Other Queueing Models 20-46
 20.10 Estimating Model Parameters 20-48
 20.11 Recommended Reading and Web Sites 20-53
 20.12 Key Terms, Review Questions, and Problems 20-54

Programming Project One Developing a Shell

Programming Project Two The HOST Dispatcher Shell

ONLINE CHAPTERS AND APPENDICES1

1Online chapters, appendices, and other documents are Premium Content, available via the access card
at the front of this book. xiii

Appendix C Topics in Computer Organization C-1

Appendix D Object-Oriented Design D-1

Appendix E Amdahl’s Law E-1

Appendix F Hash Tables F-1

Appendix G Response Time G-1

Appendix H Queueing System Concepts H-1

Appendix I The Complexity of Algorithms I-1

Appendix J Disk Storage Devices J-1

Appendix K Cryptographic Algorithms K-1

Appendix L Standards Organizations L-1

Appendix M Sockets: A Programmer’s Introduction M-1

Appendix N The International Reference Alphabet N-1

Appendix O BACI: The Ben-Ari Concurrent Programming System O-1

Appendix P Procedure Control P-1

Appendix Q Ecos Q-1

Glossary

xiv ONLINE CHAPTERS AND APPENDICES

 VIDEONOTES

Locations of VideoNotes

http://www.pearsonhighered.com/stallings

Chapter 5 Concurrency: Mutual Exclusion and Synchronization 199

 5.1 Illustration of Mutual Exclusion 208
 5.2 Hardware Support for Mutual Exclusion 212
 5.3 A Definition of Semaphore Primitives 216
 5.4 A Definition of Binary Semaphore Primitives 217
 5.6 Mutual Exclusion Using Semaphores 219
 5.9 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem

Using Binary Semaphores 222
 5.10 A Correct Solution to the Infinite-Buffer Producer/Consumer Problem

Using Binary Semaphores 224
 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem

Using Semaphores 225
 5.13 A Solution to the Bounded-Buffer Producer/Consumer Problem

Using Semaphores 226
 5.14 Two Possible Implementations of Semaphores 227
 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem

Using a Monitor 230
 5.17 Bounded-Buffer Monitor Code for Mesa Monitor 232
 5.20 Mutual Exclusion Using Messages 238
 5.21 A Solution to the Bounded-Buffer Producer/Consumer Problem

Using Messages 239
 5.22 A Solution to the Readers/Writers Problem Using Semaphores:

Readers Have Priority 241
 5.23 A Solution to the Readers/Writers Problem Using Semaphores:

Writers Have Priority 243
 5.24 A Solution to the Readers/Writers Problem Using Message Passing 244
 5.25 An Application of Coroutines 248

Chapter 6 Concurrency: Deadlock and Starvation 259

 6.9 Deadlock Avoidance Logic 276
 6.12 A First Solution to the Dining Philosophers Problem 281
 6.13 A Second Solution to the Dining Philosophers Problem 282
 6.14 A Solution to the Dining Philosophers Problem Using a Monitor 283
 6.18 Another Solution to the Dining Philosophers Problem Using a Monitor 307

Chapter 13 Embedded Operating Systems 571

 13.6 Condition Variable Example Code 589

xv

VideoNote

http://www.pearsonhighered.com/stallings

xvi VIDEONOTES

Chapter 18 Distributed Process Management

 18.11 Token.Passing Algorithm (for Process Pi) 40
 18.14 A Distributed Deadlock Detection Algorithm 50

Appednix A Topics in Concurrency A-1

 A.1 Mutual Exclusion Attempts A-3
 A.2 Dekker’s Algorithm A-6
 A.3 Peterson’s Algorithm for Two Processes A-7
 A.5 An Unfair Barbershop A-17
 A.6 A Fair Barbershop A-20

PREFACE

WHAT’S NEW IN THE EIGHTH EDITION

Since the seventh edition of this book was published, the field has seen continued
 innovations and improvements. In this new edition, I try to capture these changes
while maintaining a broad and comprehensive coverage of the entire field. To begin
the process of revision, the seventh edition of this book was extensively reviewed by
a number of professors who teach the subject and by professionals working in the
field. The result is that, in many places, the narrative has been clarified and tightened,
and illustrations have been improved.

Beyond these refinements to improve pedagogy and user friendliness, the tech-
nical content of the book has been updated throughout, to reflect the ongoing changes
in this exciting field, and the instructor and student support has been expanded. The
most noteworthy changes are as follows:

Windows 8: Windows 8 is Microsoft’s latest OS offering for PCs, workstations,
and servers, which includes a number of changes to the internal architecture.
The new edition provides details on Windows 8 internals in all of the key
technology areas covered in this book, including process/thread management,
scheduling, memory management, security, file systems, and I/O.
Android operating system: Android is the fastest growing mobile platform.
The real-world constraints and operating environment of mobile devices are
quite different from traditional desktop or server computers. It is important
for students to learn this new environment.
Embedded Linux: The use of a minimal version of Linux for embedded sys-
tems has grown in popularity. This new edition provides an overview of the key
elements of the embedded Linux approach.
Virtual machines: Server virtualization and other forms of virtual machines
are becoming increasingly widespread. A new chapter deals with the operating
system design issues for virtual machines.
Multicore design issues: The dominant computer architecture is now multi-
core. This raises new OS design issues that are addressed in this new edition.
I/O standards: The book has been updated to reflect the latest developments,
including Thunderbolt.
Storage hardware: The discussion of storage hardware has been updated and
now includes discussion of solid-state drives.
Fault tolerance: The ACM/IEEE Computer Science Curricula 2013 lists fault
tolerance as one of the core topics for an OS course. A new section provides an
overview of fault tolerance.

xvii

OBJECTIVES

This book is about the concepts, structure, and mechanisms of operating systems. Its
purpose is to present, as clearly and completely as possible, the nature and charac-
teristics of modern-day operating systems.

This task is challenging for several reasons. First, there is a tremendous range
and variety of computer systems for which operating systems are designed. These
include embedded systems, smart phones, single-user workstations and personal
computers, medium-sized shared systems, large mainframe and supercomputers,
and specialized machines such as real-time systems. The variety is not just in the ca-
pacity and speed of machines, but in applications and system support requirements.
Second, the rapid pace of change that has always characterized computer systems
continues with no letup. A number of key areas in operating system design are of
recent origin, and research into these and other new areas continues.

In spite of this variety and pace of change, certain fundamental concepts apply
consistently throughout. To be sure, the application of these concepts depends on
the current state of technology and the particular application requirements. The
intent of this book is to provide a thorough discussion of the fundamentals of oper-
ating system design and to relate these to contemporary design issues and to current
directions in the development of operating systems.

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implemen-
tation issues of contemporary operating systems. Accordingly, a purely conceptual or
theoretical treatment would be inadequate. To illustrate the concepts and to tie them
to real-world design choices that must be made, four operating systems have been
chosen as running examples:

Windows 8: A multitasking operating system for personal computers, worksta-
tions, servers, and mobile devices. This operating system incorporates many of
the latest developments in operating system technology. In addition, Windows
is one of the first important commercial operating systems to rely heavily on
object-oriented design principles. This book covers the technology used in the
most recent versions of Windows, known as Windows 8.
Android: Android tailored for embedded devices, especially mobile phones.
Focusing on the unique requirements of the embedded environment, the book
provides details of Android internals.
UNIX: A multiuser operating system, originally intended for minicomputers,
but implemented on a wide range of machines from powerful microcomputers
to supercomputers. Several flavors of UNIX are included as examples. FreeBSD
is a widely used system that incorporates many state-of-the-art features. Solaris
is a widely used commercial version of UNIX.
Linux: An open-source version of UNIX that is now widely used.

xviii PREFACE

These systems were chosen because of their relevance and representativeness.
The discussion of the example systems is distributed throughout the text rather than
assembled as a single chapter or appendix. Thus, during the discussion of concur-
rency, the concurrency mechanisms of each example system are described, and the
motivation for the individual design choices is discussed. With this approach, the
design concepts discussed in a given chapter are immediately reinforced with real-
world examples. For convenience all of the material for each of the example sys-
tems is also available as an online document.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

The book is intended for both an academic and a professional audience. As a text-
book, it is intended as a one-semester or two-semester undergraduate course in
operating systems for computer science, computer engineering, and electrical engi-
neering majors. This edition is designed to support the recommendations of the cur-
rent (February 2013) draft version of the ACM/IEEE Computer Science Curricula
2013 (CS2013). The CS2013 curriculum recommendation includes Operating
Systems (OSs) as one of the Knowledge Areas in the Computer Science Body of
Knowledge. CS2013 divides all course work into three categories: Core-Tier 1 (all
topics should be included in the curriculum), Core-Tier-2 (all or almost all topics
should be included), and Elective (desirable to provide breadth and depth). In the
OS area, CS2013 includes two Tier 1 topics, four Tier 2 topics, and 6 Elective topics,
each of which has a number of subtopics. This text covers all of the topics and sub-
topics listed by CS2013 in these three categories.

Table P.1 shows the support for the OS Knowledge Area provided in this text-
book. A detailed list of subtopics for each topic is available as the file CS2013-OS.
pdf at box.com/OS8e.

PLAN OF THE TEXT

The book is divided into five parts (see Chapter 0 for an overview):

Background
Processes
Memory
Scheduling
Advanced topics (embedded OSs, virtual machines, OS security, and distrib-
uted systems)

The book includes a number of pedagogic features, including the use of ani-
mations and video notes and numerous figures and tables to clarify the discussion.
Each chapter includes a list of key words, review questions, homework problems,
and suggestions for further reading. The book also includes an extensive glossary,
a list of frequently used acronyms, and a bibliography. In addition, a test bank is
available to instructors.

PREFACE xix

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool for this funda-
mental yet evolving subject as possible. This goal is reflected both in the structure of
the book and in the supporting material. The text is accompanied by the following
supplementary material to aid the instructor:

Solutions manual: Solutions to end-of-chapter Review Questions and Problems.
Projects manual: Suggested project assignments for all of the project catego-
ries listed in this Preface.
PowerPoint slides: A set of slides covering all chapters, suitable for use in
lecturing.
PDF files: Reproductions of all figures and tables from the book.
Test bank: A chapter-by-chapter set of questions with a separate file of
answers.

Table P.1 Coverage of CS2013 Operating Systems (OSs) Knowledge Area

Topic Coverage in Book

Overview of Operating Systems (Tier 1) Chapter 2: Operating System Overview

Operating System Principles (Tier 1) Chapter 1: Computer System Overview
Chapter 2: Operating System Overview

Concurrency (Tier 2) Chapter 5: Mutual Exclusion and Synchronization
Chapter 6: Deadlock and Starvation
Appendix A: Topics in Concurrency
Chapter 18: Distributed Process Management

Scheduling and Dispatch (Tier 2) Chapter 9: Uniprocessor Scheduling
Chapter 10: Multiprocessor and Real-Time
Scheduling

Memory Management (Tier 2) Chapter 7: Memory Management
Chapter 8: Virtual Memory

Security and Protection (Tier 2) Chapter 15: Operating System Security

Virtual Machines (Elective) Chapter 14: Virtual Machines

Device Management (Elective) Chapter 11: I/O Management and Disk Scheduling

File System (Elective) Chapter 12: File Management

Real Time and Embedded Systems (Elective) Chapter 10: Multiprocessor and Real-Time
Scheduling
Chapter 13: Embedded Operating Systems
Material on Android throughout the text

Fault Tolerance (Elective) Section 2.5: Fault Tolerance

System Performance Evaluation (Elective) Performance issues related to memory management,
scheduling, and other areas addressed throughout
the text

xx PREFACE

VideoNotes on concurrency: Professors perennially cite concurrency as per-
haps the most difficult concept in the field of operating systems for students
to grasp. The edition is accompanied by a number of VideoNotes lectures
discussing the various concurrency algorithms defined in the book.
Sample syllabuses: The text contains more material than can be conveniently
covered in one semester. Accordingly, instructors are provided with several
sample syllabuses that guide the use of the text within limited time. These
samples are based on real-world experience by professors with the seventh
edition.

All of these support materials are available at the Instructor Resource Center
(IRC) for this textbook, which can be reached through the publisher’s Web site
www.pearsonhighered.com/stallings or by clicking on the link labeled Pearson
Resources for Instructors at this book’s Companion Web site at WilliamStallings.
com/OperatingSystems. To gain access to the IRC, please contact your local Pearson
sales representative via pearsonhighered.com/educator/replocator/requestSalesRep.
page or call Pearson Faculty Services at 1-800-526-0485.

The Companion Web site, at WilliamStallings.com/OperatingSystems (click
on Instructor Resources link), includes the following:

Links to Web sites for other courses being taught using this book.
Sign-up information for an Internet mailing list for instructors using this book
to exchange information, suggestions, and questions with each other and with
the author.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of an OS course is a project or set of
projects by which the student gets hands-on experience to reinforce concepts from
the text. This book provides an unparalleled degree of support for including a proj-
ects component in the course. In the online portion of the text, two major program-
ming projects are defined. In addition, the instructor’s support materials available
through Prentice Hall not only includes guidance on how to assign and structure the
various projects but also includes a set of user’s manuals for various project types
plus specific assignments, all written especially for this book. Instructors can assign
work in the following areas:

OS/161 projects: Described below.
Simulation projects: Described below.
Programming projects: Described below.
Research projects: A series of research assignments that instruct the student to
research a particular topic on the Internet and write a report.
Reading/report assignments: A list of papers that can be assigned for reading
and writing a report, plus suggested assignment wording.

PREFACE xxi

www.pearsonhighered.com/stallings

Writing assignments: A list of writing assignments to facilitate learning the
material.
Discussion topics: These topics can be used in a classroom, chat room, or mes-
sage board environment to explore certain areas in greater depth and to foster
student collaboration.

In addition, information is provided on a software package known as BACI that
serves as a framework for studying concurrency mechanisms.

This diverse set of projects and other student exercises enables the instructor
to use the book as one component in a rich and varied learning experience and to
tailor a course plan to meet the specific needs of the instructor and students. See
Appendix B in this book for details.

OS/161

This edition provides support for an active learning component based on OS/161.
OS/161 is an educational operating system that is becoming increasingly recognized as
the preferred teaching platform for OS internals. It aims to strike a balance between
giving students experience in working on a real operating system and potentially over-
whelming students with the complexity that exists in a fully-fledged operating system,
such as Linux. Compared to most deployed operating systems, OS/161 is quite small
(approximately 20,000 lines of code and comments), and therefore it is much easier to
develop an understanding of the entire code base.

The IRC includes:

 1. A packaged set of html files that the instructor can upload to a course server
for student access.

 2. A getting-started manual to be handed out to students to help them begin
using OS/161.

 3. A set of exercises using OS/161, to be handed out to students.
 4. Model solutions to each exercise for the instructor’s use.
 5. All of this will be cross-referenced with appropriate sections in the book, so

that the student can read the textbook material and then do the corresponding
OS/161 project.

SIMULATIONS

The IRC provides support for assigning projects based on a set of seven simulations
that cover key areas of OS design. The student can use a set of simulation packages
to analyze OS design features. The simulators are all written in Java and can be run
either locally as a Java application or online through a browser. The IRC includes
specific assignments to give to students, telling them specifically what they are to do
and what results are expected.

xxii PREFACE

ANIMATIONS

This edition also incorporates animations. Animations provide a powerful tool for
understanding the complex mechanisms of a modern OS. A total of 53 animations
are used to illustrate key functions and algorithms in OS design. The animations are
used for Chapters 3, 5, 6, 7, 8, 9, and 11. The animations are available at the Premium
Web site for this book.

PROGRAMMING PROJECTS

This edition provides support for programming projects. Two major programming
projects, one to build a shell, or command line interpreter, and one to build a process
dispatcher are described in the online portion of this textbook. The IRC provides
further information and step-by-step exercises for developing the programs.

As an alternative, the instructor can assign a more extensive series of pro-
jects that cover many of the principles in the book. The student is provided with
detailed instructions for doing each of the projects. In addition, there is a set of
homework problems, which involve questions related to each project for the stu-
dent to answer.

Finally, the project manual provided at the IRC includes a series of program-
ming projects that cover a broad range of topics and that can be implemented in any
suitable language on any platform.

ONLINE DOCUMENTS, ANIMATIONS, AND VIDEONOTES
FOR STUDENTS

For this new edition, a substantial amount of original supporting
material for students has been made available online, at two Web
locations. The Companion Web site, at WilliamStallings.com/
OperatingSystems (click on Student Resources link), includes a
list of relevant links organized by chapter and an errata sheet for
the book.

Purchasing this textbook new also grants the reader six months of access to
the Premium Content site, which includes the following materials:

Online chapters: To limit the size and cost of the book, two chapters of the
book, covering security, are provided in PDF format. The chapters are listed in
this book’s table of contents.
Online appendices: There are numerous interesting topics that support mate-
rial found in the text but whose inclusion is not warranted in the printed text.
A total of 18 online appendices cover these topics for the interested student.
The appendices are listed in this book’s table of contents.

PREFACE xxiii

Homework problems and solutions: To aid the student in understanding the
material, a separate set of homework problems with solutions is available.
Animations: Animations provide a powerful tool for understanding the complex
mechanisms of a modern OS. A total of 53 animations are used to illustrate key
functions and algorithms in OS design. The animations are used for Chapters 3,
5, 6, 7, 8, 9, and 11.

Videonotes: VideoNotes are step-by-step video tutorials specifi-
cally designed to enhance the programming concepts presented in
this textbook. The book is accompanied by a number of VideoNotes
lectures discussing the various concurrency algorithms defined in
the book.

To access the Premium Content site, click on the Premium Content
link at the Companion Web site or at pearsonhighered.com/stallings and
enter the student access code found on the card in the front of the book.

ACKNOWLEDGMENTS

Through its multiple editions, this book has benefited from review by hundreds of
instructors and professionals, who gave generously of their time and expertise. Here
I acknowledge those whose help contributed to this latest edition.

The following instructors reviewed all or a large part of the manuscript: Bernard
Ku (Austin Community College, Northridge), Hemant Pendharker (Worcester
State University), Nancy Birkenheuer (Regis University, Denver), Greg Ozbirn
(University of Texas, Dallas).

Thanks also to the people who provided detailed reviews of the example
systems. Reviews of the Android material were provided by Kristopher Micinski,
Ron Munitz, Atte Peltomaki, Durgadoss Ramanathan, Manish Shakya, Samuel
Simon, Wei Wang, and Chen Yang. The Linux reviewers were Tigran Aivazian,
Kaiwan Billimoria, Peter Huewe, Manmohan Manoharan, Rami Rosen, Neha
Naik, and Hualing Yu. The Windows material was reviewed by Francisco Cotrina,
Sam Haidar, Christopher Kuleci, Benny Olsson, and Dave Probert. Nick Garnett
of eCosCentric, for the review of the material on eCos, and Philip Levis, one of
the developers of TinyOS, for the review of the material on TinyOS.

Andrew Peterson of the University of Toronto prepared the OS/161 supple-
ments for the IRC. James Craig Burley authored and recorded the VideoNotes.

Adam Critchley (University of Texas at San Antonio) developed the simula-
tion exercises. Matt Sparks (University of Illinois at Urbana-Champaign) adapted a
set of programming problems for use with this textbook.

Lawrie Brown of the Australian Defence Force Academy produced the ma-
terial on buffer overflow attacks. Ching-Kuang Shene (Michigan Tech University)
provided the examples used in the section on race conditions and reviewed the
section. Tracy Camp and Keith Hellman, both at the Colorado School of Mines,
developed a new set of homework problems. In addition, Fernando Ariel Gont

xxiv PREFACE

PREFACE xxv

contributed a number of homework problems; he also provided detailed reviews
of all of the chapters.

I would also like to thank Bill Bynum (College of William and Mary) and
Tracy Camp (Colorado School of Mines) for contributing Appendix O; Steve
Taylor (Worcester Polytechnic Institute) for contributing the programming projects
and reading/report assignments in the instructor’s manual; and Professor Tan N.
Nguyen (George Mason University) for contributing the research projects in the
instruction manual. Ian G. Graham (Griffith University) contributed the two pro-
gramming projects in the textbook. Oskars Rieksts (Kutztown University) gener-
ously allowed me to make use of his lecture notes, quizzes, and projects.

Finally, I thank the many people responsible for the publication of this
book, all of whom did their usual excellent job. This includes the staff at Pearson,
particularly my editor Tracy Johnson, her assistant Jenah Blitz-Stoehr, program
manager Carole Snyder, and project manager Bob Engelhardt. I also thank Shiny
Rajesh and the production staff at Integra for another excellent and rapid job.
Thanks also to the marketing and sales staffs at Pearson, without whose efforts
this book would not be in front of you.

This page intentionally left blank

ABOUT THE AUTHOR

Dr. William Stallings has authored 17 titles, and counting revised editions, over 40
books on computer security, computer networking, and computer architecture. His
writings have appeared in numerous publications, including the Proceedings of the
IEEE, ACM Computing Reviews and Cryptologia.

He has 12 times received the award for the best Computer Science textbook of
the year from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical
manager, and an executive with several high-technology firms. He has designed
and implemented both TCP/IP-based and OSI-based protocol suites on a variety
of computers and operating systems, ranging from microcomputers to mainframes.
As a consultant, he has advised government agencies, computer and software ven-
dors, and major users on the design, selection, and use of networking software and
products.

He created and maintains the Computer Science Student Resource Site at
ComputerScienceStudent.com. This site provides documents and links on a variety
of subjects of general interest to computer science students (and professionals). He
is a member of the editorial board of Cryptologia, a scholarly journal devoted to
all aspects of cryptology. He is Networking Category Expert Writer at networking.
answers.com.

Dr. Stallings holds a Ph.D. from M.I.T. in Computer Science and a B.S. from
Notre Dame in electrical engineering.

xxvii

This page intentionally left blank

OPERATING SYSTEMS
INTERNALS AND DESIGN
PRINCIPLES

This page intentionally left blank

11

0.1 Outline of This Book

0.2 Example Systems

0.3 A Roadmap for Readers and Instructors

0.4 Internet and Web Resources
Web Sites for This
Book Computer Science Student Resource Site
Other Web Sites

GUIDE FOR READERS AND
INSTRUCTORS

CHAPTER

1

2 CHAPTER 0 / GUIDE FOR READERS AND INSTRUCTORS

This book, with its accompanying Web site, covers a lot of material. Here we give the
reader some basic background information.

 0.1 OUTLINE OF THIS BOOK

The book is organized in eight parts:

Part One. Background: Provides an overview of computer architecture and
organization, with emphasis on topics that relate to operating system (OS)
design, plus an overview of the OS topics in remainder of the book.
Part Two. Processes: Presents a detailed analysis of processes, multithreading,
symmetric multiprocessing (SMP), and microkernels. This part also examines
the key aspects of concurrency on a single system, with emphasis on issues of
mutual exclusion and deadlock.
Part Three. Memory: Provides a comprehensive survey of techniques for mem-
ory management, including virtual memory.
Part Four. Scheduling: Provides a comparative discussion of various approaches
to process scheduling. Thread scheduling, SMP scheduling, and real-time
scheduling are also examined.
Part Five. Input/Output and Files: Examines the issues involved in OS
 control of the I/O function. Special attention is devoted to disk I/O,
which is the key to system performance. Also provides an overview of file
 management.
Part Six. Embedded Systems: Embedded systems far outnumber general-pur-
pose computing systems and present a number of unique OS challenges. The
part includes a discussion of common principles plus coverage of two example
systems: TinyOS and eCos.
Part Seven. Security: Provides a survey of threats and mechanisms for provid-
ing computer and network security.
Part Eight. Distributed Systems: Examines the major trends in the networking
of computer systems, including TCP/IP, client/server computing, and clusters.
Also describes some of the key design areas in the development of distributed
operating systems.

A number of online chapters and appendices cover additional topics relevant
to the book.

 0.2 EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implemen-
tation issues of contemporary operating systems. Accordingly, a purely conceptual or
theoretical treatment would be inadequate. To illustrate the concepts and to tie them

0.3 / A ROADMAP FOR READERS AND INSTRUCTORS 3

to real-world design choices that must be made, three operating systems have been
chosen as running examples:

Windows: A multitasking operating system designed to run on a variety of
PCs, workstations, and servers. It is one of the few recent commercial operat-
ing systems that have essentially been designed from scratch. As such, it is in a
position to incorporate in a clean fashion the latest developments in operating
system technology. The current version, presented in this book, is Windows 7.
UNIX: A multitasking operating system originally intended for minicomput-
ers but implemented on a wide range of machines from powerful microcom-
puters to supercomputers. Included under this topic is Linux.
Android: Android is the dominant mobile platform. The real-world con-
straints and operating environment of mobile devices are quite different from
traditional desktop or server computers. It is important for students to learn
this new environment. The book provides details of Android internals.

The discussion of the example systems is distributed throughout the text rather
than assembled as a single chapter or appendix. Thus, during the discussion of con-
currency, the concurrency mechanisms of each example system are described, and
the motivation for the individual design choices is discussed. With this approach, the
design concepts discussed in a given chapter are immediately reinforced with real-
world examples.

The book also makes use of other example systems where appropriate.

 0.3 A ROADMAP FOR READERS AND INSTRUCTORS

It would be natural for the reader to question the particular ordering of topics pre-
sented in this book. For example, the topic of scheduling (Chapters 9 and 10) is closely
related to those of concurrency (Chapters 5 and 6) and the general topic of processes
(Chapter 3) and might reasonably be covered immediately after those topics.

The difficulty is that the various topics are highly interrelated. For example, in
discussing virtual memory, it is useful to refer to the scheduling issues related to a
page fault. Of course, it is also useful to refer to some memory management issues
when discussing scheduling decisions. This type of example can be repeated end-
lessly: A discussion of scheduling requires some understanding of I/O management
and vice versa.

Figure 0.1 suggests some of the important interrelationships between topics.
The solid lines indicate very strong relationships, from the point of view of design
and implementation decisions. Based on this diagram, it makes sense to begin with
a basic discussion of processes, which we do in Chapter 3. After that, the order is
somewhat arbitrary. Many treatments of operating systems bunch all of the mate-
rial on processes at the beginning and then deal with other topics. This is certainly
valid. However, the central significance of memory management, which I believe is
of equal importance to process management, has led to a decision to present this
material prior to an in-depth look at scheduling.

4 CHAPTER 0 / GUIDE FOR READERS AND INSTRUCTORS

The ideal solution is for the student, after completing Chapters 1 through
3 inÊseries, to read and absorb the following chapters in parallel: 4 followed by
(optional) 5; 6 followed by 7; 8 followed by (optional) 9; 10. The remaining parts can
be done in any order. However, although the human brain may engage in parallel
processing, the human student finds it impossible (and expensive) to work success-
fully with four copies of the same book simultaneously open to four different chap-
ters. Given the necessity for a linear ordering, I think that the ordering used in this
book is the most effective.

A final comment. Chapter 2, especially Section 2.3, provides a top-level view
of all of the key concepts covered in later chapters. Thus, after reading Chapter 2,
there is considerable flexibility in choosing the order in which to read the remaining
chapters.

 0.4 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web to support this
book and for keeping up with developments in this field.

Web Sites for This Book

Three Web sites provide additional resources for students and instructors. There is a
Companion Web site for this book at http://williamstallings.com/OperatingSystems/.
For students, this Web site includes a list of relevant links organized by chapter and an

Distributed
systems

Process
description
and control

Scheduling Memory
management

Security

Embedded
systems

Concurrency

I/O and file
management

Figure 0.1 OS Topics

http://williamstallings.com/OperatingSystems/

0.4 / INTERNET AND WEB RESOURCES 5

errata list for the book. There are also documents that introduce the C programming
language for students who are not familiar with or need a refresher on this language.
For instructors, this Web site links to course pages by professors teaching from this
book and provides a number of other useful documents and links.

There is also an access-controlled Premium Content Website, which provides
a wealth of supporting material, including additional online chapters, additional
online appendices, a set of homework problems with solutions, a set of animations
that illustrate key concepts, and a collection of videonotes that are narratives on
many of the algorithms in the book. See the card at the front of this book for access
information.

Finally, additional material for instructors is available at the Instructor
Resource Center (IRC) for this book. See Preface for details and access information.

As soon as any typos or other errors are discovered, an errata list for this book
will be available at the Web site. Please report any errors that you spot. Errata sheets
for my other books are at WilliamStallings.com.

I also maintain the Computer Science Student Resource Site, at
ComputerScienceStudent.com. The purpose of this site is to provide documents,
information, and links for computer science students and professionals. Links and
documents are organized into seven categories:

Math: Includes a basic math refresher, a queueing analysis primer, a number
system primer, and links to numerous math sites.
How-to: Advice and guidance for solving homework problems, writing techni-
cal reports, and preparing technical presentations.
Research resources: Links to important collections of papers, technical
reports, and bibliographies.
Other useful: A variety of other useful documents and links.
Computer science careers: Useful links and documents for those considering a
career in computer science.
Writing help: Help in becoming a clearer, more effective writer.
Miscellaneous topics and humor: You have to take your mind off your work
once in a while.

Other Web Sites

There are numerous Web sites that provide information related to the topics of this
book. The Companion Web site provides links to these sites, organized by chapter.

This page intentionally left blank

7

 1.1 Basic Elements

 1.2 Evolution of the Microprocessor

 1.3 Instruction Execution

 1.4 Interrupts
Interrupts and the Instruction Cycle
Interrupt Processing
Multiple Interrupts

 1.5 The Memory Hierarchy

 1.6 Cache Memory
Motivation
Cache Principles
Cache Design

 1.7 Direct Memory Access

 1.8 Multiprocessor and Multicore Organization
Symmetric Multiprocessors
Multicore Computers

 1.9 Recommended Reading

 1.10 Key Terms, Review Questions, and Problems

APPENDIX 1A Performance Characteristics of Two-Level Memories
Locality
Operation of Two-Level Memory
Performance

COMPUTER SYSTEM OVERVIEW

CHAPTER

BackgroundPART 1

8 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

An operating system (OS) exploits the hardware resources of one or more proces-
sors to provide a set of services to system users. The OS also manages secondary
memory and I/O (input/output) devices on behalf of its users. Accordingly, it is im-
portant to have some understanding of the underlying computer system hardware
before we begin our examination of operating systems.

This chapter provides an overview of computer system hardware. In most
areas, the survey is brief, as it is assumed that the reader is familiar with this subject.
However, several areas are covered in some detail because of their importance to
topics covered later in the book. Further topics are covered in Appendix C.

 1.1 BASIC ELEMENTS

At a top level, a computer consists of processor, memory, and I/O components, with
one or more modules of each type. These components are interconnected in some
fashion to achieve the main function of the computer, which is to execute programs.
Thus, there are four main structural elements:

Processor: Controls the operation of the computer and performs its data pro-
cessing functions. When there is only one processor, it is often referred to as
the central processing unit (CPU).
Main memory: Stores data and programs. This memory is typically volatile;
that is, when the computer is shut down, the contents of the memory are lost.
In contrast, the contents of disk memory are retained even when the computer
system is shut down. Main memory is also referred to as real memory or pri-
mary memory.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Describe the basic elements of a computer system and their
interrelationship.
Explain the steps taken by a processor to execute an instruction.
Understand the concept of interrupts and how and why a processor uses
interrupts.
List and describe the levels of a typical computer memory hierarchy.
Explain the basic characteristics of multiprocessor and multicore
organizations.
Discuss the concept of locality and analyze the performance of a multilevel
memory hierarchy.
Understand the operation of a stack and its use to support procedure call
and return.

1.1 / BASIC ELEMENTS 9

I/O modules: Move data between the computer and its external environment.
The external environment consists of a variety of devices, including secondary
memory devices (e.g., disks), communications equipment, and terminals.
System bus: Provides for communication among processors, main memory,
and I/O modules.

Figure 1.1 depicts these top-level components. One of the processor’s func-
tions is to exchange data with memory. For this purpose, it typically makes use of
two internal (to the processor) registers: a memory address register (MAR), which
specifies the address in memory for the next read or write; and a memory buffer reg-
ister (MBR), which contains the data to be written into memory or which receives
the data read from memory. Similarly, an I/O address register (I/OAR) specifies a
particular I/O device. An I/O buffer register (I/OBR) is used for the exchange of
data between an I/O module and the processor.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a bit pattern that can be interpreted as either

CPU Main memory

System
bus

I/O module

Buffers

Instruction

n!2
n!1

Data

Data

Data

Data

Instruction

Instruction

PC " Program counter
IR " Instruction register
MAR " Memory address register
MBR " Memory buffer register
I/O AR " Input/output address register
I/O BR " Input/output buffer register

0
1
2

PC MAR

IR MBR

I/O AR

I/O BR
Execution

unit

Figure 1.1 Computer Components: Top-Level View

10 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

an instruction or data. An I/O module transfers data from external devices to proces-
sor and memory, and vice versa. It contains internal buffers for temporarily holding
data until they can be sent on.

 1.2 EVOLUTION OF THE MICROPROCESSOR

The hardware revolution that brought about desktop and handheld computing was
the invention of the microprocessor, which contained a processor on a single chip.
Though originally much slower than multichip processors, microprocessors have
continually evolved to the point that they are now much faster for most computa-
tions due to the physics involved in moving information around in sub-nanosecond
timeframes.

Not only have microprocessors become the fastest general purpose processors
available, they are now multiprocessors; each chip (called a socket) contains mul-
tiple processors (called cores), each with multiple levels of large memory caches,
and multiple logical processors sharing the execution units of each core. As of 2010,
it is not unusual for even a laptop to have 2 or 4 cores, each with 2 hardware threads,
for a total of 4 or 8 logical processors.

Although processors provide very good performance for most forms of com-
puting, there is increasing demand for numerical computation. Graphical Processing
Units (GPUs) provide efficient computation on arrays of data using Single-
Instruction Multiple Data (SIMD) techniques pioneered in supercomputers. GPUs
are no longer used just for rendering advanced graphics, but they are also used for
general numerical processing, such as physics simulations for games or computations
on large spreadsheets. Simultaneously, the CPUs themselves are gaining the capabil-
ity of operating on arrays of data–with increasingly powerful vector units integrated
into the processor architecture of the x86 and AMD64 families.

Processors and GPUs are not the end of the computational story for the mod-
ern PC. Digital Signal Processors (DSPs) are also present, for dealing with stream-
ing signals–such as audio or video. DSPs used to be embedded in I/O devices, like
modems, but they are now becoming first-class computational devices, especially in
handhelds. Other specialized computational devices (fixed function units) co-exist
with the CPU to support other standard computations, such as encoding/decoding
speech and video (codecs), or providing support for encryption and security.

To satisfy the requirements of handheld devices, the classic microprocessor
is giving way to the System on a Chip (SoC), where not just the CPUs and caches
are on the same chip, but also many of the other components of the system, such as
DSPs, GPUs, I/O devices (such as radios and codecs), and main memory.

 1.3 INSTRUCTION EXECUTION

A program to be executed by a processor consists of a set of instructions stored
in memory. In its simplest form, instruction processing consists of two steps: The
processor reads (fetches) instructions from memory one at a time and executes each
instruction. Program execution consists of repeating the process of instruction fetch

1.3 / INSTRUCTION EXECUTION 11

and instruction execution. Instruction execution may involve several operations and
depends on the nature of the instruction.

The processing required for a single instruction is called an instruction
cycle. Using a simplified two-step description, the instruction cycle is depicted in
Figure 1.2. The two steps are referred to as the fetch stage and the execute stage.
Program execution halts only if the processor is turned off, some sort of unrecover-
able error occurs, or a program instruction that halts the processor is encountered.

At the beginning of each instruction cycle, the processor fetches an instruc-
tion from memory. Typically, the program counter (PC) holds the address of the
next instruction to be fetched. Unless instructed otherwise, the processor always
increments the PC after each instruction fetch so that it will fetch the next instruc-
tion in sequence (i.e., the instruction located at the next higher memory address).
For example, consider a simplified computer in which each instruction occupies one
16-bit word of memory. Assume that the program counter is set to location 300.
The processor will next fetch the instruction at location 300. On succeeding instruc-
tion cycles, it will fetch instructions from locations 301, 302, 303, and so on. This
sequence may be altered, as explained subsequently.

The fetched instruction is loaded into the instruction register (IR). The in-
struction contains bits that specify the action the processor is to take. The processor
interprets the instruction and performs the required action. In general, these actions
fall into four categories:

Processor-memory: Data may be transferred from processor to memory or
from memory to processor.
Processor-I/O: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/O module.
Data processing: The processor may perform some arithmetic or logic opera-
tion on data.
Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from location 182. The processor sets the
program counter to 182. Thus, on the next fetch stage, the instruction will be
fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.
Consider a simple example using a hypothetical processor that includes the

characteristics listed in Figure 1.3. The processor contains a single data register,

START HALTFetch next
instruction

Fetch stage Execute stage

Execute
instruction

Figure 1.2 Basic Instruction Cycle

12 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

called the accumulator (AC). Both instructions and data are 16 bits long, and mem-
ory is organized as a sequence of 16-bit words. The instruction format provides 4
bits for the opcode, allowing as many as 24 = 16 different opcodes (represented by a
single hexadecimal1 digit). The opcode defines the operation the processor is to per-
form. With the remaining 12 bits of the instruction format, up to 212 = 4,096 (4K)
words of memory (denoted by three hexadecimal digits) can be directly addressed.

Figure 1.4 illustrates a partial program execution, showing the relevant por-
tions of memory and processor registers. The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at
address 941 and stores the result in the latter location. Three instructions, which can
be described as three fetch and three execute stages, are required:

 1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the IR and the PC is incremented.
Note that this process involves the use of a memory address register (MAR)
and a memory buffer register (MBR). For simplicity, these intermediate regis-
ters are not shown.

 2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded from memory. The remaining 12 bits (three hexadecimal digits) specify
the address, which is 940.

 3. The next instruction (5941) is fetched from location 301 and the PC is
incremented.

0 3 4 15

15

Opcode Address

0 1
S Magnitude

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(a) Instruction format

(b) Integer format

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

1A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
Science Student Resource Site at ComputerScienceStudent.com.

1.4 / INTERRUPTS 13

 4. The old contents of the AC and the contents of location 941 are added and the
result is stored in the AC.

 5. The next instruction (2941) is fetched from location 302 and the PC is
incremented.

 6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch stage and
an execute stage, are needed to add the contents of location 940 to the contents
of 941. With a more complex set of instructions, fewer instruction cycles would be
needed. Most modern processors include instructions that contain more than one
address. Thus the execution stage for a particular instruction may involve more than
one reference to memory. Also, instead of memory references, an instruction may
specify an I/O operation.

 1.4 INTERRUPTS

Virtually all computers provide a mechanism by which other modules (I/O, mem-
ory) may interrupt the normal sequencing of the processor. Table 1.1 lists the most
common classes of interrupts.

2

PC300
CPU registersMemory

Fetch stage Execute stage

3 0 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

Step 1

PC300
CPU registersMemory

3 0 11 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

0 0 0 3

Step 2

PC300
CPU registersMemory

3 0 1
0 0 0 5

0 0 0 5

0 0 0 3

0 0 0 5

1 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 3

PC300
CPU registersMemory

3 0 21 9 4 0
301 5 9 4 1
302 2 9 4 1

1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 4

PC300
CPU registersMemory

3 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR2 9 4 1

Step 5

PC300
CPU registersMemory

3 0 31 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 5

AC
IR2 9 4 1

Step 6

3 + 2 = 5

Figure 1.4 Example of Program Execution (contents
of memory and registers in hexadecimal)

14 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Interrupts are provided primarily as a way to improve processor utilization.
For example, most I/O devices are much slower than the processor. Suppose that
the processor is transferring data to a printer using the instruction cycle scheme of
Figure 1.2. After each write operation, the processor must pause and remain idle
until the printer catches up. The length of this pause may be on the order of many
thousands or even millions of instruction cycles. Clearly, this is a very wasteful use
of the processor.

To give a specific example, consider a PC that operates at 1 GHz, which would
allow roughly 109 instructions per second.2 A typical hard disk has a rotational
speed of 7200 revolutions per minute for a half-track rotation time of 4 ms, which is
4 million times slower than the processor.

Figure 1.5a illustrates this state of affairs. The user program performs a series
of WRITE calls interleaved with processing. The solid vertical lines represent seg-
ments of code in a program. Code segments 1, 2, and 3 refer to sequences of instruc-
tions that do not involve I/O. The WRITE calls are to an I/O routine that is a system
utility and that will perform the actual I/O operation. The I/O program consists of
three sections:

A sequence of instructions, labeled 4 in the figure, to prepare for the actual
I/O operation. This may include copying the data to be output into a special
buffer and preparing the parameters for a device command.
The actual I/O command. Without the use of interrupts, once this command
is issued, the program must wait for the I/O device to perform the requested
function (or periodically check the status, or poll, the I/O device). The pro-
gram might wait by simply repeatedly performing a test operation to deter-
mine if the I/O operation is done.
A sequence of instructions, labeled 5 in the figure, to complete the opera-
tion. This may include setting a flag indicating the success or failure of the
operation.

The dashed line represents the path of execution followed by the processor; that
is, this line shows the sequence in which instructions are executed. Thus, after the first

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction execution, such as
arithmetic overflow, division by zero, attempt to execute an illegal machine instruction,
and reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to perform
certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an operation or to
 signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

2A discussion of the uses of numerical prefixes, such as giga and tera, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.

1.4 / INTERRUPTS 15

WRITE instruction is encountered, the user program is interrupted and execution
continues with the I/O program. After the I/O program execution is complete, execu-
tion resumes in the user program immediately following the WRITE instruction.

Because the I/O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program
is stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle

With interrupts, the processor can be engaged in executing other instructions while
an I/O operation is in progress. Consider the flow of control in Figure 1.5b. As be-
fore, the user program reaches a point at which it makes a system call in the form
of a WRITE call. The I/O program that is invoked in this case consists only of the
preparation code and the actual I/O command. After these few instructions have
been executed, control returns to the user program. Meanwhile, the external device
is busy accepting data from computer memory and printing it. This I/O operation is
conducted concurrently with the execution of instructions in the user program.

When the external device becomes ready to be serviced, that is, when it is
ready to accept more data from the processor, the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program; branching off to a routine to service

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

END

1

2

3

2

3

4

5

(a) No interrupts

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1

2a

2b

3a

3b

4

5

(b) Interrupts; short I/O wait

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1 4

5

(c) Interrupts; long I/O wait

= interrupt occurs during course of execution of user program

Figure 1.5 Program Flow of Control Without and With Interrupts

16 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

that particular I/O device, known as an interrupt handler; and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by in Figure 1.5b. Note that an interrupt can occur at any point in the
main program, not just at one specific instruction.

For the user program, an interrupt suspends the normal sequence of execu-
tion. When the interrupt processing is completed, execution resumes (Figure 1.6).
Thus, the user program does not have to contain any special code to accommodate
interrupts; the processor and the OS are responsible for suspending the user pro-
gram and then resuming it at the same point.

To accommodate interrupts, an interrupt stage is added to the instruction
cycle, as shown in Figure 1.7 (compare Figure 1.2). In the interrupt stage, the pro-
cessor checks to see if any interrupts have occurred, indicated by the presence of

1

2

i

i ! 1

M

Interrupt
occurs here

User program Interrupt handler

Figure 1.6 Transfer of Control via Interrupts

Fetch stage Execute stage Interrupt stage

START

HALT

Interrupts
disabled

Interrupts
enabled

Fetch next
instruction

Execute
instruction

Check for
interrupt;

initiate interrupt
handler

Figure 1.7 Instruction Cycle with Interrupts

1.4 / INTERRUPTS 17

an interrupt signal. If no interrupts are pending, the processor proceeds to the
fetch stage and fetches the next instruction of the current program. If an interrupt
is pending, the processor suspends execution of the current program and executes
an interrupt-handler routine. The interrupt-handler routine is generally part of the
OS. Typically, this routine determines the nature of the interrupt and performs
whatever actions are needed. In the example we have been using, the handler de-
termines which I/O module generated the interrupt and may branch to a program
that will write more data out to that I/O module. When the interrupt-handler rou-
tine is completed, the processor can resume execution of the user program at the
point of interruption.

It is clear that there is some overhead involved in this process. Extra instructions
must be executed (in the interrupt handler) to determine the nature of the interrupt
and to decide on the appropriate action. Nevertheless, because of the relatively large
amount of time that would be wasted by simply waiting on an I/O operation, the pro-
cessor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 1.8, which is a timing dia-
gram based on the flow of control in Figures 1.5a and 1.5b. Figures 1.5b and 1.8

Time

4

1

5 5

2

5

3

4

I/O operation;
processor waits

I/O operation
concurrent with

processor executing

I/O operation
concurrent with

processor executing

I/O operation;
processor waits

4

2a

1

2b

4

3a

5

3b

(a) Without interrupts

(b) With interrupts

Figure 1.8 Program Timing: Short I/O Wait

18 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

assume that the time required for the I/O operation is relatively short: less than the
time to complete the execution of instructions between write operations in the user
program. The more typical case, especially for a slow device such as a printer, is
that the I/O operation will take much more time than executing a sequence of user
instructions. Figure 1.5c indicates this state of affairs. In this case, the user program
reaches the second WRITE call before the I/O operation spawned by the first call is
complete. The result is that the user program is hung up at that point. When the pre-
ceding I/O operation is completed, this new WRITE call may be processed, and a
new I/O operation may be started. Figure 1.9 shows the timing for this situation with
and without the use of interrupts. We can see that there is still a gain in efficiency
because part of the time during which the I/O operation is underway overlaps with
the execution of user instructions.

4

1

5

2

5

3

4

Time

4

2

1

5

4

(a) Without interrupts

(b) With interrupts

3

5

I/O operation;
processor waits

I/O operation;
processor waits

I/O operation
concurrent with

processor executing;
then processor

waits

I/O operation
concurrent with

processor executing;
then processor

waits

Figure 1.9 Program Timing: Long I/O Wait

1.4 / INTERRUPTS 19

Interrupt Processing

An interrupt triggers a number of events, both in the processor hardware and in
software. Figure 1.10 shows a typical sequence. When an I/O device completes an
I/O operation, the following sequence of hardware events occurs:

 1. The device issues an interrupt signal to the processor.
 2. The processor finishes execution of the current instruction before responding

to the interrupt, as indicated in Figure 1.7.
 3. The processor tests for a pending interrupt request, determines that there is

one, and sends an acknowledgment signal to the device that issued the inter-
rupt. The acknowledgment allows the device to remove its interrupt signal.

 4. The processor next needs to prepare to transfer control to the interrupt rou-
tine. To begin, it saves information needed to resume the current program at
the point of interrupt. The minimum information required is the program sta-
tus word3 (PSW) and the location of the next instruction to be executed, which

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Hardware Software

Figure 1.10 Simple Interrupt Processing

3The PSW contains status information about the currently running process, including memory usage
information, condition codes, and other status information, such as an interrupt enable/disable bit and a
kernel/user mode bit. See Appendix C for further discussion.

20 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

is contained in the program counter (PC). These can be pushed onto a control
stack (see Appendix P).

 5. The processor then loads the program counter with the entry location of the
interrupt-handling routine that will respond to this interrupt. Depending on
the computer architecture and OS design, there may be a single program, one
for each type of interrupt, or one for each device and each type of interrupt.
If there is more than one interrupt-handling routine, the processor must de-
termine which one to invoke. This information may have been included in
the original interrupt signal, or the processor may have to issue a request to
the device that issued the interrupt to get a response that contains the needed
information.

Once the program counter has been loaded, the processor proceeds to the
next instruction cycle, which begins with an instruction fetch. Because the instruc-
tion fetch is determined by the contents of the program counter, control is trans-
ferred to the interrupt-handler program. The execution of this program results in
the following operations:

 6. At this point, the program counter and PSW relating to the interrupted
 program have been saved on the control stack. However, there is other in-
formation that is considered part of the state of the executing program. In
particular, the contents of the processor registers need to be saved, because
these registers may be used by the interrupt handler. So all of these values,
plus any other state information, need to be saved. Typically, the interrupt
handler will begin by saving the contents of all registers on the stack. Other
state information that must be saved is discussed in Chapter 3. Figure 1.11a
shows a simple example. In this case, a user program is interrupted after the
instruction at location N. The contents of all of the registers plus the address
of the next instruction 1N + 12, a total of M words, are pushed onto the con-
trol stack. The stack pointer is updated to point to the new top of stack, and
the program counter is updated to point to the beginning of the interrupt
service routine.

 7. The interrupt handler may now proceed to process the interrupt. This includes
an examination of status information relating to the I/O operation or other
event that caused an interrupt. It may also involve sending additional com-
mands or acknowledgments to the I/O device.

 8. When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (e.g., see Figure 1.11b).

 9. The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

It is important to save all of the state information about the interrupted pro-
gram for later resumption. This is because the interrupt is not a routine called from
the program. Rather, the interrupt can occur at any time and therefore at any point
in the execution of a user program. Its occurrence is unpredictable.

1.4 / INTERRUPTS 21

Multiple Interrupts

So far, we have discussed the occurrence of a single interrupt. Suppose, however, that
one or more interrupts can occur while an interrupt is being processed. For example,
a program may be receiving data from a communications line and printing results at
the same time. The printer will generate an interrupt every time that it completes a
print operation. The communication line controller will generate an interrupt every
time a unit of data arrives. The unit could either be a single character or a block,
depending on the nature of the communications discipline. In any case, it is possible
for a communications interrupt to occur while a printer interrupt is being processed.

Start

N ! 1

Y ! L

N

Y

Y

T

Return

User’s
program

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

N + 1

T " M

T " M

T

Control
stack

Interrupt
service
routine

User’s
program

Interrupt
service
routine

(a) Interrupt occurs after instruction
at location N

(b) Return from interrupt

Start

N ! 1

Y ! L

N

Y

T

Return

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

Y ! L ! 1

T " M

T " M

T

Control
stack

N ! 1

Figure 1.11 Changes in Memory and Registers for an Interrupt

22 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Two approaches can be taken to dealing with multiple interrupts. The first
is to disable interrupts while an interrupt is being processed. A disabled interrupt
simply means that the processor ignores any new interrupt request signal. If an
interrupt occurs during this time, it generally remains pending and will be checked
by the processor after the processor has reenabled interrupts. Thus, if an interrupt
occurs when a user program is executing, then interrupts are disabled immediately.
After the interrupt-handler routine completes, interrupts are reenabled before re-
suming the user program, and the processor checks to see if additional interrupts
have occurred. This approach is simple, as interrupts are handled in strict sequen-
tial order (Figure 1.12a).

User program
Interrupt
handler X

Interrupt
handler Y

(a) Sequential interrupt processing

(b) Nested interrupt processing

User program
Interrupt
handler X

Interrupt
handler Y

Figure 1.12 Transfer of Control with Multiple Interrupts

1.4 / INTERRUPTS 23

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the com-
munications line, it may need to be absorbed rapidly to make room for more input. If
the first batch of input has not been processed before the second batch arrives, data
may be lost because the buffer on the I/O device may fill and overflow.

A second approach is to define priorities for interrupts and to allow an inter-
rupt of higher priority to cause a lower-priority interrupt handler to be interrupted
(Figure 1.12b). As an example of this second approach, consider a system with
three I/O devices: a printer, a disk, and a communications line, with increasing
priorities of 2, 4, and 5, respectively. Figure 1.13 illustrates a possible sequence. A
user program begins at t = 0. At t = 10, a printer interrupt occurs; user informa-
tion is placed on the control stack and execution continues at the printer interrupt
service routine (ISR). While this routine is still executing, at t = 15 a communica-
tions interrupt occurs. Because the communications line has higher priority than
the printer, the interrupt request is honored. The printer ISR is interrupted, its
state is pushed onto the stack, and execution continues at the communications
ISR. While this routine is executing, a disk interrupt occurs 1t = 202. Because this
interrupt is of lower priority, it is simply held, and the communications ISR runs
to completion.

When the communications ISR is complete 1t = 252, the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and transfers control to the disk ISR. Only when that rou-
tine is complete 1t = 352 is the printer ISR resumed. When that routine completes 1t = 402, control finally returns to the user program.

User program Printer
interrupt service routine

Communication
interrupt service routine

Disk
interrupt service routine

t !
 10

t ! 40

t !
 15

t ! 25

t ! 25

t ! 35

t ! 0

Figure 1.13 Example Time Sequence of Multiple Interrupts

24 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

 1.5 THE MEMORY HIERARCHY

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: namely, capacity, access time, and cost. A variety of technologies are
used to implement memory systems, and across this spectrum of technologies, the
following relationships hold:

Faster access time, greater cost per bit
Greater capacity, smaller cost per bit
Greater capacity, slower access speed

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-capacity memory, both because the capacity
is needed and because the cost per bit is low. However, to meet performance re-
quirements, the designer needs to use expensive, relatively lower-capacity memo-
ries with fast access times.

The way out of this dilemma is to not rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 1.14. As one goes down the hierarchy, the following occur:

 a. Decreasing cost per bit
 b. Increasing capacity
 c. Increasing access time
 d. Decreasing frequency of access to the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is the de-
creasing frequency of access at lower levels. We will examine this concept in greater
detail later in this chapter, when we discuss the cache, and when we discuss virtual
memory later in this book. A brief explanation is provided at this point.

Suppose that the processor has access to two levels of memory. Level 1 contains
1000 bytes and has an access time of 0.1 μs; level 2 contains 100,000 bytes and has an
access time of 1 μs. Assume that if a byte to be accessed is in level 1, then the proces-
sor accesses it directly. If it is in level 2, then the byte is first transferred to level 1 and
then accessed by the processor. For simplicity, we ignore the time required for the
processor to determine whether the byte is in level 1 or level 2. Figure 1.15 shows the
general shape of the curve that models this situation. The figure shows the average
access time to a two-level memory as a function of the hit ratio H, where H is defined

1.5 / THE MEMORY HIERARCHY 25

Inboardmemory

Outboardstorage

Off-linestorage

Main

memory

Magnetic disk

CD-ROM

CD-RW

DVD-RW

DVD-RAM

Blu-Ray

Magnetic tape

Cache

Reg-

iste
rs

Figure 1.14 The Memory Hierarchy

0

T1

T2

T1 ! T2

1

Fraction of accesses involving only level 1 (Hit ratio)

A
ve

ra
ge

 a
cc

es
s

tim
e

Figure 1.15 Performance of a Simple Two-Level
Memory

26 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

as the fraction of all memory accesses that are found in the faster memory (e.g., the
cache), T1 is the access time to level 1, and T2 is the access time to level 2.4 As can
be seen, for high percentages of level 1 access, the average total access time is much
closer to that of level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in the cache 1H = 0.952. Then the average time to access a byte can be expressed as10.952 10.1 ms2 + 10.052 10.1 ms + 1 ms2 = 0.095 + 0.055 = 0.15 ms

The result is close to the access time of the faster memory. So the strategy of
using two memory levels works in principle, but only if conditions (a) through (d)
in the preceding list apply. By employing a variety of technologies, a spectrum of
memory systems exists that satisfies conditions (a) through (c). Fortunately, condi-
tion (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENN68]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs
 typically contain a number of iterative loops and subroutines. Once a loop or
subroutine is entered, there are repeated references to a small set of instructions.
Similarly, operations on tables and arrays involve access to a clustered set of data
bytes. Over a long period of time, the clusters in use change, but over a short period
of time, the processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that of
the level above. Consider the two-level example already presented. Let level 2 mem-
ory contain all program instructions and data. The current clusters can be temporar-
ily placed in level 1. From time to time, one of the clusters in level 1 will have to be
swapped back to level 2 to make room for a new cluster coming in to level 1. On aver-
age, however, most references will be to instructions and data contained in level 1.

This principle can be applied across more than two levels of memory. The
fastest, smallest, and most expensive type of memory consists of the registers inter-
nal to the processor. Typically, a processor will contain a few dozen such registers,
although some processors contain hundreds of registers. Skipping down two levels,
main memory is the principal internal memory system of the computer. Each loca-
tion in main memory has a unique address, and most machine instructions refer
to one or more main memory addresses. Main memory is usually extended with a
higher-speed, smaller cache. The cache is not usually visible to the programmer or,
indeed, to the processor. It is a device for staging the movement of data between
main memory and processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk, tape, and optical

4If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.

1.6 / CACHE MEMORY 27

storage. External, nonvolatile memory is also referred to as secondary memory or
auxiliary memory. These are used to store program and data files, and are usually
visible to the programmer only in terms of files and records, as opposed to individ-
ual bytes or words. A hard disk is also used to provide an extension to main memory
known as virtual memory, which is discussed in Chapter 8.

Additional levels can be effectively added to the hierarchy in software. For
example, a portion of main memory can be used as a buffer to temporarily hold data
that are to be read out to disk. Such a technique, sometimes referred to as a disk
cache (examined in detail in Chapter 11), improves performance in two ways:

Disk writes are clustered. Instead of many small transfers of data, we have a
few large transfers of data. This improves disk performance and minimizes
processor involvement.
Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

Appendix 1A examines the performance implications of multilevel memory
structures.

 1.6 CACHE MEMORY

Although cache memory is invisible to the OS, it interacts with other memory man-
agement hardware. Furthermore, many of the principles used in virtual memory
schemes (discussed in Chapter 8) are also applied in cache memory.

Motivation

On all instruction cycles, the processor accesses memory at least once, to fetch the
instruction, and often one or more additional times, to fetch operands and/or store
results. The rate at which the processor can execute instructions is clearly limited
by the memory cycle time (the time it takes to read one word from or write one
word to memory). This limitation has been a significant problem because of the
persistent mismatch between processor and main memory speeds: Over the years,
processor speed has consistently increased more rapidly than memory access speed.
We are faced with a trade-off among speed, cost, and size. Ideally, main memory
should be built with the same technology as that of the processor registers, giving
memory cycle times comparable to processor cycle times. This has always been too
expensive a strategy. The solution is to exploit the principle of locality by providing
a small, fast memory between the processor and main memory, namely the cache.

Cache Principles

Cache memory is intended to provide memory access time approaching that of the
fastest memories available and at the same time support a large memory size that
has the price of less expensive types of semiconductor memories. The concept is il-
lustrated in Figure 1.16a. There is a relatively large and slow main memory together
with a smaller, faster cache memory. The cache contains a copy of a portion of main

28 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

memory. When the processor attempts to read a byte or word of memory, a check
is made to determine if the byte or word is in the cache. If so, the byte or word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of bytes, is read into the cache and then the byte or word is delivered to
the processor. Because of the phenomenon of locality of reference, when a block of
data is fetched into the cache to satisfy a single memory reference, it is likely that
many of the near-future memory references will be to other bytes in the block.

Figure 1.16b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

Figure 1.17 depicts the structure of a cache/main memory system. Main mem-
ory consists of up to 2n addressable words, with each word having a unique n-bit
address. For mapping purposes, this memory is considered to consist of a number of
fixed-length blocks of K words each. That is, there are M = 2n>K blocks. Cache con-
sists of C slots (also referred to as lines) of K words each, and the number of slots is
considerably less than the number of main memory blocks 1C6 6M2.5 Some subset
of the blocks of main memory resides in the slots of the cache. If a word in a block of
memory that is not in the cache is read, that block is transferred to one of the slots
of the cache. Because there are more blocks than slots, an individual slot cannot
be uniquely and permanently dedicated to a particular block. Therefore, each slot
includes a tag that identifies which particular block is currently being stored. The tag
is usually some number of higher-order bits of the address and refers to all addresses
that begin with that sequence of bits.

(b) Three-level cache organization

Fast Slow

CPU Cache Main memory

Fastest Fast Less
fast

Slow

CPU Level 1
(L1) cache

Level 2
(L2) cache

Level 3
(L3) cache

Main
memory

Block transfer
Word transfer

(a) Single cache

Figure 1.16 Cache and Main Memory

5The symbol 6 6 means much less than. Similarly, the symbol 7 7 means much greater than.

1.6 / CACHE MEMORY 29

As a simple example, suppose that we have a 6-bit address and a 2-bit tag. The
tag 01 refers to the block of locations with the following addresses: 010000, 010001,
010010, 010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010, 011011,
011100, 011101, 011110, 011111.

Figure 1.18 illustrates the read operation. The processor generates the ad-
dress, RA, of a word to be read. If the word is contained in the cache, it is delivered
to the processor. Otherwise, the block containing that word is loaded into the cache
and the word is delivered to the processor.

Cache Design

A detailed discussion of cache design is beyond the scope of this book . Key elements
are briefly summarized here. We will see that similar design issues must be addressed
in dealing with virtual memory and disk cache design. They fall into the following
categories:

Cache size
Block size

Memory
address

0
1
2

0
1
2

C ! 1

3

2n ! 1

Word
length

Block length
(K words)

Block 0
(K words)

Block M – 1

Line
number Tag Block

(b) Main memory

(a) Cache

Figure 1.17 Cache/Main-Memory Structure

30 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Mapping function
Replacement algorithm
Write policy
Number of cache levels

We have already dealt with the issue of cache size. It turns out that reason-
ably small caches can have a significant impact on performance. Another size issue
is that of block size: the unit of data exchanged between cache and main memory.
Consider beginning with a relatively small block size and then increasing the size.
As the block size increases, more useful data are brought into the cache with each
block transfer. The result will be that the hit ratio increases because of the prin-
ciple of locality: the high probability that data in the vicinity of a referenced word
are likely to be referenced in the near future. The hit ratio will begin to decrease,
however, as the block becomes even bigger and the probability of using the newly
fetched data becomes less than the probability of reusing the data that have to be
moved out of the cache to make room for the new block.

When a new block of data is read into the cache, the mapping function deter-
mines which cache location the block will occupy. Two constraints affect the design

Receive address
RA from CPU

Is block
containing RA
in cache?

Fetch RA word
and deliver
to CPU

DONE

Access main
memory for block
containing RA

Allocate cache
slot for main
memory block

Deliver RA word
to CPU

Load main
memory block
into cache slot

START

No

RA—read address

Yes

Figure 1.18 Cache Read Operation

1.7 / DIRECT MEMORY ACCESS 31

of the mapping function. First, when one block is read in, another may have to be
replaced. We would like to do this in such a way as to minimize the probability that we
will replace a block that will be needed in the near future. The more flexible the map-
ping function, the more scope we have to design a replacement algorithm to maximize
the hit ratio. Second, the more flexible the mapping function, the more complex is
the circuitry required to search the cache to determine if a given block is in the cache.

The replacement algorithm chooses, within the constraints of the mapping
function, which block to replace when a new block is to be loaded into the cache and
the cache already has all slots filled with other blocks. We would like to replace the
block that is least likely to be needed again in the near future. Although it is impos-
sible to identify such a block, a reasonably effective strategy is to replace the block
that has been in the cache longest with no reference to it. This policy is referred to
as the least-recently-used (LRU) algorithm. Hardware mechanisms are needed to
identify the least-recently-used block.

If the contents of a block in the cache are altered, then it is necessary to write it
back to main memory before replacing it. The write policy dictates when the mem-
ory write operation takes place. At one extreme, the writing can occur every time
that the block is updated. At the other extreme, the writing occurs only when the
block is replaced. The latter policy minimizes memory write operations but leaves
main memory in an obsolete state. This can interfere with multiple-processor opera-
tion and with direct memory access by I/O hardware modules.

Finally, it is now commonplace to have multiple levels of cache, labeled L1
(cache closest to the processor), L2, and in many cases a third level L3. A discus-
sion of the performance benefits of multiple cache levels is beyond our scope; see
[STAL13] for a discussion.

 1.7 DIRECT MEMORY ACCESS

Three techniques are possible for I/O operations: programmed I/O, interrupt-driven
I/O, and direct memory access (DMA). Before discussing DMA, we briefly define
the other two techniques; see Appendix C for more detail.

When the processor is executing a program and encounters an instruction
relating to I/O, it executes that instruction by issuing a command to the appro-
priate I/O module. In the case of programmed I/O, the I/O module performs the
requested action and then sets the appropriate bits in the I/O status register but
takes no further action to alert the processor. In particular, it does not interrupt the
processor. Thus, after the I/O instruction is invoked, the processor must take some
active role in determining when the I/O instruction is completed. For this purpose,
the processor periodically checks the status of the I/O module until it finds that the
operation is complete.

With programmed I/O, the processor has to wait a long time for the I/O mod-
ule of concern to be ready for either reception or transmission of more data. The
processor, while waiting, must repeatedly interrogate the status of the I/O module.
As a result, the performance level of the entire system is severely degraded.

An alternative, known as interrupt-driven I/O, is for the processor to issue
an I/O command to a module and then go on to do some other useful work. The

32 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

I/O module will then interrupt the processor to request service when it is ready to
exchange data with the processor. The processor then executes the data transfer, as
before, and then resumes its former processing.

Interrupt-driven I/O, though more efficient than simple programmed I/O, still
requires the active intervention of the processor to transfer data between memory
and an I/O module, and any data transfer must traverse a path through the processor.
Thus, both of these forms of I/O suffer from two inherent drawbacks:

 1. The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

 2. The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA). The DMA function can be performed by
a separate module on the system bus or it can be incorporated into an I/O module.
In either case, the technique works as follows. When the processor wishes to read
or write a block of data, it issues a command to the DMA module, by sending to the
DMA module the following information:

Whether a read or write is requested
The address of the I/O device involved
The starting location in memory to read data from or write data to
The number of words to be read or written

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module, and that module will take care of it. The DMA module
transfers the entire block of data, one word at a time, directly to or from memory
without going through the processor. When the transfer is complete, the DMA
module sends an interrupt signal to the processor. Thus, the processor is involved
only at the beginning and end of the transfer.

The DMA module needs to take control of the bus to transfer data to and
from memory. Because of this competition for bus usage, there may be times
when the processor needs the bus and must wait for the DMA module. Note that
this is not an interrupt; the processor does not save a context and do something
else. Rather, the processor pauses for one bus cycle (the time it takes to transfer
one word across the bus). The overall effect is to cause the processor to execute
more slowly during a DMA transfer when processor access to the bus is required.
Nevertheless, for a multiple-word I/O transfer, DMA is far more efficient than
interrupt-driven or programmed I/O.

 1.8 MULTIPROCESSOR AND MULTICORE ORGANIZATION

Traditionally, the computer has been viewed as a sequential machine. Most com-
puter programming languages require the programmer to specify algorithms
as sequences of instructions. A processor executes programs by executing ma-
chine instructions in sequence and one at a time. Each instruction is executed in

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION 33

a sequence of operations (fetch instruction, fetch operands, perform operation,
store results).

This view of the computer has never been entirely true. At the micro-
operation level, multiple control signals are generated at the same time. Instruction
pipelining, at least to the extent of overlapping fetch and execute operations, has
been around for a long time. Both of these are examples of performing functions
in parallel.

As computer technology has evolved and as the cost of computer hardware has
dropped, computer designers have sought more and more opportunities for paral-
lelism, usually to improve performance and, in some cases, to improve reliability. In
this book, we examine the three most popular approaches to providing parallelism
by replicating processors: symmetric multiprocessors (SMPs), multicore computers,
and clusters. SMPs and multicore computers are discussed in this section; clusters are
examined in Chapter 16.

Symmetric Multiprocessors

DEFINITION An SMP can be defined as a stand-alone computer system with the
following characteristics:

 1. There are two or more similar processors of comparable capability.
 2. These processors share the same main memory and I/O facilities and are in-

terconnected by a bus or other internal connection scheme, such that memory
access time is approximately the same for each processor.

 3. All processors share access to I/O devices, either through the same channels
or through different channels that provide paths to the same device.

 4. All processors can perform the same functions (hence the term symmetric).
 5. The system is controlled by an integrated operating system that provides in-

teraction between processors and their programs at the job, task, file, and data
element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SMP, indi-
vidual data elements can constitute the level of interaction, and there can be a high
degree of cooperation between processes.

An SMP organization has a number of potential advantages over a uniproces-
sor organization, including the following:

Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type.
Availability: In a symmetric multiprocessor, because all processors can per-
form the same functions, the failure of a single processor does not halt the
 machine. Instead, the system can continue to function at reduced performance.

34 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Incremental growth: A user can enhance the performance of a system by add-
ing an additional processor.
Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the
system.

It is important to note that these are potential, rather than guaranteed, benefits.
The operating system must provide tools and functions to exploit the parallelism in
an SMP system.

An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The operating system takes care of scheduling of tasks on
individual processors and of synchronization among processors.

ORGANIZATION Figure 1.19 illustrates the general organization of an SMP. There
are multiple processors, each of which contains its own control unit, arithmetic-
logic unit, and registers. Each processor has access to a shared main memory and
the I/O devices through some form of interconnection mechanism; a shared bus
is a common facility. The processors can communicate with each other through
memory (messages and status information left in shared address spaces). It may
also be possible for processors to exchange signals directly. The memory is often

I/O
subsystem

System bus

Main
memory

I/O
adapter

I/O
adapter

I/O
adapter

L1 cache

Processor

L2 cache

L1 cache

Processor

L2 cache

L1 cache

Processor

L2 cache

Figure 1.19 Symmetric Multiprocessor Organization

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION 35

organized so that multiple simultaneous accesses to separate blocks of memory
are possible.

In modern computers, processors generally have at least one level of cache
memory that is private to the processor. This use of cache introduces some new
design considerations. Because each local cache contains an image of a portion of
main memory, if a word is altered in one cache, it could conceivably invalidate a
word in another cache. To prevent this, the other processors must be alerted that an
update has taken place. This problem is known as the cache coherence problem and
is typically addressed in hardware rather than by the OS.6

Multicore Computers

A multicore computer, also known as a chip multiprocessor, combines two or more
processors (called cores) on a single piece of silicon (called a die). Typically, each
core consists of all of the components of an independent processor, such as registers,
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In
addition to the multiple cores, contemporary multicore chips also include L2 cache
and, in some cases, L3 cache.

The motivation for the development of multicore computers can be summed
up as follows. For decades, microprocessor systems have experienced a steady, usu-
ally exponential, increase in performance. This is partly due to hardware trends,
such as an increase in clock frequency and the ability to put cache memory closer
to the processor because of the increasing miniaturization of microcomputer com-
ponents. Performance has also been improved by the increased complexity of pro-
cessor design to exploit parallelism in instruction execution and memory access. In
brief, designers have come up against practical limits in the ability to achieve greater
performance by means of more complex processors. Designers have found that the
best way to improve performance to take advantage of advances in hardware is to
put multiple processors and a substantial amount of cache memory on a single chip.
A detailed discussion of the rationale for this trend is beyond our scope, but is sum-
marized in Appendix C.

An example of a multicore system is the Intel Core i7-990X, which includes
six x86 processors, each with a dedicated L2 cache, and with a shared L3 cache
(Figure 1.20). One mechanism Intel that uses to make its caches more effective is
prefetching, in which the hardware examines memory access patterns and attempts
to fill the caches speculatively with data that’s likely to be requested soon.

The Core i7-990X chip supports two forms of external communications to
other chips. The DDR3 memory controller brings the memory controller for the
DDR (double data rate) main memory onto the chip. The interface supports three
channels that are 8 bytes wide for a total bus width of 192 bits, for an aggregate data
rate of up to 32 GB/s. With the memory controller on the chip, the Front Side Bus
is eliminated. The QuickPath Interconnect (QPI) is a point-to-point link electrical
interconnect specification. It enables high-speed communications among connected

6A description of hardware-based cache coherency schemes is provided in [STAL13].

36 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

address register
auxiliary memory
cache memory
cache slot

central processing unit
chip multiprocessor
data register
direct memory access

hit ratio
input/output
instruction
instruction cycle

processor chips. The QPI link operates at 6.4 GT/s (transfers per second). At 16 bits
per transfer, that adds up to 12.8 GB/s; and since QPI links involve dedicated bidi-
rectional pairs, the total bandwidth is 25.6 GB/s.

 1.9 RECOMMENDED READING

[STAL13] covers the topics of this chapter in detail.
[DENN05] looks at the history of the development and application of the

locality principle, making for fascinating reading.

Core 0

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

256 kB
L2 Cache

Core 1

256 kB
L2 Cache

Core 2

3 × 8B @ 1.33 GT/s

256 kB
L2 Cache

Core 3

256 kB
L2 Cache

Core 4

256 kB
L2 Cache

Core 5

256 kB
L2 Cache

12 MB
L3 Cache

DDR3 Memory
Controllers

QuickPath
Interconnect

4 × 20b @ 6.4 GT/s

Figure 1.20 Intel Core i7-990X Block Diagram

DENN05 Denning, P. “The Locality Principle.” Communications of the ACM, July 2005.
STAL13 Stallings, W. Computer Organization and Architecture, 9th ed. Upper Saddle

River, NJ: Pearson, 2013.

 1.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

1.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 37

instruction register
interrupt
interrupt-driven I/O
I/O module
locality
main memory
memory hierarchy

multicore
multiprocessor
processor
program counter
programmed I/O
register
secondary memory

spatial locality
stack
stack frame
stack pointer
system bus
temporal locality

Review Questions
 1.1. List and briefly define the four main elements of a computer.
 1.2. Define the two main categories of processor registers.
 1.3. In general terms, what are the four distinct actions that a machine instruction can specify?
 1.4. What is an interrupt?
 1.5. How are multiple interrupts dealt with?
 1.6. What characteristics distinguish the various elements of a memory hierarchy?
 1.7. What is cache memory?
 1.8. What is the difference between a multiprocessor and a multicore system?
 1.9. What is the distinction between spatial locality and temporal locality?
 1.10. In general, what are the strategies for exploiting spatial locality and temporal locality?

Problems
 1.1. Suppose the hypothetical processor of Figure 1.3 also has two I/O instructions:

0011 = Load AC from I/O
0111 = Store AC to I/O

In these cases, the 12-bit address identifies a particular external device. Show the pro-
gram execution (using format of Figure 1.4) for the following program:
1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.
Assume that the next value retrieved from device 5 is 3 and that location 940 contains
a value of 2.

 1.2. The program execution of Figure 1.4 is described in the text using six steps. Expand
this description to show the use of the MAR and MBR.

 1.3. Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of
two fields. The first byte contains the opcode and the remainder an immediate oper-
and or an operand address.
a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has

1. a 32-bit local address bus and a 16-bit local data bus, or
2. a 16-bit local address bus and a 16-bit local data bus.

c. How many bits are needed for the program counter and the instruction register?
 1.4. Consider a hypothetical microprocessor generating a 16-bit address (e.g., assume that

the program counter and the address registers are 16 bits wide) and having a 16-bit
data bus.
a. What is the maximum memory address space that the processor can access directly

if it is connected to a “16-bit memory”?

38 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

b. What is the maximum memory address space that the processor can access directly
if it is connected to an “8-bit memory”?

c. What architectural features will allow this microprocessor to access a separate
“I/O space”?

d. If an input and an output instruction can specify an 8-bit I/O port number, how
many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O
ports? Explain.

 1.5 Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across the
bus that this microprocessor can sustain in bytes/s? To increase its performance, would
it be better to make its external data bus 32 bits or to double the external clock fre-
quency supplied to the microprocessor? State any other assumptions you make and
explain. Hint: Determine the number of bytes that can be transferred per bus cycle.

 1.6 Consider a computer system that contains an I/O module controlling a simple key-
board/printer Teletype. The following registers are contained in the CPU and con-
nected directly to the system bus:

INPR: Input Register, 8 bits
OUTR: Output Register, 8 bits
FGI: Input Flag, 1 bit
FGO: Output Flag, 1 bit
IEN: Interrupt Enable, 1 bit

Keystroke input from the Teletype and output to the printer are controlled by the I/O
module. The Teletype is able to encode an alphanumeric symbol to an 8-bit word and
decode an 8-bit word into an alphanumeric symbol. The Input flag is set when an 8-bit
word enters the input register from the Teletype. The Output flag is set when a word
is printed.
a. Describe how the CPU, using the first four registers listed in this problem, can

achieve I/O with the Teletype.
b. Describe how the function can be performed more efficiently by also employing IEN.

 1.7 In virtually all systems that include DMA modules, DMA access to main memory is
given higher priority than processor access to main memory. Why?

 1.8 A DMA module is transferring characters to main memory from an external device
transmitting at 9600 bits per second (bps). The processor can fetch instructions at the
rate of 1 million instructions per second. By how much will the processor be slowed
down due to the DMA activity?

 1.9 A computer consists of a CPU and an I/O device D connected to main memory M
via a shared bus with a data bus width of one word. The CPU can execute a maximum
of 106 instructions per second. An average instruction requires five processor cycles,
three of which use the memory bus. A memory read or write operation uses one pro-
cessor cycle. Suppose that the CPU is continuously executing “background” programs
that require 95% of its instruction execution rate but not any I/O instructions. Assume
that one processor cycle equals one bus cycle. Now suppose that very large blocks of
data are to be transferred between M and D.
a. If programmed I/O is used and each one-word I/O transfer requires the CPU to

execute two instructions, estimate the maximum I/O data transfer rate, in words
per second, possible through D.

b. Estimate the same rate if DMA transfer is used.
 1.10 Consider the following code:

for (i = 0; i < 20; i++)
for (j = 0; j < 10; j++)

a[i] = a[i] * j
a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 39

 1.11 Generalize Equations (1.1) and (1.2) in Appendix 1A to n-level memory hierarchies.
 1.12 Consider a memory system with the following parameters:

Tc = 100 ns Cc = 0.01 cents>bit
Tm = 1,200 ns Cm = 0.001 cents>bit

a. What is the cost of 1 MByte of main memory?
b. What is the cost of 1 MByte of main memory using cache memory technology?
c. If the effective access time is 10% greater than the cache access time, what is the

hit ratio H?
 1.13 A computer has a cache, main memory, and a disk used for virtual memory. If a refer-

enced word is in the cache, 20 ns are required to access it. If it is in main memory but
not in the cache, 60 ns are needed to load it into the cache (this includes the time to
originally check the cache), and then the reference is started again. If the word is not
in main memory, 12 ms are required to fetch the word from disk, followed by 60 ns to
copy it to the cache, and then the reference is started again. The cache hit ratio is 0.9
and the main-memory hit ratio is 0.6. What is the average time in ns required to access
a referenced word on this system?

 1.14 Suppose a stack is to be used by the processor to manage procedure calls and returns.
Can the program counter be eliminated by using the top of the stack as a program
counter?

APPENDIX 1A PERFORMANCE CHARACTERISTICS
OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance over
a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture, imple-
mented in hardware and typically invisible to the OS. Accordingly, this mechanism
is not pursued in this book. However, there are two other instances of a two-level
memory approach that also exploit the property of locality and that are, at least par-
tially, implemented in the OS: virtual memory and the disk cache (Table 1.2). These
two topics are explored in Chapters 8 and 11, respectively. In this appendix, we look
at some of the performance characteristics of two-level memories that are common to
all three approaches.

Table 1.2 Characteristics of Two-Level Memories

Main Memory
Cache

Virtual Memory
(Paging) Disk Cache

Typical access time ratios 5 : 1 106: 1 106: 1

Memory management
system

Implemented by special
hardware

Combination of hardware
and system software

System software

Typical block size 4 to 128 bytes 64 to 4096 bytes 64 to 4096 bytes

Access of processor to
second level

Direct access Indirect access Indirect access

40 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Locality

The basis for the performance advantage of a two-level memory is the principle of
 locality, referred to in Section 1.5. This principle states that memory references tend
to cluster. Over a long period of time, the clusters in use change; but over a short
period of time, the processor is primarily working with fixed clusters of memory
references.

Intuitively, the principle of locality makes sense. Consider the following line
of reasoning:

 1. Except for branch and call instructions, which constitute only a small fraction
of all program instructions, program execution is sequential. Hence, in most
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

 2. It is rare to have a long uninterrupted sequence of procedure calls followed by
the corresponding sequence of returns. Rather, a program remains confined to
a rather narrow window of procedure-invocation depth. Thus, over a short pe-
riod of time references to instructions tend to be localized to a few procedures.

 3. Most iterative constructs consist of a relatively small number of instructions
repeated many times. For the duration of the iteration, computation is there-
fore confined to a small contiguous portion of a program.

 4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference
to point (1), a variety of studies have analyzed the behavior of high-level language
programs. Table 1.3 includes key results, measuring the appearance of various
statement types during execution, from the following studies. The earliest study of
programming language behavior, performed by Knuth [KNUT71], examined a col-
lection of FORTRAN programs used as student exercises. Tanenbaum [TANE78]
published measurements collected from over 300 procedures used in OS programs
and written in a language that supports structured programming (SAL). Patterson
and Sequin [PATT82] analyzed a set of measurements taken from compilers and

Table 1.3 Relative Dynamic Frequency of High-Level Language Operations

Study
Language
Workload

[HUCK83]
Pascal

Scientific

[KNUT71]
FORTRAN

Student

[PATT82] [TANE78]
SAL

System
Pascal
System

C
System

Assign 74 67 45 38 42

Loop 4 3 5 3 4

Call 1 3 15 12 12

IF 20 11 29 43 36

GOTO 2 9 — 3 —

Other — 7 6 1 6

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 41

programs for typesetting, computer-aided design (CAD), sorting, and file com-
parison. The programming languages C and Pascal were studied. Huck [HUCK83]
analyzed four programs intended to represent a mix of general-purpose scientific
computing, including fast Fourier transform and the integration of systems of differ-
ential equations. There is good agreement in the results of this mixture of languages
and applications that branching and call instructions represent only a fraction of
statements executed during the lifetime of a program. Thus, these studies confirm
assertion (1), from the preceding list.

With respect to assertion (2), studies reported in [PATT85] provide confirma-
tion. This is illustrated in Figure 1.21, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain within
a stationary window for long periods of time. A study by the same analysts of C and
Pascal programs showed that a window of depth 8 would only need to shift on less
than 1% of the calls or returns [TAMI83].

A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution to involve a number of
memory locations that are clustered. This reflects the tendency of a processor to
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data.
Temporal locality refers to the tendency for a processor to access memory locations
that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used instruc-
tion and data values in cache memory and by exploiting a cache hierarchy. Spatial
locality is generally exploited by using larger cache blocks and by incorporating
prefetching mechanisms (fetching items whose use is expected) into the cache control

w ! 5

t ! 33

Time
(in units of calls/returns)

Nesting
depth

Return

Call

Figure 1.21 Example Call-Return Behavior of a Program

42 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

logic. Recently, there has been considerable research on refining these techniques to
achieve greater performance, but the basic strategies remain the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower-level memory (M2). M1 is used as a temporary store for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1 and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory but also the probability that a given reference
can be found in M1. We have

Ts = H * T1 + 11 - H2 * 1T1 + T22
 T1 + 11 - H2 * T2 (1.1)
where

Ts = average (system) access time
T1 = access time of M1 (e.g., cache, disk cache)
T2 = access time of M2 (e.g., main memory, disk)
H = hit ratio (fraction of time reference is found in M1)
Figure 1.15 shows average access time as a function of hit ratio. As can be

seen, for a high percentage of hits, the average total access time is much closer to
that of M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level mem-
ory mechanism. First consider cost. We have

 CS =
C1S1 + C2S2

S1 + S2
 (1.2)

where
Cs = average cost per bit for the combined two-level memory
C1 = average cost per bit of upper-level memory M1
C2 = average cost per bit of lower-level memory M2
S1 = size of M1
S2 = size of M2

We would like Cs ≈ C2. Given that C1 7 7 C2, this requires S1 6 6 S2. Figure 1.22
shows the relationship.7

7Note that both axes use a log scale. A basic review of log scales is in the math refresher document at the
Computer Science Student Resource Site at ComputerScienceStudent.com.

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 43

Next, consider access time. For a two-level memory to provide a significant
performance improvement, we need to have Ts approximately equal to T1 Ts ≈ T1.
Given that T1 is much less than T2 Ts 7 7 T1, a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both
requirements to a reasonable extent? We can answer this question with a series of
subquestions:

What value of hit ratio is needed to satisfy the performance requirement?
What size of M1 will assure the needed hit ratio?
Does this size satisfy the cost requirement?

To get at this, consider the quantity T1>Ts, which is referred to as the access efficiency.
It is a measure of how close average access time (Ts) is to M1 access time (T1). From
Equation (1.1),

T1

TS
 =

1

1 + 11 - H2
T2

T1

 (1.3)

In Figure 1.23, we plot T1>Ts as a function of the hit ratio H, with the quantity
T2>T1 as a parameter. A hit ratio in the range of 0.8 to 0.9 would seem to be needed
to satisfy the performance requirement.

Relative size of two levels (S2/S1)

R
el

at
iv

e
co

m
bi

ne
d

co
st

 (C
S
/C

2)

(C1/C2) ! 1000

(C1/C2) ! 10

(C1/C2) ! 100

2

3

4
5
6
7
8

1000

2 3 4 5 6 7 8 10002 3 4 5 6 7 8 10095 6 7 8 109

2

3

4
5
6
7
8

100

2

3

4
5
6
7
8

10

1

Figure 1.22 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory

44 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

We can now phrase the question about relative memory size more exactly. Is
a hit ratio of 0.8 or higher reasonable for S1 6 6 S2? This will depend on a number
of factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of
locality. Figure 1.24 suggests the effect of locality on the hit ratio. Clearly, if M1 is
the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are always
stored also in M1. Now suppose that there is no locality; that is, references are com-
pletely random. In that case the hit ratio should be a strictly linear function of the
relative memory size. For example, if M1 is half the size of M2, then at any time half
of the items from M2 are also in M1 and the hit ratio will be 0.5. In practice, how-
ever, there is some degree of locality in the references. The effects of moderate and
strong locality are indicated in the figure.

So, if there is strong locality, it is possible to achieve high values of hit ratio
even with relatively small upper-level memory size. For example, numerous studies
have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless
of the size of main memory (e.g., [AGAR89], [PRZY88], [STRE83], and [SMIT82]).
A cache in the range of 1K to 128K words is generally adequate, whereas main
memory is now typically in the gigabyte range. When we consider virtual mem-
ory and disk cache, we will cite other studies that confirm the same phenomenon,
namely that a relatively small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the two
memories satisfy the cost requirement? The answer is clearly yes. If we need only a

Hit ratio ! H

r ! 1

r ! 10

r ! 100

r ! 1000

0.0 0.2 0.4 0.6 0.8 1.0

1

0.1

0.01

0.001

A
cc

es
s

ef
fic

ie
nc

y
!

 T
1/

T
s

Figure 1.23 Access Efficiency as a Function of Hit Ratio 1r = T2 ,T1 2

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 45

relatively small upper-level memory to achieve good performance, then the average
cost per bit of the two levels of memory will approach that of the cheaper lower-
level memory. Please note that with L2 cache, or even L2 and L3 caches, involved,
analysis is much more complex. See [PEIR99] and [HAND98] for discussions.

No locality

Moderate
locality

Strong
locality

H
it

 r
at

io

Relative memory size (S1/S2)
0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Figure 1.24 Hit Ratio as a Function of Relative Memory Size

46

 2.1 Operating System Objectives and Functions
The Operating System as a User/Computer Interface
The Operating System as Resource Manager
Ease of Evolution of an Operating System

 2.2 The Evolution of Operating Systems
Serial Processing
Simple Batch Systems
Multiprogrammed Batch Systems
Time-Sharing Systems

 2.3 Major Achievements
The Process
Memory Management
Information Protection and Security
Scheduling and Resource Management

 2.4 Developments Leading to Modern Operating Systems
 2.5 Fault Tolerance

Fundamental Concepts
Faults
Operating System Mechanisms

 2.6 OS Design Considerations for Multiprocessor and Multicore
Symmetric Multiprocessor OS Considerations
Multicore OS Considerations

 2.7 Microsoft Windows Overview
Background
Architecture
Client/Server Model
Threads and SMP
Windows Objects

 2.8 Traditional Unix Systems
History
Description

 2.9 Modern Unix Systems
System V Release 4 (SVR4)
BSD
Solaris 10

 2.10 Linux
History
Modular Structure
Kernel Components

 2.11 Android
Android Software Architecture
Android System Architecture
Activities
Power Management

 2.12 Recommended Reading and Animations
 2.13 Key Terms, Review Questions, and Problems

OPERATING SYSTEM OVERVIEW

CHAPTER

Animation

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS 47

We begin our study of operating systems (OSs) with a brief history. This history is
itself interesting and also serves the purpose of providing an overview of OS prin-
ciples. The first section examines the objectives and functions of operating systems.
Then we look at how operating systems have evolved from primitive batch systems
to sophisticated multitasking, multiuser systems. The remainder of the chapter looks
at the history and general characteristics of the two operating systems that serve
as examples throughout this book. All of the material in this chapter is covered in
greater depth later in the book.

 2.1 OPERATING SYSTEM OBJECTIVES AND FUNCTIONS

An OS is a program that controls the execution of application programs and acts as
an interface between applications and the computer hardware. It can be thought of
as having three objectives:

Convenience: An OS makes a computer more convenient to use.
Efficiency: An OS allows the computer system resources to be used in an ef-
ficient manner.
Ability to evolve: An OS should be constructed in such a way as to permit the
effective development, testing, and introduction of new system functions with-
out interfering with service.

Let us examine these three aspects of an OS in turn.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Summarize, at a top level, the key functions of an operating system (OS).
Discuss the evolution of operating systems for early simple batch systems to
modern complex systems.
Give a brief explanation of each of the major achievements in OS research,
as defined in Section 2.3.
Discuss the key design areas that have been instrumental in the development
of modern operating systems.
Define and discuss virtual machines and virtualization.
Understand the OS design issues raised by the introduction of multiproces-
sor and multicore organization.
Understand the basic structure of Windows 7.
Describe the essential elements of a traditional UNIX system.
Explain the new features found in modern UNIX systems.
Discuss Linux and its relationship to UNIX.

48 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

The Operating System as a User/Computer Interface

The hardware and software used in providing applications to a user can be viewed
in a layered or hierarchical fashion, as depicted in Figure 2.1. The user of those
applications, the end user, generally is not concerned with the details of computer
hardware. Thus, the end user views a computer system in terms of a set of applica-
tions. An application can be expressed in a programming language and is developed
by an application programmer. If one were to develop an application program as a
set of machine instructions that is completely responsible for controlling the com-
puter hardware, one would be faced with an overwhelmingly complex undertaking.
To ease this chore, a set of system programs is provided. Some of these programs
are referred to as utilities, or library programs. These implement frequently used
functions that assist in program creation, the management of files, and the control
of I/O devices. A programmer will make use of these facilities in developing an ap-
plication, and the application, while it is running, will invoke the utilities to perform
certain functions. The most important collection of system programs comprises the
OS. The OS masks the details of the hardware from the programmer and provides
the programmer with a convenient interface for using the system. It acts as media-
tor, making it easier for the programmer and for application programs to access and
use those facilities and services.

Briefly, the OS typically provides services in the following areas:

Program development: The OS provides a variety of facilities and services,
such as editors and debuggers, to assist the programmer in creating programs.
Typically, these services are in the form of utility programs that, while not
strictly part of the core of the OS, are supplied with the OS and are referred to
as application program development tools.
Program execution: A number of steps need to be performed to execute a
program. Instructions and data must be loaded into main memory, I/O devices

I/O devices
and

networking

System interconnect
(bus)

Software

Application
programming interface

Instruction set
architecture

Hardware

Main
memory

Memory
translation

Execution hardware

Application programs

Application
binary interface

Operating system

Libraries/utilities

Figure 2.1 Computer Hardware and Software Structure

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS 49

and files must be initialized, and other resources must be prepared. The OS
handles these scheduling duties for the user.
Access to I/O devices: Each I/O device requires its own peculiar set of instruc-
tions or control signals for operation. The OS provides a uniform interface
that hides these details so that programmers can access such devices using
simple reads and writes.
Controlled access to files: For file access, the OS must reflect a detailed under-
standing of not only the nature of the I/O device (disk drive, tape drive) but
also the structure of the data contained in the files on the storage medium. In
the case of a system with multiple users, the OS may provide protection mecha-
nisms to control access to the files.
System access: For shared or public systems, the OS controls access to the
system as a whole and to specific system resources. The access function must
provide protection of resources and data from unauthorized users and must
resolve conflicts for resource contention.
Error detection and response: A variety of errors can occur while a computer
system is running. These include internal and external hardware errors, such as
a memory error, or a device failure or malfunction; and various software errors,
such as division by zero, attempt to access forbidden memory location, and inabil-
ity of the OS to grant the request of an application. In each case, the OS must pro-
vide a response that clears the error condition with the least impact on running
applications. The response may range from ending the program that caused the
error, to retrying the operation, to simply reporting the error to the application.
Accounting: A good OS will collect usage statistics for various resources and
monitor performance parameters such as response time. On any system, this
information is useful in anticipating the need for future enhancements and in
tuning the system to improve performance. On a multiuser system, the infor-
mation can be used for billing purposes.

Figure 2.1 also indicates three key interfaces in a typical computer system:

Instruction set architecture (ISA): The ISA defines the repertoire of machine
language instructions that a computer can follow. This interface is the boundary
between hardware and software. Note that both application programs and utili-
ties may access the ISA directly. For these programs, a subset of the instruction
repertoire is available (user ISA). The OS has access to additional machine lan-
guage instructions that deal with managing system resources (system ISA).
Application binary interface (ABI): The ABI defines a standard for binary
portability across programs. The ABI defines the system call interface to the
operating system and the hardware resources and services available in a sys-
tem through the user ISA.
Application programming interface (API): The API gives a program access
to the hardware resources and services available in a system through the user
ISA supplemented with high-level language (HLL) library calls. Any system
calls are usually performed through libraries. Using an API enables applica-
tion software to be ported easily, through recompilation, to other systems that
support the same API.

50 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

The Operating System as Resource Manager

A computer is a set of resources for the movement, storage, and processing of data
and for the control of these functions. The OS is responsible for managing these
resources.

Can we say that it is the OS that controls the movement, storage, and process-
ing of data? From one point of view, the answer is yes: By managing the computer’s
resources, the OS is in control of the computer’s basic functions. But this control is
exercised in a curious way. Normally, we think of a control mechanism as something
external to that which is controlled, or at least as something that is a distinct and
separate part of that which is controlled. (For example, a residential heating system
is controlled by a thermostat, which is separate from the heat-generation and heat-
distribution apparatus.) This is not the case with the OS, which as a control mecha-
nism is unusual in two respects:

The OS functions in the same way as ordinary computer software; that is, it is
a program or suite of programs executed by the processor.
The OS frequently relinquishes control and must depend on the processor to
allow it to regain control.

Like other computer programs, the OS provides instructions for the proces-
sor. The key difference is in the intent of the program. The OS directs the processor
in the use of the other system resources and in the timing of its execution of other
programs. But in order for the processor to do any of these things, it must cease
executing the OS program and execute other programs. Thus, the OS relinquishes
control for the processor to do some “useful” work and then resumes control long
enough to prepare the processor to do the next piece of work. The mechanisms in-
volved in all this should become clear as the chapter proceeds.

Figure 2.2 suggests the main resources that are managed by the OS. A portion
of the OS is in main memory. This includes the kernel, or nucleus, which contains
the most frequently used functions in the OS and, at a given time, other portions
of the OS currently in use. The remainder of main memory contains user programs
and data. The memory management hardware in the processor and the OS jointly
control the allocation of main memory, as we shall see. The OS decides when an I/O
device can be used by a program in execution and controls access to and use of files.
The processor itself is a resource, and the OS must determine how much processor
time is to be devoted to the execution of a particular user program. In the case of a
multiple-processor system, this decision must span all of the processors.

Ease of Evolution of an Operating System

A major OS will evolve over time for a number of reasons:

Hardware upgrades plus new types of hardware: For example, early versions
of UNIX and the Macintosh OS did not employ a paging mechanism be-
cause they were run on processors without paging hardware.1 Subsequent

1Paging is introduced briefly later in this chapter and is discussed in detail in Chapter 7.

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS 51

Memory

Computer system

I/O devices

Operating
system

software

Programs
and data

ProcessorProcessor

OS
Programs

Data

Storage

I/O controller

I/O controller

I/O controller Printers,
keyboards,
digital camera,
etc.

Figure 2.2 The Operating System as Resource Manager

versions of these operating systems were modified to exploit paging capa-
bilities. Also, the use of graphics terminals and page-mode terminals instead
of line-at-a-time scroll mode terminals affects OS design. For example, a
graphics terminal typically allows the user to view several applications at the
same time through “windows” on the screen. This requires more sophisti-
cated support in the OS.
New services: In response to user demand or in response to the needs of sys-
tem managers, the OS expands to offer new services. For example, if it is found
to be difficult to maintain good performance for users with existing tools, new
measurement and control tools may be added to the OS.
Fixes: Any OS has faults. These are discovered over the course of time and
fixes are made. Of course, the fix may introduce new faults.

The need to change an OS regularly places certain requirements on its design.
An obvious statement is that the system should be modular in construction, with
clearly defined interfaces between the modules, and that it should be well docu-
mented. For large programs, such as the typical contemporary OS, what might be
referred to as straightforward modularization is inadequate [DENN80a]. That is,
much more must be done than simply partitioning a program into modules. We re-
turn to this topic later in this chapter.

52 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 2.2 THE EVOLUTION OF OPERATING SYSTEMS

In attempting to understand the key requirements for an OS and the significance
of the major features of a contemporary OS, it is useful to consider how operating
systems have evolved over the years.

Serial Processing

With the earliest computers, from the late 1940s to the mid-1950s, the programmer
interacted directly with the computer hardware; there was no OS. These comput-
ers were run from a console consisting of display lights, toggle switches, some form
of input device, and a printer. Programs in machine code were loaded via the input
device (e.g., a card reader). If an error halted the program, the error condition was
indicated by the lights. If the program proceeded to a normal completion, the output
appeared on the printer.

These early systems presented two main problems:

Scheduling: Most installations used a hardcopy sign-up sheet to reserve com-
puter time. Typically, a user could sign up for a block of time in multiples of a
half hour or so. A user might sign up for an hour and finish in 45 minutes; this
would result in wasted computer processing time. On the other hand, the user
might run into problems, not finish in the allotted time, and be forced to stop
before resolving the problem.
Setup time: A single program, called a job, could involve loading the com-
piler plus the high-level language program (source program) into memory,
saving the compiled program (object program), and then loading and linking
together the object program and common functions. Each of these steps could
involve mounting or dismounting tapes or setting up card decks. If an error oc-
curred, the hapless user typically had to go back to the beginning of the setup
sequence. Thus, a considerable amount of time was spent just in setting up the
program to run.

This mode of operation could be termed serial processing, reflecting the fact
that users have access to the computer in series. Over time, various system software
tools were developed to attempt to make serial processing more efficient. These
include libraries of common functions, linkers, loaders, debuggers, and I/O driver
routines that were available as common software for all users.

Simple Batch Systems

Early computers were very expensive, and therefore it was important to maxi-
mize processor utilization. The wasted time due to scheduling and setup time was
unacceptable.

To improve utilization, the concept of a batch OS was developed. It appears
that the first batch OS (and the first OS of any kind) was developed in the mid-
1950s by General Motors for use on an IBM 701 [WEIZ81]. The concept was subse-
quently refined and implemented on the IBM 704 by a number of IBM customers.
By the early 1960s, a number of vendors had developed batch operating systems for

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 53

Interrupt
processing

Device
drivers

Job
sequencing

Control language
interpreter

User
program

area

Monitor

Boundary

Figure 2.3 Memory Layout for a
Resident Monitor

their computer systems. IBSYS, the IBM OS for the 7090/7094 computers, is par-
ticularly notable because of its widespread influence on other systems.

The central idea behind the simple batch-processing scheme is the use of a
piece of software known as the monitor. With this type of OS, the user no longer has
direct access to the processor. Instead, the user submits the job on cards or tape to a
computer operator, who batches the jobs together sequentially and places the entire
batch on an input device, for use by the monitor. Each program is constructed to
branch back to the monitor when it completes processing, at which point the moni-
tor automatically begins loading the next program.

To understand how this scheme works, let us look at it from two points of
view: that of the monitor and that of the processor.

Monitor point of view: The monitor controls the sequence of events. For this
to be so, much of the monitor must always be in main memory and available
for execution (Figure 2.3). That portion is referred to as the resident monitor.
The rest of the monitor consists of utilities and common functions that are
loaded as subroutines to the user program at the beginning of any job that
requires them. The monitor reads in jobs one at a time from the input device
(typically a card reader or magnetic tape drive). As it is read in, the current job
is placed in the user program area, and control is passed to this job. When the
job is completed, it returns control to the monitor, which immediately reads
in the next job. The results of each job are sent to an output device, such as a
printer, for delivery to the user.
Processor point of view: At a certain point, the processor is executing instruc-
tions from the portion of main memory containing the monitor. These instruc-
tions cause the next job to be read into another portion of main memory.

54 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Once a job has been read in, the processor will encounter a branch instruction
in the monitor that instructs the processor to continue execution at the start
of the user program. The processor will then execute the instructions in the
user program until it encounters an ending or error condition. Either event
causes the processor to fetch its next instruction from the monitor program.
Thus the phrase “control is passed to a job” simply means that the processor
is now fetching and executing instructions in a user program, and “control is
returned to the monitor” means that the processor is now fetching and execut-
ing instructions from the monitor program.

The monitor performs a scheduling function: A batch of jobs is queued up,
and jobs are executed as rapidly as possible, with no intervening idle time. The mon-
itor improves job setup time as well. With each job, instructions are included in a
primitive form of job control language (JCL). This is a special type of programming
language used to provide instructions to the monitor. A simple example is that of a
user submitting a program written in the programming language FORTRAN plus
some data to be used by the program. All FORTRAN instructions and data are on a
separate punched card or a separate record on tape. In addition to FORTRAN and
data lines, the job includes job control instructions, which are denoted by the begin-
ning $. The overall format of the job looks like this:

$JOB

$FTN

$LOAD

$RUN

 Data

$END

To execute this job, the monitor reads the $FTN line and loads the appropri-
ate language compiler from its mass storage (usually tape). The compiler translates
the user’s program into object code, which is stored in memory or mass storage. If
it is stored in memory, the operation is referred to as “compile, load, and go.” If it
is stored on tape, then the $LOAD instruction is required. This instruction is read
by the monitor, which regains control after the compile operation. The monitor in-
vokes the loader, which loads the object program into memory (in place of the com-
piler) and transfers control to it. In this manner, a large segment of main memory
can be shared among different subsystems, although only one such subsystem could
be executing at a time.

During the execution of the user program, any input instruction causes one
line of data to be read. The input instruction in the user program causes an input
routine that is part of the OS to be invoked. The input routine checks to make sure

¶

¶

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 55

that the program does not accidentally read in a JCL line. If this happens, an error
occurs and control transfers to the monitor. At the completion of the user job, the
monitor will scan the input lines until it encounters the next JCL instruction. Thus,
the system is protected against a program with too many or too few data lines.

The monitor, or batch OS, is simply a computer program. It relies on the abil-
ity of the processor to fetch instructions from various portions of main memory to
alternately seize and relinquish control. Certain other hardware features are also
desirable:

Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the processor
hardware should detect an error and transfer control to the monitor. The moni-
tor would then abort the job, print out an error message, and load in the next job.
Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, the user pro-
gram is stopped, and control returns to the monitor.
Privileged instructions: Certain machine level instructions are designated priv-
ileged and can be executed only by the monitor. If the processor encounters
such an instruction while executing a user program, an error occurs causing
control to be transferred to the monitor. Among the privileged instructions
are I/O instructions, so that the monitor retains control of all I/O devices. This
prevents, for example, a user program from accidentally reading job control
instructions from the next job. If a user program wishes to perform I/O, it must
request that the monitor perform the operation for it.
Interrupts: Early computer models did not have this capability. This feature
gives the OS more flexibility in relinquishing control to and regaining control
from user programs.

Considerations of memory protection and privileged instructions lead to the
concept of modes of operation. A user program executes in a user mode, in which
certain areas of memory are protected from the user’s use and in which certain in-
structions may not be executed. The monitor executes in a system mode, or what
has come to be called kernel mode, in which privileged instructions may be exe-
cuted and in which protected areas of memory may be accessed.

Of course, an OS can be built without these features. But computer vendors
quickly learned that the results were chaos, and so even relatively primitive batch
operating systems were provided with these hardware features.

With a batch OS, processor time alternates between execution of user pro-
grams and execution of the monitor. There have been two sacrifices: Some main
memory is now given over to the monitor and some processor time is consumed by
the monitor. Both of these are forms of overhead. Despite this overhead, the simple
batch system improves utilization of the computer.

Multiprogrammed Batch Systems

Even with the automatic job sequencing provided by a simple batch OS, the proces-
sor is often idle. The problem is that I/O devices are slow compared to the processor.

56 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Figure 2.4 details a representative calculation. The calculation concerns a program
that processes a file of records and performs, on average, 100 machine instructions
per record. In this example, the computer spends over 96% of its time waiting for
I/O devices to finish transferring data to and from the file. Figure 2.5a illustrates
this situation, where we have a single program, referred to as uniprogramming. The

Run Wait WaitRun

Time

Run Wait WaitRun

Run
A

Run
A

Run WaitWait WaitRun

Run
B Wait Wait

Run
B

Run
A

Run
A

Run
B

Run
B

Run
C

Run
C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Figure 2.4 System Utilization Example

Read one record from file 15 ms
Execute 100 instructions 1 ms
Write one record to file 15 ms
Total 31 ms

Percent CPU utilization =
1
31

= 0.032 = 3.2%

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 57

Table 2.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O
Duration 5 min 15 min 10 min
Memory required 50 M 100 M 75 M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes

Table 2.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Processor use 20% 40%
Memory use 33% 67%
Disk use 33% 67%
Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

processor spends a certain amount of time executing, until it reaches an I/O instruc-
tion. It must then wait until that I/O instruction concludes before proceeding.

This inefficiency is not necessary. We know that there must be enough memory
to hold the OS (resident monitor) and one user program. Suppose that there is room
for the OS and two user programs. When one job needs to wait for I/O, the proces-
sor can switch to the other job, which is likely not waiting for I/O (Figure 2.5b).
Furthermore, we might expand memory to hold three, four, or more programs and
switch among all of them (Figure 2.5c). The approach is known as multiprogram-
ming, or multitasking. It is the central theme of modern operating systems.

To illustrate the benefit of multiprogramming, we give a simple example.
Consider a computer with 250 Mbytes of available memory (not used by the OS),
a disk, a terminal, and a printer. Three programs, JOB1, JOB2, and JOB3, are
submitted for execution at the same time, with the attributes listed in Table 2.1.
We assume minimal processor requirements for JOB2 and JOB3 and continuous
disk and printer use by JOB3. For a simple batch environment, these jobs will be
executed in sequence. Thus, JOB1 completes in 5 minutes. JOB2 must wait until
the 5 minutes are over and then completes 15 minutes after that. JOB3 begins after
20 minutes and completes at 30 minutes from the time it was initially submitted.
The average resource utilization, throughput, and response times are shown in the
uniprogramming column of Table 2.2. Device-by-device utilization is illustrated in
Figure 2.6a. It is evident that there is gross underutilization for all resources when
averaged over the required 30-minute time period.

Now suppose that the jobs are run concurrently under a multiprogramming
OS. Because there is little resource contention between the jobs, all three can run
in nearly minimum time while coexisting with the others in the computer (assuming

58 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

that JOB2 and JOB3 are allotted enough processor time to keep their input and
output operations active). JOB1 will still require 5 minutes to complete, but at the
end of that time, JOB2 will be one-third finished and JOB3 half finished. All three
jobs will have finished within 15 minutes. The improvement is evident when ex-
amining the multiprogramming column of Table 2.2, obtained from the histogram
shown in Figure 2.6b.

As with a simple batch system, a multiprogramming batch system must rely
on certain computer hardware features. The most notable additional feature that
is useful for multiprogramming is the hardware that supports I/O interrupts and
DMA (direct memory access). With interrupt-driven I/O or DMA, the processor
can issue an I/O command for one job and proceed with the execution of another
job while the I/O is carried out by the device controller. When the I/O operation is
complete, the processor is interrupted and control is passed to an interrupt-handling
program in the OS. The OS will then pass control to another job.

Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming, systems. To have several jobs ready to run,
they must be kept in main memory, requiring some form of memory management.
In addition, if several jobs are ready to run, the processor must decide which one
to run, and this decision requires an algorithm for scheduling. These concepts are
discussed later in this chapter.

0%

0 5 10 15 20 25 30
minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

0%

0 5 10 15
minutes

(b) Multiprogramming

JOB1
JOB2

JOB3

Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

time

Figure 2.6 Utilization Histograms

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 59

Time-Sharing Systems

With the use of multiprogramming, batch processing can be quite efficient.
However, for many jobs, it is desirable to provide a mode in which the user interacts
directly with the computer. Indeed, for some jobs, such as transaction processing, an
interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated personal computer or workstation. That option was
not available in the 1960s, when most computers were big and costly. Instead, time
sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs
at a time, multiprogramming can also be used to handle multiple interactive jobs. In
this latter case, the technique is referred to as time sharing, because processor time
is shared among multiple users. In a time-sharing system, multiple users simultane-
ously access the system through terminals, with the OS interleaving the execution of
each user program in a short burst or quantum of computation. Thus, if there are n
users actively requesting service at one time, each user will only see on the average
1/n of the effective computer capacity, not counting OS overhead. However, given
the relatively slow human reaction time, the response time on a properly designed
system should be similar to that on a dedicated computer.

Both batch processing and time sharing use multiprogramming. The key dif-
ferences are listed in Table 2.3.

One of the first time-sharing operating systems to be developed was the
Compatible Time-Sharing System (CTSS) [CORB62], developed at MIT by a
group known as Project MAC (Machine-Aided Cognition, or Multiple-Access
Computers). The system was first developed for the IBM 709 in 1961 and later
ported to an IBM 7094.

Compared to later systems, CTSS is primitive. The system ran on a computer
with 32,000 36-bit words of main memory, with the resident monitor consuming
5000 of that. When control was to be assigned to an interactive user, the user’s pro-
gram and data were loaded into the remaining 27,000 words of main memory. A
program was always loaded to start at the location of the 5000th word; this simpli-
fied both the monitor and memory management. A system clock generated inter-
rupts at a rate of approximately one every 0.2 seconds. At each clock interrupt, the
OS regained control and could assign the processor to another user. This technique
is known as time slicing. Thus, at regular time intervals, the current user would be
preempted and another user loaded in. To preserve the old user program status for
later resumption, the old user programs and data were written out to disk before the
new user programs and data were read in. Subsequently, the old user program code
and data were restored in main memory when that program was next given a turn.

Table 2.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to
operating system

Job control language commands
provided with the job

Commands entered at the
terminal

60 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

To minimize disk traffic, user memory was only written out when the incoming
program would overwrite it. This principle is illustrated in Figure 2.7. Assume that
there are four interactive users with the following memory requirements, in words:

JOB1: 15,000
JOB2: 20,000
JOB3: 5000
JOB4: 10,000

Initially, the monitor loads JOB1 and transfers control to it (a). Later, the
monitor decides to transfer control to JOB2. Because JOB2 requires more memory
than JOB1, JOB1 must be written out first, and then JOB2 can be loaded (b). Next,
JOB3 is loaded in to be run. However, because JOB3 is smaller than JOB2, a por-
tion of JOB2 can remain in memory, reducing disk write time (c). Later, the moni-
tor decides to transfer control back to JOB1. An additional portion of JOB2 must
be written out when JOB1 is loaded back into memory (d). When JOB4 is loaded,
part of JOB1 and the portion of JOB2 remaining in memory are retained (e). At
this point, if either JOB1 or JOB2 is activated, only a partial load will be required.
In this example, it is JOB2 that runs next. This requires that JOB4 and the remain-
ing resident portion of JOB1 be written out and that the missing portion of JOB2
be read in (f).

The CTSS approach is primitive compared to present-day time sharing, but
it was effective. It was extremely simple, which minimized the size of the monitor.
Because a job was always loaded into the same locations in memory, there was no
need for relocation techniques at load time (discussed subsequently). The technique

Monitor

Free
Free Free

JOB 1

0

32000

5000

20000

20000

(a)

Monitor

JOB 2

0

32000

5000

25000 25000

(b)

Free

Monitor

JOB 2

0

32000

5000

25000

(f)

Monitor

JOB 3

(JOB 2)

0

32000

5000

10000

(c)

Free
25000

Monitor

JOB 1

(JOB 2)

0

32000

5000

(d)

20000

15000

Free
25000

Monitor

JOB 4

(JOB 2)

(JOB 1)

0

32000

5000

(e)

Figure 2.7 CTSS Operation

2.3 / MAJOR ACHIEVEMENTS 61

of only writing out what was necessary minimized disk activity. Running on the
7094, CTSS supported a maximum of 32 users.

Time sharing and multiprogramming raise a host of new problems for the OS.
If multiple jobs are in memory, then they must be protected from interfering with
each other by, for example, modifying each other’s data. With multiple interactive
users, the file system must be protected so that only authorized users have access
to a particular file. The contention for resources, such as printers and mass storage
devices, must be handled. These and other problems, with possible solutions, will be
encountered throughout this text.

 2.3 MAJOR ACHIEVEMENTS

Operating systems are among the most complex pieces of software ever developed.
This reflects the challenge of trying to meet the difficult and in some cases compet-
ing objectives of convenience, efficiency, and ability to evolve. [DENN80a] pro-
poses that there have been four major theoretical advances in the development of
operating systems:

Processes
Memory management
Information protection and security
Scheduling and resource management

Each advance is characterized by principles, or abstractions, developed to
meet difficult practical problems. Taken together, these four areas span many of
the key design and implementation issues of modern operating systems. The brief
review of these four areas in this section serves as an overview of much of the rest
of the text.

The Process

Central to the design of operating systems is the concept of process. This term was
first used by the designers of Multics in the 1960s [DALE68]. It is a somewhat
more general term than job. Many definitions have been given for the term process,
including

A program in execution
An instance of a program running on a computer
The entity that can be assigned to and executed on a processor
A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

This concept should become clearer as we proceed.
Three major lines of computer system development created problems in tim-

ing and synchronization that contributed to the development of the concept of the
process: multiprogramming batch operation, time sharing, and real-time transaction
systems. As we have seen, multiprogramming was designed to keep the processor

62 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

and I/O devices, including storage devices, simultaneously busy to achieve maxi-
mum efficiency. The key mechanism is this: In response to signals indicating the
completion of I/O transactions, the processor is switched among the various pro-
grams residing in main memory.

A second line of development was general-purpose time sharing. Here, the
key design objective is to be responsive to the needs of the individual user and yet,
for cost reasons, be able to support many users simultaneously. These goals are
compatible because of the relatively slow reaction time of the user. For example,
if a typical user needs an average of 2 seconds of processing time per minute, then
close to 30 such users should be able to share the same system without noticeable
interference. Of course, OS overhead must be factored into such calculations.

A third important line of development has been real-time transaction process-
ing systems. In this case, a number of users are entering queries or updates against a
database. An example is an airline reservation system. The key difference between
the transaction processing system and the time-sharing system is that the former
is limited to one or a few applications, whereas users of a time-sharing system can
engage in program development, job execution, and the use of various applications.
In both cases, system response time is paramount.

The principal tool available to system programmers in developing the early
multiprogramming and multiuser interactive systems was the interrupt. The activity
of any job could be suspended by the occurrence of a defined event, such as an I/O
completion. The processor would save some sort of context (e.g., program coun-
ter and other registers) and branch to an interrupt-handling routine, which would
determine the nature of the interrupt, process the interrupt, and then resume user
processing with the interrupted job or some other job.

The design of the system software to coordinate these various activities turned
out to be remarkably difficult. With many jobs in progress at any one time, each of
which involved numerous steps to be performed in sequence, it became impossible
to analyze all of the possible combinations of sequences of events. In the absence of
some systematic means of coordination and cooperation among activities, program-
mers resorted to ad hoc methods based on their understanding of the environment
that the OS had to control. These efforts were vulnerable to subtle programming
errors whose effects could be observed only when certain relatively rare sequences
of actions occurred. These errors were difficult to diagnose because they needed to
be distinguished from application software errors and hardware errors. Even when
the error was detected, it was difficult to determine the cause, because the precise
conditions under which the errors appeared were very hard to reproduce. In general
terms, there are four main causes of such errors [DENN80a]:

Improper synchronization: It is often the case that a routine must be suspended
awaiting an event elsewhere in the system. For example, a program that initiates
an I/O read must wait until the data are available in a buffer before proceeding.
In such cases, a signal from some other routine is required. Improper design
of the signaling mechanism can result in signals being lost or duplicate signals
being received.
Failed mutual exclusion: It is often the case that more than one user or program
will attempt to make use of a shared resource at the same time. For example,

2.3 / MAJOR ACHIEVEMENTS 63

two users may attempt to edit the same file at the same time. If these accesses
are not controlled, an error can occur. There must be some sort of mutual ex-
clusion mechanism that permits only one routine at a time to perform an up-
date against the file. The implementation of such mutual exclusion is difficult
to verify as being correct under all possible sequences of events.
Nondeterminate program operation: The results of a particular program
normally should depend only on the input to that program and not on the
activities of other programs in a shared system. But when programs share
memory, and their execution is interleaved by the processor, they may inter-
fere with each other by overwriting common memory areas in unpredictable
ways. Thus, the order in which various programs are scheduled may affect the
outcome of any particular program.
Deadlocks: It is possible for two or more programs to be hung up waiting for
each other. For example, two programs may each require two I/O devices to
perform some operation (e.g., disk to tape copy). One of the programs has
seized control of one of the devices and the other program has control of the
other device. Each is waiting for the other program to release the desired
resource. Such a deadlock may depend on the chance timing of resource al-
location and release.

What is needed to tackle these problems is a systematic way to monitor
and control the various programs executing on the processor. The concept of the
process provides the foundation. We can think of a process as consisting of three
components:

An executable program
The associated data needed by the program (variables, work space, buffers, etc.)
The execution context of the program

This last element is essential. The execution context, or process state, is the
internal data by which the OS is able to supervise and control the process. This
internal information is separated from the process, because the OS has information
not permitted to the process. The context includes all of the information that the OS
needs to manage the process and that the processor needs to execute the process
properly. The context includes the contents of the various processor registers, such
as the program counter and data registers. It also includes information of use to the
OS, such as the priority of the process and whether the process is waiting for the
completion of a particular I/O event.

Figure 2.8 indicates a way in which processes may be managed. Two processes,
A and B, exist in portions of main memory. That is, a block of memory is allocated to
each process that contains the program, data, and context information. Each process
is recorded in a process list built and maintained by the OS. The process list contains
one entry for each process, which includes a pointer to the location of the block
of memory that contains the process. The entry may also include part or all of the
execution context of the process. The remainder of the execution context is stored
elsewhere, perhaps with the process itself (as indicated in Figure 2.8) or frequently
in a separate region of memory. The process index register contains the index into

64 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

the process list of the process currently controlling the processor. The program coun-
ter points to the next instruction in that process to be executed. The base and limit
registers define the region in memory occupied by the process: The base register is
the starting address of the region of memory and the limit is the size of the region
(in bytes or words). The program counter and all data references are interpreted
relative to the base register and must not exceed the value in the limit register. This
prevents interprocess interference.

In Figure 2.8, the process index register indicates that process B is executing.
Process A was previously executing but has been temporarily interrupted. The con-
tents of all the registers at the moment of A’s interruption were recorded in its ex-
ecution context. Later, the OS can perform a process switch and resume execution
of process A. The process switch consists of storing the context of B and restoring
the context of A. When the program counter is loaded with a value pointing into
A’s program area, process A will automatically resume execution.

Thus, the process is realized as a data structure. A process can either be
executing or awaiting execution. The entire state of the process at any instant is

Context

Data

Program
(code)

Context

Data

i

Process index

PC

Base
limit

Other
registers

i

b
h

j

b

h
Process

B

Process
A

Main
memory

Processor
registers

Process
list

Program
(code)

Figure 2.8 Typical Process Implementation

2.3 / MAJOR ACHIEVEMENTS 65

contained in its context. This structure allows the development of powerful tech-
niques for ensuring coordination and cooperation among processes. New features
can be designed and incorporated into the OS (e.g., priority) by expanding the con-
text to include any new information needed to support the feature. Throughout this
book, we will see a number of examples where this process structure is employed to
solve the problems raised by multiprogramming and resource sharing.

A final point, which we introduce briefly here, is the concept of thread. In es-
sence, a single process, which is assigned certain resources, can be broken up into
multiple, concurrent threads that execute cooperatively to perform the work of the
process. This introduces a new level of parallel activity to be managed by the hard-
ware and software.

Memory Management

The needs of users can be met best by a computing environment that supports mod-
ular programming and the flexible use of data. System managers need efficient and
orderly control of storage allocation. The OS, to satisfy these requirements, has five
principal storage management responsibilities:

Process isolation: The OS must prevent independent processes from interfer-
ing with each other’s memory, both data and instructions.
Automatic allocation and management: Programs should be dynamically allo-
cated across the memory hierarchy as required. Allocation should be transpar-
ent to the programmer. Thus, the programmer is relieved of concerns relating
to memory limitations, and the OS can achieve efficiency by assigning memory
to jobs only as needed.
Support of modular programming: Programmers should be able to define pro-
gram modules, and to create, destroy, and alter the size of modules dynamically.
Protection and access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory space
of another. This is desirable when sharing is needed by particular applications.
At other times, it threatens the integrity of programs and even of the OS itself.
The OS must allow portions of memory to be accessible in various ways by
various users.
Long-term storage: Many application programs require means for storing infor-
mation for extended periods of time, after the computer has been powered down.

Typically, operating systems meet these requirements with virtual memory
and file system facilities. The file system implements a long-term store, with infor-
mation stored in named objects, called files. The file is a convenient concept for the
programmer and is a useful unit of access control and protection for the OS.

Virtual memory is a facility that allows programs to address memory from a
logical point of view, without regard to the amount of main memory physically avail-
able. Virtual memory was conceived to meet the requirement of having multiple user
jobs reside in main memory concurrently, so that there would not be a hiatus between
the execution of successive processes while one process was written out to second-
ary store and the successor process was read in. Because processes vary in size, if the

66 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

processor switches among a number of processes it is difficult to pack them compactly
into main memory. Paging systems were introduced, which allow processes to be com-
prised of a number of fixed-size blocks, called pages. A program references a word by
means of a virtual address consisting of a page number and an offset within the page.
Each page of a process may be located anywhere in main memory. The paging system
provides for a dynamic mapping between the virtual address used in the program and
a real address, or physical address, in main memory.

With dynamic mapping hardware available, the next logical step was to eliminate
the requirement that all pages of a process reside in main memory simultaneously. All
the pages of a process are maintained on disk. When a process is executing, some of its
pages are in main memory. If reference is made to a page that is not in main memory,
the memory management hardware detects this and arranges for the missing page to
be loaded. Such a scheme is referred to as virtual memory and is depicted in Figure 2.9.

Main memory Disk

User
program

A

0
A.0

B.0 B.1

B.5 B.6

B.2 B.3

A.1

A.2

A.7

A.8

A.5

A.9

1

2

3

4

5

6

7

8

9

10

User
program

B

0

1

2

3

4

5

6

Main memory consists of a
number of fixed-length frames,
each equal to the size of a page.
For a program to execute, some
or all of its pages must be in
main memory.

Secondary memory (disk) can
hold many fixed-length pages. A
user program consists of some
number of pages. Pages for all
programs plus the operating system
are on disk, as are files.

Figure 2.9 Virtual Memory Concepts

2.3 / MAJOR ACHIEVEMENTS 67

The processor hardware, together with the OS, provides the user with a “virtual
processor” that has access to a virtual memory. This memory may be a linear address
space or a collection of segments, which are variable-length blocks of contiguous ad-
dresses. In either case, programming language instructions can reference program
and data locations in the virtual memory area. Process isolation can be achieved by
giving each process a unique, nonoverlapping virtual memory. Memory sharing can
be achieved by overlapping portions of two virtual memory spaces. Files are main-
tained in a long-term store. Files and portions of files may be copied into the virtual
memory for manipulation by programs.

Figure 2.10 highlights the addressing concerns in a virtual memory scheme.
Storage consists of directly addressable (by machine instructions) main memory
and lower-speed auxiliary memory that is accessed indirectly by loading blocks into
main memory. Address translation hardware (memory management unit) is inter-
posed between the processor and memory. Programs reference locations using vir-
tual addresses, which are mapped into real main memory addresses. If a reference
is made to a virtual address not in real memory, then a portion of the contents of
real memory is swapped out to auxiliary memory and the desired block of data is
swapped in. During this activity, the process that generated the address reference
must be suspended. The OS designer needs to develop an address translation mech-
anism that generates little overhead and a storage allocation policy that minimizes
the traffic between memory levels.

Information Protection and Security

The growth in the use of time-sharing systems and, more recently, computer net-
works has brought with it a growth in concern for the protection of information.
The nature of the threat that concerns an organization will vary greatly depending
on the circumstances. However, there are some general-purpose tools that can be

Processor
Virtual
address

Real
address

Disk
address

Memory-
management

unit

Main
memory

Secondary
memory

Figure 2.10 Virtual Memory Addressing

68 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

built into computers and operating systems that support a variety of protection and
security mechanisms. In general, we are concerned with the problem of controlling
access to computer systems and the information stored in them.

Much of the work in security and protection as it relates to operating systems
can be roughly grouped into four categories:

Availability: Concerned with protecting the system against interruption.
Confidentiality: Assures that users cannot read data for which access is
unauthorized.
Data integrity: Protection of data from unauthorized modification.
Authenticity: Concerned with the proper verification of the identity of users
and the validity of messages or data.

Scheduling and Resource Management

A key responsibility of the OS is to manage the various resources available to it
(main memory space, I/O devices, processors) and to schedule their use by the vari-
ous active processes. Any resource allocation and scheduling policy must consider
three factors:

Fairness: Typically, we would like all processes that are competing for the use
of a particular resource to be given approximately equal and fair access to that
resource. This is especially so for jobs of the same class, that is, jobs of similar
demands.
Differential responsiveness: On the other hand, the OS may need to discrimi-
nate among different classes of jobs with different service requirements. The OS
should attempt to make allocation and scheduling decisions to meet the total
set of requirements. The OS should also make these decisions dynamically. For
example, if a process is waiting for the use of an I/O device, the OS may wish to
schedule that process for execution as soon as possible to free up the device for
later demands from other processes.
Efficiency: The OS should attempt to maximize throughput, minimize response
time, and, in the case of time sharing, accommodate as many users as possible.
These criteria conflict; finding the right balance for a particular situation is an
ongoing problem for OS research.

Scheduling and resource management are essentially operations-research
problems and the mathematical results of that discipline can be applied. In addition,
measurement of system activity is important to be able to monitor performance and
make adjustments.

Figure 2.11 suggests the major elements of the OS involved in the scheduling
of processes and the allocation of resources in a multiprogramming environment.
The OS maintains a number of queues, each of which is simply a list of processes
waiting for some resource. The short-term queue consists of processes that are in
main memory (or at least an essential minimum portion of each is in main mem-
ory) and are ready to run as soon as the processor is made available. Any one of
these processes could use the processor next. It is up to the short-term scheduler,

2.3 / MAJOR ACHIEVEMENTS 69

or dispatcher, to pick one. A common strategy is to give each process in the queue
some time in turn; this is referred to as a round-robin technique. In effect, the
round-robin technique employs a circular queue. Another strategy is to assign
priority levels to the various processes, with the scheduler selecting processes in
priority order.

The long-term queue is a list of new jobs waiting to use the processor. The
OS adds jobs to the system by transferring a process from the long-term queue to
the short-term queue. At that time, a portion of main memory must be allocated
to the incoming process. Thus, the OS must be sure that it does not overcommit
memory or processing time by admitting too many processes to the system. There
is an I/O queue for each I/O device. More than one process may request the use
of the same I/O device. All processes waiting to use each device are lined up in
that device’s queue. Again, the OS must determine which process to assign to an
available I/O device.

The OS receives control of the processor at the interrupt handler if an interrupt
occurs. A process may specifically invoke some OS service, such as an I/O device
handler by means of a service call. In this case, a service call handler is the entry
point into the OS. In any case, once the interrupt or service call is handled, the short-
term scheduler is invoked to pick a process for execution.

The foregoing is a functional description; details and modular design of this
portion of the OS will differ in various systems. Much of the research and develop-
ment effort in operating systems has been directed at picking algorithms and data
structures for this function that provide fairness, differential responsiveness, and
efficiency.

Service
call

handler (code)

Pass control
to process

Interrupt
handler (code)

Short-term
scheduler

(code)

Long-
term

queue

Short-
term

queue

I/O
queues

Operating system

Service call
from process

Interrupt
from process

Interrupt
from I/O

Figure 2.11 Key Elements of an Operating System for Multiprogramming

70 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 2.4 DEVELOPMENTS LEADING TO MODERN OPERATING
SYSTEMS

Over the years, there has been a gradual evolution of OS structure and capabilities.
However, in recent years a number of new design elements have been introduced
into both new operating systems and new releases of existing operating systems that
create a major change in the nature of operating systems. These modern operating
systems respond to new developments in hardware, new applications, and new se-
curity threats. Among the key hardware drivers are multiprocessor systems, greatly
increased processor speed, high-speed network attachments, and increasing size
and variety of memory storage devices. In the application arena, multimedia appli-
cations, Internet and Web access, and client/server computing have influenced OS
design. With respect to security, Internet access to computers has greatly increased
the potential threat and increasingly sophisticated attacks, such as viruses, worms,
and hacking techniques, have had a profound impact on OS design.

The rate of change in the demands on operating systems requires not just
modifications and enhancements to existing architectures but new ways of organiz-
ing the OS. A wide range of different approaches and design elements has been
tried in both experimental and commercial operating systems, but much of the work
fits into the following categories:

Microkernel architecture
Multithreading
Symmetric multiprocessing
Distributed operating systems
Object-oriented design

Most operating systems, until recently, featured a large monolithic kernel.
Most of what is thought of as OS functionality is provided in these large kernels, in-
cluding scheduling, file system, networking, device drivers, memory management,
and more. Typically, a monolithic kernel is implemented as a single process, with
all elements sharing the same address space. A microkernel architecture assigns
only a few essential functions to the kernel, including address spaces, interprocess
communication (IPC), and basic scheduling. Other OS services are provided by
processes, sometimes called servers, that run in user mode and are treated like any
other application by the microkernel. This approach decouples kernel and server
development. Servers may be customized to specific application or environment
requirements. The microkernel approach simplifies implementation, provides flex-
ibility, and is well suited to a distributed environment. In essence, a microkernel
interacts with local and remote server processes in the same way, facilitating con-
struction of distributed systems.

Multithreading is a technique in which a process, executing an application, is
 divided into threads that can run concurrently. We can make the following distinction:

Thread: A dispatchable unit of work. It includes a processor context (which
includes the program counter and stack pointer) and its own data area for a

2.4 / DEVELOPMENTS LEADING TO MODERN OPERATING SYSTEMS 71

stack (to enable subroutine branching). A thread executes sequentially and is
interruptible so that the processor can turn to another thread.
Process: A collection of one or more threads and associated system resources
(such as memory containing both code and data, open files, and devices). This
corresponds closely to the concept of a program in execution. By breaking a
single application into multiple threads, the programmer has great control over
the modularity of the application and the timing of application-related events.

Multithreading is useful for applications that perform a number of essentially
independent tasks that do not need to be serialized. An example is a database server
that listens for and processes numerous client requests. With multiple threads run-
ning within the same process, switching back and forth among threads involves
less processor overhead than a major process switch between different processes.
Threads are also useful for structuring processes that are part of the OS kernel as
described in subsequent chapters.

Symmetric multiprocessing (SMP) is a term that refers to a computer hardware
architecture (described in Chapter 1) and also to the OS behavior that exploits that
architecture. The OS of an SMP schedules processes or threads across all of the pro-
cessors. SMP has a number of potential advantages over uniprocessor architecture,
including the following:

Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type. This is illustrated in Figure 2.12. With multiprogramming, only
one process can execute at a time; meanwhile all other processes are waiting
for the processor. With multiprocessing, more than one process can be run-
ning simultaneously, each on a different processor.
Availability: In a symmetric multiprocessor, because all processors can perform
the same functions, the failure of a single processor does not halt the system.
Instead, the system can continue to function at reduced performance.
Incremental growth: A user can enhance the performance of a system by add-
ing an additional processor.
Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the
system.

It is important to note that these are potential, rather than guaranteed, benefits.
The OS must provide tools and functions to exploit the parallelism in an SMP
system.

Multithreading and SMP are often discussed together, but the two are indepen-
dent facilities. Even on a uniprocessor system, multithreading is useful for structur-
ing applications and kernel processes. An SMP system is useful even for nonthreaded
processes, because several processes can run in parallel. However, the two facilities
complement each other and can be used effectively together.

An attractive feature of an SMP is that the existence of multiple processors
is transparent to the user. The OS takes care of scheduling of threads or processes

72 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

on individual processors and of synchronization among processors. This book dis-
cusses the scheduling and synchronization mechanisms used to provide the single-
system appearance to the user. A different problem is to provide the appearance
of a single system for a cluster of separate computers—a multicomputer system.
In this case, we are dealing with a collection of entities (computers), each with
its own main memory, secondary memory, and other I/O modules. A distributed
operating system provides the illusion of a single main memory space and a single
secondary memory space, plus other unified access facilities, such as a distributed
file system. Although clusters are becoming increasingly popular, and there are
many cluster products on the market, the state of the art for distributed operating
systems lags that of uniprocessor and SMP operating systems. We examine such
systems in Part Eight.

Another innovation in OS design is the use of object-oriented technologies.
Object-oriented design lends discipline to the process of adding modular extensions
to a small kernel. At the OS level, an object-based structure enables programmers to
customize an OS without disrupting system integrity. Object orientation also eases
the development of distributed tools and full-blown distributed operating systems.

(a) Interleaving (multiprogramming; one processor)

Process 1

Process 2

Process 3

Process 1

Process 2

Process 3

(b) Interleaving and overlapping (multiprocessing; two processors)

Blocked Running

Time

Figure 2.12 Multiprogramming and Multiprocessing

2.5 / FAULT TOLERANCE 73

 2.5 FAULT TOLERANCE

Fault tolerance refers to the ability of a system or component to continue normal
operation despite the presence of hardware or software faults. This typically involves
some degree of redundancy. Fault tolerance is intended to increase the reliability
of a system. Typically, increased fault tolerance, and therefore increased reliability,
comes with a cost, either in financial terms or performance, or both. Thus, the ex-
tent adoption of fault tolerance measures must be determined by how critical the
resource is.

Fundamental Concepts

The basic measures of the quality of the operation of a system that relate to fault
tolerance are reliability, mean time to failure (MTTF), and availability. These con-
cepts were developed with reference to hardware faults but apply more generally to
hardware and software faults.

The reliability R(t) of a system is defined as the probability of its correct op-
eration up to time t given that the system was operating correctly at time t = 0. For
computer systems and operating systems, the term correct operation means the
correct execution of a set of programs and the protection of data from unintended
modification. The mean time to failure (MTTF) is defined as

MTTF = L
∞

0
R1t2

The mean time to repair (MTTR) is the average time it takes to repair or
replace a faulty element. Figure 2.13 illustrates the relationship among these three
parameters.

The availability of a system or service is defined as the fraction of time the
system is available to service users’ requests. Equivalently, availability is the prob-
ability that an entity is operating correctly under given conditions at a given instant
of time. The time during which the system is not available is called downtime; the

A1

B1

Down

Up

B2 B3

A2 A3

MTTF = MTTR = B1+ B2 + B3
3

3A1+ A2 + A
3

Figure 2.13 System Operational States

74 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

time during which the system is available is called uptime. The availability A of a
system can be expressed as follows:

A =
MTTF

MTTF + MTTR

Table 2.4 shows some commonly identified availability levels and the corre-
sponding annual downtime.

Often, the mean uptime, which is MTTF, is a better indicator than availabil-
ity, because a small downtime and a small uptime combination may result in a high
availability measure, but the users may not be able to get any service if the uptime is
less than the time required to complete a service.

Faults

The IEEE Standards Dictionary defines a fault as an erroneous hardware or soft-
ware state resulting from component failure, operator error, physical interference
from the environment, design error, program error, or data structure error. The
standard also states that a fault manifests itself as (1) a defect in a hardware device
or component; for example, a short circuit or broken wire, or (2) an incorrect step,
process, or data definition in a computer program.

We can group faults into the following categories:

Permanent: A fault that, after it occurs, is always present. The fault persists
until the faulty component is replaced or repaired. Examples include disk
head crashes, software bugs, and a burnt-out communications component.
Temporary: A fault that is not present all the time for all operating conditions.
Temporary faults can be further classified as follows:
— Transient: A fault that occurs only once. Examples include bit transmission

errors due to an impulse noise, power supply disturbances, and radiation
that alters a memory bit.

— Intermittent: A fault that occurs at multiple, unpredictable times. An ex-
ample of an intermittent fault is one caused by a loose connection.

In general, fault tolerance is built into a system by adding redundancy.
Methods of redundancy include the following:

Spatial (physical) redundancy: Physical redundancy involves the use of mul-
tiple components that either perform the same function simultaneously or are

Table 2.4 Availability Classes

Class Availability Annual Downtime

Continuous 1.0 0

Fault tolerant 0.99999 5 minutes

Fault resilient 0.9999 53 minutes

High availability 0.999 8.3 hours

Normal availability 0.99–0.995 44–87 hours

2.5 / FAULT TOLERANCE 75

configured so that one component is available as a backup in case of the fail-
ure of another component. An example of the former is the use of multiple
parallel circuitry with the majority result produced as output. An example of
the latter is a backup name server on the Internet.
Temporal redundancy: Temporal redundancy involves repeating a function or
operation when an error is detected. This approach is effective with temporary
faults but not useful for permanent faults. An example is the retransmission of
a block of data when an error is detected, such as is done with data link control
protocols.
Information redundancy: Information redundancy provides fault tolerance by
replicating or coding data in such a way that bit errors can be both detected and
corrected. An example is the error-control coding circuitry used with memory
systems, and error-correction techniques used with RAID disks, described in
subsequent chapters.

Operating System Mechanisms

A number of techniques can be incorporated into OS software to support fault tol-
erance. A number of examples will be evident throughout the book. The following
list provides examples:

Process isolation: As was mentioned earlier in this chapter, processes are
generally isolated from one another in terms main memory, file access, and
flow of execution. The structure provided by the OS for managing processes
provides a certain level of protection for other processes from a process that
produces a fault.
Concurrency controls: Chapters 5 and 6 discuss some of the difficulties and
faults that can occur when processes communicate or cooperate. These chap-
ters also discuss techniques used to ensure correct operation and to recover
from fault conditions, such as deadlock.
Virtual machines: Virtual machines, discussed in Chapter 14, provide a greater
degree of application isolation and hence fault isolation. Virtual machines can
also be used to provide redundancy, with one virtual machine serving as a
backup for another.
Checkpoints and rollbacks: A checkpoint is a copy of an application’s state
saved in some storage that is immune to the failures under consideration. A
rollback restarts the execution from a previously saved checkpoint. When a
failure occurs, the application’s state is rolled back to the previous checkpoint
and restarted from there. This technique can be used to recover from transient
as well as permanent hardware failures and certain types of software failures.
Database and transaction processing systems typically have such capabilities
built in.

A much wider array of techniques could be discussed, but a full treatment of
OS fault tolerance is beyond our scope.

76 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 2.6 OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR
AND MULTICORE

Symmetric Multiprocessor OS Considerations

In an SMP system, the kernel can execute on any processor, and typically each
processor does self-scheduling from the pool of available processes or threads. The
kernel can be constructed as multiple processes or multiple threads, allowing por-
tions of the kernel to execute in parallel. The SMP approach complicates the OS.
The OS designer must deal with the complexity due to sharing resources (like data
structures) and coordinating actions (like accessing devices) from multiple parts of
the OS executing at the same time. Techniques must be employed to resolve and
synchronize claims to resources.

An SMP operating system manages processor and other computer resources
so that the user may view the system in the same fashion as a multiprogramming
uniprocessor system. A user may construct applications that use multiple processes
or multiple threads within processes without regard to whether a single processor or
multiple processors will be available. Thus, a multiprocessor OS must provide all the
functionality of a multiprogramming system plus additional features to accommo-
date multiple processors. The key design issues include the following:

Simultaneous concurrent processes or threads: Kernel routines need to be re-
entrant to allow several processors to execute the same kernel code simulta-
neously. With multiple processors executing the same or different parts of the
kernel, kernel tables and management structures must be managed properly
to avoid data corruption or invalid operations.
Scheduling: Any processor may perform scheduling, which complicates the
task of enforcing a scheduling policy and assuring that corruption of the sched-
uler data structures is avoided. If kernel-level multithreading is used, then the
opportunity exists to schedule multiple threads from the same process simul-
taneously on multiple processors. Multiprocessor scheduling is examined in
Chapter 10.
Synchronization: With multiple active processes having potential access to
shared address spaces or shared I/O resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering. A common synchronization mechanism used in
multiprocessor operating systems is locks, described in Chapter 5.
Memory management: Memory management on a multiprocessor must deal
with all of the issues found on uniprocessor computers and is discussed in Part
Three. In addition, the OS needs to exploit the available hardware parallelism
to achieve the best performance. The paging mechanisms on different pro-
cessors must be coordinated to enforce consistency when several processors
share a page or segment and to decide on page replacement. The reuse of
physical pages is the biggest problem of concern; that is, it must be guaranteed
that a physical page can no longer be accessed with its old contents before the
page is put to a new use.

2.6 / OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR AND MULTICORE 77

Reliability and fault tolerance: The OS should provide graceful degradation
in the face of processor failure. The scheduler and other portions of the OS
must recognize the loss of a processor and restructure management tables
accordingly.

Because multiprocessor OS design issues generally involve extensions to solu-
tions to multiprogramming uniprocessor design problems, we do not treat multi-
processor operating systems separately. Rather, specific multiprocessor issues are
addressed in the proper context throughout this book.

Multicore OS Considerations

The considerations for multicore systems include all the design issues discussed so
far in this section for SMP systems. But additional concerns arise. The issue is one
of the scale of the potential parallelism. Current multicore vendors offer systems
with up to eight cores on a single chip. With each succeeding processor technology
generation, the number of cores and the amount of shared and dedicated cache
memory increases, so that we are now entering the era of “many-core” systems.

The design challenge for a many-core multicore system is to efficiently harness
the multicore processing power and intelligently manage the substantial on-chip re-
sources efficiently. A central concern is how to match the inherent parallelism of a
many-core system with the performance requirements of applications. The potential
for parallelism in fact exists at three levels in contemporary multicore system. First,
there is hardware parallelism within each core processor, known as instruction level
parallelism, which may or may not be exploited by application programmers and
compilers. Second, there is the potential for multiprogramming and multithreaded
execution within each processor. Finally, there is the potential for a single applica-
tion to execute in concurrent processes or threads across multiple cores. Without
strong and effective OS support for the last two types of parallelism just mentioned,
hardware resources will not be efficiently used.

In essence, then, since the advent of multicore technology, OS designers have
been struggling with the problem of how best to extract parallelism from computing
workloads. A variety of approaches are being explored for next-generation operat-
ing systems. We introduce two general strategies in this section and consider some
details in later chapters.

PARALLELISM WITHIN APPLICATIONS Most applications can, in principle, be
subdivided into multiple tasks that can execute in parallel, with these tasks then
being implemented as multiple processes, perhaps each with multiple threads. The
difficulty is that the developer must decide how to split up the application work into
independently executable tasks. That is, the developer must decide what pieces can
or should be executed asynchronously or in parallel. It is primarily the compiler and
the programming language features that support the parallel programming design
process. But, the OS can support this design process, at minimum, by efficiently
allocating resources among parallel tasks as defined by the developer.

One of the most effective initiatives to support developers is Grand Central
Dispatch (GCD), implemented in the latest release of the UNIX-based Mac OS X
and the iPhone iOS operating systems. GCD is a multicore support capability.

78 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

It does not help the developer decide how to break up a task or application into
separate concurrent parts. But once a developer has identified something that can
be split off into a separate task, GCD makes it as easy and noninvasive as possible
to actually do so.

In essence, GCD is a thread pool mechanism, in which the OS maps tasks onto
threads representing an available degree of concurrency (plus threads for block-
ing on I/O). Windows also has a thread pool mechanism (since 2000), and thread
pools have been heavily used in server applications for years. What is new in GCD
is the extension to programming languages to allow anonymous functions (called
blocks) as a way of specifying tasks. GCD is hence not a major evolutionary step.
Nevertheless, it is a new and valuable tool for exploiting the available parallelism of
a multicore system.

One of Apple’s slogans for GCD is “islands of serialization in a sea of concur-
rency.” That captures the practical reality of adding more concurrency to run-of-the-
mill desktop applications. Those islands are what isolate developers from the thorny
problems of simultaneous data access, deadlock, and other pitfalls of multithreading.
Developers are encouraged to identify functions of their applications that would be
better executed off the main thread, even if they are made up of several sequential or
otherwise partially interdependent tasks. GCD makes it easy to break off the entire
unit of work while maintaining the existing order and dependencies between sub-
tasks. In later chapters, we look at some of the details of GCD.

VIRTUAL MACHINE APPROACH An alternative approach is to recognize that
with the ever-increasing number of cores on a chip, the attempt to multiprogram
individual cores to support multiple applications may be a misplaced use of
resources [JACK10]. If instead, we allow one or more cores to be dedicated to a
particular process and then leave the processor alone to devote its efforts to that
process, we avoid much of the overhead of task switching and scheduling decisions.
The multicore OS could then act as a hypervisor that makes a high-level decision
to allocate cores to applications but does little in the way of resource allocation
beyond that.

The reasoning behind this approach is as follows. In the early days of com-
puting, one program was run on a single processor. With multiprogramming,
each application is given the illusion that it is running on a dedicated processor.
Multiprogramming is based on the concept of a process, which is an abstraction of
an execution environment. To manage processes, the OS requires protected space,
free from user and program interference. For this purpose, the distinction between
kernel mode and user mode was developed. In effect, kernel mode and user mode
abstracted the processor into two processors. With all these virtual processors, how-
ever, come struggles over who gets the attention of the real processor. The overhead
of switching between all these processors starts to grow to the point where respon-
siveness suffers, especially when multiple cores are introduced. But with many-core
systems, we can consider dropping the distinction between kernel and user mode.
In this approach, the OS acts more like a hypervisor. The programs themselves take
on many of the duties of resource management. The OS assigns an application a
processor and some memory, and the program itself, using metadata generated by
the compiler, would best know how to use these resources.

2.7 / MICROSOFT WINDOWS OVERVIEW 79

 2.7 MICROSOFT WINDOWS OVERVIEW

Background

Microsoft initially used the name Windows in 1985, for an operating environment
extension to the primitive MS-DOS operating system, which was a successful OS
used on early personal computers. This Windows/MS-DOS combination was ulti-
mately replaced by a new version of Windows, known as Windows NT, first released
in 1993. Windows NT had roughly the same graphical user interface as the older
Windows systems, but was a completely new internal design. The core of Windows
NT, consisting of the Kernel and the Executive, was designed for 32-bit machines
and included a number of object-oriented features. Windows has continued to
evolve with each new release. The latest such release, at the time of this writing, is
Windows 8. Windows 8 represents the most significant change in Windows since the
introduction of NT. Windows 8 is designed to work across a wide range of devices,
including personal computers, laptops, tablets, and home theater PCs. Windows 8
introduced major changes to the operating system’s platform and user interface to
improve its user experience on devices such as tablets. These changes included a
touch-optimized shell based on Microsoft’s Metro design language.

There have been a number of advances in the Windows NT design since its in-
troduction, including the separation into client and server versions, but at the level
of detail of this section, the Kernel and Executive have retained essentially the same
internal structure. However, with Windows 8, there have been some fundamental
changes to the internals of the OS, especially in the areas of process management
and virtual memory management. These new Windows 8 internals features are dis-
cussed in subsequent chapters.

Architecture

Figure 2.14 illustrates the overall structure of Windows 8. As with virtually all oper-
ating systems, Windows separates application-oriented software from the core OS
software. The latter, which includes the Executive, the Kernel, device drivers, and
the hardware abstraction layer, runs in kernel mode. Kernel mode software has ac-
cess to system data and to the hardware. The remaining software, running in user
mode, has limited access to system data.

OPERATING SYSTEM ORGANIZATION Windows has a highly modular architecture.
Each system function is managed by just one component of the OS. The rest of the
OS and all applications access that function through the responsible component
using standard interfaces. Key system data can only be accessed through the
appropriate function. In principle, any module can be removed, upgraded, or
replaced without rewriting the entire system or its standard application program
interfaces (APIs).

The kernel-mode components of Windows are the following:

Executive: Contains the core OS services, such as memory management, pro-
cess and thread management, security, I/O, and interprocess communication.

80 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Kernel: Controls execution of the processors. The Kernel manages thread
scheduling, process switching, exception and interrupt handling, and multipro-
cessor synchronization. Unlike the rest of the Executive and the user level, the
Kernel’s own code does not run in threads.
Hardware abstraction layer (HAL): Maps between generic hardware com-
mands and responses and those unique to a specific platform. It isolates the
OS from platform-specific hardware differences. The HAL makes each com-
puter’s system bus, direct memory access (DMA) controller, interrupt con-
troller, system timers, and memory controller look the same to the Executive
and Kernel components. It also delivers the support needed for SMP, ex-
plained subsequently.
Device drivers: Dynamic libraries that extend the functionality of the Executive.
These include hardware device drivers that translate user I/O function calls

User mode

Kernel mode

Session
manager

System
threads

System service dispatcher

Winlogon

Lsass

Lsass = local security authentication server
POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link libraries

Colored area indicates Executive

System support
processes

Service processes Applications

Environment
subsystems

Service control
manager

Spooler

Winmgmt.exe

SVChost.exe

User
application

Subsytem DLLs Win32

Ntdll.dll

Windows
explorer

Task manager

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics
drivers

Hardware abstraction layer (HAL)

File system
 cache

O
bject m

anager

Plug-and-play
m

anager

Pow
er m

anager

Security reference
m

onitor

V
irtual m

em
ory

Processes and
threads

C
onfiguration

m
anager (registry)

L
ocal procedure

call
POSIX

Device
and file
system
drivers

I/O manager

Kernel

Services.exe

Figure 2.14 Windows Internals Architecture [RUSS11]

2.7 / MICROSOFT WINDOWS OVERVIEW 81

into specific hardware device I/O requests and software components for imple-
menting file systems, network protocols, and any other system extensions that
need to run in kernel mode.
Windowing and graphics system: Implements the GUI functions, such as deal-
ing with windows, user interface controls, and drawing.

The Windows Executive includes components for specific system functions
and provides an API for user-mode software. Following is a brief description of
each of the Executive modules:

I/O manager: Provides a framework through which I/O devices are accessible
to applications, and is responsible for dispatching to the appropriate device
drivers for further processing. The I/O manager implements all the Windows
I/O APIs and enforces security and naming for devices, network protocols,
and file systems (using the object manager). Windows I/O is discussed in
Chapter 11.
Cache manager: Improves the performance of file-based I/O by causing re-
cently referenced file data to reside in main memory for quick access, and
deferring disk writes by holding the updates in memory for a short time before
sending them to the disk in more efficient batches.
Object manager: Creates, manages, and deletes Windows Executive objects
that are used to represent resources such as processes, threads, and synchroni-
zation objects. It enforces uniform rules for retaining, naming, and setting the
security of objects. The object manager also creates the entries in each pro-
cesses’ handle table, which consist of access control information and a pointer
to the object. Windows objects are discussed later in this section.
Plug-and-play manager: Determines which drivers are required to support a
particular device and loads those drivers.
Power manager: Coordinates power management among various devices and
can be configured to reduce power consumption by shutting down idle de-
vices, putting the processor to sleep, and even writing all of memory to disk
and shutting off power to the entire system.
Security reference monitor: Enforces access-validation and audit-generation
rules. The Windows object-oriented model allows for a consistent and uni-
form view of security, right down to the fundamental entities that make up the
Executive. Thus, Windows uses the same routines for access validation and
for audit checks for all protected objects, including files, processes, address
spaces, and I/O devices. Windows security is discussed in Chapter 15.
Virtual memory manager: Manages virtual addresses, physical memory, and
the paging files on disk. Controls the memory management hardware and data
structures which map virtual addresses in the process’s address space to physi-
cal pages in the computer’s memory. Windows virtual memory management is
described in Chapter 8.
Process/thread manager: Creates, manages, and deletes process and thread
objects. Windows process and thread management are described in Chapter 4.

82 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Configuration manager: Responsible for implementing and managing the sys-
tem registry, which is the repository for both system-wide and per-user settings
of various parameters.
Advanced local procedure call (ALPC) facility: Implements an efficient cross-
process procedure call mechanism for communication between local processes
implementing services and subsystems. Similar to the remote procedure call
(RPC) facility used for distributed processing.

USER-MODE PROCESSES Windows supports four basic types of user-mode processes:

Special system processes: User-mode services needed to manage the system,
such as the session manager, the authentication subsystem, the service man-
ager, and the logon process.
Service processes: The printer spooler, the event logger, user-mode components
that cooperate with device drivers, various network services, and many, many
others. Services are used by both Microsoft and external software developers
to extend system functionality as they are the only way to run background user-
mode activity on a Windows system.
Environment subsystems: Provide different OS personalities (environments).
The supported subsystems are Win32 and POSIX. Each environment subsystem
includes a subsystem process shared among all applications using the subsys-
tem and dynamic link libraries (DLLs) that convert the user application calls to
ALPC calls on the subsystem process, and/or native Windows calls.
User applications: Executables (EXEs) and DLLs that provide the functional-
ity users run to make use of the system. EXEs and DLLs are generally targeted
at a specific environment subsystem; although some of the programs that are
provided as part of the OS use the native system interfaces (NT API). There is
also support for running 32-bit programs on 64-bit systems.

Windows is structured to support applications written for multiple OS person-
alities. Windows provides this support using a common set of kernel mode compo-
nents that underlie the OS environment subsystems. The implementation of each
environment subsystem includes a separate process, which contains the shared data
structures, privileges, and Executive object handles needed to implement a particu-
lar personality. The process is started by the Windows Session Manager when the
first application of that type is started. The subsystem process runs as a system user,
so the Executive will protect its address space from processes run by ordinary users.

An environment subsystem provides a graphical or command-line user inter-
face that defines the look and feel of the OS for a user. In addition, each subsys-
tem provides the API for that particular environment. This means that applications
created for a particular operating environment need only be recompiled to run on
Windows. Because the OS interface that they see is the same as that for which they
were written, the source code does not need to be modified.

Client/Server Model

The Windows OS services, the environment subsystems, and the applications are
structured using the client/server computing model, which is a common model for

2.7 / MICROSOFT WINDOWS OVERVIEW 83

distributed computing and which is discussed in Part Six. This same architecture
can be adopted for use internally to a single system, as is the case with Windows.

The native NT API is a set of kernel-based services which provide the core
abstractions used by the system, such as processes, threads, virtual memory, I/O, and
communication. Windows provides a far richer set of services by using the client/
server model to implement functionality in user-mode processes. Both the environ-
ment subsystems and the Windows user-mode services are implemented as processes
that communicate with clients via RPC. Each server process waits for a request from
a client for one of its services (e.g., memory services, process creation services, or net-
working services). A client, which can be an application program or another server
program, requests a service by sending a message. The message is routed through the
Executive to the appropriate server. The server performs the requested operation
and returns the results or status information by means of another message, which is
routed through the Executive back to the client.

Advantages of a client/server architecture include the following:

It simplifies the Executive. It is possible to construct a variety of APIs im-
plemented in user-mode servers without any conflicts or duplications in the
Executive. New APIs can be added easily.
It improves reliability. Each new server runs outside of the kernel, with its
own partition of memory, protected from other servers. A single server can
fail without crashing or corrupting the rest of the OS.
It provides a uniform means for applications to communicate with services via
RPCs without restricting flexibility. The message-passing process is hidden
from the client applications by function stubs, which are small pieces of code
which wrap the RPC call. When an application makes an API call to an envi-
ronment subsystem or a service, the stub in the client application packages the
parameters for the call and sends them as a message to the server process that
implements the call.
It provides a suitable base for distributed computing. Typically, distributed
computing makes use of a client/server model, with remote procedure calls
implemented using distributed client and server modules and the exchange
of messages between clients and servers. With Windows, a local server can
pass a message on to a remote server for processing on behalf of local client
applications. Clients need not know whether a request is being serviced lo-
cally or remotely. Indeed, whether a request is serviced locally or remotely
can change dynamically based on current load conditions and on dynamic
configuration changes.

Threads and SMP

Two important characteristics of Windows are its support for threads and for
symmetric multiprocessing (SMP), both of which were introduced in Section 2.4.
[RUSS11] lists the following features of Windows that support threads and SMP:

OS routines can run on any available processor, and different routines can
execute simultaneously on different processors.

84 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Windows supports the use of multiple threads of execution within a single
process. Multiple threads within the same process may execute on different
processors simultaneously.
Server processes may use multiple threads to process requests from more than
one client simultaneously.
Windows provides mechanisms for sharing data and resources between pro-
cesses and flexible interprocess communication capabilities.

Windows Objects

Though the core of Windows is written in C, the design principles followed draw
heavily on the concepts of object-oriented design. This approach facilitates the
sharing of resources and data among processes and the protection of resources
from unauthorized access. Among the key object-oriented concepts used by
Windows are the following:

Encapsulation: An object consists of one or more items of data, called attri-
butes, and one or more procedures that may be performed on those data, called
services. The only way to access the data in an object is by invoking one of the
object’s services. Thus, the data in the object can easily be protected from un-
authorized use and from incorrect use (e.g., trying to execute a non-executable
piece of data).
Object class and instance: An object class is a template that lists the attributes
and services of an object and defines certain object characteristics. The OS can
create specific instances of an object class as needed. For example, there is a
single process object class and one process object for every currently active
process. This approach simplifies object creation and management.
Inheritance: Although the implementation is hand coded, the Executive uses
inheritance to extend object classes by adding new features. Every Executive
class is based on a base class which specifies virtual methods that support cre-
ating, naming, securing, and deleting objects. Dispatcher objects are Executive
objects that inherit the properties of an event object, so they can use common
synchronization methods. Other specific object types, such as the device class,
allow classes for specific devices to inherit from the base class, and add addi-
tional data and methods.
Polymorphism: Internally, Windows uses a common set of API functions to
manipulate objects of any type; this is a feature of polymorphism, as defined
in Appendix D. However, Windows is not completely polymorphic because
there are many APIs that are specific to a single object type.

The reader unfamiliar with object-oriented concepts should review Appendix D.
Not all entities in Windows are objects. Objects are used in cases where data are

intended for user mode access or when data access is shared or restricted. Among the
entities represented by objects are files, processes, threads, semaphores, timers, and
graphical windows. Windows creates and manages all types of objects in a uniform way,
via the object manager. The object manager is responsible for creating and destroying
objects on behalf of applications and for granting access to an object’s services and data.

2.7 / MICROSOFT WINDOWS OVERVIEW 85

Each object within the Executive, sometimes referred to as a kernel object
(to distinguish from user-level objects not of concern to the Executive), exists as
a memory block allocated by the kernel and is directly accessible only by kernel
mode components. Some elements of the data structure (e.g., object name, security
parameters, usage count) are common to all object types, while other elements are
specific to a particular object type (e.g., a thread object’s priority). Because these
object data structures are in the part of each process’s address space accessible only
by the kernel, it is impossible for an application to reference these data structures
and read or write them directly. Instead, applications manipulate objects indirectly
through the set of object manipulation functions supported by the Executive. When
an object is created, the application that requested the creation receives back a han-
dle for the object. In essence, a handle is an index into a per-process Executive table
containing a pointer to the referenced object. This handle can then be used by any
thread within the same process to invoke Win32 functions that work with objects, or
can be duplicated into other processes.

Objects may have security information associated with them, in the form of a
Security Descriptor (SD). This security information can be used to restrict access
to the object based on contents of a token object which describes a particular user.
For example, a process may create a named semaphore object with the intent that
only certain users should be able to open and use that semaphore. The SD for the
semaphore object can list those users that are allowed (or denied) access to the
semaphore object along with the sort of access permitted (read, write, change, etc.).

In Windows, objects may be either named or unnamed. When a process cre-
ates an unnamed object, the object manager returns a handle to that object, and the
handle is the only way to refer to it. Handles can be inherited by child processes or
duplicated between processes. Named objects are also given a name that other un-
related processes can use to obtain a handle to the object. For example, if process A
wishes to synchronize with process B, it could create a named event object and pass
the name of the event to B. Process B could then open and use that event object.
However, if A simply wished to use the event to synchronize two threads within
itself, it would create an unnamed event object, because there is no need for other
processes to be able to use that event.

There are two categories of objects used by Windows for synchronizing the
use of the processor:

Dispatcher objects: The subset of Executive objects which threads can wait on
to control the dispatching and synchronization of thread-based system opera-
tions. These are described in Chapter 6.
Control objects: Used by the Kernel component to manage the operation of
the processor in areas not managed by normal thread scheduling. Table 2.5
lists the Kernel control objects.

Windows is not a full-blown object-oriented OS. It is not implemented in
an object-oriented language. Data structures that reside completely within one
Executive component are not represented as objects. Nevertheless, Windows illus-
trates the power of object-oriented technology and represents the increasing trend
toward the use of this technology in OS design.

86 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 2.8 TRADITIONAL UNIX SYSTEMS

History

The history of UNIX is an oft-told tale and will not be repeated in great detail here.
Instead, we provide a brief summary.

UNIX was initially developed at Bell Labs and became operational on a
PDP-7 in 1970. Some of the people involved at Bell Labs had also participated in
the time-sharing work being done at MIT’s Project MAC. That project led to the
development of first CTSS and then Multics. Although it is common to say that
the original UNIX was a scaled-down version of Multics, the developers of UNIX
actually claimed to be more influenced by CTSS [RITC78]. Nevertheless, UNIX
incorporated many ideas from Multics.

Work on UNIX at Bell Labs, and later elsewhere, produced a series of versions
of UNIX. The first notable milestone was porting the UNIX system from the PDP-7 to
the PDP-11. This was the first hint that UNIX would be an OS for all computers. The
next important milestone was the rewriting of UNIX in the programming language C.
This was an unheard-of strategy at the time. It was generally felt that something as
complex as an OS, which must deal with time-critical events, had to be written exclu-
sively in assembly language. Reasons for this attitude include the following:

Memory (both RAM and secondary store) was small and expensive by
 today’s standards, so effective use was important. This included various tech-
niques for overlaying memory with different code and data segments, and
self-modifying code.
Even though compilers had been available since the 1950s, the computer in-
dustry was generally skeptical of the quality of automatically generated code.

Table 2.5 Windows Kernel Control Objects

Asynchronous procedure call Used to break into the execution of a specified thread and to cause a
procedure to be called in a specified processor mode.

Deferred procedure call Used to postpone interrupt processing to avoid delaying hardware inter-
rupts. Also used to implement timers and interprocessor communication.

Interrupt Used to connect an interrupt source to an interrupt service routine by
means of an entry in an Interrupt Dispatch Table (IDT). Each processor
has an IDT that is used to dispatch interrupts that occur on that processor.

Process Represents the virtual address space and control information necessary
for the execution of a set of thread objects. A process contains a pointer to
an address map, a list of ready threads containing thread objects, a list of
threads belonging to the process, the total accumulated time for all threads
executing within the process, and a base priority.

Thread Represents thread objects, including scheduling priority and quantum, and
which processors the thread may run on.

Profile Used to measure the distribution of run time within a block of code. Both
user and system code can be profiled.

2.8 / TRADITIONAL UNIX SYSTEMS 87

With resource capacity small, efficient code, both in terms of time and space,
was essential.
Processor and bus speeds were relatively slow, so saving clock cycles could
make a substantial difference in execution time.

The C implementation demonstrated the advantages of using a high-level lan-
guage for most if not all of the system code. Today, virtually all UNIX implementa-
tions are written in C.

These early versions of UNIX were popular within Bell Labs. In 1974, the
UNIX system was described in a technical journal for the first time [RITC74]. This
spurred great interest in the system. Licenses for UNIX were provided to commer-
cial institutions as well as universities. The first widely available version outside Bell
Labs was Version 6, in 1976. The follow-on Version 7, released in 1978, is the an-
cestor of most modern UNIX systems. The most important of the non-AT&T sys-
tems to be developed was done at the University of California at Berkeley, called
UNIX BSD (Berkeley Software Distribution), running first on PDP and then VAX
computers. AT&T continued to develop and refine the system. By 1982, Bell Labs
had combined several AT&T variants of UNIX into a single system, marketed com-
mercially as UNIX System III. A number of features was later added to the OS to
produce UNIX System V.

Description

Figure 2.15 provides a general description of the classic UNIX architecture. The
underlying hardware is surrounded by the OS software. The OS is often called the
system kernel, or simply the kernel, to emphasize its isolation from the user and

Hardware

Kernel

System call
interface

UNIX commands
and libraries

User-written
applications

Figure 2.15 General UNIX Architecture

88 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

applications. It is the UNIX kernel that we will be concerned with in our use of
UNIX as an example in this book. UNIX also comes equipped with a number of
user services and interfaces that are considered part of the system. These can be
grouped into the shell, other interface software, and the components of the C com-
piler (compiler, assembler, loader). The layer outside of this consists of user appli-
cations and the user interface to the C compiler.

A closer look at the kernel is provided in Figure 2.16. User programs can in-
voke OS services either directly or through library programs. The system call inter-
face is the boundary with the user and allows higher-level software to gain access
to specific kernel functions. At the other end, the OS contains primitive routines
that interact directly with the hardware. Between these two interfaces, the system
is divided into two main parts, one concerned with process control and the other
concerned with file management and I/O. The process control subsystem is respon-
sible for memory management, the scheduling and dispatching of processes, and the
synchronization and interprocess communication of processes. The file system ex-
changes data between memory and external devices either as a stream of characters

Hardware

Hardware level

Kernel level

Kernel level

User level

User programs

Trap

Hardware control

System call interface

Libraries

Device drivers

File subsystem
Process
control

subsystem

Character Block

Buffer cache

Interprocess
communication

Scheduler

Memory
management

Figure 2.16 Traditional UNIX Kernel

2.9 / MODERN UNIX SYSTEMS 89

or in blocks. To achieve this, a variety of device drivers are used. For block-oriented
transfers, a disk cache approach is used: A system buffer in main memory is inter-
posed between the user address space and the external device.

The description in this subsection has dealt with what might be termed traditional
UNIX systems; [VAHA96] uses this term to refer to System V Release 3 (SVR3),
4.3BSD, and earlier versions. The following general statements may be made about
a traditional UNIX system. It is designed to run on a single processor and lacks the
ability to protect its data structures from concurrent access by multiple processors. Its
kernel is not very versatile, supporting a single type of file system, process schedul-
ing policy, and executable file format. The traditional UNIX kernel is not designed to
be extensible and has few facilities for code reuse. The result is that, as new features
were added to the various UNIX versions, much new code had to be added, yielding a
bloated and unmodular kernel.

 2.9 MODERN UNIX SYSTEMS

As UNIX evolved, the number of different implementations proliferated, each
providing some useful features. There was a need to produce a new implemen-
tation that unified many of the important innovations, added other modern OS
design features, and produced a more modular architecture. Typical of the modern
UNIX kernel is the architecture depicted in Figure 2.17. There is a small core of
facilities, written in a modular fashion, that provide functions and services needed
by a number of OS processes. Each of the outer circles represents functions and an
interface that may be implemented in a variety of ways.

We now turn to some examples of modern UNIX systems.

System V Release 4 (SVR4)

SVR4, developed jointly by AT&T and Sun Microsystems, combines features from
SVR3, 4.3BSD, Microsoft Xenix System V, and SunOS. It was almost a total rewrite
of the System V kernel and produced a clean, if complex, implementation. New fea-
tures in the release include real-time processing support, process scheduling classes,
dynamically allocated data structures, virtual memory management, virtual file sys-
tem, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers and
was developed to provide a uniform platform for commercial UNIX deployment. It
has succeeded in this objective and is perhaps the most important UNIX variant. It
incorporates most of the important features ever developed on any UNIX system
and does so in an integrated, commercially viable fashion. SVR4 runs on processors
ranging from 32-bit microprocessors up to supercomputers.

BSD

The Berkeley Software Distribution (BSD) series of UNIX releases have played
a key role in the development of OS design theory. 4.xBSD is widely used in aca-
demic installations and has served as the basis of a number of commercial UNIX

90 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

products. It is probably safe to say that BSD is responsible for much of the popular-
ity of UNIX and that most enhancements to UNIX first appeared in BSD versions.

4.4BSD was the final version of BSD to be released by Berkeley, with the de-
sign and implementation organization subsequently dissolved. It is a major upgrade
to 4.3BSD and includes a new virtual memory system, changes in the kernel struc-
ture, and a long list of other feature enhancements.

One of the most widely used and best documented versions of BSD is
FreeBSD. FreeBSD is popular for Internet-based servers and firewalls and is used
in a number of embedded systems.

The latest version of the Macintosh OS, Mac OS X, is based on FreeBSD 5.0
and the Mach 3.0 microkernel.

Solaris 10

Solaris is Sun’s SVR4-based UNIX release, with the latest version being 10. Solaris
provides all of the features of SVR4 plus a number of more advanced features, such

Common
facilities

Virtual
memory

framework

Block
device
switch

exec
switch

a.out

File mappings

Disk driver

Tape driver

Network
driver

tty
driver

System
processes

Time-sharing
processes

RFS

s5fs

FFS

NFS

Anonymous
mappings

coff

elf

Streams

vnode/vfs
interface

Scheduler
framework

Device
mappings

Figure 2.17 Modern UNIX Kernel

2.10 / LINUX 91

as a fully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solaris is the most widely used and most successful
commercial UNIX implementation.

 2.10 LINUX

History

Linux started out as a UNIX variant for the IBM PC (Intel 80386) architecture.
Linus Torvalds, a Finnish student of computer science, wrote the initial version.
Torvalds posted an early version of Linux on the Internet in 1991. Since then, a
number of people, collaborating over the Internet, have contributed to the devel-
opment of Linux, all under the control of Torvalds. Because Linux is free and the
source code is available, it became an early alternative to other UNIX workstations,
such as those offered by Sun Microsystems and IBM. Today, Linux is a full-featured
UNIX system that runs on all of these platforms and more, including Intel Pentium
and Itanium, and the Motorola/IBM PowerPC.

Key to the success of Linux has been the availability of free software packages
under the auspices of the Free Software Foundation (FSF). FSF’s goal is stable,
platform-independent software that is free, high quality, and embraced by the user
community. FSF’s GNU project2 provides tools for software developers, and the
GNU Public License (GPL) is the FSF seal of approval. Torvalds used GNU tools
in developing his kernel, which he then released under the GPL. Thus, the Linux
distributions that you see today are the product of FSF’s GNU project, Torvald’s
individual effort, and the efforts of many collaborators all over the world.

In addition to its use by many individual programmers, Linux has now made
significant penetration into the corporate world. This is not only because of the free
software but also because of the quality of the Linux kernel. Many talented pro-
grammers have contributed to the current version, resulting in a technically impres-
sive product. Moreover, Linux is highly modular and easily configured. This makes
it easy to squeeze optimal performance from a variety of hardware platforms. Plus,
with the source code available, vendors can tweak applications and utilities to meet
specific requirements. Throughout this book, we will provide details of Linux ker-
nel internals based on Linux 3.10, released in June of 2013.

Modular Structure

Most UNIX kernels are monolithic. Recall from earlier in this chapter that a mono-
lithic kernel is one that includes virtually all of the OS functionality in one large
block of code that runs as a single process with a single address space. All the func-
tional components of the kernel have access to all of its internal data structures and
routines. If changes are made to any portion of a typical monolithic OS, all the mod-
ules and routines must be relinked and reinstalled and the system rebooted before

2GNU is a recursive acronym for GNU’s Not Unix. The GNU project is a free software set of packages
and tools for developing a UNIX-like operating system; it is often used with the Linux kernel.

92 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

the changes can take effect. As a result, any modification, such as adding a new
device driver or file system function, is difficult. This problem is especially acute for
Linux, for which development is global and done by a loosely associated group of
independent programmers.

Although Linux does not use a microkernel approach, it achieves many of the
potential advantages of this approach by means of its particular modular architec-
ture. Linux is structured as a collection of modules, a number of which can be auto-
matically loaded and unloaded on demand. These relatively independent blocks are
referred to as loadable modules [GOYE99]. In essence, a module is an object file
whose code can be linked to and unlinked from the kernel at runtime. Typically, a
module implements some specific function, such as a file system, a device driver, or
some other feature of the kernel’s upper layer. A module does not execute as its own
process or thread, although it can create kernel threads for various purposes as nec-
essary. Rather, a module is executed in kernel mode on behalf of the current process.

Thus, although Linux may be considered monolithic, its modular structure
overcomes some of the difficulties in developing and evolving the kernel.

The Linux loadable modules have two important characteristics:

Dynamic linking: A kernel module can be loaded and linked into the kernel
while the kernel is already in memory and executing. A module can also be
unlinked and removed from memory at any time.
Stackable modules: The modules are arranged in a hierarchy. Individual mod-
ules serve as libraries when they are referenced by client modules higher up in
the hierarchy, and as clients when they reference modules further down.

Dynamic linking [FRAN97] facilitates configuration and saves kernel mem-
ory. In Linux, a user program or user can explicitly load and unload kernel modules
using the insmod and rmmod commands. The kernel itself monitors the need for
particular functions and can load and unload modules as needed. With stackable
modules, dependencies between modules can be defined. This has two benefits:

 1. Code common to a set of similar modules (e.g., drivers for similar hardware)
can be moved into a single module, reducing replication.

 2. The kernel can make sure that needed modules are present, refraining from
unloading a module on which other running modules depend, and loading any
additional required modules when a new module is loaded.

Figure 2.18 is an example that illustrates the structures used by Linux to man-
age modules. The figure shows the list of kernel modules after only two modules
have been loaded: FAT and VFAT. Each module is defined by two tables: the
module table and the symbol table (kernel_symbol). The module table includes the
following elements:

*next: Pointer to the following module. All modules are organized into a
linked list. The list begins with a pseudomodule (not shown in Figure 2.18).
*name: Pointer to module name
size: Module size in memory pages

2.10 / LINUX 93

usecount: Module usage counter. The counter is incremented when an opera-
tion involving the module’s functions is started and decremented when the
operation terminates.
flags: Module flags
nsyms: Number of exported symbols
ndeps: Number of referenced modules
*syms: Pointer to this module’s symbol table
*deps: Pointer to list of modules that are referenced by this module
*refs: Pointer to list of modules that use this module

The symbol table lists symbols that are defined in this module and used
elsewhere.

Kernel Components

Figure 2.19, taken from [MOSB02], shows the main components of the Linux kernel
as implemented on an IA-64 architecture (e.g., Intel Itanium). The figure shows
several processes running on top of the kernel. Each box indicates a separate pro-
cess, while each squiggly line with an arrowhead represents a thread of execution.
The kernel itself consists of an interacting collection of components, with arrows in-
dicating the main interactions. The underlying hardware is also depicted as a set of

FAT
*syms

*deps

*refs

ndeps

nysms

flags

usecount

size

*name

*next

value

*name

value

Kernel_symbol

*name

value

*name

value

*name

value

*name

value

*name

VFAT

Module

Symbol_table

*syms

*deps

*refs

ndeps

nysms

flags

usecount

size

*name

*next

Module

Figure 2.18 Example List of Linux Kernel Modules

94 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

components with arrows indicating which kernel components use or control which
hardware components. All of the kernel components, of course, execute on the pro-
cessor but, for simplicity, these relationships are not shown.

Briefly, the principal kernel components are the following:

Signals: The kernel uses signals to call into a process. For example, signals are
used to notify a process of certain faults, such as division by zero. Table 2.6
gives a few examples of signals.

Signals System calls

Processes
& scheduler

Virtual
memory

Physical
memory

System
memory

Processes

H
ar

dw
ar

e
U

se
r l

ev
el

K
er

ne
l

CPU Terminal Disk

Traps &
faults

Char device
drivers

Block device
drivers

Network
device drivers

File
systems

Network
protocols

Interrupts

Network interface
controller

Figure 2.19 Linux Kernel Components

Table 2.6 Some Linux Signals

SIGHUP Terminal hangup SIGCONT Continue

SIGQUIT Keyboard quit SIGTSTP Keyboard stop

SIGTRAP Trace trap SIGTTOU Terminal write

SIGBUS Bus error SIGXCPU CPU limit exceeded

SIGKILL Kill signal SIGVTALRM Virtual alarm clock

SIGSEGV Segmentation violation SIGWINCH Window size unchanged

SIGPIPT Broken pipe SIGPWR Power failure

SIGTERM Termination SIGRTMIN First real-time signal

SIGCHLD Child status unchanged SIGRTMAX Last real-time signal

2.10 / LINUX 95

System calls: The system call is the means by which a process requests a specific
kernel service. There are several hundred system calls, which can be roughly
grouped into six categories: file system, process, scheduling, interprocess com-
munication, socket (networking), and miscellaneous. Table 2.7 defines a few
examples in each category.
Processes and scheduler: tes, manages, and schedules processes.

Table 2.7 Some Linux System Calls

File System Related

close Close a file descriptor.

link Make a new name for a file.

open Open and possibly create a file or device.

read Read from file descriptor.

write Write to file descriptor.

Process Related

execve Execute program.

exit Terminate the calling process.

getpid Get process identification.

setuid Set user identity of the current process.

ptrace Provide a means by which a parent process may observe and control the execu-
tion of another process, and examine and change its core image and registers.

Scheduling Related

sched_getparam Set the scheduling parameters associated with the scheduling policy for the
process identified by pid.

sched_get_priority_max Return the maximum priority value that can be used with the scheduling
algorithm identified by policy.

sched_setscheduler Set both the scheduling policy (e.g., FIFO) and the associated parameters for
the process pid.

sched_rr_get_interval Write into the timespec structure pointed to by the parameter tp the round-
robin time quantum for the process pid.

sched_yield A process can relinquish the processor voluntarily without blocking via this
system call. The process will then be moved to the end of the queue for its
static priority and a new process gets to run.

Interprocess Communication (IPC) Related

msgrcv A message buffer structure is allocated to receive a message. The system call
then reads a message from the message queue specified by msqid into the newly
created message buffer.

semctl Perform the control operation specified by cmd on the semaphore set semid.

semop Perform operations on selected members of the semaphore set semid.

shmat Attach the shared memory segment identified by semid to the data segment of
the calling process.

shmctl Allow the user to receive information on a shared memory segment; set the
owner, group, and permissions of a shared memory segment; or destroy a
segment.

96 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Virtual memory: Allocates and manages virtual memory for processes.
File systems: Provide a global, hierarchical namespace for files, directories,
and other file-related objects and provide file system functions.
Network protocols: Support the Sockets interface to users for the TCP/IP pro-
tocol suite.
Character device drivers: Manage devices that require the kernel to send or
receive data one byte at a time, such as terminals, modems, and printers.
Block device drivers: Manage devices that read and write data in blocks, such
as various forms of secondary memory (magnetic disks, CD-ROMs, etc.).
Network device drivers: Manage network interface cards and communications
ports that connect to network devices, such as bridges and routers.
Traps and faults: Handle traps and faults generated by the processor, such as a
memory fault.
Physical memory: Manages the pool of page frames in real memory and allo-
cates pages for virtual memory.
Interrupts Handle interrupts from peripheral devices.

 2.11 ANDROID

The Android operating system is a Linux-based system originally designed for
touchscreen mobile devices such as smartphones and tablet computers. It is the most
popular mobile OS by a wide margin: Android handsets outsell Apple’s iPhones
globally by about 4 to 1 [VANC13]. But this is just one element in the increasing

Socket (networking) Related

bind Assign the local IP address and port for a socket. Return 0 for success and −1
for error.

connect Establish a connection between the given socket and the remote socket associ-
ated with sockaddr.

gethostname Return local host name.

send Send the bytes contained in buffer pointed to by *msg over the given socket.

setsockopt Set the options on a socket.

Miscellaneous

fsync Copy all in-core parts of a file to disk, and wait until the device reports that all
parts are on stable storage.

time Return the time in seconds since January 1, 1970.

vhangup Simulate a hangup on the current terminal. This call arranges for other users to
have a “clean” tty at login time.

Table 2.7 (continued)

2.11 / ANDROID 97

dominance of Android: Increasingly, it is the OS behind virtually any device with a
computer chip other than servers and PCs. Android is becoming the standard OS
for the “Internet of things,” a term that refers to the expanding interconnection of
smart devices, ranging from appliances to tiny sensors.

Initial Android OS development was done by Android, Inc., which was bought
by Google in 2005. The first commercial version, Android 1.0, was released in 2008.
As of this writing, the most recent version is Android 4.3 (Jelly Bean). In 2007, the
Open Handset Alliance (OHA) was formed. OHA is a consortium of 84 firms to
develop open standards for mobile devices. Specifically, OHA is responsible for the
Android OS releases as an open platform. The open-source nature of Android has
been the key to its success.

Android Software Architecture

Android is defined as a software stack that includes the OS kernel, middleware, and
key applications. Figure 2.20 shows the Android software architecture in some de-
tail. Thus, Android should be viewed as a complete software stack—not just an OS.
In a sense, Android is a form of embedded Linux. However, it provides much more
than just the embedded kernel functionality, as Figure 2.20 illustrates.

APPLICATIONS All the applications that the user interacts with directly are part
of the application layer. This includes a core set of general-purpose applications,
such as an e-mail client, SMS program, calendar, maps, browser, contacts, and other
applications commonly standard with any mobile device. Applications are typically
implemented in Java. A key goal of the open-source Android architecture is to make
it easy for developers to implement new applications for specific devices and specific
end user requirements. Using Java enables developers to be relieved of hardware-
specific considerations and idiosyncrasies, as well as tap into Java’s higher-level
language features, such as predefined classes. Figure 2.20 shows examples of the
types of base applications found on an Android platform.

APPLICATION FRAMEWORK The Application Framework layer provides high-level
building blocks, accessible through standardized APIs, that programmers use to
create new apps. The architecture is designed to simplify the reuse of components.
Some of the key Application Framework components are:

Activity Manager: Manages lifecycle of applications. It is responsible for start-
ing, stopping, and resuming the various applications.
Window Manager: Java abstraction of the underlying Surface Manager. The
Surface Manager handles the frame buffer interaction and low-level drawing,
whereas the Window Manager provides a layer on top of it, to allow applica-
tions to declare their client area and use features like the status bar.
Package Manager: Installs and removes applications.
Telephony Manager: Allows interaction with phone, SMS, and MMS services.
Content Providers: These functions encapsulate application data that need to
be shared between applications, such as contacts.

98 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Display Driver

Implementation:

Applications, Application Framework: Java

System Libraries, Android Runtime: C and C++

Linux Kernel: C

Contacts Voice Dial E-mail Calendar Media
Player Albums Clock

Home Dialer SMS/MMS IM Browser Camera Alarm Calculator

Camera Driver Bluetooth Driver

Linux Kernel

Application Framework

Applications

System Libraries Android Runtime

Core Libraries

Dalvik Virtual Machine

Flash Memory
Driver

Binder (IPC)
Driver

USB Driver Keypad Driver WiFi Driver

SGL SSL Libc

OpenGL/ES FreeType LibWebCore

Surface Manager Media Framework SQLite

Audio Drivers Power
Management

Activity Manager Windows
Manager Content Providers View System Notification

Manager

Package Manager Telephony
Manager Resource Manager Location Manager XMPP Service

Figure 2.20 Android Software Architecture

Resource Manager: Manages application resources, such as localized strings
and bitmaps.
View System: Provides the user interface (UI) primitives, such as Buttons, list-
boxes, date pickers, and other controls, as well as UI Events (such as touch
and gestures).
Location Manager: Allows developers to tap into location-based services,
whether by GPS, cell tower IDs, or local Wi-Fi databases.
Notification Manager: Manages events, such as arriving messages and
appointments.
XMPP: Provides standardized messaging (also, Chat) functions between
applications.

2.11 / ANDROID 99

SYSTEM LIBRARIES The layer below the Application Framework consists of two
parts: System Libraries and Android Runtime. The System Libraries component
is a collection of useful system functions, written in C or C++ and used by various
components of the Android system. They are called from the application framework
and applications through a Java interface. These features are exposed to developers
through the Android application framework. Some of the key system libraries
include the following:

Surface Manager: Android uses a compositing window manager similar to
Vista or Compiz, but it is much simpler. Instead of drawing directly to the
screen buffer, your drawing commands go into off-screen bitmaps that are then
combined with other bitmaps to form the display the user sees. This lets the
system create all sorts of interesting effects such as see-through windows and
fancy transitions.
OpenGL: OpenGL (Open Graphics Library) is a cross-language, multiplatform
API for rendering 2D and 3D computer graphics. OpenGL/ES (OpenGL for
embedded systems) is a subset of OpenGL designed for embedded systems.
Media Framework: The Media Framework supports video recording and play-
ing in many formats, including AAC, AVC (H.264), H.263, MP3, and MPEG-4.
SQL Database: Android includes a lightweight SQLite database engine, for
storing persistent data. SQLite is discussed in a subsequent section.
Browser Engine: For fast display of HTML content, Android uses the WebKit
library, which is essentially the same library used in Safari and iPhone. It was also
the library used for the Google Chrome browser until Google switched to Blink.
Bionic LibC: This is a stripped-down version of the standard C system library,
tuned for embedded Linux-based devices. The interface is the standard Java
Native Interface (JNI).

ANDROID RUNTIME Every Android application runs in its own process, with its
own instance of the Dalvik virtual machine (DVM). The DVM executes files in the
Dalvik Executable (.dex) format, which is optimized for minimal memory footprint
and efficient processor usage. The DVM is examined in Chapter 14.

The Android Runtime component includes a set of core libraries that provides
most of the functionality available in the core libraries of the Java programming
language. To execute an operation, the DVM calls on the corresponding C/C++
library using the JNI.

LINUX KERNEL The OS kernel for Android is similar to, but not identical with,
the standard Linux kernel distribution. One noteworthy change is that the Android
kernel lacks drivers not applicable in mobile environments, making the kernel
smaller. In addition, Android enhances the Linux kernel with features that are
tailored to the mobile environment and generally not as useful or applicable on a
desktop or laptop platform.

Android relies on its Linux kernel for core system services such as security,
memory management, process management, network stack, and driver model. The
kernel also acts as an abstraction layer between the hardware and the rest of the

100 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

software stack and enables Android to use the wide range of hardware drivers that
Linux supports.

Android System Architecture

It is useful to illustrate Android from the perspective of an application developer,
as shown in Figure 2.21. This system architecture is a simplified abstraction of the
software architecture shown in Figure 2.20. Viewed in this fashion, Android consists
of the following layers:

Applications and Framework: Application developers are primarily con-
cerned with this layer and the APIs that allow access to lower-layer services.
Binder IPC: The Binder Inter-Process Communication mechanism allows the
application framework to cross process boundaries and call into the Android

Camera driver Display drivers
Audio driver

(ALSA, OSS, etc) Other drivers

Linux Kernel

Binder IPC

Android Runtime/Dalvik

Applications and Framework

Camera HAL Graphics HALAudio HAL
Other HALs

Activity
manager

Window
manager

Other services

Search service

Camera
service

MediaPlayer
service

Other media
services

AudioFlinger

Hardware Abstraction Layer (HAL)

Android System Services

Media Server System Server

Figure 2.21 Android System Architecture

2.11 / ANDROID 101

system services code. This basically allows high-level framework APIs to inter-
act with Android’s system services.
Android System Services: Most of the functionality exposed through the appli-
cation framework APIs invokes system services that in turn access the under-
lying hardware and kernel functions. Services can be seen as being organized
in two groups. Media services deal with playing and recording media. System
services deal with system functions visible to the application.
Hardware Abstraction Layer (HAL): The HAL provides a standard interface
to kernel-layer device drivers, so that upper-layer code need not be concerned
with the details of the implementation of specific drivers and hardware. The
HAL is virtually unchanged from that in a standard Linux distribution.
Linux Kernel: Linux kernel is tailored to meet the demands of a mobile
environment.

Activities

An activity is a single visual user interface component, including things such as
menu selections, icons, and checkboxes. Every screen in an application is an exten-
sion of the Activity class. Activities use Views to form graphical user interfaces that
display information and respond to user actions. We discuss Activities in Chapter 4.

Power Management

Android adds two features to the Linux kernel to enhance the ability to perform
power management: alarms and wakelocks.

The Alarms capability is implemented in the Linux kernel and is visible to the
app developer through the AlarmManager in the RunTime core libraries. Through
the AlarmManager, an app can request a timed wake-up service. The Alarms facil-
ity is implemented in the kernel so that an alarm can trigger even if the system is
in sleep mode. This allows the system to go into sleep mode, saving power, even
though there is a process that requires a wake up.

The wakelock facility prevents an Android system from entering into sleep
mode. An application can hold one of the following wakelocks:

Full_Wake_Lock: Processor on, full screen brightness, keyboard bright
Partial_Wake_Lock: Processor on, screen off, keyboard off
Screen_Dim_Wake_Lock: Processor on, screen dim, keyboard off
Screen_Bright_Wake_Lock: Processor on, screen bright, keyboard off

These locks are requested through the API whenever an application requires
one of the managed peripherals to remain powered on. If no wakelock exists, which
locks the device, then it is powered off to conserve battery life.

These kernel objects are made visible to apps in user space by means of /sys/
power/wavelock files. The wake_lock and wake_unlock files can be used to define
and toggle a lock by writing to the corresponding file.

102 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

 2.12 RECOMMENDED READING AND ANIMATIONS

[BRIN01] is an excellent collection of papers covering major advances in OS design
over the years.

An excellent treatment of UNIX internals, which provides a comparative
analysis of a number of variants, is [VAHA96]. For UNIX SVR4, [GOOD94] pro-
vides a definitive treatment, with ample technical detail. For the popular open-
source FreeBSD, [MCKU05] is highly recommended. [MCDO07] provides a good
treatment of Solaris internals. Good treatments of Linux internals are [LOVE10]
and [MAUE08].

Although there are countless books on various versions of Windows, there
is remarkably little material available on Windows internals. The book to read
is [RUSS11]. [YAGH13] provides a detailed discussion of Android internals.
[GAND11] provides a brief overview of Android.

BRIN01 Brinch Hansen, P. Classic Operating Systems: From Batch Processing to
Distributed Systems. New York: Springer-Verlag, 2001.

GAND11 Gandhewar, N., and Sheikh, R. "Google Android: An Emerging Software
Platform For Mobile Devices." International Journal on Computer Science and
Engineering, February 2011.

GOOD94 Goodheart, B., and Cox, J. The Magic Garden Explained: The Internals of
UNIX System V Release 4. Englewood Cliffs, NJ: Prentice Hall, 1994.

LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-
Wesley, 2010.

MAUE08 Mauerer, W. Professional Linux Kernel Architecture. New York: Wiley, 2008.
MCDO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris

Kernel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.
MCKU05 McKusick, M., and Neville-Neil, J. The Design and Implementation of the

FreeBSD Operating System. Reading, MA: Addison-Wesley, 2005.
RUSS11 Russinovich, M.; Solomon, D.; and Ionescu, A. Windows Internals: Covering

Windows 7 and Windows Server 2008 R2. Redmond, WA: Microsoft Press, 2011.
VAHA96 Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ:

Prentice Hall, 1996.
YAGH13 Yaghmour, K. Embedded Android. Sebastopol, CA: O’Reilly, 2013.

Animations

A set of animation that illustrates concepts from this chapter is available at the
Premium Web site. The reader is encouraged to view the animations to reinforce
concepts from this chapter.

Animation

2.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 103

Review Questions

 2.1. What are three objectives of an OS design?
 2.2. What is the kernel of an OS?
 2.3. What is multiprogramming?
 2.4. What is a process?
 2.5. How is the execution context of a process used by the OS?
 2.6. List and briefly explain five storage management responsibilities of a typical OS.
 2.7. Explain the distinction between a real address and a virtual address.
 2.8. Describe the round-robin scheduling technique.
 2.9. Explain the difference between a monolithic kernel and a microkernel.
 2.10. What is multithreading?
 2.11. List the key design issues for an SMP operating system.

Problems

 2.1. Suppose that we have a multiprogrammed computer in which each job has identical
characteristics. In one computation period, T, for a job, half the time is spent in I/O
and the other half in processor activity. Each job runs for a total of N periods. Assume
that a simple round-robin scheduling is used, and that I/O operations can overlap with
processor operation. Define the following quantities:

Turnaround time = actual time to complete a job
Throughput = average number of jobs completed per time period T
Processor utilization = percentage of time that the processor is active (not waiting)

 2.13 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

batch processing
batch system
execution context
interrupt
job
job control language
kernel
kernel mode
mean time to failure (MTTF)
mean time to repair (MTTR)
memory management
microkernel
monitor
monolithic kernel

multiprogrammed batch
system

multiprogramming
multitasking
multithreading
nucleus
operating system
physical address
privileged instruction
process
process state
real address
resident monitor
round-robin

scheduling
serial processing
symmetric multiprocessing
task
thread
time sharing
time-sharing system
time slicing
uniprogramming
user mode
virtual address
virtual machine
virtual memory

104 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Compute these quantities for one, two, and four simultaneous jobs, assuming that the
period T is distributed in each of the following ways:
a. I/O first half, processor second half
b. I/O first and fourth quarters, processor second and third quarter

 2.2. An I/O-bound program is one that, if run alone, would spend more time waiting for
I/O than using the processor. A processor-bound program is the opposite. Suppose a
short-term scheduling algorithm favors those programs that have used little processor
time in the recent past. Explain why this algorithm favors I/O-bound programs and
yet does not permanently deny processor time to processor-bound programs.

 2.3. Contrast the scheduling policies you might use when trying to optimize a time-sharing
system with those you would use to optimize a multiprogrammed batch system.

 2.4. What is the purpose of system calls, and how do system calls relate to the OS and to
the concept of dual-mode (kernel-mode and user-mode) operation?

 2.5. In IBM’s mainframe OS, OS/390, one of the major modules in the kernel is the System
Resource Manager. This module is responsible for the allocation of resources among
address spaces (processes). The SRM gives OS/390 a degree of sophistication unique
among operating systems. No other mainframe OS, and certainly no other type of OS,
can match the functions performed by SRM. The concept of resource includes proces-
sor, real memory, and I/O channels. SRM accumulates statistics pertaining to utilization
of processor, channel, and various key data structures. Its purpose is to provide opti-
mum performance based on performance monitoring and analysis. The installation sets
forth various performance objectives, and these serve as guidance to the SRM, which
dynamically modifies installation and job performance characteristics based on system
utilization. In turn, the SRM provides reports that enable the trained operator to refine
the configuration and parameter settings to improve user service.

This problem concerns one example of SRM activity. Real memory is divided
into equal-sized blocks called frames, of which there may be many thousands. Each
frame can hold a block of virtual memory referred to as a page. SRM receives control
approximately 20 times per second and inspects each and every page frame. If the
page has not been referenced or changed, a counter is incremented by 1. Over time,
SRM averages these numbers to determine the average number of seconds that a
page frame in the system goes untouched. What might be the purpose of this and what
action might SRM take?

 2.6. A multiprocessor with eight processors has 20 attached tape drives. There is a large
number of jobs submitted to the system that each require a maximum of four tape
drives to complete execution. Assume that each job starts running with only three
tape drives for a long period before requiring the fourth tape drive for a short period
toward the end of its operation. Also assume an endless supply of such jobs.
a. Assume the scheduler in the OS will not start a job unless there are four tape

drives available. When a job is started, four drives are assigned immediately and
are not released until the job finishes. What is the maximum number of jobs that
can be in progress at once? What are the maximum and minimum number of tape
drives that may be left idle as a result of this policy?

b. Suggest an alternative policy to improve tape drive utilization and at the same
time avoid system deadlock. What is the maximum number of jobs that can be in
progress at once? What are the bounds on the number of idling tape drives?

105

 3.1 What Is a Process?
Background
Processes and Process Control Blocks

 3.2 Process States
A Two-State Process Model
The Creation and Termination of Processes
A Five-State Model
Suspended Processes

 3.3 Process Description
Operating System Control Structures
Process Control Structures

 3.4 Process Control
Modes of Execution
Process Creation
Process Switching

 3.5 Execution of the Operating System
Nonprocess Kernel
Execution within User Processes
Process-Based Operating System

 3.6 UNIX SVR4 Process Management
Process States
Process Description
Process Control

 3.7 Summary

 3.8 Recommended Reading and Animations

 3.9 Key Terms, Review Questions, and Problems

PROCESS DESCRIPTION
AND CONTROL

CHAPTER

ProcessesPART 2

Animation

106 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

All multiprogramming operating systems, from single-user systems such as Windows
for end users to mainframe systems such as IBM’s mainframe operating system,
z/OS, which can support thousands of users, are built around the concept of the
process. Most requirements that the OS must meet can be expressed with reference
to processes:

The OS must interleave the execution of multiple processes, to maximize pro-
cessor utilization while providing reasonable response time.
The OS must allocate resources to processes in conformance with a specific
policy (e.g., certain functions or applications are of higher priority) while at
the same time avoiding deadlock.1

The OS may be required to support interprocess communication and user cre-
ation of processes, both of which may aid in the structuring of applications.

We begin with an examination of the way in which the OS represents and
controls processes. Then, the chapter discusses process states, which characterize
the behavior of processes. Then we look at the data structures that the OS uses
to manage processes. These include data structures to represent the state of each
process and data structures that record other characteristics of processes that the
OS needs to achieve its objectives. Next, we look at the ways in which the OS uses
these data structures to control process execution. Finally, we discuss process man-
agement in UNIX SVR4. Chapter 4 provides more modern examples of process
management.

This chapter occasionally refers to virtual memory. Much of the time, we can
ignore this concept in dealing with processes, but at certain points in the discus-
sion, virtual memory considerations are pertinent. Virtual memory is previewed in
Chapter 2 and discussed in detail in Chapter 8.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Define the term process and explain the relationship between processes and
process control blocks.
Explain the concept of a process state and discuss the state transitions the
processes undergo.
List and describe the purpose of the data structures and data structure
elements used by an OS to manage processes.
Assess the requirements for process control by the OS.
Understand the issues involved in the execution of OS code.
Describe the process management scheme for UNIX SVR4.

1Deadlock is examined in Chapter 6. As a simple example, deadlock occurs if two processes need the
same two resources to continue and each has ownership of one. Unless some action is taken, each process
will wait indefinitely for the missing resource.

3.1 / WHAT IS A PROCESS? 107

 3.1 WHAT IS A PROCESS?

Background

Before defining the term process, it is useful to summarize some of the concepts
introduced in Chapters 1 and 2:

 1. A computer platform consists of a collection of hardware resources, such as
the processor, main memory, I/O modules, timers, disk drives, and so on.

 2. Computer applications are developed to perform some task. Typically, they
accept input from the outside world, perform some processing, and generate
output.

 3. It is inefficient for applications to be written directly for a given hardware
platform. The principal reasons for this are as follows:

a. Numerous applications can be developed for the same platform. Thus, it
makes sense to develop common routines for accessing the computer’s
resources.

b. The processor itself provides only limited support for multiprogramming.
Software is needed to manage the sharing of the processor and other re-
sources by multiple applications at the same time.

c. When multiple applications are active at the same time, it is necessary to
protect the data, I/O use, and other resource use of each application from
the others.

 4. The OS was developed to provide a convenient, feature-rich, secure, and consis-
tent interface for applications to use. The OS is a layer of software between the
applications and the computer hardware (Figure 2.1) that supports applications
and utilities.

 5. We can think of the OS as providing a uniform, abstract representation of
resources that can be requested and accessed by applications. Resources in-
clude main memory, network interfaces, file systems, and so on. Once the
OS has created these resource abstractions for applications to use, it must
also manage their use. For example, an OS may permit resource sharing and
resource protection.

Now that we have the concepts of applications, system software, and resources,
we are in a position to discuss how the OS can, in an orderly fashion, manage the
execution of applications so that

Resources are made available to multiple applications.
The physical processor is switched among multiple applications so all will
appear to be progressing.
The processor and I/O devices can be used efficiently.

The approach taken by all modern operating systems is to rely on a model in
which the execution of an application corresponds to the existence of one or more
processes.

108 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Processes and Process Control Blocks

Recall from Chapter 2 that we suggested several definitions of the term process,
including

A program in execution
An instance of a program running on a computer
The entity that can be assigned to and executed on a processor
A unit of activity characterized by the execution of a sequence of instructions,
a current state, and an associated set of system resources

We can also think of a process as an entity that consists of a number of elements.
Two essential elements of a process are program code (which may be shared with
other processes that are executing the same program) and a set of data associated
with that code. Let us suppose that the processor begins to execute this program
code, and we refer to this executing entity as a process. At any given point in time,
while the program is executing, this process can be uniquely characterized by a num-
ber of elements, including the following:

Identifier: A unique identifier associated with this process, to distinguish it
from all other processes.
State: If the process is currently executing, it is in the running state.
Priority: Priority level relative to other processes.
Program counter: The address of the next instruction in the program to be
executed.
Memory pointers: Include pointers to the program code and data associated
with this process, plus any memory blocks shared with other processes.
Context data: These are data that are present in registers in the processor
while the process is executing.
I/O status information: Includes outstanding I/O requests, I/O devices (e.g.,
disk drives) assigned to this process, a list of files in use by the process, and
so on.
Accounting information: May include the amount of processor time and clock
time used, time limits, account numbers, and so on.

The information in the preceding list is stored in a data structure, typically called
a process control block (Figure 3.1), that is created and managed by the OS. The sig-
nificant point about the process control block is that it contains sufficient information
so that it is possible to interrupt a running process and later resume execution as if
the interruption had not occurred. The process control block is the key tool that en-
ables the OS to support multiple processes and to provide for multiprocessing. When
a process is interrupted, the current values of the program counter and the processor
registers (context data) are saved in the appropriate fields of the corresponding pro-
cess control block, and the state of the process is changed to some other value, such
as blocked or ready (described subsequently). The OS is now free to put some other
process in the running state. The program counter and context data for this process
are loaded into the processor registers and this process now begins to execute.

3.2 / PROCESS STATES 109

Thus, we can say that a process consists of program code and associated data
plus a process control block. For a single-processor computer, at any given time, at
most one process is executing and that process is in the running state.

 3.2 PROCESS STATES

As just discussed, for a program to be executed, a process, or task, is created for
that program. From the processor’s point of view, it executes instructions from its
repertoire in some sequence dictated by the changing values in the program counter
register. Over time, the program counter may refer to code in different programs
that are part of different processes. From the point of view of an individual program,
its execution involves a sequence of instructions within that program.

We can characterize the behavior of an individual process by listing the sequence
of instructions that execute for that process. Such a listing is referred to as a trace of the
process. We can characterize behavior of the processor by showing how the traces of
the various processes are interleaved.

Let us consider a very simple example. Figure 3.2 shows a memory layout of
three processes. To simplify the discussion, we assume no use of virtual memory;
thus all three processes are represented by programs that are fully loaded in main
memory. In addition, there is a small dispatcher program that switches the processor

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

Figure 3.1 Simplified Process Control Block

110 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Main memoryAddress

Dispatcher

Process A

Process B

Process C

Program counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4) at Instruction Cycle 13

Figure 3.3 Traces of Processes of Figure 3.2

 (a) Trace of process A (b) Trace of process B (c) Trace of process C
5000 = Starting address of program of process A
8000 = Starting address of program of process B
12000 = Starting address of program of process C

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011

from one process to another. Figure 3.3 shows the traces of each of the processes
during the early part of their execution. The first 12 instructions executed in pro-
cesses A and C are shown. Process B executes four instructions, and we assume that
the fourth instruction invokes an I/O operation for which the process must wait.

3.2 / PROCESS STATES 111

Now let us view these traces from the processor’s point of view. Figure 3.4
shows the interleaved traces resulting from the first 52 instruction cycles (for con-
venience, the instruction cycles are numbered). In this figure, the shaded areas
represent code executed by the dispatcher. The same sequence of instructions is
executed by the dispatcher in each instance because the same functionality of the
dispatcher is being executed. We assume that the OS only allows a process to con-
tinue execution for a maximum of six instruction cycles, after which it is interrupted;
this prevents any single process from monopolizing processor time. As Figure 3.4
shows, the first six instructions of process A are executed, followed by a time-out

Figure 3.4 Combined Trace of Processes of Figure 3.2

100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process;
first and third columns count instruction cycles;
second and fourth columns show address of instruction being executed

1 5000
2 5001
3 5002
4 5003
5 5004
6 5005
----------------------Time-out
7 100
8 101
9 102
10]103
11]104
12 105
13 8000
14 8001
15 8002
16 8003
----------------------I/O request
17 100
18 101
19 102
20 103
21 104
22 105
23 12000
24 12001
25 12002
26 12003

27 12004
28 12005
----------------------Time-out
29 100
30 101
31 102
32 103
33 104
34 105
35 5006
36 5007
37 5008
38 5009
39 5010
40 5011
----------------------Time-out
41 100
42 101
43 102
44 103
45 104
46 105
47 12006
48 12007
49 12008
50 12009
51 12010
52 12011
----------------------Time-out

112 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

and the execution of some code in the dispatcher, which executes six instructions
before turning control to process B.2 After four instructions are executed, process B
requests an I/O action for which it must wait. Therefore, the processor stops execut-
ing process B and moves on, via the dispatcher, to process C. After a time-out, the
processor moves back to process A. When this process times out, process B is still
waiting for the I/O operation to complete, so the dispatcher moves on to process C
again.

A Two-State Process Model

The operating system’s principal responsibility is controlling the execution of pro-
cesses; this includes determining the interleaving pattern for execution and allocating
resources to processes. The first step in designing an OS to control processes is to
describe the behavior that we would like the processes to exhibit.

We can construct the simplest possible model by observing that, at any time, a
process is either being executed by a processor or not. In this model, a process may
be in one of two states: Running or Not Running, as shown in Figure 3.5a. When the
OS creates a new process, it creates a process control block for the process and enters
that process into the system in the Not Running state. The process exists, is known to
the OS, and is waiting for an opportunity to execute. From time to time, the currently
running process will be interrupted and the dispatcher portion of the OS will select
some other process to run. The former process moves from the Running state to the
Not Running state, and one of the other processes moves to the Running state.

Not
running Running

Dispatch
Queue

Enter Exit

Enter Exit

Dispatch

Pause

Pause

(a) State transition diagram

(b) Queueing diagram

Processor

Figure 3.5 Two-State Process Model

2The small number of instructions executed for the processes and the dispatcher are unrealistically low;
they are used in this simplified example to clarify the discussion.

3.2 / PROCESS STATES 113

From this simple model, we can already begin to appreciate some of the de-
sign elements of the OS. Each process must be represented in some way so that
the OS can keep track of it. That is, there must be some information relating to
each process, including current state and location in memory; this is the process
control block. Processes that are not running must be kept in some sort of queue,
waiting their turn to execute. Figure 3.5b suggests a structure. There is a single
queue in which each entry is a pointer to the process control block of a particu-
lar process. Alternatively, the queue may consist of a linked list of data blocks, in
which each block represents one process; we will explore this latter implementation
subsequently.

We can describe the behavior of the dispatcher in terms of this queueing dia-
gram. A process that is interrupted is transferred to the queue of waiting processes.
Alternatively, if the process has completed or aborted, it is discarded (exits the sys-
tem). In either case, the dispatcher takes another process from the queue to execute.

The Creation and Termination of Processes

Before refining our simple two-state model, it will be useful to discuss the creation
and termination of processes; ultimately, and regardless of the model of process be-
havior that is used, the life of a process is bounded by its creation and termination.

PROCESS CREATION When a new process is to be added to those currently being
managed, the OS builds the data structures that are used to manage the process
and allocates address space in main memory to the process. We describe these data
structures in Section 3.3. These actions constitute the creation of a new process.

Four common events lead to the creation of a process, as indicated in Table 3.1.
In a batch environment, a process is created in response to the submission of a job.
In an interactive environment, a process is created when a new user attempts to log
on. In both cases, the OS is responsible for the creation of the new process. An OS
may also create a process on behalf of an application. For example, if a user requests
that a file be printed, the OS can create a process that will manage the printing. The
requesting process can thus proceed independently of the time required to complete
the printing task.

Traditionally, the OS created all processes in a way that was transparent
to the user or application program, and this is still commonly found with many

Table 3.1 Reasons for Process Creation

New batch job The OS is provided with a batch job control stream, usually on tape
or disk. When the OS is prepared to take on new work, it will read the
next sequence of job control commands.

Interactive log-on A user at a terminal logs on to the system.

Created by OS to provide a service The OS can create a process to perform a function on behalf of a user
program, without the user having to wait (e.g., a process to control
printing).

Spawned by existing process For purposes of modularity or to exploit parallelism, a user program
can dictate the creation of a number of processes.

114 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

contemporary operating systems. However, it can be useful to allow one process to
cause the creation of another. For example, an application process may generate an-
other process to receive data that the application is generating and to organize those
data into a form suitable for later analysis. The new process runs in parallel to the
original process and is activated from time to time when new data are available. This
arrangement can be very useful in structuring the application. As another example,
a server process (e.g., print server, file server) may generate a new process for each
request that it handles. When the OS creates a process at the explicit request of an-
other process, the action is referred to as process spawning.

When one process spawns another, the former is referred to as the parent
process, and the spawned process is referred to as the child process. Typically, the
“related” processes need to communicate and cooperate with each other. Achieving
this cooperation is a difficult task for the programmer; this topic is discussed in
Chapter 5.

PROCESS TERMINATION Table 3.2 summarizes typical reasons for process termi-
nation. Any computer system must provide a means for a process to indicate its
completion. A batch job should include a Halt instruction or an explicit OS service
call for termination. In the former case, the Halt instruction will generate an interrupt
to alert the OS that a process has completed. For an interactive application, the action
of the user will indicate when the process is completed. For example, in a time-sharing
system, the process for a particular user is to be terminated when the user logs off or
turns off his or her terminal. On a personal computer or workstation, a user may quit
an application (e.g., word processing or spreadsheet). All of these actions ultimately
result in a service request to the OS to terminate the requesting process.

Additionally, a number of error and fault conditions can lead to the termina-
tion of a process. Table 3.2 lists some of the more commonly recognized conditions.3

Finally, in some operating systems, a process may be terminated by the pro-
cess that created it or when the parent process is itself terminated.

A Five-State Model

If all processes were always ready to execute, then the queueing discipline sug-
gested by Figure 3.5b would be effective. The queue is a first-in-first-out list and
the processor operates in round-robin fashion on the available processes (each
process in the queue is given a certain amount of time, in turn, to execute and then
returned to the queue, unless blocked). However, even with the simple example
that we have described, this implementation is inadequate: Some processes in the
Not Running state are ready to execute, while others are blocked, waiting for an
I/O operation to complete. Thus, using a single queue, the dispatcher could not just
select the process at the oldest end of the queue. Rather, the dispatcher would have
to scan the list looking for the process that is not blocked and that has been in the
queue the longest.

3A forgiving operating system might, in some cases, allow the user to recover from a fault without termi-
nating the process. For example, if a user requests access to a file and that access is denied, the operating
system might simply inform the user that access is denied and allow the process to proceed.

3.2 / PROCESS STATES 115

A more natural way to handle this situation is to split the Not Running state
into two states: Ready and Blocked. This is shown in Figure 3.6. For good measure,
we have added two additional states that will prove useful. The five states in this
new diagram are as follows:

Running: The process that is currently being executed. For this chapter, we will
assume a computer with a single processor, so at most one process at a time can
be in this state.
Ready: A process that is prepared to execute when given the opportunity.
Blocked/Waiting:4 A process that cannot execute until some event occurs,
such as the completion of an I/O operation.

Table 3.2 Reasons for Process Termination

Normal completion The process executes an OS service call to indicate that it has completed
running.

Time limit exceeded The process has run longer than the specified total time limit. There are a
number of possibilities for the type of time that is measured. These include
total elapsed time (“wall clock time”), amount of time spent executing, and,
in the case of an interactive process, the amount of time since the user last
provided any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource such as a file that it is not allowed
to use, or it tries to use it in an improper fashion, such as writing to a
read-only file.

Arithmetic error The process tries a prohibited computation, such as division by zero, or tries
to store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event
to occur.

I/O failure An error occurs during input or output, such as inability to find a file,
failure to read or write after a specified maximum number of tries (when,
for example, a defective area is encountered on a tape), or invalid operation
(such as reading from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result
of branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has terminated
the process (e.g., if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically terminate
all of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

4Waiting is a frequently used alternative term for Blocked as a process state. Generally, we will use
Blocked, but the terms are interchangeable.

116 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

New: A process that has just been created but has not yet been admitted to
the pool of executable processes by the OS. Typically, a new process has not
yet been loaded into main memory, although its process control block has
been created.
Exit: A process that has been released from the pool of executable processes
by the OS, either because it halted or because it aborted for some reason.

The New and Exit states are useful constructs for process management. The
New state corresponds to a process that has just been defined. For example, if a new
user attempts to log on to a time-sharing system or a new batch job is submitted for
execution, the OS can define a new process in two stages. First, the OS performs the
necessary housekeeping chores. An identifier is associated with the process. Any
tables that will be needed to manage the process are allocated and built. At this
point, the process is in the New state. This means that the OS has performed the
necessary actions to create the process but has not committed itself to the execution
of the process. For example, the OS may limit the number of processes that may
be in the system for reasons of performance or main memory limitation. While a
process is in the new state, information concerning the process that is needed by the
OS is maintained in control tables in main memory. However, the process itself is
not in main memory. That is, the code of the program to be executed is not in main
memory, and no space has been allocated for the data associated with that program.
While the process is in the New state, the program remains in secondary storage,
typically disk storage.5

Similarly, a process exits a system in two stages. First, a process is terminated
when it reaches a natural completion point, when it aborts due to an unrecoverable
error, or when another process with the appropriate authority causes the process to
abort. Termination moves the process to the exit state. At this point, the process is

Dispatch

Time-out

New Ready

Blocked

Running Exit
Admit Release

Event
wait

Event
occurs

Figure 3.6 Five-State Process Model

5In the discussion in this paragraph, we ignore the concept of virtual memory. In systems that support
virtual memory, when a process moves from New to Ready, its program code and data are loaded into vir-
tual memory. Virtual memory was briefly discussed in Chapter 2 and is examined in detail in Chapter 8.

3.2 / PROCESS STATES 117

no longer eligible for execution. The tables and other information associated with
the job are temporarily preserved by the OS, which provides time for auxiliary or
support programs to extract any needed information. For example, an accounting
program may need to record the processor time and other resources utilized by
the process for billing purposes. A utility program may need to extract information
about the history of the process for purposes related to performance or utilization
analysis. Once these programs have extracted the needed information, the OS no
longer needs to maintain any data relating to the process and the process is deleted
from the system.

Figure 3.6 indicates the types of events that lead to each state transition for a
process; the possible transitions are as follows:

Null u New: A new process is created to execute a program. This event occurs
for any of the reasons listed in Table 3.1.
New u Ready: The OS will move a process from the New state to the Ready
state when it is prepared to take on an additional process. Most systems set
some limit based on the number of existing processes or the amount of virtual
memory committed to existing processes. This limit assures that there are not
so many active processes as to degrade performance.
Ready u Running: When it is time to select a process to run, the OS chooses
one of the processes in the Ready state. This is the job of the scheduler or
dispatcher. Scheduling is explored in Part Four.
Running u Exit: The currently running process is terminated by the OS if the
process indicates that it has completed or if it aborts. See Table 3.2.
Running u Ready: The most common reason for this transition is that the
running process has reached the maximum allowable time for uninterrupted
execution; virtually all multiprogramming operating systems impose this type
of time discipline. There are several other alternative causes for this transi-
tion, which are not implemented in all operating systems. Of particular impor-
tance is the case in which the OS assigns different levels of priority to different
processes. Suppose, for example, that process A is running at a given priority
level, and process B, at a higher priority level, is blocked. If the OS learns that
the event upon which process B has been waiting has occurred, moving B to a
ready state, then it can interrupt process A and dispatch process B. We say that
the OS has preempted process A.6 Finally, a process may voluntarily release
control of the processor. An example is a background process that performs
some accounting or maintenance function periodically.
Running u Blocked: A process is put in the Blocked state if it requests some-
thing for which it must wait. A request to the OS is usually in the form of a
system service call; that is, a call from the running program to a procedure that
is part of the operating system code. For example, a process may request a ser-
vice from the OS that the OS is not prepared to perform immediately. It can

6In general, the term preemption is defined to be the reclaiming of a resource from a process before the
process has finished using it. In this case, the resource is the processor itself. The process is executing and
could continue to execute, but is preempted so that another process can be executed.

118 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

request a resource, such as a file or a shared section of virtual memory, that
is not immediately available. Or the process may initiate an action, such as an
I/O operation, that must be completed before the process can continue. When
processes communicate with each other, a process may be blocked when it is
waiting for another process to provide data or waiting for a message from an-
other process.
Blocked u Ready: A process in the Blocked state is moved to the Ready state
when the event for which it has been waiting occurs.
Ready u Exit: For clarity, this transition is not shown on the state diagram. In
some systems, a parent may terminate a child process at any time. Also, if a par-
ent terminates, all child processes associated with that parent may be terminated.
Blocked u Exit: The comments under the preceding item apply.

Returning to our simple example, Figure 3.7 shows the transition of each pro-
cess among the states. Figure 3.8a suggests the way in which a queueing discipline
might be implemented with two queues: a Ready queue and a Blocked queue. As
each process is admitted to the system, it is placed in the Ready queue. When it is
time for the OS to choose another process to run, it selects one from the Ready
queue. In the absence of any priority scheme, this can be a simple first-in-first-out
queue. When a running process is removed from execution, it is either terminated
or placed in the Ready or Blocked queue, depending on the circumstances. Finally,
when an event occurs, any process in the Blocked queue that has been waiting on
that event only is moved to the Ready queue.

This latter arrangement means that, when an event occurs, the OS must scan
the entire blocked queue, searching for those processes waiting on that event. In a
large OS, there could be hundreds or even thousands of processes in that queue.
Therefore, it would be more efficient to have a number of queues, one for each
event. Then, when the event occurs, the entire list of processes in the appropriate
queue can be moved to the Ready state (Figure 3.8b).

Dispatcher

! Running ! Ready ! Blocked

0 5 10 15 20 25 30 35 40 45 50

Process C

Process B

Process A

Figure 3.7 Process States for the Trace of Figure 3.4

3.2 / PROCESS STATES 119

One final refinement: If the dispatching of processes is dictated by a priority
scheme, then it would be convenient to have a number of Ready queues, one for
each priority level. The OS could then readily determine which is the highest-priority
ready process that has been waiting the longest.

Suspended Processes

THE NEED FOR SWAPPING The three principal states just described (Ready,
Running, Blocked) provide a systematic way of modeling the behavior of processes
and guide the implementation of the OS. Some operating systems are constructed
using just these three states.

However, there is good justification for adding other states to the model. To
see the benefit of these new states, consider a system that does not employ vir-
tual memory. Each process to be executed must be loaded fully into main memory.
Thus, in Figure 3.8b, all of the processes in all of the queues must be resident in
main memory.

Dispatch

Time-out

Event wait

Event 1 wait

Event 2 wait

Event n wait

Event
occurs

Ready queue

Blocked queue

Admit
Release

Processor

Dispatch
ReleaseReady queue

Admit
Processor

Time-out

Event 1 queue
Event 1
occurs

Event 2
occurs

Event n
occurs

Event 2 queue

Event n queue

(a) Single blocked queue

(b) Multiple blocked queues

Figure 3.8 Queueing Model for Figure 3.6

120 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Recall that the reason for all of this elaborate machinery is that I/O activities
are much slower than computation and therefore the processor in a uniprogramming
system is idle most of the time. But the arrangement of Figure 3.8b does not entirely
solve the problem. It is true that, in this case, memory holds multiple processes and
that the processor can move to another process when one process is blocked. But the
processor is so much faster than I/O that it will be common for all of the processes in
memory to be waiting for I/O. Thus, even with multiprogramming, a processor could
be idle most of the time.

What to do? Main memory could be expanded to accommodate more processes.
But there are two flaws in this approach. First, there is a cost associated with main
memory, which, though small on a per-byte basis, begins to add up as we get into the
gigabytes of storage. Second, the appetite of programs for memory has grown as fast
as the cost of memory has dropped. So larger memory results in larger processes, not
more processes.

Another solution is swapping, which involves moving part or all of a process
from main memory to disk. When none of the processes in main memory is in the
Ready state, the OS swaps one of the blocked processes out on to disk into a sus-
pend queue. This is a queue of existing processes that have been temporarily kicked
out of main memory, or suspended. The OS then brings in another process from the
suspend queue or it honors a new-process request. Execution then continues with
the newly arrived process.

Swapping, however, is an I/O operation, and therefore there is the potential
for making the problem worse, not better. But because disk I/O is generally the
fastest I/O on a system (e.g., compared to tape or printer I/O), swapping will usually
enhance performance.

With the use of swapping as just described, one other state must be added to
our process behavior model (Figure 3.9a): the Suspend state. When all of the pro-
cesses in main memory are in the Blocked state, the OS can suspend one process by
putting it in the Suspend state and transferring it to disk. The space that is freed in
main memory can then be used to bring in another process.

When the OS has performed a swapping-out operation, it has two choices for
selecting a process to bring into main memory: It can admit a newly created process
or it can bring in a previously suspended process. It would appear that the prefer-
ence should be to bring in a previously suspended process, to provide it with service
rather than increasing the total load on the system.

But this line of reasoning presents a difficulty. All of the processes that have
been suspended were in the Blocked state at the time of suspension. It clearly would
not do any good to bring a blocked process back into main memory, because it is
still not ready for execution. Recognize, however, that each process in the Suspend
state was originally blocked on a particular event. When that event occurs, the pro-
cess is not blocked and is potentially available for execution.

Therefore, we need to rethink this aspect of the design. There are two inde-
pendent concepts here: whether a process is waiting on an event (blocked or not)
and whether a process has been swapped out of main memory (suspended or not).
To accommodate this 2 × 2 combination, we need four states:

Ready: The process is in main memory and available for execution
Blocked: The process is in main memory and awaiting an event.

3.2 / PROCESS STATES 121

E
ve

nt
oc

cu
rs

New

Suspend

Ready

Blocked

Running Exit
Admit

(a) With one suspend state

Suspend

Eve
nt

wait

E
ve

nt
oc

cu
rs

Acti
va

te

Dispatch

Time-out

Release

Ready/
suspend

New

Ready

Blocked

Running Exit

A
dm

itA
dm

it

(b) With two suspend states

Eve
nt

wait

E
ve

nt
oc

cu
rs

Dispatch

Time-out

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/
suspend

Figure 3.9 Process State Transition Diagram with Suspend States

Blocked/Suspend: The process is in secondary memory and awaiting an event.
Ready/Suspend: The process is in secondary memory but is available for ex-
ecution as soon as it is loaded into main memory.

Before looking at a state transition diagram that encompasses the two new
suspend states, one other point should be mentioned. The discussion so far has as-
sumed that virtual memory is not in use and that a process is either all in main
memory or all out of main memory. With a virtual memory scheme, it is possible
to execute a process that is only partially in main memory. If reference is made to
a process address that is not in main memory, then the appropriate portion of the
process can be brought in. The use of virtual memory would appear to eliminate the
need for explicit swapping, because any desired address in any desired process can
be moved in or out of main memory by the memory management hardware of the

122 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

processor. However, as we shall see in Chapter 8, the performance of a virtual mem-
ory system can collapse if there is a sufficiently large number of active processes, all
of which are partially in main memory. Therefore, even in a virtual memory system,
the OS will need to swap out processes explicitly and completely from time to time
in the interests of performance.

Let us look now, in Figure 3.9b, at the state transition model that we have
developed. (The dashed lines in the figure indicate possible but not necessary tran-
sitions.) Important new transitions are the following:

Blocked u Blocked/Suspend: If there are no ready processes, then at least
one blocked process is swapped out to make room for another process that
is not blocked. This transition can be made even if there are ready processes
 available. In particular, if the OS determines that the currently running pro-
cess or a ready process that it would like to dispatch requires more main mem-
ory to maintain adequate performance, a blocked process will be suspended.
Blocked/Suspend u Ready/Suspend: A process in the Blocked/Suspend state
is moved to the Ready/Suspend state when the event for which it has been
waiting occurs. Note that this requires that the state information concerning
suspended processes must be accessible to the OS.
Ready/Suspend u Ready: When there are no ready processes in main mem-
ory, the OS will need to bring one in to continue execution. In addition, it
might be the case that a process in the Ready/Suspend state has higher priority
than any of the processes in the Ready state. In that case, the OS designer may
dictate that it is more important to get at the higher-priority process than to
minimize swapping.
Ready u Ready/Suspend: Normally, the OS would prefer to suspend a
blocked process rather than a ready one, because the ready process can now
be executed, whereas the blocked process is taking up main memory space
and cannot be executed. However, it may be necessary to suspend a ready
process if that is the only way to free up a sufficiently large block of main
memory. Also, the OS may choose to suspend a lower–priority ready process
rather than a higher–priority blocked process if it believes that the blocked
process will be ready soon.

Several other transitions that are worth considering are the following:

New u Ready/Suspend and New u Ready: When a new process is created,
it can either be added to the Ready queue or the Ready/Suspend queue. In
either case, the OS must create a process control block and allocate an ad-
dress space to the process. It might be preferable for the OS to perform these
housekeeping duties at an early time, so that it can maintain a large pool of
processes that are not blocked. With this strategy, there would often be insuf-
ficient room in main memory for a new process; hence the use of the (New S
Ready/Suspend) transition. On the other hand, we could argue that a just-in-
time philosophy of creating processes as late as possible reduces OS overhead
and allows that OS to perform the process-creation duties at a time when the
system is clogged with blocked processes anyway.

3.2 / PROCESS STATES 123

Blocked/Suspend u Blocked: Inclusion of this transition may seem to be poor
design. After all, if a process is not ready to execute and is not already in main
memory, what is the point of bringing it in? But consider the following scenario:
A process terminates, freeing up some main memory. There is a process in the
(Blocked/Suspend) queue with a higher priority than any of the processes in
the (Ready/Suspend) queue and the OS has reason to believe that the block-
ing event for that process will occur soon. Under these circumstances, it would
seem reasonable to bring a blocked process into main memory in preference to
a ready process.
Running u Ready/Suspend: Normally, a running process is moved to the
Ready state when its time allocation expires. If, however, the OS is preempting
the process because a higher-priority process on the Blocked/Suspend queue
has just become unblocked, the OS could move the running process directly to
the (Ready/Suspend) queue and free some main memory.
Any State u Exit: Typically, a process terminates while it is running, either
because it has completed or because of some fatal fault condition. However,
in some operating systems, a process may be terminated by the process that
created it or when the parent process is itself terminated. If this is allowed,
then a process in any state can be moved to the Exit state.

OTHER USES OF SUSPENSION So far, we have equated the concept of a suspended
process with that of a process that is not in main memory. A process that is not in
main memory is not immediately available for execution, whether or not it is awaiting
an event.

We can generalize the concept of a suspended process. Let us define a suspended
process as having the following characteristics:

 1. The process is not immediately available for execution.
 2. The process may or may not be waiting on an event. If it is, this blocked condi-

tion is independent of the suspend condition, and occurrence of the blocking
event does not enable the process to be executed immediately.

 3. The process was placed in a suspended state by an agent: either itself, a parent
process, or the OS, for the purpose of preventing its execution.

 4. The process may not be removed from this state until the agent explicitly orders
the removal.

Table 3.3 lists some reasons for the suspension of a process. One reason that
we have discussed is to provide memory space either to bring in a Ready/Suspended
process or to increase the memory allocated to other Ready processes. The OS may
have other motivations for suspending a process. For example, an auditing or trac-
ing process may be employed to monitor activity on the system; the process may
be used to record the level of utilization of various resources (processor, memory,
channels) and the rate of progress of the user processes in the system. The OS,
under operator control, may turn this process on and off from time to time. If the
OS detects or suspects a problem, it may suspend a process. One example of this
is deadlock, which is discussed in Chapter 6. As another example, a problem is

124 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

detected on a communications line, and the operator has the OS suspend the pro-
cess that is using the line while some tests are run.

Another set of reasons concerns the actions of an interactive user. For example,
if a user suspects a bug in the program, he or she may debug the program by sus-
pending its execution, examining and modifying the program or data, and resuming
execution. Or there may be a background process that is collecting trace or accounting
statistics, which the user may wish to be able to turn on and off.

Timing considerations may also lead to a swapping decision. For example, if a
process is to be activated periodically but is idle most of the time, then it should be
swapped out between uses. A program that monitors utilization or user activity is
an example.

Finally, a parent process may wish to suspend a descendent process. For exam-
ple, process A may spawn process B to perform a file read. Subsequently, process B
encounters an error in the file read procedure and reports this to process A. Process
A suspends process B to investigate the cause.

In all of these cases, the activation of a suspended process is requested by the
agent that initially requested the suspension.

 3.3 PROCESS DESCRIPTION

The OS controls events within the computer system. It schedules and dispatches
processes for execution by the processor, allocates resources to processes, and re-
sponds to requests by user processes for basic services. Fundamentally, we can think
of the OS as that entity that manages the use of system resources by processes.

This concept is illustrated in Figure 3.10. In a multiprogramming environment,
there are a number of processes (P1, . . . , Pn) that have been created and exist in
virtual memory. Each process, during the course of its execution, needs access to
certain system resources, including the processor, I/O devices, and main memory. In
the figure, process P1 is running; at least part of the process is in main memory, and
it has control of two I/O devices. Process P2 is also in main memory but is blocked
waiting for an I/O device allocated to P1. Process Pn has been swapped out and is
therefore suspended.

Table 3.3 Reasons for Process Suspension

Swapping The OS needs to release sufficient main memory to bring in a process that is ready
to execute.

Other OS reason The OS may suspend a background or utility process or a process that is suspected
of causing a problem.

Interactive user request A user may wish to suspend execution of a program for purposes of debugging or
in connection with the use of a resource.

Timing A process may be executed periodically (e.g., an accounting or system monitoring
process) and may be suspended while waiting for the next time interval.

Parent process request A parent process may wish to suspend execution of a descendent to examine or
modify the suspended process, or to coordinate the activity of various descendants.

3.3 / PROCESS DESCRIPTION 125

We explore the details of the management of these resources by the OS on
behalf of the processes in later chapters. Here we are concerned with a more fun-
damental question: What information does the OS need to control processes and
manage resources for them?

Operating System Control Structures

If the OS is to manage processes and resources, it must have information about the
current status of each process and resource. The universal approach to providing this
information is straightforward: The OS constructs and maintains tables of informa-
tion about each entity that it is managing. A general idea of the scope of this effort
is indicated in Figure 3.11, which shows four different types of tables maintained by
the OS: memory, I/O, file, and process. Although the details will differ from one OS
to another, fundamentally, all operating systems maintain information in these four
categories.

Memory tables are used to keep track of both main (real) and secondary (vir-
tual) memory. Some of main memory is reserved for use by the OS; the remainder
is available for use by processes. Processes are maintained on secondary memory
using some sort of virtual memory or simple swapping mechanism. The memory
tables must include the following information:

The allocation of main memory to processes
The allocation of secondary memory to processes
Any protection attributes of blocks of main or virtual memory, such as which
processes may access certain shared memory regions
Any information needed to manage virtual memory

We examine the information structures for memory management in detail in
Part Three.

I/O tables are used by the OS to manage the I/O devices and channels of the
computer system. At any given time, an I/O device may be available or assigned to a
particular process. If an I/O operation is in progress, the OS needs to know the sta-
tus of the I/O operation and the location in main memory being used as the source
or destination of the I/O transfer. I/O management is examined in Chapter 11.

The OS may also maintain file tables. These tables provide information about
the existence of files, their location on secondary memory, their current status, and

Processor I/O I/O I/O Main
memory

Computer
resources

Virtual
memory

P2 PnP1

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

126 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

other attributes. Much, if not all, of this information may be maintained and used by
a file management system, in which case the OS has little or no knowledge of files.
In other operating systems, much of the detail of file management is managed by
the OS itself. This topic is explored in Chapter 12.

Finally, the OS must maintain process tables to manage processes. The re-
mainder of this section is devoted to an examination of the required process tables.
Before proceeding to this discussion, two additional points should be made. First,
although Figure 3.11 shows four distinct sets of tables, it should be clear that these
tables must be linked or cross-referenced in some fashion. Memory, I/O, and files
are managed on behalf of processes, so there must be some reference to these re-
sources, directly or indirectly, in the process tables. The files referred to in the file
tables are accessible via an I/O device and will, at some times, be in main or virtual
memory. The tables themselves must be accessible by the OS and therefore are sub-
ject to memory management.

Second, how does the OS know to create the tables in the first place? Clearly,
the OS must have some knowledge of the basic environment, such as how much main
memory exists, what are the I/O devices and what are their identifiers, and so on. This
is an issue of configuration. That is, when the OS is initialized, it must have access to
some configuration data that define the basic environment, and these data must be
created outside the OS, with human assistance or by some autoconfiguration software.

Memory

Devices

Files

Processes

Process 1

Memory tables

Process
image

Process
1

Process
image

Process
n

I/O tables

File tables

Primary process table

Process 2

Process 3

Process n

Figure 3.11 General Structure of Operating System Control Tables

3.3 / PROCESS DESCRIPTION 127

Process Control Structures

Consider what the OS must know if it is to manage and control a process. First, it
must know where the process is located; second, it must know the attributes of the
process that are necessary for its management (e.g., process ID and process state).

PROCESS LOCATION Before we can deal with the questions of where a process is
located or what its attributes are, we need to address an even more fundamental
question: What is the physical manifestation of a process? At a minimum, a process
must include a program or set of programs to be executed. Associated with these
programs is a set of data locations for local and global variables and any defined
constants. Thus, a process will consist of at least sufficient memory to hold the
programs and data of that process. In addition, the execution of a program typically
involves a stack (see Appendix P) that is used to keep track of procedure calls and
parameter passing between procedures. Finally, each process has associated with it
a number of attributes that are used by the OS for process control. Typically, the
collection of attributes is referred to as a process control block.7 We can refer to this
collection of program, data, stack, and attributes as the process image (Table 3.4).

The location of a process image will depend on the memory management
scheme being used. In the simplest case, the process image is maintained as a contig-
uous, or continuous, block of memory. This block is maintained in secondary mem-
ory, usually disk. So that the OS can manage the process, at least a small portion of
its image must be maintained in main memory. To execute the process, the entire
process image must be loaded into main memory or at least virtual memory. Thus,
the OS needs to know the location of each process on disk and, for each such pro-
cess that is in main memory, the location of that process in main memory. We saw
a slightly more complex variation on this scheme with the CTSS OS in Chapter 2.
With CTSS, when a process is swapped out, part of the process image may remain in
main memory. Thus, the OS must keep track of which portions of the image of each
process are still in main memory.

Table 3.4 Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data, a user stack area, and programs that may be
modified.

User Program
The program to be executed.

Stack
Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is used to store param-
eters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the OS to control the process (See Table 3.5).

7Other commonly used names for this data structure are task control block, process descriptor, and task
descriptor.

128 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Modern operating systems presume paging hardware that allows noncontigu-
ous physical memory to support partially resident processes.8 At any given time, a
portion of a process image may be in main memory, with the remainder in secondary
memory.9 Therefore, process tables maintained by the OS must show the location of
each page of each process image.

Figure 3.11 depicts the structure of the location information in the following
way. There is a primary process table with one entry for each process. Each entry
contains, at least, a pointer to a process image. If the process image contains mul-
tiple blocks, this information is contained directly in the primary process table or is
available by cross-reference to entries in memory tables. Of course, this depiction is
generic; a particular OS will have its own way of organizing the location information.

PROCESS ATTRIBUTES A sophisticated multiprogramming system requires a great
deal of information about each process. As was explained, this information can be
considered to reside in a process control block. Different systems will organize this
information in different ways, and several examples of this appear at the end of this
chapter and the next. For now, let us simply explore the type of information that
might be of use to an OS without considering in any detail how that information is
organized.

Table 3.5 lists the typical categories of information required by the OS for each
process. You may be somewhat surprised at the quantity of information required.
As you gain a greater appreciation of the responsibilities of the OS, this list should
appear more reasonable.

We can group the process control block information into three general
categories:

Process identification
Processor state information
Process control information

With respect to process identification, in virtually all operating systems, each
process is assigned a unique numeric identifier, which may simply be an index into
the primary process table (Figure 3.11); otherwise there must be a mapping that
allows the OS to locate the appropriate tables based on the process identifier. This
identifier is useful in several ways. Many of the other tables controlled by the OS
may use process identifiers to cross-reference process tables. For example, the
memory tables may be organized so as to provide a map of main memory with an
indication of which process is assigned to each region. Similar references will appear
in I/O and file tables. When processes communicate with one another, the process

8A brief overview of the concepts of pages, segments, and virtual memory is provided in the subsection
on memory management in Section 2.3.
9This brief discussion slides over some details. In particular, in a system that uses virtual memory, all of
the process image for an active process is always in secondary memory. When a portion of the image is
loaded into main memory, it is copied rather than moved. Thus, the secondary memory retains a copy of
all segments and/or pages. However, if the main memory portion of the image is modified, the secondary
copy will be out of date until the main memory portion is copied back onto disk.

3.3 / PROCESS DESCRIPTION 129

Table 3.5 Typical Elements of a Process Control Block

Process Identification

Identifiers
Numeric identifiers that may be stored with the process control block include

Processor State Information

User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language that the processor
executes while in user mode. Typically, there are from 8 to 32 of these registers, although some RISC
implementations have over 100.

Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the processor. These
include

Program counter: Contains the address of the next instruction to be fetched.
Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry, equal, overflow).
Status information: Includes interrupt enabled/disabled flags, execution mode.

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used to store
parameters and calling addresses for procedure and system calls. The stack pointer points to the top of the stack.

Process Control Information

Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical items of
information:

Process state: Defines the readiness of the process to be scheduled for execution (e.g., running, ready,
waiting, halted).

Priority: One or more fields may be used to describe the scheduling priority of the process. In some systems,
several values are required (e.g., default, current, highest-allowable).

Scheduling-related information: This will depend on the scheduling algorithm used. Examples are the
amount of time that the process has been waiting and the amount of time that the process executed the last
time it was running.

Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring
A process may be linked to other process in a queue, ring, or some other structure. For example, all processes
in a waiting state for a particular priority level may be linked in a queue. A process may exhibit a parent–child
(creator–created) relationship with another process. The process control block may contain pointers to other
processes to support these structures.

Interprocess Communication
Various flags, signals, and messages may be associated with communication between two independent
processes. Some or all of this information may be maintained in the process control block.

Process Privileges
Processes are granted privileges in terms of the memory that may be accessed and the types of instructions
that may be executed. In addition, privileges may apply to the use of system utilities and services.

Memory Management
This section may include pointers to segment and/or page tables that describe the virtual memory assigned
to this process.

Resource Ownership and Utilization
Resources controlled by the process may be indicated, such as opened files. A history of utilization of the
processor or other resources may also be included; this information may be needed by the scheduler.

130 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

identifier informs the OS of the destination of a particular communication. When
processes are allowed to create other processes, identifiers indicate the parent and
descendents of each process.

In addition to these process identifiers, a process may be assigned a user iden-
tifier that indicates the user responsible for the job.

Processor state information consists of the contents of processor registers. While
a process is running, of course, the information is in the registers. When a process is
interrupted, all of this register information must be saved so that it can be restored
when the process resumes execution. The nature and number of registers involved
depend on the design of the processor. Typically, the register set will include user-
visible registers, control and status registers, and stack pointers. These are described
in Chapter 1.

Of particular note, all processor designs include a register or set of registers,
often known as the program status word (PSW), that contains status information.
The PSW typically contains condition codes plus other status information. A good
example of a processor status word is that on Intel x86 processors, referred to as the
EFLAGS register (shown in Figure 3.12 and Table 3.6). This structure is used by
any OS (including UNIX and Windows) running on an x86 processor.

The third major category of information in the process control block can be
called, for want of a better name, process control information. This is the additional
information needed by the OS to control and coordinate the various active processes.
The last part of Table 3.5 indicates the scope of this information. As we examine
the details of operating system functionality in succeeding chapters, the need for the
various items on this list should become clear.

Figure 3.13 suggests the structure of process images in virtual memory. Each pro-
cess image consists of a process control block, a user stack, the private address space of
the process, and any other address space that the process shares with other processes.

X ID = Identification flag
X VIP = Virtual interrupt pending
X VIF = Virtual interrupt flag
X AC = Alignment check
X VM = Virtual 8086 mode
X RF = Resume flag
X NT = Nested task flag
X IOPL = I/O privilege level
S OF = Overflow flag

C DF = Direction flag
X IF = Interrupt enable flag
X TF = Trap flag
S SF = Sign flag
S ZF = Zero flag
S AF = Auxiliary carry flag
S PF = Parity flag
S CF = Carry flag

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0
I
D

V
I
P

V
I
F

A
C

V
M

R
F

0
N
T

I
O
P
L

O
F

D
F

I
F

T
F

S
F

Z
F

0
A
F

0
P
F

1
C
F

0

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag
Shaded bits are reserved

Figure 3.12 x86 EFLAGS Register

3.3 / PROCESS DESCRIPTION 131

Table 3.6 x86 EFLAGS Register Bits

Status Flags (condition codes)

AF (Auxiliary carry flag)
Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation using the
AL register.

CF (Carry flag)
Indicates carrying out or borrowing into the leftmost bit position following an arithmetic operation; also
modified by some of the shift and rotate operations.

OF (Overflow flag)
Indicates an arithmetic overflow after an addition or subtraction.

PF (Parity flag)
Parity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd parity.

SF (Sign flag)
Indicates the sign of the result of an arithmetic or logic operation.

ZF (Zero flag)
Indicates that the result of an arithmetic or logic operation is 0.

Control Flag

DF (Direction flag)
Determines whether string processing instructions increment or decrement the 16-bit half-registers SI and DI
(for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit operations).

System Flags (should not be modified by application programs)

AC (Alignment check)
Set if a word or doubleword is addressed on a nonword or nondoubleword boundary.

ID (Identification flag)
If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction provides
 information about the vendor, family, and model.

RF (Resume flag)
Allows the programmer to disable debug exceptions so that the instruction can be restarted after a debug
 exception without immediately causing another debug exception.

IOPL (I/O privilege level)
When set, it causes the processor to generate an exception on all accesses to I/O devices during protected
mode operation.

IF (Interrupt enable flag)
When set, the processor will recognize external interrupts.

TF (Trap flag)
When set, it causes an interrupt after the execution of each instruction. This is used for debugging.

NT (Nested task flag)
Indicates that the current task is nested within another task in protected mode operation.

VM (Virtual 8086 mode)
Allows the programmer to enable or disable virtual 8086 mode, which determines whether the processor runs
as an 8086 machine.

VIP (Virtual interrupt pending)
Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)
Used in virtual 8086 mode instead of IF.

132 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

In the figure, each process image appears as a contiguous range of addresses. In an
 actual implementation, this may not be the case; it will depend on the memory man-
agement scheme and the way in which control structures are organized by the OS.

As indicated in Table 3.5, the process control block may contain structuring
information, including pointers that allow the linking of process control blocks.
Thus, the queues that were described in the preceding section could be implemented
as linked lists of process control blocks. For example, the queueing structure of
Figure 3.8a could be implemented as suggested in Figure 3.14.

THE ROLE OF THE PROCESS CONTROL BLOCK The process control block is the
most important data structure in an OS. Each process control block contains all of
the information about a process that is needed by the OS. The blocks are read and/or
modified by virtually every module in the OS, including those involved with scheduling,
resource allocation, interrupt processing, and performance monitoring and analysis.
One can say that the set of process control blocks defines the state of the OS.

This brings up an important design issue. A number of routines within the OS
will need access to information in process control blocks. The provision of direct ac-
cess to these tables is not difficult. Each process is equipped with a unique ID, and
this can be used as an index into a table of pointers to the process control blocks.
The difficulty is not access but rather protection. Two problems present themselves:

A bug in a single routine, such as an interrupt handler, could damage process
control blocks, which could destroy the system’s ability to manage the affected
processes.

Process
identification

Process
control
block

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Process
identification

Process 1 Process 2 Process n

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Figure 3.13 User Processes in Virtual Memory

3.4 / PROCESS CONTROL 133

A design change in the structure or semantics of the process control block
could affect a number of modules in the OS.

These problems can be addressed by requiring all routines in the OS to go
through a handler routine, the only job of which is to protect process control blocks,
and which is the sole arbiter for reading and writing these blocks. The trade-off in
the use of such a routine involves performance issues and the degree to which the
remainder of the system software can be trusted to be correct.

 3.4 PROCESS CONTROL

Modes of Execution

Before continuing with our discussion of the way in which the OS manages processes,
we need to distinguish between the mode of processor execution normally associated
with the OS and that normally associated with user programs. Most processors sup-
port at least two modes of execution. Certain instructions can only be executed in the
more privileged mode. These would include reading or altering a control register,
such as the program status word; primitive I/O instructions; and instructions that
relate to memory management. In addition, certain regions of memory can only be
accessed in the more privileged mode.

Running

Ready

Blocked

Process
control block

Figure 3.14 Process List Structures

134 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

The less privileged mode is often referred to as the user mode, because user
programs typically would execute in this mode. The more privileged mode is referred
to as the system mode, control mode, or kernel mode. This last term refers to the ker-
nel of the OS, which is that portion of the OS that encompasses the important system
functions. Table 3.7 lists the functions typically found in the kernel of an OS.

The reason for using two modes should be clear. It is necessary to protect the
OS and key operating system tables, such as process control blocks, from interfer-
ence by user programs. In the kernel mode, the software has complete control of the
processor and all its instructions, registers, and memory. This level of control is not
necessary and for safety is not desirable for user programs.

Two questions arise: How does the processor know in which mode it is to
be executing and how is the mode changed? Regarding the first question, typically
there is a bit in the program status word (PSW) that indicates the mode of execu-
tion. This bit is changed in response to certain events. Typically, when a user makes
a call to an operating system service or when an interrupt triggers execution of an
operating system routine, the mode is set to the kernel mode and, upon return from
the service to the user process, the mode is set to user mode. As an example, con-
sider the Intel Itanium processor, which implements the 64-bit IA-64 architecture.
The processor has a processor status register (psr) that includes a 2-bit cpl (current
privilege level) field. Level 0 is the most privileged level, while level 3 is the least
privileged level. Most operating systems, such as Linux, use level 0 for the kernel
and one other level for user mode. When an interrupt occurs, the processor clears
most of the bits in the psr, including the cpl field. This automatically sets the cpl

Table 3.7 Typical Functions of an Operating System Kernel

Process Management

 Process creation and termination
 Process scheduling and dispatching
 Process switching
 Process synchronization and support for interprocess communication
 Management of process control blocks

Memory Management

 Allocation of address space to processes
 Swapping
 Page and segment management

I/O Management

 Buffer management
 Allocation of I/O channels and devices to processes

Support Functions

 Interrupt handling
 Accounting
 Monitoring

3.4 / PROCESS CONTROL 135

to level 0. At the end of the interrupt-handling routine, the final instruction that is
executed is irt (interrupt return). This instruction causes the processor to restore the
psr of the interrupted program, which restores the privilege level of that program. A
similar sequence occurs when an application places a system call. For the Itanium,
an application places a system call by placing the system call identifier and the sys-
tem call arguments in a predefined area and then executing a special instruction that
has the effect of interrupting execution at the user level and transferring control to
the kernel.

Process Creation

In Section 3.2, we discussed the events that lead to the creation of a new process.
Having discussed the data structures associated with a process, we are now in a posi-
tion to describe briefly the steps involved in actually creating the process.

Once the OS decides, for whatever reason (Table 3.1), to create a new process,
it can proceed as follows:

 1. Assign a unique process identifier to the new process. At this time, a new entry
is added to the primary process table, which contains one entry per process.

 2. Allocate space for the process. This includes all elements of the process image.
Thus, the OS must know how much space is needed for the private user address
space (programs and data) and the user stack. These values can be assigned by
default based on the type of process, or they can be set based on user request
at job creation time. If a process is spawned by another process, the parent
process can pass the needed values to the OS as part of the process-creation
request. If any existing address space is to be shared by this new process, the
appropriate linkages must be set up. Finally, space for a process control block
must be allocated.

 3. Initialize the process control block. The process identification portion contains
the ID of this process plus other appropriate IDs, such as that of the parent
process. The processor state information portion will typically be initialized
with most entries zero, except for the program counter (set to the program
entry point) and system stack pointers (set to define the process stack boundar-
ies). The process control information portion is initialized based on standard
default values plus attributes that have been requested for this process. For
example, the process state would typically be initialized to Ready or Ready/
Suspend. The priority may be set by default to the lowest priority unless an
explicit request is made for a higher priority. Initially, the process may own no
resources (I/O devices, files) unless there is an explicit request for these or un-
less they are inherited from the parent.

 4. Set the appropriate linkages. For example, if the OS maintains each schedul-
ing queue as a linked list, then the new process must be put in the Ready or
Ready/Suspend list.

 5. Create or expand other data structures. For example, the OS may maintain
an accounting file on each process to be used subsequently for billing and/or
performance assessment purposes.

136 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Process Switching

On the face of it, the function of process switching would seem to be straightforward.
At some time, a running process is interrupted and the OS assigns another process
to the Running state and turns control over to that process. However, several de-
sign issues are raised. First, what events trigger a process switch? Another issue is
that we must recognize the distinction between mode switching and process switch-
ing. Finally, what must the OS do to the various data structures under its control to
achieve a process switch?

WHEN TO SWITCH PROCESSES A process switch may occur any time that the OS has
gained control from the currently running process. Table 3.8 suggests the possible
events that may give control to the OS.

First, let us consider system interrupts. Actually, we can distinguish, as many
systems do, two kinds of system interrupts, one of which is simply referred to as an
interrupt, and the other as a trap. The former is due to some sort of event that is ex-
ternal to and independent of the currently running process, such as the completion
of an I/O operation. The latter relates to an error or exception condition generated
within the currently running process, such as an illegal file access attempt. With an
ordinary interrupt, control is first transferred to an interrupt handler, which does
some basic housekeeping and then branches to an OS routine that is concerned with
the particular type of interrupt that has occurred. Examples include the following:

Clock interrupt: The OS determines whether the currently running process
has been executing for the maximum allowable unit of time, referred to as a
time slice. That is, a time slice is the maximum amount of time that a process
can execute before being interrupted. If so, this process must be switched to a
Ready state and another process dispatched.
I/O interrupt: The OS determines what I/O action has occurred. If the I/O
action constitutes an event for which one or more processes are waiting,
then the OS moves all of the corresponding blocked processes to the Ready
state (and Blocked/Suspend processes to the Ready/Suspend state). The OS
must then decide whether to resume execution of the process currently in the
Running state or to preempt that process for a higher-priority Ready process.
Memory fault: The processor encounters a virtual memory address reference
for a word that is not in main memory. The OS must bring in the block (page
or segment) of memory containing the reference from secondary memory

Table 3.8 Mechanisms for Interrupting the Execution of a Process

Mechanism Cause Use

Interrupt External to the execution of the
current instruction

Reaction to an asynchronous external
event

Trap Associated with the execution of
the current instruction

Handling of an error or an exception
condition

Supervisor call Explicit request Call to an operating system function

3.4 / PROCESS CONTROL 137

to main memory. After the I/O request is issued to bring in the block of
memory, the process with the memory fault is placed in a blocked state; the
OS then performs a process switch to resume execution of another process.
After the desired block is brought into memory, that process is placed in the
Ready state.

With a trap, the OS determines if the error or exception condition is fatal.
If so, then the currently running process is moved to the Exit state and a process
switch occurs. If not, then the action of the OS will depend on the nature of the
error and the design of the OS. It may attempt some recovery procedure or simply
notify the user. It may do a process switch or resume the currently running process.

Finally, the OS may be activated by a supervisor call from the program being
executed. For example, a user process is running and an instruction is executed that
requests an I/O operation, such as a file open. This call results in a transfer to a rou-
tine that is part of the operating system code. The use of a system call may place the
user process in the Blocked state.

MODE SWITCHING In Chapter 1, we discussed the inclusion of an interrupt stage as
part of the instruction cycle. Recall that, in the interrupt stage, the processor checks
to see if any interrupts are pending, indicated by the presence of an interrupt signal.
If no interrupts are pending, the processor proceeds to the fetch stage and fetches
the next instruction of the current program in the current process. If an interrupt is
pending, the processor does the following:

 1. It sets the program counter to the starting address of an interrupt handler
program.

 2. It switches from user mode to kernel mode so that the interrupt processing
code may include privileged instructions.

The processor now proceeds to the fetch stage and fetches the first instruction of
the interrupt handler program, which will service the interrupt. At this point, typi-
cally, the context of the process that has been interrupted is saved into that process
control block of the interrupted program.

One question that may now occur to you is, What constitutes the context that
is saved? The answer is that it must include any information that may be altered by
the execution of the interrupt handler and that will be needed to resume the pro-
gram that was interrupted. Thus, the portion of the process control block that was
referred to as processor state information must be saved. This includes the program
counter, other processor registers, and stack information.

Does anything else need to be done? That depends on what happens next. The
interrupt handler is typically a short program that performs a few basic tasks related
to an interrupt. For example, it resets the flag or indicator that signals the presence
of an interrupt. It may send an acknowledgment to the entity that issued the inter-
rupt, such as an I/O module. And it may do some basic housekeeping relating to the
effects of the event that caused the interrupt. For example, if the interrupt relates to
an I/O event, the interrupt handler will check for an error condition. If an error has
occurred, the interrupt handler may send a signal to the process that originally re-
quested the I/O operation. If the interrupt is by the clock, then the handler will hand

138 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

control over to the dispatcher, which will want to pass control to another process
because the time slice allotted to the currently running process has expired.

What about the other information in the process control block? If this inter-
rupt is to be followed by a switch to another process, then some work will need
to be done. However, in most operating systems, the occurrence of an interrupt
does not necessarily mean a process switch. It is possible that, after the interrupt
handler has executed, the currently running process will resume execution. In that
case, all that is necessary is to save the processor state information when the inter-
rupt occurs and restore that information when control is returned to the program
that was running. Typically, the saving and restoring functions are performed in
hardware.

CHANGE OF PROCESS STATE It is clear, then, that the mode switch is a concept
distinct from that of the process switch.10 A mode switch may occur without
changing the state of the process that is currently in the Running state. In that case,
the context saving and subsequent restoral involve little overhead. However, if the
currently running process is to be moved to another state (Ready, Blocked, etc.),
then the OS must make substantial changes in its environment. The steps involved
in a full process switch are as follows:

 1. Save the context of the processor, including program counter and other
registers.

 2. Update the process control block of the process that is currently in the
Running state. This includes changing the state of the process to one of the
other states (Ready; Blocked; Ready/Suspend; or Exit). Other relevant fields
must also be updated, including the reason for leaving the Running state and
accounting information.

 3. Move the process control block of this process to the appropriate queue
(Ready; Blocked on Event i; Ready/Suspend).

 4. Select another process for execution; this topic is explored in Part Four.
 5. Update the process control block of the process selected. This includes chang-

ing the state of this process to Running.
 6. Update memory management data structures. This may be required, depend-

ing on how address translation is managed; this topic is explored in Part Three.
 7. Restore the context of the processor to that which existed at the time the

selected process was last switched out of the Running state, by loading in the
previous values of the program counter and other registers.

Thus, the process switch, which involves a state change, requires more effort than a
mode switch.

10The term context switch is often found in OS literature and textbooks. Unfortunately, although most of
the literature uses this term to mean what is here called a process switch, other sources use it to mean a
mode switch or even a thread switch (defined in the next chapter). To avoid ambiguity, the term is not
used in this book.

3.5 / EXECUTION OF THE OPERATING SYSTEM 139

 3.5 EXECUTION OF THE OPERATING SYSTEM

In Chapter 2, we pointed out two intriguing facts about operating systems:

The OS functions in the same way as ordinary computer software in the sense
that the OS is a set of programs executed by the processor.
The OS frequently relinquishes control and depends on the processor to restore
control to the OS.

If the OS is just a collection of programs and if it is executed by the processor
just like any other program, is the OS a process? If so, how is it controlled? These
interesting questions have inspired a number of design approaches. Figure 3.15
 illustrates a range of approaches that are found in various contemporary operating
systems.

Nonprocess Kernel

One traditional approach, common on many older operating systems, is to execute
the kernel of the OS outside of any process (Figure 3.15a). With this approach, when
the currently running process is interrupted or issues a supervisor call, the mode con-
text of this process is saved and control is passed to the kernel. The OS has its own
region of memory to use and its own system stack for controlling procedure calls and
returns. The OS can perform any desired functions and restore the context of the

P1 P2 Pn

Kernel

(a) Separate kernel

(c) OS functions execute as separate processes

OS
func-
tions

OS
func-
tions

OS
func-
tions

Process-switching functions

Process-switching functions

(b) OS functions execute within user processes

P1

P1 P2 OS1

P2 Pn

Pn OSk

Figure 3.15 Relationship between Operating System
and User Processes

140 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

interrupted process, which causes execution to resume in the interrupted user pro-
cess. Alternatively, the OS can complete the function of saving the environment of
the process and proceed to schedule and dispatch another process. Whether this hap-
pens depends on the reason for the interruption and the circumstances at the time.

In any case, the key point here is that the concept of process is considered to
apply only to user programs. The operating system code is executed as a separate
entity that operates in privileged mode.

Execution within User Processes

An alternative that is common with operating systems on smaller computers (PCs,
workstations) is to execute virtually all OS software in the context of a user process.
The view is that the OS is primarily a collection of routines that the user calls to
perform various functions, executed within the environment of the user’s process.
This is illustrated in Figure 3.15b. At any given point, the OS is managing n process
images. Each image includes not only the regions illustrated in Figure 3.13 but also
program, data, and stack areas for kernel programs.

Figure 3.16 suggests a typical process image structure for this strategy. A sepa-
rate kernel stack is used to manage calls/returns while the process is in kernel mode.

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Kernel stack

Shared address
space

Process control
block

Figure 3.16 Process Image: Operating
System Executes within
User Space

3.5 / EXECUTION OF THE OPERATING SYSTEM 141

Operating system code and data are in the shared address space and are shared by
all user processes.

When an interrupt, trap, or supervisor call occurs, the processor is placed in
kernel mode and control is passed to the OS. To pass control from a user program
to the OS, the mode context is saved and a mode switch takes place to an operating
system routine. However, execution continues within the current user process. Thus,
a process switch is not performed, just a mode switch within the same process.

If the OS, upon completion of its work, determines that the current pro-
cess should continue to run, then a mode switch resumes the interrupted program
within the current process. This is one of the key advantages of this approach: A
user program has been interrupted to employ some operating system routine, and
then resumed, and all of this has occurred without incurring the penalty of two
process switches. If, however, it is determined that a process switch is to occur
rather than returning to the previously executing program, then control is passed
to a process-switching routine. This routine may or may not execute in the current
process, depending on system design. At some point, however, the current process
has to be placed in a nonrunning state and another process designated as the run-
ning process. During this phase, it is logically most convenient to view execution as
taking place outside of all processes.

In a way, this view of the OS is remarkable. Simply put, at certain points in
time, a process will save its state information, choose another process to run from
among those that are ready, and relinquish control to that process. The reason this
is not an arbitrary and indeed chaotic situation is that during the critical time, the
code that is executed in the user process is shared operating system code and not
user code. Because of the concept of user mode and kernel mode, the user cannot
tamper with or interfere with the operating system routines, even though they are
executing in the user’s process environment. This further reminds us that there is
a distinction between the concepts of process and program and that the relation-
ship between the two is not one to one. Within a process, both a user program and
operating system programs may execute, and the operating system programs that
execute in the various user processes are identical.

Process-Based Operating System

Another alternative, illustrated in Figure 3.15c, is to implement the OS as a collec-
tion of system processes. As in the other options, the software that is part of the
kernel executes in a kernel mode. In this case, however, major kernel functions are
organized as separate processes. Again, there may be a small amount of process-
switching code that is executed outside of any process.

This approach has several advantages. It imposes a program design discipline
that encourages the use of a modular OS with minimal, clean interfaces between the
modules. In addition, some noncritical operating system functions are conveniently
implemented as separate processes. For example, we mentioned earlier a monitor
program that records the level of utilization of various resources (processor, mem-
ory, channels) and the rate of progress of the user processes in the system. Because
this program does not provide a particular service to any active process, it can only
be invoked by the OS. As a process, the function can run at an assigned priority

142 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

level and be interleaved with other processes under dispatcher control. Finally, im-
plementing the OS as a set of processes is useful in a multiprocessor or multicom-
puter environment, in which some of the operating system services can be shipped
out to dedicated processors, improving performance.

 3.6 UNIX SVR4 PROCESS MANAGEMENT

UNIX System V makes use of a simple but powerful process facility that is highly
visible to the user. UNIX follows the model of Figure 3.15b, in which most of the
OS executes within the environment of a user process. UNIX uses two categories of
processes: system processes and user processes. System processes run in kernel mode
and execute operating system code to perform administrative and housekeeping func-
tions, such as allocation of memory and process swapping. User processes operate
in user mode to execute user programs and utilities and in kernel mode to execute
instructions that belong to the kernel. A user process enters kernel mode by issuing a
system call, when an exception (fault) is generated, or when an interrupt occurs.

Process States

A total of nine process states are recognized by the UNIX SVR4 operating system;
these are listed in Table 3.9 and a state transition diagram is shown in Figure 3.17
(based on figure in [BACH86]). This figure is similar to Figure 3.9b, with the two
UNIX sleeping states corresponding to the two blocked states. The differences are
as follows:

UNIX employs two Running states to indicate whether the process is execut-
ing in user mode or kernel mode.
A distinction is made between the two states: (Ready to Run, in Memory) and
(Preempted). These are essentially the same state, as indicated by the dotted

Table 3.9 UNIX Process States

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in
Memory

Ready to run as soon as the kernel schedules it.

Asleep in Memory Unable to execute until an event occurs; process is in main memory (a blocked state).

Ready to Run, Swapped Process is ready to run, but the swapper must swap the process into main memory
before the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to secondary storage (a
blocked state).

Preempted Process is returning from kernel to user mode, but the kernel preempts it and
does a process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent process to collect.

3.6 / UNIX SVR4 PROCESS MANAGEMENT 143

line joining them. The distinction is made to emphasize the way in which the
preempted state is entered. When a process is running in kernel mode (as a
result of a supervisor call, clock interrupt, or I/O interrupt), there will come a
time when the kernel has completed its work and is ready to return control to
the user program. At this point, the kernel may decide to preempt the current
process in favor of one that is ready and of higher priority. In that case, the cur-
rent process moves to the preempted state. However, for purposes of dispatch-
ing, those processes in the Preempted state and those in the (Ready to Run, in
Memory) state form one queue.

Preemption can only occur when a process is about to move from kernel mode to
user mode. While a process is running in kernel mode, it may not be preempted. This
makes UNIX unsuitable for real-time processing. Chapter 10 discusses the require-
ments for real-time processing.

Two processes are unique in UNIX. Process 0 is a special process that is cre-
ated when the system boots; in effect, it is predefined as a data structure loaded
at boot time. It is the swapper process. In addition, process 0 spawns process 1,
referred to as the init process; all other processes in the system have process 1 as
an ancestor. When a new interactive user logs on to the system, it is process 1 that
creates a user process for that user. Subsequently, the user process can create child

Fork

Not enough memory
(swapping system only)

Enough
memory

Swap in

Swap out

Swap out

WakeupWakeupSleep

Return

Preempt

Return
to user

System call,
interrupt

Exit

Reschedule
process

Interrupt,
interrupt return

Preempted
Created

Ready to run
swapped

Ready to run
in memory

Kernel
running

Zombie Asleep in
memory

Sleep,
swapped

User
running

Figure 3.17 UNIX Process State Transition Diagram

144 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

processes in a branching tree, so that any particular application can consist of a
number of related processes.

Process Description

A process in UNIX is a rather complex set of data structures that provide the OS
with all of the information necessary to manage and dispatch processes. Table 3.10
summarizes the elements of the process image, which are organized into three parts:
user-level context, register context, and system-level context.

The user-level context contains the basic elements of a user’s program and
can be generated directly from a compiled object file. The user’s program is sepa-
rated into text and data areas; the text area is read-only and is intended to hold
the program’s instructions. While the process is executing, the processor uses the
user stack area for procedure calls and returns and parameter passing. The shared
memory area is a data area that is shared with other processes. There is only one
physical copy of a shared memory area, but, by the use of virtual memory, it ap-
pears to each sharing process that the shared memory region is in its address space.
When a process is not running, the processor status information is stored in the
register context area.

The system-level context contains the remaining information that the OS
needs to manage the process. It consists of a static part, which is fixed in size and

Table 3.10 UNIX Process Image

User-Level Context

Process text Executable machine instructions of the program

Process data Data accessible by the program of this process

User stack Contains the arguments, local variables, and pointers for functions executing in user mode

Shared memory Memory shared with other processes, used for interprocess communication

Register Context

Program counter Address of next instruction to be executed; may be in kernel or user memory space of
this process

Processor status
register

Contains the hardware status at the time of preemption; contents and format are hard-
ware dependent

Stack pointer Points to the top of the kernel or user stack, depending on the mode of operation at
the time or preemption

General-purpose
registers

Hardware dependent

System-Level Context

Process table entry Defines state of a process; this information is always accessible to the operating system

U (user) area Process control information that needs to be accessed only in the context of the process

Per process region
table

Defines the mapping from virtual to physical addresses; also contains a permission
field that indicates the type of access allowed the process: read-only, read-write, or
read-execute

Kernel stack Contains the stack frame of kernel procedures as the process executes in kernel mode

3.6 / UNIX SVR4 PROCESS MANAGEMENT 145

stays with a process throughout its lifetime, and a dynamic part, which varies in
size through the life of the process. One element of the static part is the process
table entry. This is actually part of the process table maintained by the OS, with
one entry per process. The process table entry contains process control information
that is accessible to the kernel at all times; hence, in a virtual memory system, all
process table entries are maintained in main memory. Table 3.11 lists the contents
of a process table entry. The user area, or U area, contains additional process con-
trol information that is needed by the kernel when it is executing in the context of
this process; it is also used when paging processes to and from memory. Table 3.12
shows the contents of this table.

The distinction between the process table entry and the U area reflects the
fact that the UNIX kernel always executes in the context of some process. Much
of the time, the kernel will be dealing with the concerns of that process. However,
some of the time, such as when the kernel is performing a scheduling algorithm
preparatory to dispatching another process, it will need access to information about
other processes. The information in a process table can be accessed when the given
process is not the current one.

The third static portion of the system-level context is the per process region
table, which is used by the memory management system. Finally, the kernel stack is
the dynamic portion of the system-level context. This stack is used when the process
is executing in kernel mode and contains the information that must be saved and
restored as procedure calls and interrupts occur.

Table 3.11 UNIX Process Table Entry

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate the process.

User
identifiers

The real user ID identifies the user who is responsible for the running process. The effective
user ID may be used by a process to gain temporary privileges associated with a particular
program; while that program is being executed as part of the process, the process operates
with the effective user ID.

Process
identifiers

ID of this process; ID of parent process. These are set up when the process enters the
Created state during the fork system call.

Event
descriptor

Valid when a process is in a sleeping state; when the event occurs, the process is transferred
to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and user-set timer used to send
alarm signal to a process.

P_link Pointer to the next link in the ready queue (valid if process is ready to execute).

Memory
status

Indicates whether process image is in main memory or swapped out. If it is in memory,
this field also indicates whether it may be swapped out or is temporarily locked into main
memory.

146 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Process Control

Process creation in UNIX is made by means of the kernel system call, fork(). When
a process issues a fork request, the OS performs the following functions [BACH86]:

 1. It allocates a slot in the process table for the new process.
 2. It assigns a unique process ID to the child process.
 3. It makes a copy of the process image of the parent, with the exception of any

shared memory.
 4. It increments counters for any files owned by the parent, to reflect that an

 additional process now also owns those files.
 5. It assigns the child process to the Ready to Run state.
 6. It returns the ID number of the child to the parent process, and a 0 value to

the child process.

All of this work is accomplished in kernel mode in the parent process. When
the kernel has completed these functions it can do one of the following, as part of
the dispatcher routine:

Stay in the parent process. Control returns to user mode at the point of the
fork call of the parent.
Transfer control to the child process. The child process begins executing at the
same point in the code as the parent, namely at the return from the fork call.
Transfer control to another process. Both parent and child are left in the
Ready to Run state.

Table 3.12 UNIX U Area

Process table pointer Indicates entry that corresponds to the U area

User identifiers Real and effective user IDs used to determine user privileges

Timers Record time that the process (and its descendants) spent executing in user mode and
in kernel mode

Signal-handler array For each type of signal defined in the system, indicates how the process will react to
receipt of that signal (exit, ignore, execute specified user function)

Control terminal Indicates login terminal for this process, if one exists

Error field Records errors encountered during a system call

Return value Contains the result of system calls

I/O parameters Describe the amount of data to transfer, the address of the source (or target) data
array in user space, and file offsets for I/O

File parameters Current directory and current root describe the file system environment of the process.

User file descriptor
table

Records the files the process has opened

Limit fields Restrict the size of the process and the size of a file it can write

Permission modes
fields

Mask mode settings on files the process creates

3.8 / RECOMMENDED READING AND ANIMATIONS 147

It is perhaps difficult to visualize this method of process creation because both
parent and child are executing the same passage of code. The difference is this:
When the return from the fork occurs, the return parameter is tested. If the value is
zero, then this is the child process, and a branch can be executed to the appropriate
user program to continue execution. If the value is nonzero, then this is the parent
process, and the main line of execution can continue.

 3.7 SUMMARY

The most fundamental concept in a modern OS is the process. The principal func-
tion of the OS is to create, manage, and terminate processes. While processes are
active, the OS must see that each is allocated time for execution by the proces-
sor, coordinate their activities, manage conflicting demands, and allocate system
resources to processes.

To perform its process management functions, the OS maintains a description
of each process, or process image, which includes the address space within which the
process executes, and a process control block. The latter contains all of the informa-
tion that is required by the OS to manage the process, including its current state,
resources allocated to it, priority, and other relevant data.

During its lifetime, a process moves among a number of states. The most im-
portant of these are Ready, Running, and Blocked. A ready process is one that
is not currently executing but that is ready to be executed as soon as the OS dis-
patches it. The running process is that process that is currently being executed by
the processor. In a multiple-processor system, more than one process can be in this
state. A blocked process is waiting for the completion of some event, such as an I/O
operation.

A running process is interrupted either by an interrupt, which is an event that
occurs outside the process and that is recognized by the processor, or by executing
a supervisor call to the OS. In either case, the processor performs a mode switch,
transferring control to an operating system routine. The OS, after it has completed
necessary work, may resume the interrupted process or switch to some other process.

 3.8 RECOMMENDED READING AND ANIMATIONS

Good descriptions of UNIX process management are found in [GOOD94] and
[GRAY97]. [NEHM75] is an interesting discussion of process states and the operat-
ing system primitives needed for process dispatching.

GOOD94 Goodheart, B., and Cox, J. The Magic Garden Explained: The Internals of
UNIX System V Release 4. Englewood Cliffs, NJ: Prentice Hall, 1994.

GRAY97 Gray, J. Interprocess Communications in UNIX: The Nooks and Crannies.
Upper Saddle River, NJ: Prentice Hall, 1997.

NEHM75 Nehmer, J. “Dispatcher Primitives for the Construction of Operating
System Kernels.” Acta Informatica, vol. 5, 1975.

148 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

 3.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

blocked state
child process
exit state
interrupt
kernel mode
mode switch
new state
parent process
preempt

privileged mode
process
process control block
process image
process switch
program status word
ready state
round robin
running state

suspend state
swapping
system mode
task
trace
trap
user mode

Review Questions

 3.1 What is an instruction trace?
 3.2 What common events lead to the creation of a process?
 3.3 For the processing model of Figure 3.6, briefly define each state.
 3.4 What does it mean to preempt a process?
 3.5 What is swapping and what is its purpose?
 3.6 Why does Figure 3.9b have two blocked states?
 3.7 List four characteristics of a suspended process.
 3.8 For what types of entities does the OS maintain tables of information for manage-

ment purposes?
 3.9 List three general categories of information in a process control block.
 3.10 Why are two modes (user and kernel) needed?
 3.11 What are the steps performed by an OS to create a new process?
 3.12 What is the difference between an interrupt and a trap?
 3.13 Give three examples of an interrupt.
 3.14 What is the difference between a mode switch and a process switch?

Problems

 3.1 The following state transition table is a simplified model of process management, with
the labels representing transitions between states of READY, RUN, BLOCKED, and
NONRESIDENT.

Animations

A set of animation that illustrates concepts from this chapter is available at the
Premium Web site. The reader is encouraged to view the animations to reinforce
concepts from this chapter.

Animation

3.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 149

READY RUN BLOCKED NONRESIDENT

READY – 1 – 5

RUN 2 – 3 –

BLOCKED 4 – – 6

Give an example of an event that can cause each of the above transitions. Draw a
diagram if that helps.

 3.2 Assume that at time 5 no system resources are being used except for the processor
and memory. Now consider the following events:

At time 5: P1 executes a command to read from disk unit 3.
At time 15: P5’s time slice expires.
At time 18: P7 executes a command to write to disk unit 3.
At time 20: P3 executes a command to read from disk unit 2.
At time 24: P5 executes a command to write to disk unit 3.
At time 28: P5 is swapped out.
At time 33: An interrupt occurs from disk unit 2: P3’s read is complete.
At time 36: An interrupt occurs from disk unit 3: P1’s read is complete.
At time 38: P8 terminates.
At time 40: An interrupt occurs from disk unit 3: P5’s write is complete.
At time 44: P5 is swapped back in.
At time 48: An interrupt occurs from disk unit 3: P7’s write is complete.

For each time 22, 37, and 47, identify which state each process is in. If a process is
blocked, further identify the event on which it is blocked.

 3.3 Figure 3.9b contains seven states. In principle, one could draw a transition between
any two states, for a total of 42 different transitions.
a. List all of the possible transitions and give an example of what could cause each

transition.
b. List all of the impossible transitions and explain why.

 3.4 For the seven-state process model of Figure 3.9b, draw a queueing diagram similar to
that of Figure 3.8b.

 3.5 Consider the state transition diagram of Figure 3.9b. Suppose that it is time for the
OS to dispatch a process and that there are processes in both the Ready state and
the Ready/Suspend state, and that at least one process in the Ready/Suspend state
has higher scheduling priority than any of the processes in the Ready state. Two
extreme policies are as follows: (1) Always dispatch from a process in the Ready
state, to minimize swapping, and (2) always give preference to the highest-priority
process, even though that may mean swapping when swapping is not necessary.
Suggest an intermediate policy that tries to balance the concerns of priority and
performance.

 3.6 Table 3.13 shows the process states for the VAX/VMS operating system.
a. Can you provide a justification for the existence of so many distinct wait states?
b. Why do the following states not have resident and swapped-out versions: Page Fault

Wait, Collided Page Wait, Common Event Wait, Free Page Wait, and Resource Wait?
c. Draw the state transition diagram and indicate the action or occurrence that

causes each transition.
 3.7 The VAX/VMS operating system makes use of four processor access modes to fa-

cilitate the protection and sharing of system resources among processes. The access
mode determines

Instruction execution privileges: What instructions the processor may execute
Memory access privileges: Which locations in virtual memory the current instruc-
tion may access

150 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.13 VAX/VMS Process States

Process State Process Condition

Currently Executing Running process.

Computable (resident) Ready and resident in main memory.

Computable (outswapped) Ready, but swapped out of main memory.

Page Fault Wait Process has referenced a page not in main memory and must wait for
the page to be read in.

Collided Page Wait Process has referenced a shared page that is the cause of an existing
page fault wait in another process, or a private page that is in the
process of being read in or written out.

Common Event Wait Waiting for shared event flag (event flags are single-bit interprocess
signaling mechanisms).

Free Page Wait Waiting for a free page in main memory to be added to the collection of
pages in main memory devoted to this process (the working set of the
process).

Hibernate Wait (resident) Process puts itself in a wait state.

Hibernate Wait (outswapped) Hibernating process is swapped out of main memory.

Local Event Wait (resident) Process in main memory and waiting for local event flag (usually I/O
completion).

Local Event Wait (outswapped) Process in local event wait is swapped out of main memory.

Suspended Wait (resident) Process is put into a wait state by another process.

Suspended Wait (outswapped) Suspended process is swapped out of main memory.

Resource Wait Process waiting for miscellaneous system resource.

The four modes are as follows:

Kernel: Executes the kernel of the VMS operating system, which includes mem-
ory management, interrupt handling, and I/O operations
Executive: Executes many of the OS service calls, including file and record (disk
and tape) management routines
Supervisor: Executes other OS services, such as responses to user commands
User: Executes user programs, plus utilities such as compilers, editors, linkers, and
debuggers

A process executing in a less privileged mode often needs to call a procedure that
executes in a more privileged mode; for example, a user program requires an oper-
ating system service. This call is achieved by using a change-mode (CHM) instruc-
tion, which causes an interrupt that transfers control to a routine at the new access
mode. A return is made by executing the REI (return from exception or interrupt)
instruction.
a. A number of operating systems have two modes, kernel and user. What are the

advantages and disadvantages of providing four modes instead of two?
b. Can you make a case for even more than four modes?

 3.8 The VMS scheme discussed in the preceding problem is often referred to as a ring pro-
tection structure, as illustrated in Figure 3.18. Indeed, the simple kernel/user scheme,
as described in Section 3.3, is a two-ring structure. A potential disadvantage of this
protection structure is that it cannot readily be used to enforce a “need-to-know”

principle. [SILB04] gives this example: If an object is accessible in domain Dj but not
in domain Di, then j < i. But this means that every object accessible in Di is also acces-
sible in Dj.
Explain clearly what the problem is that is referred to in the preceding paragraph.

 3.9 Figure 3.8b suggests that a process can only be in one event queue at a time.
a. Is it possible that you would want to allow a process to wait on more than one

event at the same time? Provide an example.
b. In that case, how would you modify the queueing structure of the figure to support

this new feature?
 3.10 In a number of early computers, an interrupt caused the register values to be stored in

fixed locations associated with the given interrupt signal. Under what circumstances
is this a practical technique? Explain why it is inconvenient in general.

 3.11 In Section 3.4, it was stated that UNIX is unsuitable for real-time applications because
a process executing in kernel mode may not be preempted. Elaborate.

 3.12 You have executed the following C program:

main ()
{ int pid;
pid = fork ();
printf (“%d \n”, pid);
}

What are the possible outputs, assuming the fork succeeded?

Kernel

Executive

Supervisor

User

REICHM
x

Figure 3.18 VAX/VMS Access Modes

3.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 151

152

 4.1 Processes and Threads
Multithreading
Thread Functionality

 4.2 Types of Threads
User-Level and Kernel-Level Threads
Other Arrangements

 4.3 Multicore and Multithreading
Performance of Software on Multicore
Application Example: Valve Game Software

 4.4 Windows 8 Process and Thread Management
Changes in Windows 8
The Windows Process
Process and Thread Objects
Multithreading
Thread States
Support for OS Subsystems

 4.5 Solaris Thread and SMP Management
Multithreaded Architecture
Motivation
Process Structure
Thread Execution
Interrupts as Threads

 4.6 Linux Process and Thread Management
Linux Tasks
Linux Threads
Linux Namespaces

 4.7 Android Process and Thread Management
Android Applications
Activities
Processes and Threads

 4.8 Mac OS X Grand Central Dispatch

 4.9 Summary

 4.10 Recommended Reading

 4.11 Key Terms, Review Questions, and Problems

THREADS

CHAPTER

4.1 / PROCESSES AND THREADS 153

This chapter examines some more advanced concepts related to process man-
agement, which are found in a number of contemporary operating systems. We
show that the concept of process is more complex and subtle than presented so
far and in fact embodies two separate and potentially independent concepts:
one relating to resource ownership and another relating to execution. This dis-
tinction has led to the development, in many operating systems, of a construct
known as the thread.

 4.1 PROCESSES AND THREADS

The discussion so far has presented the concept of a process as embodying two
characteristics:

Resource ownership: A process includes a virtual address space to hold the
process image; recall from Chapter 3 that the process image is the collection of
program, data, stack, and attributes defined in the process control block. From
time to time, a process may be allocated control or ownership of resources,
such as main memory, I/O channels, I/O devices, and files. The OS performs a
protection function to prevent unwanted interference between processes with
respect to resources.
Scheduling/execution: The execution of a process follows an execution path
(trace) through one or more programs (e.g., Figure 1.5). This execution may
be interleaved with that of other processes. Thus, a process has an execution
state (Running, Ready, etc.) and a dispatching priority and is the entity that is
scheduled and dispatched by the OS.

Some thought should convince the reader that these two characteristics
are independent and could be treated independently by the OS. This is done in
a number of operating systems, particularly recently developed systems. To dis-
tinguish the two characteristics, the unit of dispatching is usually referred to as

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Understand the distinction between process and thread.
Describe the basic design issues for threads.
Explain the difference between user-level threads and kernel-level threads.
Describe the thread management facility in Windows 7.
Describe the thread management facility in Solaris.
Describe the thread management facility in Linux.

154 CHAPTER 4 / THREADS

a thread or lightweight process, while the unit of resource ownership is usually
referred to as a process or task.1

Multithreading

Multithreading refers to the ability of an OS to support multiple, concurrent paths
of execution within a single process. The traditional approach of a single thread of
execution per process, in which the concept of a thread is not recognized, is referred
to as a single-threaded approach. The two arrangements shown in the left half of
Figure 4.1 are single-threaded approaches. MS-DOS is an example of an OS that
supports a single user process and a single thread. Other operating systems, such
as some variants of UNIX, support multiple user processes but only support one
thread per process. The right half of Figure 4.1 depicts multithreaded approaches. A
Java run-time environment is an example of a system of one process with multiple
threads. Of interest in this section is the use of multiple processes, each of which
supports multiple threads. This approach is taken in Windows, Solaris, and many

1Alas, even this degree of consistency is not maintained. In IBM’s mainframe operating systems, the
concepts of address space and task, respectively, correspond roughly to the concepts of process and
thread that we describe in this section. Also, in the literature, the term lightweight process is used as
either (1) equivalent to the term thread, (2) a particular type of thread known as a kernel-level thread,
or (3) in the case of Solaris, an entity that maps user-level threads to kernel-level threads.

One process
One thread

One process
Multiple threads

Multiple processes
One thread per process

= Instruction trace

Multiple processes
Multiple threads per process

Figure 4.1 Threads and Processes

4.1 / PROCESSES AND THREADS 155

modern versions of UNIX, among others. In this section we give a general descrip-
tion of multithreading; the details of the Windows, Solaris, and Linux approaches
are discussed later in this chapter.

In a multithreaded environment, a process is defined as the unit of resource
allocation and a unit of protection. The following are associated with processes:

A virtual address space that holds the process image
Protected access to processors, other processes (for interprocess communica-
tion), files, and I/O resources (devices and channels)

Within a process, there may be one or more threads, each with the following:

A thread execution state (Running, Ready, etc.)
A saved thread context when not running; one way to view a thread is as an
independent program counter operating within a process
An execution stack
Some per-thread static storage for local variables
Access to the memory and resources of its process, shared with all other
threads in that process

Figure 4.2 illustrates the distinction between threads and processes from the
point of view of process management. In a single-threaded process model (i.e., there
is no distinct concept of thread), the representation of a process includes its process
control block and user address space, as well as user and kernel stacks to manage the
call/return behavior of the execution of the process. While the process is running, it
controls the processor registers. The contents of these registers are saved when the
process is not running. In a multithreaded environment, there is still a single process

Single-threaded
process model

Process
control
block

User
address
space

User
stack

Kernel
stack

Multithreaded
process model

Process
control
block

User
address
space

User
stack

Kernel
stack

User
stack

Kernel
stack

User
stack

Kernel
stack

Thread
control
block

Thread Thread Thread

Thread
control
block

Thread
control
block

Figure 4.2 Single-Threaded and Multithreaded Process Models

156 CHAPTER 4 / THREADS

control block and user address space associated with the process, but now there are
separate stacks for each thread, as well as a separate control block for each thread
containing register values, priority, and other thread-related state information.

Thus, all of the threads of a process share the state and resources of that pro-
cess. They reside in the same address space and have access to the same data. When
one thread alters an item of data in memory, other threads see the results if and
when they access that item. If one thread opens a file with read privileges, other
threads in the same process can also read from that file.

The key benefits of threads derive from the performance implications:

 1. It takes far less time to create a new thread in an existing process than to
create a brand-new process. Studies done by the Mach developers show that
thread creation is ten times faster than process creation in UNIX [TEVA87].

 2. It takes less time to terminate a thread than a process.
 3. It takes less time to switch between two threads within the same process than

to switch between processes.
 4. Threads enhance efficiency in communication between different executing

programs. In most operating systems, communication between independent
processes requires the intervention of the kernel to provide protection and the
mechanisms needed for communication. However, because threads within the
same process share memory and files, they can communicate with each other
without invoking the kernel.

Thus, if there is an application or function that should be implemented as a
set of related units of execution, it is far more efficient to do so as a collection of
threads rather than a collection of separate processes.

An example of an application that could make use of threads is a file server.
As each new file request comes in, a new thread can be spawned for the file man-
agement program. Because a server will handle many requests, many threads will
be created and destroyed in a short period. If the server runs on a multiprocessor
computer, then multiple threads within the same process can be executing simultane-
ously on different processors. Further, because processes or threads in a file server
must share file data and therefore coordinate their actions, it is faster to use threads
and shared memory than processes and message passing for this coordination.

The thread construct is also useful on a single processor to simplify the struc-
ture of a program that is logically doing several different functions.

[LETW88] gives four examples of the uses of threads in a single-user multi-
processing system:

Foreground and background work: For example, in a spreadsheet program, one
thread could display menus and read user input, while another thread executes
user commands and updates the spreadsheet. This arrangement often increases
the perceived speed of the application by allowing the program to prompt for
the next command before the previous command is complete.
Asynchronous processing: Asynchronous elements in the program can be
implemented as threads. For example, as a protection against power failure,
one can design a word processor to write its random access memory (RAM)

4.1 / PROCESSES AND THREADS 157

buffer to disk once every minute. A thread can be created whose sole job is
periodic backup and that schedules itself directly with the OS; there is no need
for fancy code in the main program to provide for time checks or to coordinate
input and output.
Speed of execution: A multithreaded process can compute one batch of data
while reading the next batch from a device. On a multiprocessor system, mul-
tiple threads from the same process may be able to execute simultaneously.
Thus, even though one thread may be blocked for an I/O operation to read in
a batch of data, another thread may be executing.
Modular program structure: Programs that involve a variety of activities or a
variety of sources and destinations of input and output may be easier to design
and implement using threads.

In an OS that supports threads, scheduling and dispatching is done on a
thread basis; hence, most of the state information dealing with execution is main-
tained in thread-level data structures. There are, however, several actions that
affect all of the threads in a process and that the OS must manage at the process
level. For example, suspension involves swapping the address space of one pro-
cess out of main memory to make room for the address space of another process.
Because all threads in a process share the same address space, all threads are
suspended at the same time. Similarly, termination of a process terminates all
threads within that process.

Thread Functionality

Like processes, threads have execution states and may synchronize with one
 another. We look at these two aspects of thread functionality in turn.

THREAD STATES As with processes, the key states for a thread are Running, Ready,
and Blocked. Generally, it does not make sense to associate suspend states with
threads because such states are process-level concepts. In particular, if a process is
swapped out, all of its threads are necessarily swapped out because they all share
the address space of the process.

There are four basic thread operations associated with a change in thread
state [ANDE04]:

Spawn: Typically, when a new process is spawned, a thread for that process
is also spawned. Subsequently, a thread within a process may spawn another
thread within the same process, providing an instruction pointer and arguments
for the new thread. The new thread is provided with its own register context and
stack space and placed on the ready queue.
Block: When a thread needs to wait for an event, it will block (saving its user
registers, program counter, and stack pointers). The processor may now turn
to the execution of another ready thread in the same or a different process.
Unblock: When the event for which a thread is blocked occurs, the thread is
moved to the Ready queue.
Finish: When a thread completes, its register context and stacks are deallocated.

158 CHAPTER 4 / THREADS

A significant issue is whether the blocking of a thread results in the blocking
of the entire process. In other words, if one thread in a process is blocked, does
this prevent the running of any other thread in the same process even if that other
thread is in a ready state? Clearly, some of the flexibility and power of threads is lost
if the one blocked thread blocks an entire process.

We return to this issue subsequently in our discussion of user-level versus
 kernel-level threads, but for now let us consider the performance benefits of threads
that do not block an entire process. Figure 4.3 (based on one in [KLEI96]) shows a
program that performs two remote procedure calls (RPCs)2 to two different hosts
to obtain a combined result. In a single-threaded program, the results are obtained
in sequence, so the program has to wait for a response from each server in turn.
Rewriting the program to use a separate thread for each RPC results in a substantial
speedup. Note that if this program operates on a uniprocessor, the requests must be
generated sequentially and the results processed in sequence; however, the program
waits concurrently for the two replies.

(a) RPC using single thread

(b) RPC using one thread per server (on a uniprocessor)

Time

Process 1

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B

Running

Thread A (Process 1)

Thread B (Process 1)

Server Server

Server

Server

RPC
request

RPC
request

RPC
request

RPC
request

Figure 4.3 Remote Procedure Call (RPC) Using Threads

2An RPC is a technique by which two programs, which may execute on different machines, interact using
procedure call/return syntax and semantics. Both the called and calling program behave as if the partner
program were running on the same machine. RPCs are often used for client/server applications and are
discussed in Chapter 16.

4.2 / TYPES OF THREADS 159

Time

Blocked

I/O
request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Ready Running

Request
complete

Time quantum
expires

Time quantum
expires

Process
created

Figure 4.4 Multithreading Example on a Uniprocessor

On a uniprocessor, multiprogramming enables the interleaving of multiple
threads within multiple processes. In the example of Figure 4.4, three threads in
two processes are interleaved on the processor. Execution passes from one thread
to another either when the currently running thread is blocked or when its time slice
is exhausted.3

THREAD SYNCHRONIZATION All of the threads of a process share the same address
space and other resources, such as open files. Any alteration of a resource by one
thread affects the environment of the other threads in the same process. It is therefore
necessary to synchronize the activities of the various threads so that they do not
interfere with each other or corrupt data structures. For example, if two threads each
try to add an element to a doubly linked list at the same time, one element may be
lost or the list may end up malformed.

The issues raised and the techniques used in the synchronization of threads
are, in general, the same as for the synchronization of processes. These issues and
techniques are the subject of Chapters 5 and 6.

 4.2 TYPES OF THREADS

User-Level and Kernel-Level Threads

There are two broad categories of thread implementation: user-level threads (ULTs)
and kernel-level threads (KLTs).4 The latter are also referred to in the literature as
kernel-supported threads or lightweight processes.

USER-LEVEL THREADS In a pure ULT facility, all of the work of thread
management is done by the application and the kernel is not aware of the existence

3In this example, thread C begins to run after thread A exhausts its time quantum, even though thread B
is also ready to run. The choice between B and C is a scheduling decision, a topic covered in Part Four.
4The acronyms ULT and KLT are not widely used but are introduced for conciseness.

160 CHAPTER 4 / THREADS

of threads. Figure 4.5a illustrates the pure ULT approach. Any application can be
programmed to be multithreaded by using a threads library, which is a package of
routines for ULT management. The threads library contains code for creating and
destroying threads, for passing messages and data between threads, for scheduling
thread execution, and for saving and restoring thread contexts.

By default, an application begins with a single thread and begins running in
that thread. This application and its thread are allocated to a single process man-
aged by the kernel. At any time that the application is running (the process is in
the Running state), the application may spawn a new thread to run within the same
process. Spawning is done by invoking the spawn utility in the threads library.
Control is passed to that utility by a procedure call. The threads library creates
a data structure for the new thread and then passes control to one of the threads
within this process that is in the Ready state, using some scheduling algorithm.
When control is passed to the library, the context of the current thread is saved,
and when control is passed from the library to a thread, the context of that thread
is restored. The context essentially consists of the contents of user registers, the
program counter, and stack pointers.

All of the activity described in the preceding paragraph takes place in user
space and within a single process. The kernel is unaware of this activity. The ker-
nel continues to schedule the process as a unit and assigns a single execution state
(Ready, Running, Blocked, etc.) to that process. The following examples should
clarify the relationship between thread scheduling and process scheduling. Suppose
that process B is executing in its thread 2; the states of the process and two ULTs
that are part of the process are shown in Figure 4.6a. Each of the following is a pos-
sible occurrence:

 1. The application executing in thread 2 makes a system call that blocks B. For
example, an I/O call is made. This causes control to transfer to the kernel.
The kernel invokes the I/O action, places process B in the Blocked state,

P P

User
space

Threads
library

Kernel
space

P

P

User
space

Kernel
space

P

User
space

Threads
library

Kernel
space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Figure 4.5 User-Level and Kernel-Level Threads

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Process B

(a)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Process B

(b)

Ready Running

Blocked

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(c)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Blocked

Thread 2

Ready Running

Blocked

Process B

(d)

Figure 4.6 Examples of the Relationships between User-Level Thread States and Process States

161

162 CHAPTER 4 / THREADS

and switches to another process. Meanwhile, according to the data structure
maintained by the threads library, thread 2 of process B is still in the Running
state. It is important to note that thread 2 is not actually running in the sense
of being executed on a processor; but it is perceived as being in the Running
state by the threads library. The corresponding state diagrams are shown in
Figure 4.6b.

 2. A clock interrupt passes control to the kernel, and the kernel determines
that the currently running process (B) has exhausted its time slice. The ker-
nel places process B in the Ready state and switches to another process.
Meanwhile, according to the data structure maintained by the threads library,
thread 2 of process B is still in the Running state. The corresponding state dia-
grams are shown in Figure 4.6c.

 3. Thread 2 has reached a point where it needs some action performed by thread
1 of process B. Thread 2 enters a Blocked state and thread 1 transitions from
Ready to Running. The process itself remains in the Running state. The cor-
responding state diagrams are shown in Figure 4.6d.

Note that each of the three preceding items suggests an alternative event start-
ing from diagram (a) of Figure 4.6. So each of the three other diagrams (b, c, d)
shows a transition from the situation in (a). In cases 1 and 2 (Figures 4.6b and 4.6c),
when the kernel switches control back to process B, execution resumes in thread 2.
Also note that a process can be interrupted, either by exhausting its time slice or
by being preempted by a higher-priority process, while it is executing code in the
threads library. Thus, a process may be in the midst of a thread switch from one
thread to another when interrupted. When that process is resumed, execution con-
tinues within the threads library, which completes the thread switch and transfers
control to another thread within that process.

There are a number of advantages to the use of ULTs instead of KLTs, includ-
ing the following:

 1. Thread switching does not require kernel mode privileges because all of the
thread management data structures are within the user address space of a
single process. Therefore, the process does not switch to the kernel mode to
do thread management. This saves the overhead of two mode switches (user
to kernel; kernel back to user).

 2. Scheduling can be application specific. One application may benefit most
from a simple round-robin scheduling algorithm, while another might benefit
from a priority-based scheduling algorithm. The scheduling algorithm can be
tailored to the application without disturbing the underlying OS scheduler.

 3. ULTs can run on any OS. No changes are required to the underlying kernel
to support ULTs. The threads library is a set of application-level functions
shared by all applications.

There are two distinct disadvantages of ULTs compared to KLTs:

 1. In a typical OS, many system calls are blocking. As a result, when a ULT exe-
cutes a system call, not only is that thread blocked, but also all of the threads
within the process are blocked.

4.2 / TYPES OF THREADS 163

 2. In a pure ULT strategy, a multithreaded application cannot take advantage of
multiprocessing. A kernel assigns one process to only one processor at a time.
Therefore, only a single thread within a process can execute at a time. In effect,
we have application-level multiprogramming within a single process. While this
multiprogramming can result in a significant speedup of the application, there
are applications that would benefit from the ability to execute portions of code
simultaneously.

There are ways to work around these two problems. For example, both prob-
lems can be overcome by writing an application as multiple processes rather than
multiple threads. But this approach eliminates the main advantage of threads: Each
switch becomes a process switch rather than a thread switch, resulting in much
greater overhead.

Another way to overcome the problem of blocking threads is to use a tech-
nique referred to as jacketing. The purpose of jacketing is to convert a blocking
system call into a nonblocking system call. For example, instead of directly calling
a system I/O routine, a thread calls an application-level I/O jacket routine. Within
this jacket routine is code that checks to determine if the I/O device is busy. If it is,
the thread enters the Blocked state and passes control (through the threads library)
to another thread. When this thread later is given control again, the jacket routine
checks the I/O device again.

KERNEL-LEVEL THREADS In a pure KLT facility, all of the work of thread
management is done by the kernel. There is no thread management code in the
application level, simply an application programming interface (API) to the kernel
thread facility. Windows is an example of this approach.

Figure 4.5b depicts the pure KLT approach. The kernel maintains context in-
formation for the process as a whole and for individual threads within the process.
Scheduling by the kernel is done on a thread basis. This approach overcomes the
two principal drawbacks of the ULT approach. First, the kernel can simultaneously
schedule multiple threads from the same process on multiple processors. Second,
if one thread in a process is blocked, the kernel can schedule another thread of
the same process. Another advantage of the KLT approach is that kernel routines
themselves can be multithreaded.

The principal disadvantage of the KLT approach compared to the ULT ap-
proach is that the transfer of control from one thread to another within the same
process requires a mode switch to the kernel. To illustrate the differences, Table 4.1
shows the results of measurements taken on a uniprocessor VAX computer run-
ning a UNIX-like OS. The two benchmarks are as follows: Null Fork, the time
to create, schedule, execute, and complete a process/thread that invokes the null

Table 4.1 Thread and Process Operation Latencies (μs)

Operation User-Level Threads Kernel-Level Threads Processes

Null Fork 34 948 11,300

Signal Wait 37 441 1,840

164 CHAPTER 4 / THREADS

procedure (i.e., the overhead of forking a process/thread); and Signal-Wait, the
time for a process/thread to signal a waiting process/thread and then wait on a con-
dition (i.e., the overhead of synchronizing two processes/threads together). We see
that there is an order of magnitude or more of difference between ULTs and KLTs
and similarly between KLTs and processes.

Thus, on the face of it, while there is a significant speedup by using KLT
multithreading compared to single-threaded processes, there is an additional sig-
nificant speedup by using ULTs. However, whether or not the additional speedup
is realized depends on the nature of the applications involved. If most of the thread
switches in an application require kernel mode access, then a ULT-based scheme
may not perform much better than a KLT-based scheme.

COMBINED APPROACHES Some operating systems provide a combined ULT/KLT
facility (Figure 4.5c). In a combined system, thread creation is done completely in
user space, as is the bulk of the scheduling and synchronization of threads within an
application. The multiple ULTs from a single application are mapped onto some
(smaller or equal) number of KLTs. The programmer may adjust the number of
KLTs for a particular application and processor to achieve the best overall results.

In a combined approach, multiple threads within the same application can run
in parallel on multiple processors, and a blocking system call need not block the en-
tire process. If properly designed, this approach should combine the advantages of
the pure ULT and KLT approaches while minimizing the disadvantages.

Solaris is a good example of an OS using this combined approach. The current
Solaris version limits the ULT/KLT relationship to be one-to-one.

Other Arrangements

As we have said, the concepts of resource allocation and dispatching unit have tra-
ditionally been embodied in the single concept of the process—that is, as a 1 : 1
relationship between threads and processes. Recently, there has been much interest
in providing for multiple threads within a single process, which is a many-to-one re-
lationship. However, as Table 4.2 shows, the other two combinations have also been
investigated, namely, a many-to-many relationship and a one-to-many relationship.

Table 4.2 Relationship between Threads and Processes

Threads: Processes Description Example Systems

1:1 Each thread of execution is a unique process with
its own address space and resources.

Traditional UNIX
implementations

M:1 A process defines an address space and dynamic
resource ownership. Multiple threads may be
created and executed within that process.

Windows NT, Solaris, Linux,
OS/2, OS/390, MACH

1:M A thread may migrate from one process
environment to another. This allows a thread
to be easily moved among distinct systems.

Ra (Clouds), Emerald

M:N It combines attributes of M:1 and 1:M cases. TRIX

4.2 / TYPES OF THREADS 165

MANY-TO-MANY RELATIONSHIP The idea of having a many-to-many relationship
between threads and processes has been explored in the experimental operating
system TRIX [PAZZ92, WARD80]. In TRIX, there are the concepts of domain
and thread. A domain is a static entity, consisting of an address space and “ports”
through which messages may be sent and received. A thread is a single execution
path, with an execution stack, processor state, and scheduling information.

As with the multithreading approaches discussed so far, multiple threads may
execute in a single domain, providing the efficiency gains discussed earlier. However,
it is also possible for a single user activity, or application, to be performed in multiple
domains. In this case, a thread exists that can move from one domain to another.

The use of a single thread in multiple domains seems primarily motivated by
a desire to provide structuring tools for the programmer. For example, consider a
program that makes use of an I/O subprogram. In a multiprogramming environ-
ment that allows user-spawned processes, the main program could generate a new
process to handle I/O and then continue to execute. However, if the future progress
of the main program depends on the outcome of the I/O operation, then the main
program will have to wait for the other I/O program to finish. There are several
ways to implement this application:

 1. The entire program can be implemented as a single process. This is a reason-
able and straightforward solution. There are drawbacks related to memory
management. The process as a whole may require considerable main mem-
ory to execute efficiently, whereas the I/O subprogram requires a relatively
small address space to buffer I/O and to handle the relatively small amount of
program code. Because the I/O program executes in the address space of the
larger program, either the entire process must remain in main memory during
the I/O operation or the I/O operation is subject to swapping. This memory
management effect would also exist if the main program and the I/O subpro-
gram were implemented as two threads in the same address space.

 2. The main program and I/O subprogram can be implemented as two separate
processes. This incurs the overhead of creating the subordinate process. If the
I/O activity is frequent, one must either leave the subordinate process alive,
which consumes management resources, or frequently create and destroy the
subprogram, which is inefficient.

 3. Treat the main program and the I/O subprogram as a single activity that is
to be implemented as a single thread. However, one address space (domain)
could be created for the main program and one for the I/O subprogram.
Thus, the thread can be moved between the two address spaces as execution
proceeds. The OS can manage the two address spaces independently, and no
process creation overhead is incurred. Furthermore, the address space used
by the I/O subprogram could also be shared by other simple I/O programs.

The experiences of the TRIX developers indicate that the third option has
merit and may be the most effective solution for some applications.

ONE-TO-MANY RELATIONSHIP In the field of distributed operating systems
(designed to control distributed computer systems), there has been interest in the

166 CHAPTER 4 / THREADS

concept of a thread as primarily an entity that can move among address spaces.5 A
notable example of this research is the Clouds operating system, and especially its
kernel, known as Ra [DASG92]. Another example is the Emerald system [STEE95].

A thread in Clouds is a unit of activity from the user’s perspective. A process
is a virtual address space with an associated process control block. Upon creation,
a thread starts executing in a process by invoking an entry point to a program in
that process. Threads may move from one address space to another and actually
span computer boundaries (i.e., move from one computer to another). As a thread
moves, it must carry with it certain information, such as the controlling terminal,
global parameters, and scheduling guidance (e.g., priority).

The Clouds approach provides an effective way of insulating both users and
programmers from the details of the distributed environment. A user’s activity may
be represented as a single thread, and the movement of that thread among comput-
ers may be dictated by the OS for a variety of system-related reasons, such as the
need to access a remote resource, and load balancing.

 4.3 MULTICORE AND MULTITHREADING

The use of a multicore system to support a single application with multiple threads,
such as might occur on a workstation, a video-game console, or a personal computer
running a processor-intense application, raises issues of performance and applica-
tion design. In this section, we first look at some of the performance implications
of a multithreaded application on a multicore system and then describe a specific
example of an application designed to exploit multicore capabilities.

Performance of Software on Multicore

The potential performance benefits of a multicore organization depend on the abil-
ity to effectively exploit the parallel resources available to the application. Let us
focus first on a single application running on a multicore system. Amdahl’s law (see
Appendix E) states that:

Speedup =
time to execute program on a single processor

time to execute program on N parallel processors
=

111 - f2 +
f
N

The law assumes a program in which a fraction (1 − f) of the execution time involves
code that is inherently serial and a fraction f that involves code that is infinitely paral-
lelizable with no scheduling overhead.

This law appears to make the prospect of a multicore organization attractive.
But as Figure 4.7a shows, even a small amount of serial code has a noticeable im-
pact. If only 10% of the code is inherently serial (f = 0.9), running the program on
a multicore system with eight processors yields a performance gain of only a factor

5The movement of processes or threads among address spaces, or thread migration, on different machines
has become a hot topic in recent years. Chapter 18 explores this topic.

4.3 / MULTICORE AND MULTITHREADING 167

of 4.7. In addition, software typically incurs overhead as a result of communication
and distribution of work to multiple processors and cache coherence overhead. This
results in a curve where performance peaks and then begins to degrade because
of the increased burden of the overhead of using multiple processors. Figure 4.7b,
from [MCDO07], is a representative example.

However, software engineers have been addressing this problem and there
are numerous applications in which it is possible to effectively exploit a multicore

R
el

at
iv

e
sp

ee
du

p

0

2

4

6

8

21
Number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

7 8

R
el

at
iv

e
sp

ee
du

p

10%
5%

15%
20%

0

0.5

1.0

1.5

2.0

2.5

21

Number of processors

(b) Speedup with overheads

3 4 5 6 7 8

Figure 4.7 Performance Effect of Multiple Cores

168 CHAPTER 4 / THREADS

system. [MCDO07] reports on a set of database applications, in which great atten-
tion was paid to reducing the serial fraction within hardware architectures, operat-
ing systems, middleware, and the database application software. Figure 4.8 shows
the result. As this example shows, database management systems and database ap-
plications are one area in which multicore systems can be used effectively. Many
kinds of servers can also effectively use the parallel multicore organization, because
servers typically handle numerous relatively independent transactions in parallel.

In addition to general-purpose server software, a number of classes of applica-
tions benefit directly from the ability to scale throughput with the number of cores.
[MCDO06] lists the following examples:

Multithreaded native applications: Multithreaded applications are charac-
terized by having a small number of highly threaded processes. Examples
of threaded applications include Lotus Domino or Siebel CRM (Customer
Relationship Manager).
Multiprocess applications: Multiprocess applications are characterized by the
presence of many single-threaded processes. Examples of multiprocess appli-
cations include the Oracle database, SAP, and PeopleSoft.
Java applications: Java applications embrace threading in a fundamental way.
Not only does the Java language greatly facilitate multithreaded applications,
but the Java Virtual Machine is a multithreaded process that provides sched-
uling and memory management for Java applications. Java applications that
can benefit directly from multicore resources include application servers such
as Sun’s Java Application Server, BEA’s Weblogic, IBM’s Websphere, and
the open-source Tomcat application server. All applications that use a Java 2

0
0

16

32

48

64

16 32
Number of CPUs

Sc
al

in
g

48 64

pe
rfe

ct
sc

ali
ng

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP

Figure 4.8 Scaling of Database Workloads on Multiple-Processor Hardware

4.3 / MULTICORE AND MULTITHREADING 169

Platform, Enterprise Edition (J2EE platform) application server can immedi-
ately benefit from multicore technology.
Multiinstance applications: Even if an individual application does not scale
to take advantage of a large number of threads, it is still possible to gain from
multicore architecture by running multiple instances of the application in par-
allel. If multiple application instances require some degree of isolation, virtu-
alization technology (for the hardware of the operating system) can be used to
provide each of them with its own separate and secure environment.

Application Example: Valve Game Software

Valve is an entertainment and technology company that has developed a number
of popular games, as well as the Source engine, one of the most widely played game
engines available. Source is an animation engine used by Valve for its games and
licensed for other game developers.

In recent years, Valve has reprogrammed the Source engine software to use
multithreading to exploit the power of multicore processor chips from Intel and
AMD [REIM06]. The revised Source engine code provides more powerful support
for Valve games such as Half Life 2.

From Valve’s perspective, threading granularity options are defined as follows
[HARR06]:

Coarse threading: Individual modules, called systems, are assigned to individ-
ual processors. In the Source engine case, this would mean putting rendering
on one processor, AI (artificial intelligence) on another, physics on another,
and so on. This is straightforward. In essence, each major module is single
threaded and the principal coordination involves synchronizing all the threads
with a timeline thread.
Fine-grained threading: Many similar or identical tasks are spread across
multiple processors. For example, a loop that iterates over an array of data
can be split up into a number of smaller parallel loops in individual threads
that can be scheduled in parallel.
Hybrid threading: This involves the selective use of fine-grained threading for
some systems and single threading for other systems.

Valve found that through coarse threading, it could achieve up to twice the
performance across two processors compared to executing on a single processor. But
this performance gain could only be achieved with contrived cases. For real-world
gameplay, the improvement was on the order of a factor of 1.2. Valve also found that
effective use of fine-grained threading was difficult. The time per work unit can be
variable, and managing the timeline of outcomes and consequences involved com-
plex programming.

Valve found that a hybrid threading approach was the most promising and
would scale the best, as multicore systems with 8 or 16 processors became available.
Valve identified systems that operate very effectively being permanently assigned
to a single processor. An example is sound mixing, which has little user interaction,
is not constrained by the frame configuration of windows, and works on its own set

170 CHAPTER 4 / THREADS

of data. Other modules, such as scene rendering, can be organized into a number
of threads so that the module can execute on a single processor but achieve greater
performance as it is spread out over more and more processors.

Figure 4.9 illustrates the thread structure for the rendering module. In this hi-
erarchical structure, higher-level threads spawn lower-level threads as needed. The
rendering module relies on a critical part of the Source engine, the world list, which is
a database representation of the visual elements in the game’s world. The first task is
to determine what are the areas of the world that need to be rendered. The next task
is to determine what objects are in the scene as viewed from multiple angles. Then
comes the processor-intensive work. The rendering module has to work out the ren-
dering of each object from multiple points of view, such as the player’s view, the view
of TV monitors, and the point of view of reflections in water.

Some of the key elements of the threading strategy for the rendering module
are listed in [LEON07] and include the following:

Construct scene-rendering lists for multiple scenes in parallel (e.g., the world
and its reflection in water).
Overlap graphics simulation.
Compute character bone transformations for all characters in all scenes in
parallel.
Allow multiple threads to draw in parallel.

Render

Skybox Main view

Scene list

For each object

Particles

Sim and draw

Bone setup

Draw

Character

Etc.

Monitor Etc.

Figure 4.9 Hybrid Threading for Rendering Module

4.4 / WINDOWS 8 PROCESS AND THREAD MANAGEMENT 171

The designers found that simply locking key databases, such as the world list,
for a thread was too inefficient. Over 95% of the time, a thread is trying to read
from a data set, and only 5% of the time at most is spent in writing to a data set.
Thus, a concurrency mechanism known as the single-writer-multiple-readers model
works effectively.

 4.4 WINDOWS 8 PROCESS AND THREAD MANAGEMENT

This section begins with an overview of the key objects and mechanisms that sup-
port application execution in Windows 8. The remainder of the section looks in
more detail at how processes and threads are managed.

An application consists of one or more processes. Each process provides the
resources needed to execute a program. A process has a virtual address space,
executable code, open handles to system objects, a security context, a unique pro-
cess identifier, environment variables, a priority class, minimum and maximum
working set sizes, and at least one thread of execution. Each process is started
with a single thread, often called the primary thread, but can create additional
threads from any of its threads.

A thread is the entity within a process that can be scheduled for execution.
All threads of a process share its virtual address space and system resources. In
addition, each thread maintains exception handlers, a scheduling priority, thread
local storage, a unique thread identifier, and a set of structures the system will use
to save the thread context until it is scheduled. On a multiprocessor computer, the
system can simultaneously execute as many threads as there are processors on the
computer.

A job object allows groups of processes to be managed as a unit. Job objects
are namable, securable, sharable objects that control attributes of the processes
associated with them. Operations performed on the job object affect all processes
associated with the job object. Examples include enforcing limits such as working
set size and process priority or terminating all processes associated with a job.

A thread pool is a collection of worker threads that efficiently execute asyn-
chronous callbacks on behalf of the application. The thread pool is primarily used
to reduce the number of application threads and provide management of the
worker threads.

A fiber is a unit of execution that must be manually scheduled by the applica-
tion. Fibers run in the context of the threads that schedule them. Each thread can
schedule multiple fibers. In general, fibers do not provide advantages over a well-
designed multithreaded application. However, using fibers can make it easier to
port applications that were designed to schedule their own threads. From a system
standpoint, a fiber assumes the identity of the thread that runs it. For example, if
a fiber accesses thread local storage, it is accessing the thread local storage of the
thread that is running it. In addition, if a fiber calls the ExitThread function, the
thread that is running it exits. However, a fiber does not have all the same state
information associated with it as that associated with a thread. The only state infor-
mation maintained for a fiber is its stack, a subset of its registers, and the fiber data
provided during fiber creation. The saved registers are the set of registers typically

172 CHAPTER 4 / THREADS

preserved across a function call. Fibers are not preemptively scheduled. A thread
schedules a fiber by switching to it from another fiber. The system still schedules
threads to run. When a thread that is running fibers is preempted, its currently run-
ning fiber is preempted but remains selected.

User-mode scheduling (UMS) is a lightweight mechanism that applications
can use to schedule their own threads. An application can switch between UMS
threads in user mode without involving the system scheduler and regain control
of the processor if a UMS thread blocks in the kernel. Each UMS thread has
its own thread context instead of sharing the thread context of a single thread.
The ability to switch between threads in user mode makes UMS more efficient
than thread pools for short-duration work items that require few system calls.
UMS is useful for applications with high performance requirements that need
to efficiently run many threads concurrently on multiprocessor or multicore sys-
tems. To take advantage of UMS, an application must implement a scheduler
component that manages the application’s UMS threads and determines when
they should run.

Changes in Windows 8

Windows 8 changes the traditional Windows approach to managing background
tasks and application lifecycles. Developers are now responsible for managing the
state of their individual applications. Previous versions of Windows always give
the user full control of the lifetime of a process. In the classic desktop environ-
ment, a user is responsible for closing an application. A dialog box might prompt
them to save their work. This holds true in the desktop mode of Windows 8. In the
new Metro interface, Windows 8 takes over the process lifecycle of an application.
Although a limited number of applications can run alongside the main app in the
Metro UI using the SnapView functionality, only one Store application can run at
one time. This is a direct consequence of the new design. Windows 8 Live Tiles give
the appearance of applications constantly running on the system. In reality, they
receive push notifications and do not use system resources to display the dynamic
content offered.

The foreground application in the Metro interface has access to all of the
processor, network, and disk resources available to the user. All other apps are
suspended and have no access to these resources. When an app enters a suspended
mode, an event should be triggered to store the state of the user’s information.
This is the responsibility of the application developer. For a variety of reasons,
whether it needs resources or because an application timed out, Windows 8 may
terminate a background app. This is a significant departure from the Windows op-
erating systems that precede it. The app needs to retain any data the user entered,
settings they changed, and so on. That means you need to save your app’s state
when it’s suspended, in case Windows terminates it, so that you can restore its
state later. When the app returns to the foreground, another event is triggered
to obtain the user state from memory. No event fires to indicate termination of a
background app. Rather, the application data will remain resident on the system,
as though it is suspended, until the app is launched again. Users expect to find the
app as they left it, whether it was suspended or terminated by Windows or closed

4.4 / WINDOWS 8 PROCESS AND THREAD MANAGEMENT 173

by the user (Microsoft, 2013). Application developers can use code to determine
whether it should restore a saved state.

Some applications, such as news feeds, may look at the date stamp associ-
ated with the previous execution of the app and elect to discard the data in favor of
newly obtained information. This is a determination made by the developer, not by
the operating system. If the user closes an app, unsaved data is not saved. With fore-
ground tasks occupying all of the system resources, starvation of background apps is
a reality in Windows 8. This makes the application development relating to the state
changes critical to the success of a Windows 8 app.

To process the needs of background tasks, a background task API is built to
allow apps to perform small tasks while not in the foreground. In this restricted envi-
ronment, apps may receive push notifications from a server or a user may receive a
phone call. Push notifications are template XML strings. They are managed through
a cloud service known as the Windows Notification Service (WNS). The service will
occasionally push updates to the user’s background apps. The API will queue those
requests and process them when it receives enough processor resources. Background
tasks are severely limited in the usage of processor, receiving only one processor sec-
ond per processor hour. This ensures that critical tasks receive guaranteed application
resource quotas. It does not, however, guarantee a background app will ever run.

The Windows Process

Important characteristics of Windows processes are the following:

Windows processes are implemented as objects.
A process can be created as a new process or as a copy of an existing process.
An executable process may contain one or more threads.
Both process and thread objects have built-in synchronization capabilities.

Figure 4.10, based on one in [RUSS11], illustrates the way in which a process
relates to the resources it controls or uses. Each process is assigned a security access
token, called the primary token of the process. When a user first logs on, Windows
creates an access token that includes the security ID for the user. Every process that
is created by or runs on behalf of this user has a copy of this access token. Windows
uses the token to validate the user’s ability to access secured objects or to perform
restricted functions on the system and on secured objects. The access token controls
whether the process can change its own attributes. In this case, the process does
not have a handle opened to its access token. If the process attempts to open such
a handle, the security system determines whether this is permitted and therefore
whether the process may change its own attributes.

Also related to the process is a series of blocks that define the virtual address
space currently assigned to this process. The process cannot directly modify these
structures but must rely on the virtual memory manager, which provides a memory-
allocation service for the process.

Finally, the process includes an object table, with handles to other objects
known to this process. Figure 4.10 shows a single thread. In addition, the process has
access to a file object and to a section object that defines a section of shared memory.

174 CHAPTER 4 / THREADS

Process and Thread Objects

The object-oriented structure of Windows facilitates the development of a general-
purpose process facility. Windows makes use of two types of process-related objects:
processes and threads. A process is an entity corresponding to a user job or applica-
tion that owns resources, such as memory and open files. A thread is a dispatchable
unit of work that executes sequentially and is interruptible, so that the processor can
turn to another thread.

Each Windows process is represented by an object. Each process object in-
cludes a number of attributes and encapsulates a number of actions, or services,
that it may perform. A process will perform a service when called upon through
a set of published interface methods. When Windows creates a new process, it
uses the object class, or type, defined for the Windows process as a template
to generate a new object instance. At the time of creation, attribute values are
assigned. Table 4.3 gives a brief definition of each of the object attributes for a
process object.

A Windows process must contain at least one thread to execute. That thread
may then create other threads. In a multiprocessor system, multiple threads from
the same process may execute in parallel. Table 4.4 defines the thread object attri-
butes. Note that some of the attributes of a thread resemble those of a process. In
those cases, the thread attribute value is derived from the process attribute value.
For example, the thread processor affinity is the set of processors in a multiproces-
sor system that may execute this thread; this set is equal to or a subset of the process
processor affinity.

Process
object

Access
token

Virtual address descriptors

Thread x

File y

Section z

Handle1

Handle2

Handle3

Available
objectsHandle table

Figure 4.10 A Windows Process and Its Resources

4.4 / WINDOWS 8 PROCESS AND THREAD MANAGEMENT 175

Table 4.4 Windows Thread Object Attributes

Thread ID A unique value that identifies a thread when it calls a server

Thread context The set of register values and other volatile data that defines the execution state
of a thread

Dynamic priority The thread’s execution priority at any given moment

Base priority The lower limit of the thread’s dynamic priority

Thread processor affinity The set of processors on which the thread can run, which is a subset or all of the
processor affinity of the thread’s process

Thread execution time The cumulative amount of time a thread has executed in user mode and in
kernel mode

Alert status A flag that indicates whether a waiting thread may execute an asynchronous
procedure call

Suspension count The number of times the thread’s execution has been suspended without being
resumed

Impersonation token A temporary access token allowing a thread to perform operations on behalf of
another process (used by subsystems)

Termination port An interprocess communication channel to which the process manager sends a
message when the thread terminates (used by subsystems)

Thread exit status The reason for a thread’s termination

Table 4.3 Windows Process Object Attributes

Process ID A unique value that identifies the process to the operating system.

Security descriptor Describes who created an object, who can gain access to or use the object,
and who is denied access to the object.

Base priority A baseline execution priority for the process’s threads.

Default processor affinity The default set of processors on which the process’s threads can run.

Quota limits The maximum amount of paged and nonpaged system memory, paging file
space, and processor time a user’s processes can use.

Execution time The total amount of time all threads in the process have executed.

I/O counters Variables that record the number and type of I/O operations that the process’s
threads have performed.

VM operation counters Variables that record the number and types of virtual memory operations
that the process’s threads have performed.

Exception/debugging ports Interprocess communication channels to which the process manager sends a
message when one of the process’s threads causes an exception. Normally,
these are connected to environment subsystem and debugger processes,
respectively.

Exit status The reason for a process’s termination.

Note that one of the attributes of a thread object is context, which contains the
values of the processor registers when the thread last ran. This information enables
threads to be suspended and resumed. Furthermore, it is possible to alter the behav-
ior of a thread by altering its context while it is suspended.

176 CHAPTER 4 / THREADS

Multithreading

Windows supports concurrency among processes because threads in different pro-
cesses may execute concurrently (appear to run at the same time). Moreover, mul-
tiple threads within the same process may be allocated to separate processors and
execute simultaneously (actually run at the same time). A multithreaded process
achieves concurrency without the overhead of using multiple processes. Threads
within the same process can exchange information through their common address
space and have access to the shared resources of the process. Threads in different
processes can exchange information through shared memory that has been set up
between the two processes.

An object-oriented multithreaded process is an efficient means of implement-
ing a server application. For example, one server process can service a number of
clients concurrently.

Thread States

An existing Windows thread is in one of six states (Figure 4.11):

Ready: A ready thread may be scheduled for execution. The Kernel dispatcher
keeps track of all ready threads and schedules them in priority order.
Standby: A standby thread has been selected to run next on a particular pro-
cessor. The thread waits in this state until that processor is made available.
If the standby thread’s priority is high enough, the running thread on that
processor may be preempted in favor of the standby thread. Otherwise, the
standby thread waits until the running thread blocks or exhausts its time slice.

Runnable

Not runnable

Pick to
run Switch

Preempted

Block/
suspend

Unblock/resume
Resource available

Resource
available

Unblock
Resource not available

Terminate

Standby

Ready Running

Transition Waiting Terminated

Figure 4.11 Windows Thread States

4.4 / WINDOWS 8 PROCESS AND THREAD MANAGEMENT 177

Running: Once the Kernel dispatcher performs a thread switch, the standby
thread enters the Running state and begins execution and continues execution
until it is preempted by a higher-priority thread, exhausts its time slice, blocks,
or terminates. In the first two cases, it goes back to the Ready state.
Waiting: A thread enters the Waiting state when (1) it is blocked on an event
(e.g., I/O), (2) it voluntarily waits for synchronization purposes, or (3) an en-
vironment subsystem directs the thread to suspend itself. When the waiting
condition is satisfied, the thread moves to the Ready state if all of its resources
are available.
Transition: A thread enters this state after waiting if it is ready to run but the
resources are not available. For example, the thread’s stack may be paged out
of memory. When the resources are available, the thread goes to the Ready
state.
Terminated: A thread can be terminated by itself, by another thread, or when
its parent process terminates. Once housekeeping chores are completed, the
thread is removed from the system, or it may be retained by the Executive6 for
future reinitialization.

Support for OS Subsystems

The general-purpose process and thread facility must support the particular process
and thread structures of the various OS environments. It is the responsibility of
each OS subsystem to exploit the Windows process and thread features to emulate
the process and thread facilities of its corresponding OS. This area of process/thread
management is complicated, and we give only a brief overview here.

Process creation begins with a request for a new process from an application.
The application issues a create-process request to the corresponding protected sub-
system, which passes the request to the Executive. The Executive creates a process
object and returns a handle for that object to the subsystem. When Windows creates
a process, it does not automatically create a thread. In the case of Win32, a new pro-
cess must always be created with an initial thread. Therefore, the Win32 subsystem
calls the Windows process manager again to create a thread for the new process,
receiving a thread handle back from Windows. The appropriate thread and process
information are then returned to the application. In the case of POSIX, threads
are not supported. Therefore, the POSIX subsystem obtains a thread for the new
process from Windows so that the process may be activated but returns only process
information to the application. The fact that the POSIX process is implemented
using both a process and a thread from the Windows Executive is not visible to the
application.

When a new process is created by the Executive, the new process inherits
many of its attributes from the creating process. However, in the Win32 environ-
ment, this process creation is done indirectly. An application client process issues its
process creation request to the Win32 subsystem; then the subsystem in turn issues

6The Windows Executive is described in Chapter 2. It contains the base operating system services, such as
memory management, process and thread management, security, I/O, and interprocess communication.

178 CHAPTER 4 / THREADS

a process request to the Windows executive. Because the desired effect is that the
new process inherits characteristics of the client process and not of the server pro-
cess, Windows enables the subsystem to specify the parent of the new process. The
new process then inherits the parent’s access token, quota limits, base priority, and
default processor affinity.

 4.5 SOLARIS THREAD AND SMP MANAGEMENT

Solaris implements multilevel thread support designed to provide considerable
flexibility in exploiting processor resources.

Multithreaded Architecture

Solaris makes use of four separate thread-related concepts:

Process: This is the normal UNIX process and includes the user’s address
space, stack, and process control block.
User-level threads: Implemented through a threads library in the address
space of a process, these are invisible to the OS. A user-level thread (ULT)7 is
a user-created unit of execution within a process.
Lightweight processes: A lightweight process (LWP) can be viewed as a map-
ping between ULTs and kernel threads. Each LWP supports ULT and maps
to one kernel thread. LWPs are scheduled by the kernel independently and
may execute in parallel on multiprocessors.
Kernel threads: These are the fundamental entities that can be scheduled and
dispatched to run on one of the system processors.

Figure 4.12 illustrates the relationship among these four entities. Note that
there is always exactly one kernel thread for each LWP. An LWP is visible within
a process to the application. Thus, LWP data structures exist within their respective
process address space. At the same time, each LWP is bound to a single dispatchable
kernel thread, and the data structure for that kernel thread is maintained within the
kernel’s address space.

A process may consist of a single ULT bound to a single LWP. In this case,
there is a single thread of execution, corresponding to a traditional UNIX process.
When concurrency is not required within a single process, an application uses this
process structure. If an application requires concurrency, its process contains mul-
tiple threads, each bound to a single LWP, which in turn are each bound to a single
kernel thread.

In addition, there are kernel threads that are not associated with LWPs. The
kernel creates, runs, and destroys these kernel threads to execute specific system
functions. The use of kernel threads rather than kernel processes to implement sys-
tem functions reduces the overhead of switching within the kernel (from a process
switch to a thread switch).

7Again, the acronym ULT is unique to this book and is not found in the Solaris literature.

4.5 / SOLARIS THREAD AND SMP MANAGEMENT 179

Motivation

The three-level thread structure (ULT, LWP, kernel thread) in Solaris is intended
to facilitate thread management by the OS and to provide a clean interface to appli-
cations. The ULT interface can be a standard thread library. A defined ULT maps
onto a LWP, which is managed by the OS and which has defined states of execution,
defined subsequently. An LWP is bound to a kernel thread with a one-to-one cor-
respondence in execution states. Thus, concurrency and execution are managed at
the level of the kernel thread.

In addition, an application has access to hardware through an application pro-
gramming interface consisting of system calls. The API allows the user to invoke
kernel services to perform privileged tasks on behalf of the calling process, such as
read or write a file, issue a control command to a device, create a new process or
thread, allocate memory for the process to use, and so on.

Process Structure

Figure 4.13 compares, in general terms, the process structure of a traditional UNIX
system with that of Solaris. On a typical UNIX implementation, the process struc-
ture includes the process ID; the user IDs; a signal dispatch table, which the kernel
uses to decide what to do when sending a signal to a process; file descriptors, which
describe the state of files in use by this process; a memory map, which defines the
address space for this process; and a processor state structure, which includes the
kernel stack for this process. Solaris retains this basic structure but replaces the pro-
cessor state block with a list of structures containing one data block for each LWP.

The LWP data structure includes the following elements:

An LWP identifier
The priority of this LWP and hence the kernel thread that supports it

Hardware

Kernel

System calls

syscall()syscall()

Process

Kernel
thread

Kernel
thread

Lightweight
process (LWP)

Lightweight
process (LWP)

User
thread

User
thread

Figure 4.12 Processes and Threads in Solaris [MCDO07]

180 CHAPTER 4 / THREADS

A signal mask that tells the kernel which signals will be accepted
Saved values of user-level registers (when the LWP is not running)
The kernel stack for this LWP, which includes system call arguments, results,
and error codes for each call level
Resource usage and profiling data
Pointer to the corresponding kernel thread
Pointer to the process structure

Thread Execution

Figure 4.14 shows a simplified view of both thread execution states. These states
reflect the execution status of both a kernel thread and the LWP bound to it. As
mentioned, some kernel threads are not associated with an LWP; the same execu-
tion diagram applies. The states are as follows:

RUN: The thread is runnable; that is, the thread is ready to execute.
ONPROC: The thread is executing on a processor.

Process ID

UNIX process structure

User IDs

Signal dispatch table

File descriptors

Memory map

Priority
Signal mask

Registers

STACK

LWP ID

Processor state

Process ID

Solaris process structure

User IDs

Signal dispatch table

File descriptors

LWP 1

LWP ID

LWP 2

Memory map

Priority
Signal mask

Registers

STACK

Priority
Signal mask

Registers

STACK

Figure 4.13 Process Structure in Traditional UNIX and Solaris [LEWI96]

4.5 / SOLARIS THREAD AND SMP MANAGEMENT 181

SLEEP: The thread is blocked.
STOP: The thread is stopped.
ZOMBIE: The thread has terminated.
FREE: Thread resources have been released and the thread is awaiting removal
from the OS thread data structure.

A thread moves from ONPROC to RUN if it is preempted by a higher-
priority thread or because of time slicing. A thread moves from ONPROC to
SLEEP if it is blocked and must await an event to return the RUN state. Blocking
occurs if the thread invokes a system call and must wait for the system service to
be performed. A thread enters the STOP state if its process is stopped; this might
be done for debugging purposes.

Interrupts as Threads

Most operating systems contain two fundamental forms of concurrent activity: pro-
cesses and interrupts. Processes (or threads) cooperate with each other and manage
the use of shared data structures by means of a variety of primitives that enforce
mutual exclusion (only one process at a time can execute certain code or access
certain data) and that synchronize their execution. Interrupts are synchronized by
preventing their handling for a period of time. Solaris unifies these two concepts
into a single model, namely kernel threads and the mechanisms for scheduling and
executing kernel threads. To do this, interrupts are converted to kernel threads.

IDL

thread_create() intr()

swtch()
syscall()

wakeup()

prun() pstop() exit() reap()

preempt()

RUN

PINNED

SLEEP

STOP ZOMBIE FREE

ONPROC

Figure 4.14 Solaris Thread States

182 CHAPTER 4 / THREADS

The motivation for converting interrupts to threads is to reduce overhead.
Interrupt handlers often manipulate data shared by the rest of the kernel. Therefore,
while a kernel routine that accesses such data is executing, interrupts must be
blocked, even though most interrupts will not affect that data. Typically, the way
this is done is for the routine to set the interrupt priority level higher to block inter-
rupts and then lower the priority level after access is completed. These operations
take time. The problem is magnified on a multiprocessor system. The kernel must
protect more objects and may need to block interrupts on all processors.

The solution in Solaris can be summarized as follows:

 1. Solaris employs a set of kernel threads to handle interrupts. As with any kernel
thread, an interrupt thread has its own identifier, priority, context, and stack.

 2. The kernel controls access to data structures and synchronizes among interrupt
threads using mutual exclusion primitives, of the type discussed in Chapter 5.
That is, the normal synchronization techniques for threads are used in handling
interrupts.

 3. Interrupt threads are assigned higher priorities than all other types of kernel
threads.

When an interrupt occurs, it is delivered to a particular processor and the
thread that was executing on that processor is pinned. A pinned thread cannot
move to another processor and its context is preserved; it is simply suspended
until the interrupt is processed. The processor then begins executing an interrupt
thread. There is a pool of deactivated interrupt threads available, so that a new
thread creation is not required. The interrupt thread then executes to handle the
interrupt. If the handler routine needs access to a data structure that is currently
locked in some fashion for use by another executing thread, the interrupt thread
must wait for access to that data structure. An interrupt thread can only be pre-
empted by another interrupt thread of higher priority.

Experience with Solaris interrupt threads indicates that this approach pro-
vides superior performance to the traditional interrupt-handling strategy [KLEI95].

 4.6 LINUX PROCESS AND THREAD MANAGEMENT

Linux Tasks

A process, or task, in Linux is represented by a task_struct data structure. The
task_struct data structure contains information in a number of categories:

State: The execution state of the process (executing, ready, suspended,
stopped, zombie). This is described subsequently.
Scheduling information: Information needed by Linux to schedule processes.
A process can be normal or real time and has a priority. Real-time processes
are scheduled before normal processes, and within each category, relative pri-
orities can be used. A counter keeps track of the amount of time a process is
allowed to execute.

4.6 / LINUX PROCESS AND THREAD MANAGEMENT 183

Identifiers: Each process has a unique process identifier and also has user and
group identifiers. A group identifier is used to assign resource access privi-
leges to a group of processes.
Interprocess communication: Linux supports the IPC mechanisms found in
UNIX SVR4, described in Chapter 6.
Links: Each process includes a link to its parent process, links to its siblings
(processes with the same parent), and links to all of its children.
Times and timers: Includes process creation time and the amount of proces-
sor time so far consumed by the process. A process may also have associated
one or more interval timers. A process defines an interval timer by means of a
system call; as a result, a signal is sent to the process when the timer expires. A
timer may be single use or periodic.
File system: Includes pointers to any files opened by this process, as well as
pointers to the current and the root directories for this process
Address space: Defines the virtual address space assigned to this process
Processor-specific context: The registers and stack information that constitute
the context of this process

Figure 4.15 shows the execution states of a process. These are as follows:

Running: This state value corresponds to two states. A Running process is
either executing or it is ready to execute.

Running
state

Creation
Scheduling

Termination

SignalSignal

Event
Signal

or
event

Stopped

Ready Executing Zombie

Uninterruptible

Interruptible

Figure 4.15 Linux Process/Thread Model

184 CHAPTER 4 / THREADS

Interruptible: This is a blocked state, in which the process is waiting for an
event, such as the end of an I/O operation, the availability of a resource, or a
signal from another process.
Uninterruptible: This is another blocked state. The difference between this
and the Interruptible state is that in an Uninterruptible state, a process is wait-
ing directly on hardware conditions and therefore will not handle any signals.
Stopped: The process has been halted and can only resume by positive action
from another process. For example, a process that is being debugged can be
put into the Stopped state.
Zombie: The process has been terminated but, for some reason, still must
have its task structure in the process table.

Linux Threads

Traditional UNIX systems support a single thread of execution per process,
while modern UNIX systems typically provide support for multiple kernel-level
threads per process. As with traditional UNIX systems, older versions of the
Linux kernel offered no support for multithreading. Instead, applications would
need to be written with a set of user-level library functions, the most popular of
which is known as pthread (POSIX thread) libraries, with all of the threads map-
ping into a single kernel-level process.8 We have seen that modern versions of
UNIX offer kernel-level threads. Linux provides a unique solution in that it does
not recognize a distinction between threads and processes. Using a mechanism
similar to the lightweight processes of Solaris, user-level threads are mapped
into kernel-level processes. Multiple user-level threads that constitute a single
user-level process are mapped into Linux kernel-level processes that share the
same group ID. This enables these processes to share resources such as files and
memory and to avoid the need for a context switch when the scheduler switches
among processes in the same group.

A new process is created in Linux by copying the attributes of the current
process. A new process can be cloned so that it shares resources, such as files, sig-
nal handlers, and virtual memory. When the two processes share the same virtual
memory, they function as threads within a single process. However, no separate
type of data structure is defined for a thread. In place of the usual fork() command,
processes are created in Linux using the clone() command. This command includes
a set of flags as arguments. The traditional fork() system call is implemented by
Linux as a clone() system call with all of the clone flags cleared.

Examples of clone flags include the following:

CLONE_NEWPID: Creates new process ID namespace
CLONE_PARENT: Caller and new task share the same parent process.
CLONE_SYSVSEM: Shares System V SEM_UNDO semantics.

8POSIX (Portable Operating Systems based on UNIX) is an IEEE API standard that includes a stan-
dard for a thread API. Libraries implementing the POSIX Threads standard are often named Pthreads.
Pthreads are most commonly used on UNIX-like POSIX systems such as Linux and Solaris, but Microsoft
Windows implementations also exist.

4.6 / LINUX PROCESS AND THREAD MANAGEMENT 185

CLONE_THREAD: Inserts this process into the same thread group of the
parent. If this flag is true, it implicitly enforces CLONE_PARENT.
CLONE_VM: Shares the address space (memory descriptor and all page
tables)

When the Linux kernel performs a switch from one process to another, it checks
whether the address of the page directory of the current process is the same as that of
the to-be-scheduled process. If they are, then they are sharing the same address space,
so that a context switch is basically just a jump from one location of code to another
location of code.

Although cloned processes that are part of the same process group can share
the same memory space, they cannot share the same user stacks. Thus the clone()
call creates separate stack spaces for each process.

Linux Namespaces

Associated with each process in Linux are a set of namespaces. A namespace enables
a process (or multiple processes that share the same namespace) to have a differ-
ent view of the system than other processes that have other associated namespaces.
One of the overall goals of namespaces is to support the implementation of control
groups (cgroups, formerly called containers), a tool for lightweight virtualization
(as well as other purposes) that provides a process or group of processes with the
illusion that they are the only processes on the system. Thus, the cgroup is a form
of virtual machine. There are currently six namespaces in Linux: mnt, pid, net, ipc,
uts, and user.

Namespaces are created by the clone() system call, which gets as a parame-
ter one of the six namespaces clone flags (CLONE_NEWNS, CLONE_NEWPID,
CLONE_NEWNET, CLONE_NEWIPC, CLONE_NEWUTS, and CLONE_
NEWUSER). A process can also create a namespace with the unshare() system call
with one of these flags; as opposed to clone(), a process is not created in such a case;
only a new namespace is created, which is attached to the calling process.

MOUNT NAMESPACE A mount namespace provides the process with a specific view
of the filesystem hierarchy, such that two processes with different mount namespaces
see different filesystem hierarchies. All of the file operations that a process employs
apply only to the filesystem visible to the process.

UTS NAMESPACE The UTS (UNIX timesharing) namespace is related to the
uname Linux system call. The uname call returns the name and information about
the current kernel, including nodename, which is the system name within some
implementation-defined network; and domainname, which is the NIS domain
name. NIS (Network Information Service) is a standard scheme used on all major
UNIX and UNIX-like systems. It allows a group of machines within an NIS domain
to share a common set of configuration files. This permits a system administrator
to set up NIS client systems with only minimal configuration data and add, remove,
or modify configuration data from a single location. With the UTS namespace,
initialization and configuration parameters can vary for different processes on the
same system.

186 CHAPTER 4 / THREADS

IPC NAMESPACE An IPC namespace isolates certain interprocess communication
(IPC) resources, such as semaphores. Thus, concurrency mechanisms can be
employed by the programmer that enables IPC among processes that share the same
IPC namespace.

PID NAMESPACE PID namespaces isolate the process ID space, so that processes
in different PID namespaces can have the same PID. This feature is used for
Checkpoint/Restore In Userspace (CRIU), a Linux software tool. Using this tool,
you can freeze a running application (or part of it) and checkpoint it to a hard drive
as a collection of files. You can then use the files to restore and run the application
from the freeze point. A distinctive feature of the CRIU project is that it is mainly
implemented in user space.

NETWORK NAMESPACE Network namespaces provide isolation of the system
resources associated with networking. Thus, each network namespace has its own
network devices, IP addresses, IP routing tables, port numbers, and so on. These
namespaces virtualize all access to network resources, allowing each cgroup the
network access it needs (but no more). At any given time a network device belongs
to only one network namespace. Also, a socket can belong to only one namespace.

USER NAMESPACE User namespaces provide a container with its own set of UIDs,
completely separate from those in the parent. So when a process clones a new
process it can assign it a new user namespace, as well as a new PID namespace, and
all the other namespaces. The cloned process can have access to and privileges for
all of the resources of the parent process or a subset of the resources and privileges
of the parent.

 4.7 ANDROID PROCESS AND THREAD MANAGEMENT

Before discussing the details of the Android approach to process and thread man-
agement, we need to describe the Android concepts of applications and activities.

Android Applications

An Android application is the software that implements an app. Each Android ap-
plication consists of one or more instance of one or more of four types of application
components. Each component performs a distinct role in the overall application
behavior, and each component can be activated individually within the application
and even by other applications. The following are the four types of components:

Activities: An activity corresponds to a single screen visible as a user interface.
For example, an e-mail application might have one activity that shows a list of
new e-mails, another activity to compose an e-mail, and another activity for
reading e-mails. Although the activities work together to form a cohesive user
experience in the e-mail application, each one is independent of the others.
Android makes a distinction between internal and exported activities. Other
apps may start exported activities, which generally include the ‘main’ screen of

4.7 / ANDROID PROCESS AND THREAD MANAGEMENT 187

the app. However, other apps cannot start the internal activities. For example,
a camera application can start the activity in the e-mail application that com-
poses new mail, in order for the user to share a picture.
Services: Services are typically used to perform background operations that take
a considerable amount of time to finish. This ensures faster responsiveness, for
the main thread (a.k.a. UI thread) of an application, with which the user is di-
rectly interacting. For example, a service might create a thread or process to play
music in the background while the user is in a different application, or it might
create a thread to fetch data over the network without blocking user interaction
with an activity. A service may be invoked by an application. Additionally, there
are system services that run for the entire lifetime of the Android system, such
as Power Manager, Battery, and Vibrator services. These system services create
threads inside the System Server process.
Content providers: A content provider acts as an interface to application data
that can be used by the application. One category of managed data is private
data, which is used only by the application containing the content provider.
For example the NotePad application uses a content provider to save notes.
The other category is shared data, accessible by multiple applications. This
category includes data stored in file systems, an SQLite database, on the Web,
or any other persistent storage location your application can access.
Broadcast receivers: A broadcast receiver responds to system-wide broadcast
announcements. A broadcast can originate from another application, such as
to let other applications know that some data has been downloaded to the
device and is available for them to use, or from the system, for example, a low-
battery warning.

Each application runs on its own dedicated virtual machine and its own sin-
gle process that encompasses the application and its virtual machine (Figure 4.16).
This approach, referred to as the sandboxing model, isolates each application. Thus,
one application cannot access the resources of the other without permission being
granted. Each application is treated as a separate Linux user with its own unique
user ID, which is used to set file permissions.

Activities

An Activity is an application component that provides a screen with which users
can interact in order to do something, such as dial the phone, take a photo, send
an e-mail, or view a map. Each activity is given a window in which to draw its user
interface. The window typically fills the screen, but may be smaller than the screen
and float on top of other windows.

As was mentioned, an application may include multiple activities. When an
application is running, one activity is in the foreground and it is this activity that
interacts with the user. The activities are arranged in a last-in-first-out stack (the
back stack), in the order in which each activity is opened. If the user switches to
some other activity within the application, the new activity is created and pushed on
to the top of the back stack, while the preceding foreground activity becomes the
second item on the stack for this application. This process can be repeated multiple

188 CHAPTER 4 / THREADS

times, adding to the stack. The user can back up to the most recent foreground ac-
tivity by pressing a Back button or similar interface feature.

ACTIVITY STATES Figure 4.17 provides a simplified view of the state transition
diagram of an activity. Keep in mind that there may be multiple activities in the
application, each one at its own particular point on the state transition diagram.
When a new activity is launched, the application software performs a series of system
calls to the Activity Manager (Figure 2.20): onCreate() does the static setup of the
activity, including any data structure initialization; onStart() makes the activity
visible to the user on the screen; onResume() passes control to the activity so that
user input goes to the activity. At this point the activity is in the Resumed state. This
is referred to as the foreground lifetime of the activity. During this time, the activity is
in front of all other activities on screen and has user input focus.

A user action may invoke another activity within the application. For exam-
ple, during the execution of the e-mail application, when the user selects an e-mail,
a new activity opens to view that e-mail. The system responds to such an activity
with the onPause() system call, which places the currently running activity on
the stack, putting it in the Paused state. The application then creates a new activity,
which will enter the Resumed state.

At any time, a user may terminate the currently running activity by means of
the Back button, closing a window, or some other action relevant to this activity.
The application then invokes onStop(0) to stop the activity. The application then
pops the activity that is on the top of the stack and resumes it. The Resumed and
Paused states together constitute the visible lifetime of the activity. During this time,
the user can see the activity on-screen and interact with it.

If the user leaves one application to go to another, for example, by going
to the Home screen, the currently running activity is paused and then stopped.

Dedicated Process

Broadcast
receiver

Application

Dedicated
virtual machine

Content
provider

Activity Service

Figure 4.16 Android Application

4.7 / ANDROID PROCESS AND THREAD MANAGEMENT 189

When the user resumes this application, the stopped activity, which is on top
of the back stack, is restarted and becomes the foreground activity for the
application.

KILLING AN APPLICATION If too many things are going on, the system may need to
recover some of main memory to maintain responsiveness. In that case, the system
will reclaim memory by killing one or more activities within an application and also
terminating the process for that application. This frees up memory used to manage
the process as well as memory to manage the activities that were killed. However,
the application itself still exists. The user is unaware of its altered status. If the user
returns to that application, it is necessary for the system to re-create any killed
activities as they are invoked.

Resumed

Paused

Entire
Lifetime

Visible
Lifetime

Stopped

Activity
launched

App process
killed

Activity
shut down

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()

User returns
to the activity

Apps with higher
priority need memory

User navigates
to the activity

User navigates
to the activity

Foreground
Lifetime

Figure 4.17 Activity State Transition Diagram

190 CHAPTER 4 / THREADS

The system kills applications in a stack-oriented style: So it will kill least re-
cently used apps first. Apps with foregrounded services are extremely unlikely to
be killed.

Processes and Threads

The default allocation of processes and threads to an application is a single process
and a single thread. All of the components of the application run on the single
thread of the single process for that application. To avoid slowing down the user
interface when slow and/or blocking operations occur in a component, the devel-
oper can create multiple threads within a process and/or multiple processes within
an application. In any case, all processes and their threads for a given application
execute within the same virtual machine.

In order to reclaim memory in a system that is becoming heavily loaded, the
system may kill one or more processes. As was discussed in the preceding section,
when a process is killed, one or more of the activities supported by that process
are also killed. A precedence hierarchy is used to determine which process or
processes to kill in order to reclaim needed resources. Every process exists at a
particular level of the hierarchy at any given time, and processes are killed begin-
ning with the lowest precedence first. The levels of the hierarchy, in descending
order of precedence, are as follows:

Foreground process: A process that is required for what the user is currently
doing. More than one process at a time can be a foreground process. For
 example, both the process that hosts the activity that the user is interacting
with (activity in Resumed state) and the process that hosts a service that is
bound to the activity that the user is interacting with are foreground processes.
Visible process: A process that hosts a component that is not in the foreground,
but still visible to the user
Service process: A process running a service that does not fall into either of
the higher categories. Examples are playing music in the background or down-
loading data on the network.
Background process: A process hosting an activity in the Stopped state
Empty process: A process that doesn’t hold any active application components.
The only reason to keep this kind of process alive is for caching purposes, to
improve startup time the next time a component needs to run in it.

 4.8 MAC OS X GRAND CENTRAL DISPATCH

As was mentioned in Chapter 2, Mac OS X Grand Central Dispatch (GCD) pro-
vides a pool of available threads. Designers can designate portions of applications,
called blocks, that can be dispatched independently and run concurrently. The OS
will provide as much concurrency as possible based on the number of cores avail-
able and the thread capacity of the system. Although other operating systems have
implemented thread pools, GCD provides a qualitative improvement in ease of use
and efficiency.

4.8 / MAC OS X GRAND CENTRAL DISPATCH 191

Blocks are scheduled and dispatched by means of queues. The application
makes use of system queues provided by GCD and may also set up private queues.
Blocks are put onto a queue as they are encountered during program execution.
GCD then uses those queues to describe concurrency, serialization, and callbacks.
Queues are lightweight user-space data structures, which generally makes them far
more efficient than manually managing threads and locks. For example, this queue
has three blocks:

A block is a simple extension to C or other languages, such as C++. The pur-
pose of defining a block is to define a self-contained unit of work, including code
plus data. Here is a simple example of a block definition:

x = ^{ printf(“hello world\n”); }

A block is denoted by a caret at the start of the function, which is enclosed in curly
brackets. The above block definition defines x as a way of calling the function, so
that invoking the function x() would print the words hello world.

Blocks enable the programmer to encapsulate complex functions, together
with their arguments and data, so that they can easily be referenced and passed
around in a program, much like a variable. Symbolically:

= F + F data

Queue

H G F

H G F

Pool Thread

Depending on the queue and how it is defined, GCD treats these blocks either
as potentially concurrent activities or as serial activities. In either case, blocks are dis-
patched on a first-in-first-out basis. If this is a concurrent queue, then the dispatcher
assigns F to a thread as soon as one is available, then G, then H. If this is a serial
queue, the dispatcher assigns F to a thread, and then only assigns G to a thread after F
has completed. The use of predefined threads saves the cost of creating a new thread
for each request, reducing the latency associated with processing a block. Thread
pools are automatically sized by the system to maximize the performance of the ap-
plications using GCD while minimizing the number of idle or competing threads.

In addition to scheduling blocks directly, the application can associate a sin-
gle block and queue with an event source, such as a timer, network socket, or file

192 CHAPTER 4 / THREADS

An example from [SIRA09] indicates the ease of using GCD. Consider a
 document-based application with a button that, when clicked, will analyze the current
document and display some interesting statistics about it. In the common case, this
analysis should execute in under a second, so the following code is used to connect the
button with an action:

- (Inaction)analyzeDocument:(NSButton *)sender
{
 NSDictionary *stats = [myDoc analyze];
 [myModel setDict:stats];
 [myStatsView setNeedsDisplay:YES];
 [stats release];
}

The first line of the function body analyzes the document, the second line up-
dates the application’s internal state, and the third line tells the application that the
statistics view needs to be updated to reflect this new state. This code, which follows
a common pattern, is executed in the main thread. The design is acceptable so long
as the analysis does not take too long, because after the user clicks the button, the
main thread of the application needs to handle that user input as fast as possible so
it can get back to the main event loop to process the next user action. But if the user
opens a very large or complex document, the analyze step may take an unaccept-
ably long amount of time. A developer may be reluctant to alter the code to meet
this unlikely event, which may involve application-global objects, thread manage-
ment, callbacks, argument marshalling, context objects, new variables, and so on.
But with GCD, a modest addition to the code produces the desired result:

- (IBAction)analyzeDocument:(NSButton *)sender
 {dispatch_async(dispatch_get_global_queue(0, 0), ^{
 NSDictionary *stats = [myDoc analyze];
 dispatch_async(dispatch_get_main_queue(), ^{
 [myModel setDict:stats];
 [myStatsView setNeedsDisplay:YES];
 [stats release];
 });
 });
}

descriptor. Every time the source issues an event, the block is scheduled if it is
not already running. This allows rapid response without the expense of polling or
“parking a thread” on the event source.

E

ESource

E

4.10 / RECOMMENDED READING 193

All functions in GCD begin with dispatch_. The outer dispatch_
async() call puts a task on a global concurrent queue. This tells the OS that the
block can be assigned to a separate concurrent queue, off the main queue, and ex-
ecuted in parallel. Therefore, the main thread of execution is not delayed. When the
analyze function is complete, the inner dispatch_async() call is encountered.
This directs the OS to put the following block of code at the end of the main queue,
to be executed when it reaches the head of the queue. So, with very little work on
the part of the programmer, the desired requirement is met.

 4.9 SUMMARY

Some operating systems distinguish the concepts of process and thread, the for-
mer related to resource ownership and the latter related to program execution.
This approach may lead to improved efficiency and coding convenience. In a
multithreaded system, multiple concurrent threads may be defined within a single
process. This may be done using either user-level threads or kernel-level threads.
User-level threads are unknown to the OS and are created and managed by a
threads library that runs in the user space of a process. User-level threads are
very efficient because a mode switch is not required to switch from one thread
to another. However, only a single user-level thread within a process can execute
at a time, and if one thread blocks, the entire process is blocked. Kernel-level
threads are threads within a process that are maintained by the kernel. Because
they are recognized by the kernel, multiple threads within the same process can
execute in parallel on a multiprocessor and the blocking of a thread does not
block the entire process. However, a mode switch is required to switch from one
thread to another.

 4.10 RECOMMENDED READING

[LEWI96] and [KLEI96] provide good overviews of thread concepts and a discus-
sion of programming strategies; the former focuses more on concepts and the latter
more on programming, but both provide useful coverage of both topics. [PHAM96]
discusses the Windows NT thread facility in depth. Good coverage of UNIX threads
concepts is found in [ROBB04].

KLEI96 Kleiman, S.; Shah, D.; and Smallders, B. Programming with Threads. Upper
Saddle River, NJ: Prentice Hall, 1996.

LEWI96 Lewis, B., and Berg, D. Threads Primer. Upper Saddle River, NJ: Prentice
Hall, 1996.

PHAM96 Pham, T., and Garg, P. Multithreaded Programming with Windows NT.
Upper Saddle River, NJ: Prentice Hall, 1996.

ROBB04 Robbins, K., and Robbins, S. UNIX Systems Programming: Communication,
Concurrency, and Threads. Upper Saddle River, NJ: Prentice Hall, 2004.

194 CHAPTER 4 / THREADS

Review Questions

 4.1. Table 3.5 lists typical elements found in a process control block for an unthreaded
OS. Of these, which should belong to a thread control block and which should belong
to a process control block for a multithreaded system?

 4.2. List reasons why a mode switch between threads may be cheaper than a mode switch
between processes.

 4.3. What are the two separate and potentially independent characteristics embodied in
the concept of process?

 4.4. Give four general examples of the use of threads in a single-user multiprocessing
system.

 4.5. What resources are typically shared by all of the threads of a process?
 4.6. List three advantages of ULTs over KLTs.
 4.7. List two disadvantages of ULTs compared to KLTs.
 4.8. Define jacketing.

Problems

 4.1. It was pointed out that two advantages of using multiple threads within a process
are that (1) less work is involved in creating a new thread within an existing process
than in creating a new process, and (2) communication among threads within the
same process is simplified. Is it also the case that a mode switch between two threads
within the same process involves less work than a mode switch between two threads
in different processes?

 4.2. In the discussion of ULTs versus KLTs, it was pointed out that a disadvantage of
ULTs is that when a ULT executes a system call, not only is that thread blocked, but
also all of the threads within the process are blocked. Why is that so?

 4.3. OS/2 is an obsolete OS for PCs from IBM. In OS/2, what is commonly embodied in
the concept of process in other operating systems is split into three separate types
of entities: session, processes, and threads. A session is a collection of one or more
processes associated with a user interface (keyboard, display, and mouse). The ses-
sion represents an interactive user application, such as a word processing program
or a spreadsheet. This concept allows the personal-computer user to open more than
one application, giving each one or more windows on the screen. The OS must keep
track of which window, and therefore which session, is active, so that keyboard and
mouse input are routed to the appropriate session. At any time, one session is in
foreground mode, with other sessions in background mode. All keyboard and mouse
input is directed to one of the processes of the foreground session, as dictated by
the applications. When a session is in foreground mode, a process performing video
output sends it directly to the hardware video buffer and thence to the user’s screen.

 4.11 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

jacketing kernel-level thread
lightweight process
message

multithreading
port
process

task
thread
user-level thread

4.11 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 195

When the session is moved to the background, the hardware video buffer is saved
to a logical video buffer for that session. While a session is in background, if any
of the threads of any of the processes of that session executes and produces screen
output, that output is directed to the logical video buffer. When the session returns to
foreground, the screen is updated to reflect the current contents of the logical video
buffer for the new foreground session.

There is a way to reduce the number of process-related concepts in OS/2 from
three to two. Eliminate sessions, and associate the user interface (keyboard, mouse,
and screen) with processes. Thus, one process at a time is in foreground mode. For
further structuring, processes can be broken up into threads.
a. What benefits are lost with this approach?
b. If you go ahead with this modification, where do you assign resources (memory,

files, etc.): at the process or thread level?
 4.4. Consider an environment in which there is a one-to-one mapping between user-level

threads and kernel-level threads that allows one or more threads within a process
to issue blocking system calls while other threads continue to run. Explain why this
model can make multithreaded programs run faster than their single-threaded coun-
terparts on a uniprocessor computer.

 4.5. If a process exits and there are still threads of that process running, will they continue
to run?

 4.6. The OS/390 mainframe operating system is structured around the concepts of address
space and task. Roughly speaking, a single address space corresponds to a single ap-
plication and corresponds more or less to a process in other operating systems. Within
an address space, a number of tasks may be generated and execute concurrently; this
corresponds roughly to the concept of multithreading. Two data structures are key to
managing this task structure. An address space control block (ASCB) contains infor-
mation about an address space needed by OS/390 whether or not that address space is
executing. Information in the ASCB includes dispatching priority, real and virtual mem-
ory allocated to this address space, the number of ready tasks in this address space, and
whether each is swapped out. A task control block (TCB) represents a user program in
execution. It contains information needed for managing a task within an address space,
including processor status information, pointers to programs that are part of this task,
and task execution state. ASCBs are global structures maintained in system memory,
while TCBs are local structures maintained within their address space. What is the ad-
vantage of splitting the control information into global and local portions?

 4.7. Many current language specifications, such as for C and C++, are inadequate for
multithreaded programs. This can have an impact on compilers and the correctness
of code, as this problem illustrates. Consider the following declarations and function
definition:

int global_positives = 0;
typedef struct list {
 struct list *next;
 double val;
} * list;

void count_positives(list l)
{
 list p;
 for (p = l; p; p = p -> next)
 if (p -> val > 0.0)
 ++global_positives;
}

196 CHAPTER 4 / THREADS

Now consider the case in which thread A performs

count_positives(<list containing only negative values>);

while thread B performs

++global_positives;

a. What does the function do?
b. The C language only addresses single-threaded execution. Does the use of two

parallel threads create any problems or potential problems?
 4.8. But some existing optimizing compilers (including gcc, which tends to be relatively

conservative) will “optimize” count_positives to something similar to

void count_positives(list l)
{
 list p;
 register int r;
r = global_positives;
 for (p = l; p; p = p -> next)
 if (p -> val > 0.0) ++r;
 global_positives = r;
}

What problem or potential problem occurs with this compiled version of the program
if threads A and B are executed concurrently?

 4.9. Consider the following code using the POSIX Pthreads API:
thread2.c
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int myglobal;
 void *thread_function(void *arg) {
 int i,j;
 for (i=0; i<20; i++) {
 j=myglobal;
 j=j+1;
 printf(“.”);
 fflush(stdout);
 sleep(1);
 myglobal=j;
 }
 return NULL;
}

4.11 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 197

int main(void) {
 pthread_t mythread;
 int i;
 if (pthread_create(&mythread, NULL, thread_function,
 NULL)) {
 printf(ldquo;error creating thread.”);
 abort();
 }
for (i=0; i<20; i++) {
 myglobal=myglobal+1;
 printf(“o”);
 fflush(stdout);
 sleep(1);
}
if (pthread_join (mythread, NULL)) {
 printf(“error joining thread.”);
abort();
}
printf(“\nmyglobal equals %d\n”,myglobal);
exit(0);
}

In main() we first declare a variable called mythread, which has a type of
pthread_t. This is essentially an ID for a thread. Next, the if statement creates
a thread associated with mythread. The call pthread_create() returns zero on
success and a nonzero value on failure. The third argument of pthread_create()
is the name of a function that the new thread will execute when it starts. When this
thread_function() returns, the thread terminates. Meanwhile, the main program
itself defines a thread, so that there are two threads executing. The pthread_join
function enables the main thread to wait until the new thread completes.
a. What does this program accomplish?
b. Here is the output from the executed program:

$./thread2
..o.o.o.o.oo.o.o.o.o.o.o.o.o.o..o.o.o.o.o
myglobal equals 21

Is this the output you would expect? If not, what has gone wrong?
 4.10. The Solaris documentation states that a ULT may yield to another thread of the same

priority. Isn’t it possible that there will be a runnable thread of higher priority and that
therefore the yield function should result in yielding to a thread of the same or higher
priority?

 4.11. In Solaris 9 and Solaris 10, there is a one-to-one mapping between ULTs and LWPs.
In Solaris 8, a single LWP supports one or more ULTs.
a. What is the possible benefit of allowing a many-to-one mapping of ULTs to

LWPs?

198 CHAPTER 4 / THREADS

b. In Solaris 8, the thread execution state of a ULT is distinct from that of its LWP.
Explain why.

c. Figure 4.18 shows the state transition diagrams for a ULT and its associated LWP in
Solaris 8 and 9. Explain the operation of the two diagrams and their relationships.

 4.12. Explain the rationale for the Uninterruptible state in Linux.

User-level threads
Runnable

Continue

Sleep

Stop

Wakeup

Stop

Stop

D
is

pa
tc

h

Pr
ee

m
pt

Runnable

Lightweight processes

Running

Blocked

Dispatch

Stop

Continue

Time slice
or preempt Stop

Wakeup

Wakeup

Blocking
system

call
Stopped

Stopped

Active

Sleeping

Figure 4.18 Solaris User-Level Thread and LWP States

199

 5.1 Principles of Concurrency
A Simple Example
Race Condition
Operating System Concerns
Process Interaction
Requirements for Mutual Exclusion

 5.2 Mutual Exclusion: Hardware Support
Interrupt Disabling
Special Machine Instructions

 5.3 Semaphores
Mutual Exclusion
The Producer/Consumer Problem
Implementation of Semaphores

 5.4 Monitors
Monitor with Signal
Alternate Model of Monitors with Notify and Broadcast

 5.5 Message Passing
Synchronization
Addressing
Message Format
Queueing Discipline
Mutual Exclusion

 5.6 Readers/Writers Problem
Readers Have Priority
Writers Have Priority

 5.7 Summary

 5.8 Recommended Reading and Animations

 5.9 Key Terms, Review Questions, and Problems

CONCURRENCY:
MUTUAL EXCLUSION
AND SYNCHRONIZATION

CHAPTER

Animation

200 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

The central themes of operating system design are all concerned with the manage-
ment of processes and threads:

Multiprogramming: The management of multiple processes within a unipro-
cessor system
Multiprocessing: The management of multiple processes within a multiprocessor
Distributed processing: The management of multiple processes executing on
multiple, distributed computer systems. The recent proliferation of clusters is
a prime example of this type of system.

Fundamental to all of these areas, and fundamental to OS design, is concurrency.
Concurrency encompasses a host of design issues, including communication among
processes, sharing of and competing for resources (such as memory, files, and I/O
access), synchronization of the activities of multiple processes, and allocation of
processor time to processes. We shall see that these issues arise not just in multi-
processing and distributed processing environments but also in single-processor
multiprogramming systems.

Concurrency arises in three different contexts:

Multiple applications: Multiprogramming was invented to allow processing
time to be dynamically shared among a number of active applications.
Structured applications: As an extension of the principles of modular design
and structured programming, some applications can be effectively programmed
as a set of concurrent processes.
Operating system structure: The same structuring advantages apply to sys-
tems programs, and we have seen that operating systems are themselves
often implemented as a set of processes or threads.

Because of the importance of this topic, four chapters and an appendix focus
on concurrency-related issues. Chapters 5 and 6 deal with concurrency in multipro-
gramming and multiprocessing systems. Chapters 16 and 18 examine concurrency
issues related to distributed processing.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Discuss basic concepts related to concurrency, such as race conditions,
OS concerns, and mutual exclusion requirements.
Understand hardware approaches to supporting mutual exclusion.
Define and explain semaphores.
Define and explain monitors.
Define and explain monitors.
Explain the readers/writers problem.

CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION 201

This chapter begins with an introduction to the concept of concurrency and
the implications of the execution of multiple concurrent processes.1 We find that
the basic requirement for support of concurrent processes is the ability to enforce
mutual exclusion; that is, the ability to exclude all other processes from a course of
action while one process is granted that ability. Next, we examine some hardware
mechanisms that can support mutual exclusion. Then we look at solutions that do
not involve busy waiting and that can be either supported by the OS or enforced
by language compilers. We examine three approaches: semaphores, monitors, and
message passing.

Two classic problems in concurrency are used to illustrate the concepts and
compare the approaches presented in this chapter. The producer/consumer problem
is introduced in Section 5.3 and used as a running example. The chapter closes with
the readers/writers problem.

Our discussion of concurrency continues in Chapter 6, and we defer a discussion
of the concurrency mechanisms of our example systems until the end of that chapter.
Appendix A covers additional topics on concurrency. Table 5.1 lists some key terms
related to concurrency. A set of animations that illustrate concepts in this chapter is
available online. Click on the rotating globe at this book’s Web site at WilliamStallings.
com/OS/OS7e.html for access.

1For simplicity, we generally refer to the concurrent execution of processes. In fact, as we have seen in the
preceding chapter, in some systems the fundamental unit of concurrency is a thread rather than a process.

Table 5.1 Some Key Terms Related to Concurrency

Atomic operation A function or action implemented as a sequence of one or more instructions that
appears to be indivisible; that is, no other process can see an intermediate state or
interrupt the operation. The sequence of instruction is guaranteed to execute as
a group, or not execute at all, having no visible effect on system state. Atomicity
guarantees isolation from concurrent processes.

Critical section A section of code within a process that requires access to shared resources and
that must not be executed while another process is in a corresponding section
of code.

Deadlock A situation in which two or more processes are unable to proceed because each is
waiting for one of the others to do something.

Livelock A situation in which two or more processes continuously change their states in
response to changes in the other process(es) without doing any useful work.

Mutual exclusion The requirement that when one process is in a critical section that accesses
shared resources, no other process may be in a critical section that accesses
any of those shared resources.

Race condition A situation in which multiple threads or processes read and write a shared data
item and the final result depends on the relative timing of their execution.

Starvation A situation in which a runnable process is overlooked indefinitely by the scheduler;
although it is able to proceed, it is never chosen.

202 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 5.1 PRINCIPLES OF CONCURRENCY

In a single-processor multiprogramming system, processes are interleaved in time to
yield the appearance of simultaneous execution (Figure 2.12a). Even though actual
parallel processing is not achieved, and even though there is a certain amount of
overhead involved in switching back and forth between processes, interleaved ex-
ecution provides major benefits in processing efficiency and in program structuring.
In a multiple-processor system, it is possible not only to interleave the execution of
multiple processes but also to overlap them (Figure 2.12b).

At first glance, it may seem that interleaving and overlapping represent fun-
damentally different modes of execution and present different problems. In fact,
both techniques can be viewed as examples of concurrent processing, and both
present the same problems. In the case of a uniprocessor, the problems stem from a
basic characteristic of multiprogramming systems: The relative speed of execution
of processes cannot be predicted. It depends on the activities of other processes,
the way in which the OS handles interrupts, and the scheduling policies of the OS.
The following difficulties arise:

 1. The sharing of global resources is fraught with peril. For example, if two pro-
cesses both make use of the same global variable and both perform reads
and writes on that variable, then the order in which the various reads and
writes are executed is critical. An example of this problem is shown in the
following subsection.

 2. It is difficult for the OS to manage the allocation of resources optimally. For
example, process A may request use of, and be granted control of, a particular
I/O channel and then be suspended before using that channel. It may be unde-
sirable for the OS simply to lock the channel and prevent its use by other pro-
cesses; indeed this may lead to a deadlock condition, as described in Chapter 6.

 3. It becomes very difficult to locate a programming error because results are
typically not deterministic and reproducible (e.g., see [LEBL87, CARR89,
SHEN02] for a discussion of this point).

All of the foregoing difficulties present themselves in a multiprocessor system
as well, because here too the relative speed of execution of processes is unpredictable.
A multiprocessor system must also deal with problems arising from the simultaneous
 execution of multiple processes. Fundamentally, however, the problems are the same
as those for uniprocessor systems. This should become clear as the discussion proceeds.

A Simple Example

Consider the following procedure:

void echo()
{
 chin = getchar();
 chout = chin;
 putchar(chout);
}

5.1 / PRINCIPLES OF CONCURRENCY 203

This procedure shows the essential elements of a program that will provide a char-
acter echo procedure; input is obtained from a keyboard one keystroke at a time.
Each input character is stored in variable chin. It is then transferred to variable
chout and sent to the display. Any program can call this procedure repeatedly to
accept user input and display it on the user’s screen.

Now consider that we have a single-processor multiprogramming system
supporting a single user. The user can jump from one application to another, and
each application uses the same keyboard for input and the same screen for output.
Because each application needs to use the procedure echo, it makes sense for it to
be a shared procedure that is loaded into a portion of memory global to all applica-
tions. Thus, only a single copy of the echo procedure is used, saving space.

The sharing of main memory among processes is useful to permit efficient and
close interaction among processes. However, such sharing can lead to problems.
Consider the following sequence:

 1. Process P1 invokes the echo procedure and is interrupted immediately after
getchar returns its value and stores it in chin. At this point, the most
 recently entered character, x, is stored in variable chin.

 2. Process P2 is activated and invokes the echo procedure, which runs to conclu-
sion, inputting and then displaying a single character, y, on the screen.

 3. Process P1 is resumed. By this time, the value x has been overwritten in chin
and therefore lost. Instead, chin contains y, which is transferred to chout
and displayed.

Thus, the first character is lost and the second character is displayed twice.
The essence of this problem is the shared global variable, chin. Multiple pro-
cesses have access to this variable. If one process updates the global variable
and then is interrupted, another process may alter the variable before the first
process can use its value. Suppose, however, that we permit only one process at
a time to be in that procedure. Then the foregoing sequence would result in the
following:

 1. Process P1 invokes the echo procedure and is interrupted immediately after
the conclusion of the input function. At this point, the most recently entered
character, x, is stored in variable chin.

 2. Process P2 is activated and invokes the echo procedure. However, because P1
is still inside the echo procedure, although currently suspended, P2 is blocked
from entering the procedure. Therefore, P2 is suspended awaiting the availabil-
ity of the echo procedure.

 3. At some later time, process P1 is resumed and completes execution of echo.
The proper character, x, is displayed.

 4. When P1 exits echo, this removes the block on P2. When P2 is later resumed,
the echo procedure is successfully invoked.

This example shows that it is necessary to protect shared global variables
(and other shared global resources) and that the only way to do that is to con-
trol the code that accesses the variable. If we impose the discipline that only one

204 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

process at a time may enter echo and that once in echo the procedure must run
to completion before it is available for another process, then the type of error just
discussed will not occur. How that discipline may be imposed is a major topic of
this chapter.

This problem was stated with the assumption that there was a single-processor,
multiprogramming OS. The example demonstrates that the problems of concur-
rency occur even when there is a single processor. In a multiprocessor system, the
same problems of protected shared resources arise, and the same solution works.
First, suppose that there is no mechanism for controlling access to the shared global
variable:

 1. Processes P1 and P2 are both executing, each on a separate processor. Both
processes invoke the echo procedure.

 2. The following events occur; events on the same line take place in parallel:

Process P1 Process P2

chin = getchar();
chin = getchar();

chout = chin; chout = chin;
putchar(chout);

putchar(chout);

The result is that the character input to P1 is lost before being displayed, and
the character input to P2 is displayed by both P1 and P2. Again, let us add the ca-
pability of enforcing the discipline that only one process at a time may be in echo.
Then the following sequence occurs:

 1. Processes P1 and P2 are both executing, each on a separate processor. P1
invokes the echo procedure.

 2. While P1 is inside the echo procedure, P2 invokes echo. Because P1 is still
inside the echo procedure (whether P1 is suspended or executing), P2 is
blocked from entering the procedure. Therefore, P2 is suspended awaiting
the availability of the echo procedure.

 3. At a later time, process P1 completes execution of echo, exits that procedure,
and continues executing. Immediately upon the exit of P1 from echo, P2 is
resumed and begins executing echo.

In the case of a uniprocessor system, the reason we have a problem is that an
interrupt can stop instruction execution anywhere in a process. In the case of a mul-
tiprocessor system, we have that same condition and, in addition, a problem can be
caused because two processes may be executing simultaneously and both trying to
access the same global variable. However, the solution to both types of problem is
the same: control access to the shared resource.

5.1 / PRINCIPLES OF CONCURRENCY 205

Race Condition

A race condition occurs when multiple processes or threads read and write data
items so that the final result depends on the order of execution of instructions in the
multiple processes. Let us consider two simple examples.

As a first example, suppose that two processes, P1 and P2, share the global
variable a. At some point in its execution, P1 updates a to the value 1, and at some
point in its execution, P2 updates a to the value 2. Thus, the two tasks are in a race
to write variable a. In this example, the “loser” of the race (the process that updates
last) determines the final value of a.

For our second example, consider two processes, P3 and P4, that share
global variables b and c, with initial values b = 1 and c = 2. At some point in its
execution, P3 executes the assignment b = b + c, and at some point in its execu-
tion, P4 executes the assignment c = b + c. Note that the two processes update
different variables. However, the final values of the two variables depend on the
order in which the two processes execute these two assignments. If P3 executes its
assignment statement first, then the final values are b = 3 and c = 5. If P4 ex-
ecutes its assignment statement first, then the final values are b = 4 and c = 3.

Appendix A includes a discussion of race conditions using semaphores as an
example.

Operating System Concerns

What design and management issues are raised by the existence of concurrency?
We can list the following concerns:

 1. The OS must be able to keep track of the various processes. This is done with
the use of process control blocks and was described in Chapter 4.

 2. The OS must allocate and deallocate various resources for each active process.
At times, multiple processes want access to the same resource. These resources
include

Processor time: This is the scheduling function, discussed in Part Four.
Memory: Most operating systems use a virtual memory scheme. The topic
is addressed in Part Three.
Files: Discussed in Chapter 12.
I/O devices: Discussed in Chapter 11.

 3. The OS must protect the data and physical resources of each process against
unintended interference by other processes. This involves techniques that relate
to memory, files, and I/O devices. A general treatment of protection is found in
Part Seven.

 4. The functioning of a process, and the output it produces, must be independent
of the speed at which its execution is carried out relative to the speed of other
concurrent processes. This is the subject of this chapter.

To understand how the issue of speed independence can be addressed, we
need to look at the ways in which processes can interact.

206 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Process Interaction

We can classify the ways in which processes interact on the basis of the degree to
which they are aware of each other’s existence. Table 5.2 lists three possible degrees
of awareness plus the consequences of each:

Processes unaware of each other: These are independent processes that are not
intended to work together. The best example of this situation is the multipro-
gramming of multiple independent processes. These can either be batch jobs
or interactive sessions or a mixture. Although the processes are not working
together, the OS needs to be concerned about competition for resources. For
example, two independent applications may both want to access the same disk
or file or printer. The OS must regulate these accesses.
Processes indirectly aware of each other: These are processes that are not neces-
sarily aware of each other by their respective process IDs but that share access
to some object, such as an I/O buffer. Such processes exhibit cooperation in
sharing the common object.
Processes directly aware of each other: These are processes that are able to
communicate with each other by process ID and that are designed to work
jointly on some activity. Again, such processes exhibit cooperation.

Conditions will not always be as clear-cut as suggested in Table 5.2. Rather,
several processes may exhibit aspects of both competition and cooperation.
Nevertheless, it is productive to examine each of the three items in the preceding list
separately and determine their implications for the OS.

Table 5.2 Process Interaction

Degree of Awareness Relationship

Influence that One
Process Has on the
Other

Potential Control
Problems

Processes unaware of
each other

Competition Results of one process
independent of the
 action of others
Timing of process
may be affected

Mutual exclusion
Deadlock (renewable
resource)
Starvation

Processes indirectly
aware of each other
(e.g., shared object)

Cooperation by sharing Results of one process
may depend on infor-
mation obtained from
others
Timing of process
may be affected

Mutual exclusion
Deadlock (renewable
resource)
Starvation
Data coherence

Processes directly aware
of each other (have
communication
primitives available
to them)

Cooperation by
communication

Results of one process
may depend on infor-
mation obtained from
others
Timing of process
may be affected

Deadlock (consum-
able resource)
Starvation

5.1 / PRINCIPLES OF CONCURRENCY 207

COMPETITION AMONG PROCESSES FOR RESOURCES Concurrent processes come
into conflict with each other when they are competing for the use of the same
resource. In its pure form, we can describe the situation as follows. Two or more
processes need to access a resource during the course of their execution. Each
process is unaware of the existence of other processes, and each is to be unaffected
by the execution of the other processes. It follows from this that each process should
leave the state of any resource that it uses unaffected. Examples of resources include
I/O devices, memory, processor time, and the clock.

There is no exchange of information between the competing processes.
However, the execution of one process may affect the behavior of competing pro-
cesses. In particular, if two processes both wish access to a single resource, then one
process will be allocated that resource by the OS, and the other will have to wait.
Therefore, the process that is denied access will be slowed down. In an extreme
case, the blocked process may never get access to the resource and hence will never
terminate successfully.

In the case of competing processes three control problems must be faced.
First is the need for mutual exclusion. Suppose two or more processes require
access to a single nonsharable resource, such as a printer. During the course of
 execution, each process will be sending commands to the I/O device, receiving
status information, sending data, and/or receiving data. We will refer to such a
resource as a critical resource, and the portion of the program that uses it as a
critical section of the program. It is important that only one program at a time be
allowed in its critical section. We cannot simply rely on the OS to understand and
enforce this restriction because the detailed requirements may not be obvious. In
the case of the printer, for example, we want any individual process to have con-
trol of the printer while it prints an entire file. Otherwise, lines from competing
processes will be interleaved.

The enforcement of mutual exclusion creates two additional control prob-
lems. One is that of deadlock. For example, consider two processes, P1 and P2, and
two resources, R1 and R2. Suppose that each process needs access to both resources
to perform part of its function. Then it is possible to have the following situation:
the OS assigns R1 to P2, and R2 to P1. Each process is waiting for one of the two
resources. Neither will release the resource that it already owns until it has acquired
the other resource and performed the function requiring both resources. The two
processes are deadlocked.

A final control problem is starvation. Suppose that three processes (P1, P2,
P3) each require periodic access to resource R. Consider the situation in which
P1 is in possession of the resource, and both P2 and P3 are delayed, waiting for
that resource. When P1 exits its critical section, either P2 or P3 should be allowed
access to R. Assume that the OS grants access to P3 and that P1 again requires
access before P3 completes its critical section. If the OS grants access to P1 after
P3 has finished, and subsequently alternately grants access to P1 and P3, then P2
may indefinitely be denied access to the resource, even though there is no dead-
lock situation.

Control of competition inevitably involves the OS because it is the OS that
allocates resources. In addition, the processes themselves will need to be able to
express the requirement for mutual exclusion in some fashion, such as locking a

208 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

resource prior to its use. Any solution will involve some support from the OS,
such as the provision of the locking facility. Figure 5.1 illustrates the mutual
exclusion mechanism in abstract terms. There are n processes to be executed
concurrently. Each process includes (1) a critical section that operates on some
resource Ra, and (2) additional code preceding and following the critical sec-
tion that does not involve access to Ra. Because all processes access the same
resource Ra, it is desired that only one process at a time be in its critical section.
To enforce mutual exclusion, two functions are provided: entercritical and
exitcritical. Each function takes as an argument the name of the resource
that is the subject of competition. Any process that attempts to enter its critical
section while another process is in its critical section, for the same resource, is
made to wait.

It remains to examine specific mechanisms for providing the functions en-
tercritical and exitcritical. For the moment, we defer this issue while we
consider the other cases of process interaction.

COOPERATION AMONG PROCESSES BY SHARING The case of cooperation by sharing
covers processes that interact with other processes without being explicitly aware
of them. For example, multiple processes may have access to shared variables or
to shared files or databases. Processes may use and update the shared data without
reference to other processes but know that other processes may have access to the
same data. Thus the processes must cooperate to ensure that the data they share
are properly managed. The control mechanisms must ensure the integrity of the
shared data.

Because data are held on resources (devices, memory), the control problems
of mutual exclusion, deadlock, and starvation are again present. The only difference
is that data items may be accessed in two different modes, reading and writing, and
only writing operations must be mutually exclusive.

However, over and above these problems, a new requirement is introduced:
that of data coherence. As a simple example, consider a bookkeeping application in
which various data items may be updated. Suppose two items of data a and b are to
be maintained in the relationship a = b. That is, any program that updates one value

Figure 5.1 Illustration of Mutual Exclusion

/* PROCESS 1 */

void P1
{
 while (true) {
 /* preceding code */;
 entercritical (Ra);
 /* critical section */;
 exitcritical (Ra);
 /* following code */;
 }
}

/* PROCESS 2 */

void P2
{
 while (true) {
 /* preceding code */;
 entercritical (Ra);
 /* critical section */;
 exitcritical (Ra);
 /* following code */;
 }
}

/* PROCESS n */

void Pn
{
 while (true) {
 /* preceding code */;
 entercritical (Ra);
 /* critical section */;
 exitcritical (Ra);
 /* following code */;
 }
}

VideoNote

5.1 / PRINCIPLES OF CONCURRENCY 209

must also update the other to maintain the relationship. Now consider the following
two processes:

P1:
 a = a + 1;
 b = b + 1;
P2:
 b = 2 * b;
 a = 2 * a;

If the state is initially consistent, each process taken separately will leave the
shared data in a consistent state. Now consider the following concurrent execution
sequence, in which the two processes respect mutual exclusion on each individual
data item (a and b):

a = a + 1;
b = 2 * b;
b = b + 1;
a = 2 * a;

At the end of this execution sequence, the condition a = b no longer holds.
For example, if we start with a = b = 1, at the end of this execution sequence we
have a = 4 and b = 3. The problem can be avoided by declaring the entire sequence
in each process to be a critical section.

Thus, we see that the concept of critical section is important in the case of
cooperation by sharing. The same abstract functions of entercritical and
exitcritical discussed earlier (Figure 5.1) can be used here. In this case, the
argument for the functions could be a variable, a file, or any other shared object.
Furthermore, if critical sections are used to provide data integrity, then there may
be no specific resource or variable that can be identified as an argument. In that
case, we can think of the argument as being an identifier that is shared among
concurrent processes to identify critical sections that must be mutually exclusive.

COOPERATION AMONG PROCESSES BY COMMUNICATION In the first two cases
that we have discussed, each process has its own isolated environment that does
not include the other processes. The interactions among processes are indirect. In
both cases, there is a sharing. In the case of competition, they are sharing resources
without being aware of the other processes. In the second case, they are sharing
values, and although each process is not explicitly aware of the other processes,
it is aware of the need to maintain data integrity. When processes cooperate by
communication, however, the various processes participate in a common effort that
links all of the processes. The communication provides a way to synchronize, or
coordinate, the various activities.

Typically, communication can be characterized as consisting of messages of
some sort. Primitives for sending and receiving messages may be provided as part of
the programming language or provided by the OS kernel.

Because nothing is shared between processes in the act of passing messages,
mutual exclusion is not a control requirement for this sort of cooperation. However,

210 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

the problems of deadlock and starvation are still present. As an example of deadlock,
two processes may be blocked, each waiting for a communication from the other. As
an example of starvation, consider three processes, P1, P2, and P3, that exhibit the
following behavior. P1 is repeatedly attempting to communicate with either P2 or P3,
and P2 and P3 are both attempting to communicate with P1. A sequence could arise
in which P1 and P2 exchange information repeatedly, while P3 is blocked waiting for
a communication from P1. There is no deadlock, because P1 remains active, but P3
is starved.

Requirements for Mutual Exclusion

Any facility or capability that is to provide support for mutual exclusion should
meet the following requirements:

 1. Mutual exclusion must be enforced: Only one process at a time is allowed into
its critical section, among all processes that have critical sections for the same
resource or shared object.

 2. A process that halts in its noncritical section must do so without interfering
with other processes.

 3. It must not be possible for a process requiring access to a critical section to be
delayed indefinitely: no deadlock or starvation.

 4. When no process is in a critical section, any process that requests entry to its
critical section must be permitted to enter without delay.

 5. No assumptions are made about relative process speeds or number of processors.
 6. A process remains inside its critical section for a finite time only.

There are a number of ways in which the requirements for mutual exclusion
can be satisfied. One approach is to leave the responsibility with the processes that
wish to execute concurrently. Processes, whether they are system programs or ap-
plication programs, would be required to coordinate with one another to enforce
mutual exclusion, with no support from the programming language or the OS. We
can refer to these as software approaches. Although this approach is prone to high
processing overhead and bugs, it is nevertheless useful to examine such approaches
to gain a better understanding of the complexity of concurrent processing. This
topic is covered in Appendix A. A second approach involves the use of special-
purpose machine instructions. These have the advantage of reducing overhead but
nevertheless will be shown to be unattractive as a general-purpose solution; they are
covered in Section 5.2. A third approach is to provide some level of support within
the OS or a programming language. Three of the most important such approaches
are examined in Sections 5.3 through 5.5.

 5.2 MUTUAL EXCLUSION: HARDWARE SUPPORT

In this section, we look at several interesting hardware approaches to mutual
exclusion.

5.2 / MUTUAL EXCLUSION: HARDWARE SUPPORT 211

Interrupt Disabling

In a uniprocessor system, concurrent processes cannot have overlapped execution;
they can only be interleaved. Furthermore, a process will continue to run until it
invokes an OS service or until it is interrupted. Therefore, to guarantee mutual ex-
clusion, it is sufficient to prevent a process from being interrupted. This capability
can be provided in the form of primitives defined by the OS kernel for disabling and
enabling interrupts. A process can then enforce mutual exclusion in the following
way (compare Figure 5.1):

while (true) {
 /* disable interrupts */;
 /* critical section */;
 /* enable interrupts */;
 /* remainder */;
}

Because the critical section cannot be interrupted, mutual exclusion is guaran-
teed. The price of this approach, however, is high. The efficiency of execution could
be noticeably degraded because the processor is limited in its ability to interleave
processes. Another problem is that this approach will not work in a multiprocessor
architecture. When the computer includes more than one processor, it is possible (and
typical) for more than one process to be executing at a time. In this case, disabled
interrupts do not guarantee mutual exclusion.

Special Machine Instructions

In a multiprocessor configuration, several processors share access to a common main
memory. In this case, there is not a master/slave relationship; rather the processors
behave independently in a peer relationship. There is no interrupt mechanism between
processors on which mutual exclusion can be based.

At the hardware level, as was mentioned, access to a memory location ex-
cludes any other access to that same location. With this as a foundation, pro-
cessor designers have proposed several machine instructions that carry out two
actions atomically,2 such as reading and writing or reading and testing, of a sin-
gle memory location with one instruction fetch cycle. During execution of the
instruction, access to the memory location is blocked for any other instruction
referencing that location.

In this section, we look at two of the most commonly implemented instruc-
tions. Others are described in [RAYN86] and [STON93].

COMPARE&SWAP INSTRUCTION The compare&swap instruction, also called a
compare and exchange instruction, can be defined as follows [HERL90]:

2The term atomic means that the instruction is treated as a single step that cannot be interrupted.

212 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

int compare_and_swap (int *word, int testval, int newval)
{
 int oldval;
 oldval = *word
 if (oldval == testval) *word = newval;
 return oldval;
}

This version of the instruction checks a memory location (*word) against
a test value (testval). If the memory location’s current value is testval, it is re-
placed with newval; otherwise it is left unchanged. The old memory value is always
returned; thus, the memory location has been updated if the returned value is the
same as the test value. This atomic instruction therefore has two parts: A compare
is made between a memory value and a test value; if the values are the same, a swap
occurs. The entire compare&swap function is carried out atomically—that is, it is
not subject to interruption.

Another version of this instruction returns a Boolean value: true if the swap
occurred; false otherwise. Some version of this instruction is available on nearly all
processor families (x86, IA64, sparc, IBM z series, etc.), and most operating systems
use this instruction for support of concurrency.

Figure 5.2a shows a mutual exclusion protocol based on the use of this instruc-
tion.3 A shared variable bolt is initialized to 0. The only process that may enter

3The construct parbegin (P1, P2, …, Pn) means the following: suspend the execution of the main
program; initiate concurrent execution of procedures P1, P2, …, Pn; when all of P1, P2, …, Pn have termi-
nated, resume the main program.

/* program mutualexclusion */
const int n = /* number of processes */;
int bolt;
void P(int i)
{
 while (true) {
 while (compare_and_swap(bolt, 0, 1) == 1)
 /* do nothing */;
 /* critical section */;
 bolt = 0;
 /* remainder */;
 }
}
void main()
{
 bolt = 0;
 parbegin (P(1), P(2), ... ,P(n));
}

Figure 5.2 Hardware Support for Mutual Exclusion

(a) Compare and swap instruction

/* program mutualexclusion */
int const n = /* number of processes */;
int bolt;
void P(int i)
{
 while (true) {
 int keyi = 1;
 do exchange (&keyi, &bolt)
 while (keyi != 0);
 /* critical section */;
 bolt = 0;
 /* remainder */;
 }
}
void main()
{
 bolt = 0;
 parbegin (P(1), P(2), ..., P(n));
}

(b) Exchange instruction

VideoNote

5.2 / MUTUAL EXCLUSION: HARDWARE SUPPORT 213

its critical section is one that finds bolt equal to 0. All other processes attempting
to enter their critical section go into a busy waiting mode. The term busy waiting,
or spin waiting, refers to a technique in which a process can do nothing until it gets
permission to enter its critical section but continues to execute an instruction or set
of instructions that tests the appropriate variable to gain entrance. When a process
leaves its critical section, it resets bolt to 0; at this point one and only one of the wait-
ing processes is granted access to its critical section. The choice of process depends
on which process happens to execute the compare&swap instruction next.

EXCHANGE INSTRUCTION The exchange instruction can be defined as follows:

void exchange (int *register, int *memory)
{
 int temp;
 temp = *memory;
 *memory = *register;
 *register = temp;
}

The instruction exchanges the contents of a register with that of a memory location.
Both the Intel IA-32 architecture (Pentium) and the IA-64 architecture (Itanium)
contain an XCHG instruction.

Figure 5.2b shows a mutual exclusion protocol based on the use of an ex-
change instruction. A shared variable bolt is initialized to 0. Each process uses a
local variable key that is initialized to 1. The only process that may enter its critical
section is one that finds bolt equal to 0. It excludes all other processes from the
critical section by setting bolt to 1. When a process leaves its critical section, it re-
sets bolt to 0, allowing another process to gain access to its critical section.

Note that the following expression always holds because of the way in which
the variables are initialized and because of the nature of the exchange algorithm:

bolt + a
i

keyi = n

If bolt = 0, then no process is in its critical section. If bolt = 1, then exactly one pro-
cess is in its critical section, namely the process whose key value equals 0.

PROPERTIES OF THE MACHINE-INSTRUCTION APPROACH The use of a special
machine instruction to enforce mutual exclusion has a number of advantages:

It is applicable to any number of processes on either a single processor or mul-
tiple processors sharing main memory.
It is simple and therefore easy to verify.
It can be used to support multiple critical sections; each critical section can be
defined by its own variable.

There are some serious disadvantages:

Busy waiting is employed: Thus, while a process is waiting for access to a criti-
cal section, it continues to consume processor time.

214 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Starvation is possible: When a process leaves a critical section and more than
one process is waiting, the selection of a waiting process is arbitrary. Thus,
some process could indefinitely be denied access.
Deadlock is possible: Consider the following scenario on a single-processor
system. Process P1 executes the special instruction (e.g., compare&swap,
 exchange) and enters its critical section. P1 is then interrupted to give the
processor to P2, which has higher priority. If P2 now attempts to use the same
resource as P1, it will be denied access because of the mutual exclusion mecha-
nism. Thus, it will go into a busy waiting loop. However, P1 will never be dis-
patched because it is of lower priority than another ready process, P2.

Because of the drawbacks of both the software and hardware solutions, we
need to look for other mechanisms.

 5.3 SEMAPHORES

We now turn to OS and programming language mechanisms that are used to pro-
vide concurrency. Table 5.3 summarizes mechanisms in common use. We begin, in
this section, with semaphores. The next two sections discuss monitors and message
passing. The other mechanisms in Table 5.3 are discussed when treating specific OS
examples, in Chapters 6 and 13.

Table 5.3 Common Concurrency Mechanisms

Semaphore An integer value used for signaling among processes. Only three operations may be
performed on a semaphore, all of which are atomic: initialize, decrement, and incre-
ment. The decrement operation may result in the blocking of a process, and the incre-
ment operation may result in the unblocking of a process. Also known as a counting
semaphore or a general semaphore.

Binary semaphore A semaphore that takes on only the values 0 and 1.

Mutex Similar to a binary semaphore. A key difference between the two is that the process that
locks the mutex (sets the value to zero) must be the one to unlock it (sets the value to 1).

Condition variable A data type that is used to block a process or thread until a particular condition is true.

Monitor A programming language construct that encapsulates variables, access procedures, and
initialization code within an abstract data type. The monitor’s variable may only be ac-
cessed via its access procedures and only one process may be actively
accessing the monitor at any one time. The access procedures are critical sections. A
monitor may have a queue of processes that are waiting to access it.

Event flags A memory word used as a synchronization mechanism. Application code may associ-
ate a different event with each bit in a flag. A thread can wait for either a single event
or a combination of events by checking one or multiple bits in the corresponding flag.
The thread is blocked until all of the required bits are set (AND) or until at least one
of the bits is set (OR).

Mailboxes/messages A means for two processes to exchange information and that may be used for
synchronization.

Spinlocks Mutual exclusion mechanism in which a process executes in an infinite loop waiting
for the value of a lock variable to indicate availability.

5.3 / SEMAPHORES 215

The first major advance in dealing with the problems of concurrent processes
came in 1965 with Dijkstra’s treatise [DIJK65]. Dijkstra was concerned with the
design of an OS as a collection of cooperating sequential processes and with
the development of efficient and reliable mechanisms for supporting cooperation.
These mechanisms can just as readily be used by user processes if the processor
and OS make the mechanisms available.

The fundamental principle is this: Two or more processes can cooper-
ate by means of simple signals, such that a process can be forced to stop at a
specified place until it has received a specific signal. Any complex coordina-
tion requirement can be satisfied by the appropriate structure of signals. For
signaling, special variables called semaphores are used. To transmit a signal via
 semaphore s, a process executes the primitive semSignal (s). To receive a
signal via semaphore s, a process executes the primitive semWait (s); if the
corresponding signal has not yet been transmitted, the process is suspended until
the transmission takes place.4

To achieve the desired effect, we can view the semaphore as a variable that
has an integer value upon which only three operations are defined:

 1. A semaphore may be initialized to a nonnegative integer value.
 2. The semWait operation decrements the semaphore value. If the value

becomes negative, then the process executing the semWait is blocked.
Otherwise, the process continues execution.

 3. The semSignal operation increments the semaphore value. If the resulting
value is less than or equal to zero, then a process blocked by a semWait op-
eration, if any, is unblocked.

Other than these three operations, there is no way to inspect or manipulate
semaphores.

We explain these operations as follows. To begin, the semaphore has a zero or
positive value. If the value is positive, that value equals the number of processes that
can issue a wait and immediately continue to execute. If the value is zero, either by
initialization or because a number of processes equal to the initial semaphore value
have issued a wait, the next process to issue a wait is blocked, and the semaphore
value goes negative. Each subsequent wait drives the semaphore value further into
minus territory. The negative value equals the number of processes waiting to be
unblocked. Each signal unblocks one of the waiting processes when the semaphore
value is negative.

[DOWN08] points out three interesting consequences of the semaphore
definition:

In general, there is no way to know before a process decrements a semaphore
whether it will block or not.

4In Dijkstra’s original paper and in much of the literature, the letter P is used for semWait and the letter
V for semSignal; these are the initials of the Dutch words for test (proberen) and increment (verhogen).
In some of the literature, the terms wait and signal are used. This book uses semWait and semSig-
nal for clarity, and to avoid confusion with similar wait and signal operations in monitors, discussed
subsequently.

216 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

After a process increments a semaphore and another process gets woken up,
both processes continue running concurrently. There is no way to know which
process, if either, will continue immediately on a uniprocessor system.
When you signal a semaphore, you don’t necessarily know whether another
process is waiting, so the number of unblocked processes may be zero
or one.

Figure 5.3 suggests a more formal definition of the primitives for semaphores.
The semWait and semSignal primitives are assumed to be atomic. A more re-
stricted version, known as the binary semaphore, is defined in Figure 5.4. A binary
semaphore may only take on the values 0 and 1 and can be defined by the following
three operations:

 1. A binary semaphore may be initialized to 0 or 1.
 2. The semWaitB operation checks the semaphore value. If the value is zero,

then the process executing the semWaitB is blocked. If the value is one, then
the value is changed to zero and the process continues execution.

 3. The semSignalB operation checks to see if any processes are blocked on
this semaphore (semaphore value equals 0). If so, then a process blocked by a
semWaitB operation is unblocked. If no processes are blocked, then the value
of the semaphore is set to one.

In principle, it should be easier to implement the binary semaphore, and
it can be shown that it has the same expressive power as the general semaphore
(see Problem 5.16). To contrast the two types of semaphores, the nonbinary
semaphore is often referred to as either a counting semaphore or a general
semaphore.

Figure 5.3 A Definition of Semaphore Primitives

struct semaphore {
 int count;
 queueType queue;
};
void semWait(semaphore s)
{
 s.count--;
 if (s.count < 0) {
 /* place this process in s.queue */;
 /* block this process */;
 }
}
void semSignal(semaphore s)
{
 s.count++;
 if (s.count<= 0) {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }
}

VideoNote

5.3 / SEMAPHORES 217

A concept related to the binary semaphore is the mutual exclusion lock
(mutex). A mutex is a programming flag used to grab and release an object. When
data are acquired that cannot be shared or processing is started that cannot be
performed simultaneously elsewhere in the system, the mutex is set to lock (typ-
ically zero), which blocks other attempts to use it. The mutex is set to unlock
when the data are no longer needed or the routine is finished. A key difference
between the a mutex and a binary semaphore is that the process that locks the
mutex (sets the value to zero) must be the one to unlock it (sets the value to 1). In
contrast, it is possible for one process to lock a binary semaphore and for another
to unlock it.5

For both counting semaphores and binary semaphores, a queue is used to hold
processes waiting on the semaphore. The question arises of the order in which pro-
cesses are removed from such a queue. The fairest removal policy is first-in-first-out
(FIFO): The process that has been blocked the longest is released from the queue
first; a semaphore whose definition includes this policy is called a strong semaphore.
A semaphore that does not specify the order in which processes are removed from
the queue is a weak semaphore. Figure 5.5 is an example of the operation of a strong
semaphore. Here processes A, B, and C depend on a result from process D. Initially
(1), A is running; B, C, and D are ready; and the semaphore count is 1, indicating that
one of D’s results is available. When A issues a semWait instruction on semaphore s,
the semaphore decrements to 0, and A can continue to execute; subsequently it

Figure 5.4 A Definition of Binary Semaphore Primitives

struct binary_semaphore {
 enum {zero, one} value;
 queueType queue;
};
void semWaitB(binary_semaphore s)
{
 if (s.value == one)
 s.value = zero;
 else {
 /* place this process in s.queue */;
 /* block this process */;
 }
}
void semSignalB(semaphore s)
{
 if (s.queue is empty())
 s.value = one;
 else {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }
}

5In some of the literature, and in some textbooks, no distinction is made between a mutex and a binary
semaphore. However, in practice, a number of operating systems, such as Linux, Windows, and Solaris,
offer a mutex facility which conforms to the definition in this book.

VideoNote

218 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

rejoins the ready queue. Then B runs (2), eventually issues a semWait instruction,
and is blocked, allowing D to run (3). When D completes a new result, it issues a
semSignal instruction, which allows B to move to the ready queue (4). D rejoins
the ready queue and C begins to run (5) but is blocked when it issues a semWait
instruction. Similarly, A and B run and are blocked on the semaphore, allowing D to
resume execution (6). When D has a result, it issues a semSignal, which transfers
C to the ready queue. Later cycles of D will release A and B from the Blocked state.

For the mutual exclusion algorithm discussed in the next subsection and illus-
trated in Figure 5.6, strong semaphores guarantee freedom from starvation, while
weak semaphores do not. We will assume strong semaphores because they are more
convenient and because this is the form of semaphore typically provided by operat-
ing systems.

A

A issues semWait, later times out

B issues semWait

D issues semSignal

s = 1
Ready queue Processor

D BC

1

2

Blocked queue

D

D issues semSignal, later times out

s = 0
Ready queue Processor

A CB

4

Blocked queue

B

s = 0
Ready queue

Processor

C DA

Blocked queue

C issues semWait

5

C

s = 0
Ready queue

Processor

B AD

Blocked queue

3

D

s = –1
Ready queue

Processor

A C

Blocked queue

B

D issues semSignal
7

D

s = –2
Ready queue

Processor

C

Blocked queue

A B

D issues semSignal
6

D

s = –3
Ready queue

Processor

Blocked queue

C A B

Figure 5.5 Example of Semaphore Mechanism

5.3 / SEMAPHORES 219

Mutual Exclusion

Figure 5.6 shows a straightforward solution to the mutual exclusion problem using
a semaphore s (compare Figure 5.1). Consider n processes, identified in the array
P(i), all of which need access to the same resource. Each process has a critical sec-
tion used to access the resource. In each process, a semWait (s) is executed just
before its critical section. If the value of s becomes negative, the process is blocked.
If the value is 1, then it is decremented to 0 and the process immediately enters its
critical section; because s is no longer positive, no other process will be able to enter
its critical section.

The semaphore is initialized to 1. Thus, the first process that executes a sem-
Wait will be able to enter the critical section immediately, setting the value of s
to 0. Any other process attempting to enter the critical section will find it busy and
will be blocked, setting the value of s to −1. Any number of processes may attempt
entry; each such unsuccessful attempt results in a further decrement of the value
of s. When the process that initially entered its critical section departs, s is incre-
mented and one of the blocked processes (if any) is removed from the queue of
blocked processes associated with the semaphore and put in a Ready state. When it
is next scheduled by the OS, it may enter the critical section.

Figure 5.7, based on one in [BACO03], shows a possible sequence for three
processes using the mutual exclusion discipline of Figure 5.6. In this example three
processes (A, B, C) access a shared resource protected by the semaphore lock.
Process A executes semWait (lock); because the semaphore has a value of 1 at
the time of the semWait operation, A can immediately enter its critical section and
the semaphore takes on the value 0. While A is in its critical section, both B and
C perform a semWait operation and are blocked pending the availability of the
semaphore. When A exits its critical section and performs semSignal (lock), B,
which was the first process in the queue, can now enter its critical section.

The program of Figure 5.6 can equally well handle a requirement that more
than one process be allowed in its critical section at a time. This requirement is met

Figure 5.6 Mutual Exclusion Using Semaphores

/* program mutualexclusion */
const int n = /* number of processes */;
semaphore s = 1;
void P(int i)
{
 while (true) {
 semWait(s);
 /* critical section */;
 semSignal(s);
 /* remainder */;
 }
}
void main()
{
 parbegin (P(1), P(2),…, P(n));
}

VideoNote

220 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

simply by initializing the semaphore to the specified value. Thus, at any time, the
value of s.count can be interpreted as follows:

s.count ≥ 0: s.count is the number of processes that can execute semWait (s)
without suspension (if no semSignal (s) is executed in the meantime). Such
situations will allow semaphores to support synchronization as well as mutual
exclusion.
s.count < 0: The magnitude of s.count is the number of processes suspended in
s.queue.

The Producer/Consumer Problem

We now examine one of the most common problems faced in concurrent process-
ing: the producer/consumer problem. The general statement is this: There are one
or more producers generating some type of data (records, characters) and placing
these in a buffer. There is a single consumer that is taking items out of the buffer
one at a time. The system is to be constrained to prevent the overlap of buffer oper-
ations. That is, only one agent (producer or consumer) may access the buffer at any
one time. The problem is to make sure that the producer won’t try to add data into
the buffer if it’s full and that the consumer won’t try to remove data from an empty

B

BC

C

1

1

0

0

!1

!1

!2

semWait(lock)

A
Value of

semaphore lock
Queue for

semaphore lock B C

semSignal(lock)

semSignal(lock)

semSignal(lock)

semWait(lock)

semWait(lock)

Critical
region

Normal
execution

Blocked on
semaphore
lock

Note that normal
execution can
proceed in parallel
but that critical
regions are serialized.

Figure 5.7 Processes Accessing Shared Data Protected by a Semaphore

5.3 / SEMAPHORES 221

buffer. We will look at a number of solutions to this problem to illustrate both the
power and the pitfalls of semaphores.

To begin, let us assume that the buffer is infinite and consists of a linear array
of elements. In abstract terms, we can define the producer and consumer functions
as follows:

producer: consumer:
while (true) { while (true) {
 /* produce item v */; while (in <= out)
 b[in] = v; /* do nothing */;
 in++; w = b[out];
} out++;
 /* consume item w */;
 }

Figure 5.8 illustrates the structure of buffer b. The producer can generate
items and store them in the buffer at its own pace. Each time, an index (in) into the
buffer is incremented. The consumer proceeds in a similar fashion but must make
sure that it does not attempt to read from an empty buffer. Hence, the consumer
makes sure that the producer has advanced beyond it (in> out) before proceeding.

Let us try to implement this system using binary semaphores. Figure 5.9 is a
first attempt. Rather than deal with the indices in and out, we can simply keep track
of the number of items in the buffer, using the integer variable n (= in − out). The
semaphore s is used to enforce mutual exclusion; the semaphore delay is used to
force the consumer to semWait if the buffer is empty.

This solution seems rather straightforward. The producer is free to add to the
buffer at any time. It performs semWaitB (s) before appending and semSignalB
(s) afterward to prevent the consumer or any other producer from accessing the
buffer during the append operation. Also, while in the critical section, the producer
increments the value of n. If n = 1, then the buffer was empty just prior to this ap-
pend, so the producer performs semSignalB (delay) to alert the consumer of
this fact. The consumer begins by waiting for the first item to be produced, using
semWaitB (delay). It then takes an item and decrements n in its critical section.
If the producer is able to stay ahead of the consumer (a common situation), then the

b[1] b[2]

Out

b[3] b[4] b[5]

0 1 2 3 4

In
Note: Shaded area indicates portion of buffer that is occupied.

Figure 5.8 Infinite Buffer for the
Producer/Consumer Problem

222 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

consumer will rarely block on the semaphore delay because n will usually be posi-
tive. Hence both producer and consumer run smoothly.

There is, however, a flaw in this program. When the consumer has exhausted
the buffer, it needs to reset the delay semaphore so that it will be forced to wait until
the producer has placed more items in the buffer. This is the purpose of the state-
ment: if n == 0 semWaitB (delay). Consider the scenario outlined in Table 5.4.
In line 14, the consumer fails to execute the semWaitB operation. The consumer
did indeed exhaust the buffer and set n to 0 (line 8), but the producer has incre-
mented n before the consumer can test it in line 14. The result is a semSignalB
not matched by a prior semWaitB. The value of −1 for n in line 20 means that the
consumer has consumed an item from the buffer that does not exist. It would not do
simply to move the conditional statement inside the critical section of the consumer
because this could lead to deadlock (e.g., after line 8 of Table 5.4).

A fix for the problem is to introduce an auxiliary variable that can be set in the
consumer’s critical section for use later on. This is shown in Figure 5.10. A careful
trace of the logic should convince you that deadlock can no longer occur.

A somewhat cleaner solution can be obtained if general semaphores (also called
counting semaphores) are used, as shown in Figure 5.11. The variable n is now a

Figure 5.9 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem
Using Binary Semaphores

/* program producerconsumer */
 int n;
 binary_semaphore s = 1, delay = 0;
 void producer()
 {
 while (true) {
 produce();
 semWaitB(s);
 append();
 n++;
 if (n==1) semSignalB(delay);
 semSignalB(s);
 }
 }
 void consumer()
 {
 semWaitB(delay);
 while (true) {
 semWaitB(s);
 take();
 n--;
 semSignalB(s);
 consume();
 if (n==0) semWaitB(delay);
 }
 }
 void main()
 {
 n = 0;
 parbegin (producer, consumer);
 }

VideoNote

5.3 / SEMAPHORES 223

Table 5.4 Possible Scenario for the Program of Figure 5.9

Producer Consumer s n Delay

1 1 0 0

2 semWaitB(s) 0 0 0

3 n++ 0 1 0

4 if (n==1)
(semSignalB(delay)) 0 1 1

5 semSignalB(s) 1 1 1

6 semWaitB(delay) 1 1 0

7 semWaitB(s) 0 1 0

8 n−− 0 0 0

9 semSignalB(s) 1 0 0

10 semWaitB(s) 0 0 0

11 n++ 0 1 0

12 if (n==1)
(semSignalB(delay)) 0 1 1

13 semSignalB(s) 1 1 1

14 if (n==0)
(semWaitB(delay)) 1 1 1

15 semWaitB(s) 0 1 1

16 n−− 0 0 1

17 semSignalB(s) 1 0 1

18 if (n==0)
(semWaitB(delay)) 1 0 0

19 semWaitB(s) 0 0 0

20 n−− 0 −1 0

21 semSignalB(s) 1 −1 0

Note: White areas represent the critical section controlled by semaphore s.

semaphore. Its value still is equal to the number of items in the buffer. Suppose now
that in transcribing this program, a mistake is made and the operations semSignal
(s) and semSignal (n) are interchanged. This would require that the semSignal
(n) operation be performed in the producer’s critical section without interruption by
the consumer or another producer. Would this affect the program? No, because the
consumer must wait on both semaphores before proceeding in any case.

Now suppose that the semWait (n) and semWait (s) operations are acci-
dentally reversed. This produces a serious, indeed a fatal, flaw. If the consumer ever
enters its critical section when the buffer is empty (n.count = 0), then no producer
can ever append to the buffer and the system is deadlocked. This is a good example
of the subtlety of semaphores and the difficulty of producing correct designs.

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage

224 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Figure 5.10 A Correct Solution to the Infinite-Buffer Producer/Consumer Problem Using
Binary Semaphores

/* program producerconsumer */
 int n;
 binary_semaphore s = 1, delay = 0;
 void producer()
 {
 while (true) {
 produce();
 semWaitB(s);
 append();
 n++;
 if (n==1) semSignalB(delay);
 semSignalB(s);
 }
 }
 void consumer()
 {
 int m; /* a local variable */
 semWaitB(delay);
 while (true) {
 semWaitB(s);
 take();
 n--;
 m = n;
 semSignalB(s);
 consume();
 if (m==0) semWaitB(delay);
 }
 }
 void main()
 {
 n = 0;
 parbegin (producer, consumer);
 }

(Figure 5.12), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

VideoNote

Block on: Unblock on:

Producer: insert in full buffer Consumer: item inserted

Consumer: remove from empty buffer Producer: item removed

The producer and consumer functions can be expressed as follows (variable in
and out are initialized to 0 and n is the size of the buffer):

producer: consumer:
while (true) { while (true) {
 /* produce item v */ while (in == out)
 while ((in + 1) % n == out) /* do nothing */;
 /* do nothing */; w = b[out];
 b[in] = v; out = (out + 1) % n;
 in = (in + 1) % n; /* consume item w */;
} }

5.3 / SEMAPHORES 225

b[1] b[2]

Out

b[3] b[4] b[5] b[n]

In

b[1] b[2]

In

b[3] b[4] b[5] b[n]

Out

(a)

(b)

Figure 5.12 Finite Circular Buffer for the
Producer/Consumer Problem

Figure 5.13 shows a solution using general semaphores. The semaphore e has
been added to keep track of the number of empty spaces.

Another instructive example in the use of semaphores is the barbershop prob-
lem, described in Appendix A. Appendix A also includes additional examples of
the problem of race conditions when using semaphores.

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem Using
Semaphores

/* program producerconsumer */
 semaphore n = 0, s = 1;
 void producer()
 {
 while (true) {
 produce();
 semWait(s);
 append();
 semSignal(s);
 semSignal(n);
 }
 }
 void consumer()
 {
 while (true) {
 semWait(n);
 semWait(s);
 take();
 semSignal(s);
 consume();
 }
 }
 void main()
 {
 parbegin (producer, consumer);
 }

VideoNote

226 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Implementation of Semaphores

As was mentioned earlier, it is imperative that the semWait and semSignal
 operations be implemented as atomic primitives. One obvious way is to implement
them in hardware or firmware. Failing this, a variety of schemes have been sug-
gested. The essence of the problem is one of mutual exclusion: Only one process at
a time may manipulate a semaphore with either a semWait or semSignal opera-
tion. Thus, any of the software schemes, such as Dekker’s algorithm or Peterson’s
algorithm (Appendix A), could be used; this would entail a substantial processing
overhead.

Another alternative is to use one of the hardware-supported schemes for
 mutual exclusion. For example, Figure 5.14a shows the use of a compare&swap in-
struction. In this implementation, the semaphore is again a structure, as in Figure 5.3,
but now includes a new integer component, s.flag. Admittedly, this involves a form
of busy waiting. However, the semWait and semSignal operations are relatively
short, so the amount of busy waiting involved should be minor.

For a single-processor system, it is possible to inhibit interrupts for the du-
ration of a semWait or semSignal operation, as suggested in Figure 5.14b. Once
again, the relatively short duration of these operations means that this approach is
reasonable.

Figure 5.13 A Solution to the Bounded-Buffer Producer/Consumer Problem Using
Semaphores

/* program boundedbuffer */
 const int sizeofbuffer = /* buffer size */;
 semaphore s = 1, n = 0, e = sizeofbuffer;
 void producer()
 {
 while (true) {
 produce();
 semWait(e);
 semWait(s);
 append();
 semSignal(s);
 semSignal(n);
 }
 }
 void consumer()
 {
 while (true) {
 semWait(n);
 semWait(s);
 take();
 semSignal(s);
 semSignal(e);
 consume();
 }
 }
 void main()
 {
 parbegin (producer, consumer);
 }

VideoNote

5.4 / MONITORS 227

Figure 5.14 Two Possible Implementations of Semaphores

semWait(s)
{
 while (compare_and_swap(s.flag, 0 , 1) == 1)
 /* do nothing */;
 s.count--;
 if (s.count < 0) {
 /* place this process in s.queue*/;
 /* block this process (must also set
s.flag to 0) */;
 }
 s.flag = 0;
}

semSignal(s)
{
 while (compare_and_swap(s.flag, 0 , 1) == 1)
 /* do nothing */;
 s.count++;
 if (s.count<= 0) {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }
 s.flag = 0;
}

semWait(s)
{
 inhibit interrupts;
 s.count--;
 if (s.count < 0) {
 /* place this process in s.queue */;
 /* block this process and allow inter-
rupts*/;
 }
 else
 allow interrupts;
}

semSignal(s)
{
 inhibit interrupts;
 s.count++;
 if (s.count<= 0) {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }
 allow interrupts;
}

(a) Compare and Swap Instruction (b) Interrupts

 5.4 MONITORS

Semaphores provide a primitive yet powerful and flexible tool for enforcing mutual
exclusion and for coordinating processes. However, as Figure 5.9 suggests, it may be
difficult to produce a correct program using semaphores. The difficulty is that sem-
Wait and semSignal operations may be scattered throughout a program and it is
not easy to see the overall effect of these operations on the semaphores they affect.

The monitor is a programming-language construct that provides equivalent
functionality to that of semaphores and that is easier to control. The concept was
first formally defined in [HOAR74]. The monitor construct has been implemented
in a number of programming languages, including Concurrent Pascal, Pascal-Plus,
Modula-2, Modula-3, and Java. It has also been implemented as a program library.
This allows programmers to put a monitor lock on any object. In particular, for
something like a linked list, you may want to lock all linked lists with one lock, or
have one lock for each list, or have one lock for each element of each list.

We begin with a look at Hoare’s version and then examine a refinement.

Monitor with Signal

A monitor is a software module consisting of one or more procedures, an initializa-
tion sequence, and local data. The chief characteristics of a monitor are the following:

 1. The local data variables are accessible only by the monitor’s procedures and
not by any external procedure.

VideoNote

228 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 2. A process enters the monitor by invoking one of its procedures.
 3. Only one process may be executing in the monitor at a time; any other pro-

cesses that have invoked the monitor are blocked, waiting for the monitor to
become available.

The first two characteristics are reminiscent of those for objects in object-oriented
software. Indeed, an object-oriented OS or programming language can readily imple-
ment a monitor as an object with special characteristics.

By enforcing the discipline of one process at a time, the monitor is able to pro-
vide a mutual exclusion facility. The data variables in the monitor can be accessed
by only one process at a time. Thus, a shared data structure can be protected by
placing it in a monitor. If the data in a monitor represent some resource, then the
monitor provides a mutual exclusion facility for accessing the resource.

To be useful for concurrent processing, the monitor must include synchroni-
zation tools. For example, suppose a process invokes the monitor and, while in the
monitor, must be blocked until some condition is satisfied. A facility is needed by
which the process is not only blocked but releases the monitor so that some other
process may enter it. Later, when the condition is satisfied and the monitor is again
available, the process needs to be resumed and allowed to reenter the monitor at
the point of its suspension.

A monitor supports synchronization by the use of condition variables that are
contained within the monitor and accessible only within the monitor. Condition vari-
ables are a special data type in monitors, which are operated on by two functions:

cwait (c): Suspend execution of the calling process on condition c. The moni-
tor is now available for use by another process.
csignal (c): Resume execution of some process blocked after a cwait on
the same condition. If there are several such processes, choose one of them; if
there is no such process, do nothing.

Note that monitor wait and signal operations are different from those for the
semaphore. If a process in a monitor signals and no task is waiting on the condition
variable, the signal is lost.

Figure 5.15 illustrates the structure of a monitor. Although a process can enter
the monitor by invoking any of its procedures, we can think of the monitor as having
a single entry point that is guarded so that only one process may be in the monitor at
a time. Other processes that attempt to enter the monitor join a queue of processes
blocked waiting for monitor availability. Once a process is in the monitor, it may
temporarily block itself on condition x by issuing cwait (x); it is then placed in a
queue of processes waiting to reenter the monitor when the condition changes, and
resume execution at the point in its program following the cwait (x) call.

If a process that is executing in the monitor detects a change in the condition
variable x, it issues csignal (x), which alerts the corresponding condition queue
that the condition has changed.

As an example of the use of a monitor, let us return to the bounded-buffer
 producer/consumer problem. Figure 5.16 shows a solution using a monitor. The
monitor module, boundedbuffer, controls the buffer used to store and re-
trieve characters. The monitor includes two condition variables (declared with the

5.4 / MONITORS 229

Entrance

Queue of
entering
processes

Exit

Condition c1

cwait(c1)

Urgent queue

csignal

Condition cn

cwait(cn)

Local data

Condition variables

Procedure 1

Procedure k

Initialization code

Monitor waiting area

MONITOR

Figure 5.15 Structure of a Monitor

construct cond): notfull is true when there is room to add at least one character to
the buffer, and notempty is true when there is at least one character in the buffer.

A producer can add characters to the buffer only by means of the procedure
append inside the monitor; the producer does not have direct access to buffer. The
procedure first checks the condition notfull to determine if there is space available
in the buffer. If not, the process executing the monitor is blocked on that condition.
Some other process (producer or consumer) may now enter the monitor. Later,
when the buffer is no longer full, the blocked process may be removed from the
queue, reactivated, and resume processing. After placing a character in the buffer,
the process signals the notempty condition. A similar description can be made of the
consumer function.

This example points out the division of responsibility with monitors compared
to semaphores. In the case of monitors, the monitor construct itself enforces mutual

230 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

exclusion: It is not possible for both a producer and a consumer simultaneously to
access the buffer. However, the programmer must place the appropriate cwait and
csignal primitives inside the monitor to prevent processes from depositing items
in a full buffer or removing them from an empty one. In the case of semaphores, both
mutual exclusion and synchronization are the responsibility of the programmer.

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a
Monitor

/* program producerconsumer */
monitor boundedbuffer;
char buffer [N]; /* space for N items */
int nextin, nextout; /* buffer pointers */
int count; /* number of items in buffer */
cond notfull, notempty; /* condition variables for synchronization */
void append (char x)

{
 if (count == N) cwait(notfull); /* buffer is full; avoid overflow */
 buffer[nextin] = x;
 nextin = (nextin + 1) % N;
 count++;
 /* one more item in buffer */
 csignal (notempty); /*resume any waiting consumer */
}
void take (char x)
{
 if (count == 0) cwait(notempty); /* buffer is empty; avoid underflow */
 x = buffer[nextout];
 nextout = (nextout + 1) % N);
 count--; /* one fewer item in buffer */
 csignal (notfull); /* resume any waiting producer */
}
{ /* monitor body */
 nextin = 0; nextout = 0; count = 0; /* buffer initially empty */
}

void producer()
{
 char x;
 while (true) {
 produce(x);
 append(x);
 }
}
void consumer()
{
 char x;
 while (true) {
 take(x);
 consume(x);
 }
}
void main()
{
 parbegin (producer, consumer);
}

VideoNote

5.4 / MONITORS 231

Note that in Figure 5.16, a process exits the monitor immediately after executing
the csignal function. If the csignal does not occur at the end of the procedure,
then, in Hoare’s proposal, the process issuing the signal is blocked to make the moni-
tor available and placed in a queue until the monitor is free. One possibility at this
point would be to place the blocked process in the entrance queue, so that it would
have to compete for access with other processes that had not yet entered the monitor.
However, because a process blocked on a csignal function has already partially
performed its task in the monitor, it makes sense to give this process precedence over
newly entering processes by setting up a separate urgent queue (Figure 5.15). One
language that uses monitors, Concurrent Pascal, requires that csignal only appear
as the last operation executed by a monitor procedure.

If there are no processes waiting on condition x, then the execution of csignal
(x) has no effect.

As with semaphores, it is possible to make mistakes in the synchronization func-
tion of monitors. For example, if either of the csignal functions in the bounded-
buffer monitor are omitted, then processes entering the corresponding condition
queue are permanently hung up. The advantage that monitors have over semaphores
is that all of the synchronization functions are confined to the monitor. Therefore, it
is easier to verify that the synchronization has been done correctly and to detect bugs.
Furthermore, once a monitor is correctly programmed, access to the protected resource
is correct for access from all processes. In contrast, with semaphores, resource access is
correct only if all of the processes that access the resource are programmed correctly.

Alternate Model of Monitors with Notify and Broadcast

Hoare’s definition of monitors [HOAR74] requires that if there is at least one pro-
cess in a condition queue, a process from that queue runs immediately when an-
other process issues a csignal for that condition. Thus, the process issuing the
csignal must either immediately exit the monitor or be blocked on the monitor.

There are two drawbacks to this approach:

 1. If the process issuing the csignal has not finished with the monitor, then two
additional process switches are required: one to block this process and another
to resume it when the monitor becomes available.

 2. Process scheduling associated with a signal must be perfectly reliable. When
a csignal is issued, a process from the corresponding condition queue must
be activated immediately and the scheduler must ensure that no other process
enters the monitor before activation. Otherwise, the condition under which
the process was activated could change. For example, in Figure 5.16, when a
csignal(notempty) is issued, a process from the notempty queue must be
activated before a new consumer enters the monitor. Another example: A pro-
ducer process may append a character to an empty buffer and then fail before
signaling; any processes in the notempty queue would be permanently hung up.

Lampson and Redell developed a different definition of monitors for the
language Mesa [LAMP80]. Their approach overcomes the problems just listed
and supports several useful extensions. The Mesa monitor structure is also used in
the Modula-3 systems programming language [NELS91]. In Mesa, the csignal

232 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

primitive is replaced by cnotify, with the following interpretation: When a pro-
cess executing in a monitor executes cnotify(x), it causes the x condition queue
to be notified, but the signaling process continues to execute. The result of the no-
tification is that the process at the head of the condition queue will be resumed at
some convenient future time when the monitor is available. However, because there
is no guarantee that some other process will not enter the monitor before the wait-
ing process, the waiting process must recheck the condition. For example, the pro-
cedures in the boundedbuffer monitor would now have the code of Figure 5.17.

The if statements are replaced by while loops. Thus, this arrangement results
in at least one extra evaluation of the condition variable. In return, however, there
are no extra process switches, and no constraints on when the waiting process must
run after a cnotify.

One useful refinement that can be associated with the cnotify primitive is
a watchdog timer associated with each condition primitive. A process that has been
waiting for the maximum timeout interval will be placed in a Ready state regard-
less of whether the condition has been notified. When activated, the process checks
the condition and continues if the condition is satisfied. The timeout prevents the
indefinite starvation of a process in the event that some other process fails before
signaling a condition.

With the rule that a process is notified rather than forcibly reactivated, it is
possible to add a cbroadcast primitive to the repertoire. The broadcast causes all
processes waiting on a condition to be placed in a Ready state. This is convenient
in situations where a process does not know how many other processes should be
reactivated. For example, in the producer/consumer program, suppose that both the
append and the take functions can apply to variable length blocks of characters.
In that case, if a producer adds a block of characters to the buffer, it need not know
how many characters each waiting consumer is prepared to consume. It simply is-
sues a cbroadcast and all waiting processes are alerted to try again.

In addition, a broadcast can be used when a process would have difficulty fig-
uring out precisely which other process to reactivate. A good example is a memory

void append (char x)
{
 while (count == N) cwait(notfull); /* buffer is full; avoid overflow */
 buffer[nextin] = x;
 nextin = (nextin + 1) % N;
 count++; /* one more item in buffer */
 cnotify(notempty); /* notify any waiting consumer */
}

void take (char x)
{
 while (count == 0) cwait(notempty); /* buffer is empty; avoid underflow */
 x = buffer[nextout];
 nextout = (nextout + 1) % N);
 count--; /* one fewer item in buffer */
 cnotify(notfull); /* notify any waiting producer */
}

Figure 5.17 Bounded-Buffer Monitor Code for Mesa MonitorVideoNote

5.5 / MESSAGE PASSING 233

manager. The manager has j bytes free; a process frees up an additional k bytes,
but it does not know which waiting process can proceed with a total of k + j bytes.
Hence it uses broadcast, and all processes check for themselves if there is enough
memory free.

An advantage of Lampson/Redell monitors over Hoare monitors is that the
Lampson/Redell approach is less prone to error. In the Lampson/Redell approach,
because each procedure checks the monitor variable after being signaled, with the
use of the while construct, a process can signal or broadcast incorrectly without caus-
ing an error in the signaled program. The signaled program will check the relevant
variable and, if the desired condition is not met, continue to wait.

Another advantage of the Lampson/Redell monitor is that it lends itself to a
more modular approach to program construction. For example, consider the imple-
mentation of a buffer allocator. There are two levels of conditions to be satisfied for
cooperating sequential processes:

 1. Consistent data structures. Thus, the monitor enforces mutual exclusion and
completes an input or output operation before allowing another operation on
the buffer.

 2. Level 1, plus enough memory for this process to complete its allocation request.

In the Hoare monitor, each signal conveys the level 1 condition but also carries
the implicit message, “I have freed enough bytes for your particular allocate call to
work now.” Thus, the signal implicitly carries the level 2 condition. If the program-
mer later changes the definition of the level 2 condition, it will be necessary to repro-
gram all signaling processes. If the programmer changes the assumptions made by any
 particular waiting process (i.e., waiting for a slightly different level 2 invariant), it may
be necessary to reprogram all signaling processes. This is unmodular and likely to cause
synchronization errors (e.g., wake up by mistake) when the code is modified. The pro-
grammer has to remember to modify all procedures in the monitor every time a small
change is made to the level 2 condition. With a Lampson/Redell monitor, a broadcast
ensures the level 1 condition and carries a hint that level 2 might hold; each process
should check the level 2 condition itself. If a change is made in the level 2 condition
in either a waiter or a signaler, there is no possibility of erroneous wakeup because
each procedure checks its own level 2 condition. Therefore, the level 2 condition can
be hidden within each procedure. With the Hoare monitor, the level 2 condition must
be carried from the waiter into the code of every signaling process, which violates data
abstraction and interprocedural modularity principles.

 5.5 MESSAGE PASSING

When processes interact with one another, two fundamental requirements must be
satisfied: synchronization and communication. Processes need to be synchronized
to enforce mutual exclusion; cooperating processes may need to exchange informa-
tion. One approach to providing both of these functions is message passing. Message
passing has the further advantage that it lends itself to implementation in distributed
systems as well as in shared-memory multiprocessor and uniprocessor systems.

234 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Message-passing systems come in many forms. In this section, we provide a gen-
eral introduction that discusses features typically found in such systems. The actual
function of message passing is normally provided in the form of a pair of primitives:

send (destination, message)
receive (source, message)

This is the minimum set of operations needed for processes to engage in
message passing. A process sends information in the form of a message to another
process designated by a destination. A process receives information by executing
the receive primitive, indicating the source and the message.

A number of design issues relating to message-passing systems are listed in
Table 5.5, and examined in the remainder of this section.

Synchronization

The communication of a message between two processes implies some level of syn-
chronization between the two: The receiver cannot receive a message until it has
been sent by another process. In addition, we need to specify what happens to a
process after it issues a send or receive primitive.

Consider the send primitive first. When a send primitive is executed in a
process, there are two possibilities: Either the sending process is blocked until the

Table 5.5 Design Characteristics of Message Systems for Interprocess Communication
and Synchronization

Synchronization Format
 Send Content
 blocking Length
 nonblocking fixed
 Receive variable
 blocking
 nonblocking Queueing Discipline
 test for arrival FIFO

 Priority
Addressing
 Direct
 send
 receive
 explicit
 implicit
 Indirect
 static
 dynamic
 ownership

5.5 / MESSAGE PASSING 235

message is received, or it is not. Similarly, when a process issues a receive primi-
tive, there are two possibilities:

 1. If a message has previously been sent, the message is received and execution
continues.

 2. If there is no waiting message, then either (a) the process is blocked until a
message arrives, or (b) the process continues to execute, abandoning the at-
tempt to receive.

Thus, both the sender and receiver can be blocking or nonblocking. Three
combinations are common, although any particular system will usually have only
one or two combinations implemented:

Blocking send, blocking receive: Both the sender and receiver are blocked
until the message is delivered; this is sometimes referred to as a rendezvous.
This combination allows for tight synchronization between processes.
Nonblocking send, blocking receive: Although the sender may continue on,
the receiver is blocked until the requested message arrives. This is probably
the most useful combination. It allows a process to send one or more messages
to a variety of destinations as quickly as possible. A process that must receive
a message before it can do useful work needs to be blocked until such a mes-
sage arrives. An example is a server process that exists to provide a service or
resource to other processes.
Nonblocking send, nonblocking receive: Neither party is required to wait.

The nonblocking send is more natural for many concurrent programming
tasks. For example, if it is used to request an output operation, such as printing, it
allows the requesting process to issue the request in the form of a message and then
carry on. One potential danger of the nonblocking send is that an error could lead
to a situation in which a process repeatedly generates messages. Because there is no
blocking to discipline the process, these messages could consume system resources,
including processor time and buffer space, to the detriment of other processes and the
OS. Also, the nonblocking send places the burden on the programmer to determine
that a message has been received: Processes must employ reply messages to acknowl-
edge receipt of a message.

For the receive primitive, the blocking version appears to be more natural
for many concurrent programming tasks. Generally, a process that requests a mes-
sage will need the expected information before proceeding. However, if a message
is lost, which can happen in a distributed system, or if a process fails before it sends
an anticipated message, a receiving process could be blocked indefinitely. This
problem can be solved by the use of the nonblocking receive. However, the dan-
ger of this approach is that if a message is sent after a process has already executed
a matching receive, the message will be lost. Other possible approaches are to
allow a process to test whether a message is waiting before issuing a receive and
allow a process to specify more than one source in a receive primitive. The latter
approach is useful if a process is waiting for messages from more than one source
and can proceed if any of these messages arrive.

236 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Addressing

Clearly, it is necessary to have a way of specifying in the send primitive which pro-
cess is to receive the message. Similarly, most implementations allow a receiving
process to indicate the source of a message to be received.

The various schemes for specifying processes in send and receive primi-
tives fall into two categories: direct addressing and indirect addressing. With direct
addressing, the send primitive includes a specific identifier of the destination pro-
cess. The receive primitive can be handled in one of two ways. One possibility is
to require that the process explicitly designate a sending process. Thus, the process
must know ahead of time from which process a message is expected. This will often
be effective for cooperating concurrent processes. In other cases, however, it is im-
possible to specify the anticipated source process. An example is a printer-server
process, which will accept a print request message from any other process. For such
applications, a more effective approach is the use of implicit addressing. In this case,
the source parameter of the receive primitive possesses a value returned when
the receive operation has been performed.

The other general approach is indirect addressing. In this case, messages are
not sent directly from sender to receiver but rather are sent to a shared data structure
consisting of queues that can temporarily hold messages. Such queues are generally
referred to as mailboxes. Thus, for two processes to communicate, one process sends
a message to the appropriate mailbox and the other process picks up the message
from the mailbox.

A strength of the use of indirect addressing is that, by decoupling the sender
and receiver, it allows for greater flexibility in the use of messages. The relationship
between senders and receivers can be one to one, many to one, one to many, or
many to many (Figure 5.18). A one-to-one relationship allows a private communi-
cations link to be set up between two processes. This insulates their interaction from
erroneous interference from other processes. A many-to-one relationship is use-
ful for client/server interaction; one process provides service to a number of other
processes. In this case, the mailbox is often referred to as a port. A one-to-many
relationship allows for one sender and multiple receivers; it is useful for applications
where a message or some information is to be broadcast to a set of processes. A
many-to-many relationship allows multiple server processes to provide concurrent
service to multiple clients.

The association of processes to mailboxes can be either static or dynamic.
Ports are often statically associated with a particular process; that is, the port is
created and assigned to the process permanently. Similarly, a one-to-one relation-
ship is typically defined statically and permanently. When there are many senders,
the association of a sender to a mailbox may occur dynamically. Primitives such as
connect and disconnect may be used for this purpose.

A related issue has to do with the ownership of a mailbox. In the case of a
port, it is typically owned and created by the receiving process. Thus, when the pro-
cess is destroyed, the port is also destroyed. For the general mailbox case, the OS
may offer a create mailbox service. Such mailboxes can be viewed either as being
owned by the creating process, in which case they terminate with the process, or
as being owned by the OS, in which case an explicit command will be required to
destroy the mailbox.

5.5 / MESSAGE PASSING 237

S1

Sn

R1

Rn

Mailbox

S1

Sn

R1Port

(b) Many to one

S1 R1Mailbox

S1

(a) One to one

(d) Many to many

R1

Rn

Mailbox

(c) One to many

Figure 5.18 Indirect Process Communication

Message type

Destination ID

Source IDHeader

Body

Message length

Control information

Message contents

Figure 5.19 General Message
Format

Message Format

The format of the message depends on the objectives of the messaging facility and
whether the facility runs on a single computer or on a distributed system. For some
operating systems, designers have preferred short, fixed-length messages to mini-
mize processing and storage overhead. If a large amount of data is to be passed, the
data can be placed in a file and the message then simply references that file. A more
flexible approach is to allow variable-length messages.

Figure 5.19 shows a typical message format for operating systems that support
variable-length messages. The message is divided into two parts: a header, which

238 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

contains information about the message, and a body, which contains the actual con-
tents of the message. The header may contain an identification of the source and
intended destination of the message, a length field, and a type field to discriminate
among various types of messages. There may also be additional control information,
such as a pointer field so that a linked list of messages can be created; a sequence
number, to keep track of the number and order of messages passed between source
and destination; and a priority field.

Queueing Discipline

The simplest queueing discipline is first-in-first-out, but this may not be sufficient
if some messages are more urgent than others. An alternative is to allow the speci-
fying of message priority, on the basis of message type or by designation by the
sender. Another alternative is to allow the receiver to inspect the message queue
and select which message to receive next.

Mutual Exclusion

Figure 5.20 shows one way in which message passing can be used to enforce mu-
tual exclusion (compare Figures 5.1, 5.2, and 5.6). We assume the use of the block-
ing receive primitive and the nonblocking send primitive. A set of concurrent
processes share a mailbox, box, which can be used by all processes to send and
receive. The mailbox is initialized to contain a single message with null content.
A process wishing to enter its critical section first attempts to receive a message.
If the mailbox is empty, then the process is blocked. Once a process has acquired
the message, it performs its critical section and then places the message back into
the mailbox. Thus, the message functions as a token that is passed from process
to process.

Figure 5.20 Mutual Exclusion Using Messages

/* program mutualexclusion */
const int n = /* number of process */
void P(int i)
{
 message msg;
 while (true) {
 receive (box, msg);
 /* critical section */;
 send (box, msg);
 /* remainder */;
 }
}
void main()
{
 create mailbox (box);
 send (box, null);
 parbegin (P(1), P(2),…, P(n));

VideoNote

5.5 / MESSAGE PASSING 239

The preceding solution assumes that if more than one process performs the
receive operation concurrently, then:

If there is a message, it is delivered to only one process and the others are
blocked, or
If the message queue is empty, all processes are blocked; when a message is
available, only one blocked process is activated and given the message.

These assumptions are true of virtually all message-passing facilities.
As an example of the use of message passing, Figure 5.21 is a solution to the

bounded-buffer producer/consumer problem. Using the basic mutual exclusion
power of message passing, the problem could have been solved with an algorithmic
structure similar to that of Figure 5.13. Instead, the program of Figure 5.21 takes
advantage of the ability of message passing to be used to pass data in addition to
signals. Two mailboxes are used. As the producer generates data, it is sent as mes-
sages to the mailbox mayconsume. As long as there is at least one message in that
mailbox, the consumer can consume. Hence mayconsume serves as the buffer; the
data in the buffer are organized as a queue of messages. The “size” of the buffer is

const int
 capacity = /* buffering capacity */ ;
 null = /* empty message */ ;
int i;
void producer()
{ message pmsg;
 while (true) {
 receive (mayproduce,pmsg);
 pmsg = produce();
 send (mayconsume,pmsg);
 }
}
void consumer()
{ message cmsg;
 while (true) {
 receive (mayconsume,cmsg);
 consume (cmsg);
 send (mayproduce,null);
 }
}
void main()
{
 create_mailbox (mayproduce);
 create_mailbox (mayconsume);
 for (int i = 1;i<= capacity;i++) send (mayproduce,null);
 parbegin (producer,consumer);
}

Figure 5.21 A Solution to the Bounded-Buffer Producer/Consumer Problem
Using Messages

VideoNote

240 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

determined by the global variable capacity. Initially, the mailbox mayproduce is
filled with a number of null messages equal to the capacity of the buffer. The num-
ber of messages in mayproduce shrinks with each production and grows with each
consumption.

This approach is quite flexible. There may be multiple producers and consum-
ers, as long as all have access to both mailboxes. The system may even be distrib-
uted, with all producer processes and the mayproduce mailbox at one site and all
the consumer processes and the mayconsume mailbox at another.

 5.6 READERS/WRITERS PROBLEM

In dealing with the design of synchronization and concurrency mechanisms, it is
useful to be able to relate the problem at hand to known problems and to be able
to test any solution in terms of its ability to solve these known problems. In the
literature, several problems have assumed importance and appear frequently, both
because they are examples of common design problems and because of their ed-
ucational value. One such problem is the producer/consumer problem, which has
already been explored. In this section, we look at another classic problem: the read-
ers/writers problem.

The readers/writers problem is defined as follows: There is a data area shared
among a number of processes. The data area could be a file, a block of main mem-
ory, or even a bank of processor registers. There are a number of processes that
only read the data area (readers) and a number that only write to the data area
(writers). The conditions that must be satisfied are as follows:

 1. Any number of readers may simultaneously read the file.
 2. Only one writer at a time may write to the file.
 3. If a writer is writing to the file, no reader may read it.

Thus, readers are processes that are not required to exclude one another and
writers are processes that are required to exclude all other processes, readers and
writers alike.

Before proceeding, let us distinguish this problem from two others: the
general mutual exclusion problem and the producer/consumer problem. In the
 readers/writers problem readers do not also write to the data area, nor do writers
read the data area while writing. A more general case, which includes this case,
is to allow any of the processes to read or write the data area. In that case, we
can declare any portion of a process that accesses the data area to be a critical
section and impose the general mutual exclusion solution. The reason for being
concerned with the more restricted case is that more efficient solutions are pos-
sible for this case and that the less efficient solutions to the general problem are
unacceptably slow. For example, suppose that the shared area is a library catalog.
Ordinary users of the library read the catalog to locate a book. One or more li-
brarians are able to update the catalog. In the general solution, every access to the
catalog would be treated as a critical section, and users would be forced to read
the catalog one at a time. This would clearly impose intolerable delays. At the

5.6 / READERS/WRITERS PROBLEM 241

same time, it is important to prevent writers from interfering with each other and
it is also required to prevent reading while writing is in progress to prevent the ac-
cess of inconsistent information.

Can the producer/consumer problem be considered simply a special case
of the readers/writers problem with a single writer (the producer) and a single
reader (the consumer)? The answer is no. The producer is not just a writer. It
must read queue pointers to determine where to write the next item, and it must
determine if the buffer is full. Similarly, the consumer is not just a reader, be-
cause it must adjust the queue pointers to show that it has removed a unit from
the buffer.

We now examine two solutions to the problem.

Readers Have Priority

Figure 5.22 is a solution using semaphores, showing one instance each of a reader
and a writer; the solution does not change for multiple readers and writers.
The writer process is simple. The semaphore wsem is used to enforce mutual

/* program readersandwriters */
int readcount;
semaphore x = 1,wsem = 1;
void reader()
{
 while (true){
 semWait (x);
 readcount++;
 if(readcount == 1)
 semWait (wsem);
 semSignal (x);
 READUNIT();
 semWait (x);
 readcount--;
 if(readcount == 0)
 semSignal (wsem);
 semSignal (x);
 }
}
void writer()
{
 while (true){
 semWait (wsem);
 WRITEUNIT();
 semSignal (wsem);
 }
}

void main()
{
 readcount = 0;
 parbegin (reader,writer);
}

Figure 5.22 A Solution to the Readers/Writers Problem Using Semaphore: Readers
Have Priority

VideoNote

242 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 exclusion. As long as one writer is accessing the shared data area, no other writ-
ers and no readers may access it. The reader process also makes use of wsem to
enforce mutual exclusion. However, to allow multiple readers, we require that,
when there are no readers reading, the first reader that attempts to read should
wait on wsem. When there is already at least one reader reading, subsequent
readers need not wait before entering. The global variable readcount is used to
keep track of the number of readers, and the semaphore x is used to assure that
readcount is updated properly.

Writers Have Priority

In the previous solution, readers have priority. Once a single reader has begun to
access the data area, it is possible for readers to retain control of the data area as
long as there is at least one reader in the act of reading. Therefore, writers are sub-
ject to starvation.

Figure 5.23 shows a solution that guarantees that no new readers are allowed
access to the data area once at least one writer has declared a desire to write. For
writers, the following semaphores and variables are added to the ones already
defined:

A semaphore rsem that inhibits all readers while there is at least one writer
desiring access to the data area
A variable writecount that controls the setting of rsem
A semaphore y that controls the updating of writecount

For readers, one additional semaphore is needed. A long queue must not be
allowed to build up on rsem; otherwise writers will not be able to jump the queue.
Therefore, only one reader is allowed to queue on rsem, with any additional readers
queueing on semaphore z, immediately before waiting on rsem. Table 5.6 summa-
rizes the possibilities.

Table 5.6 State of the Process Queues for Program of Figure 5.23

Readers only in the system wsem set
no queues

Writers only in the system wsem and rsem set
writers queue on wsem

Both readers and writers with read first wsem set by reader
rsem set by writer
all writers queue on wsem
one reader queues on rsem
other readers queue on z

Both readers and writers with write first wsem set by writer
rsem set by writer
writers queue on wsem
one reader queues on rsem
other readers queue on z

5.6 / READERS/WRITERS PROBLEM 243

An alternative solution, which gives writers priority and which is implemented
using message passing, is shown in Figure 5.24. In this case, there is a controller
process that has access to the shared data area. Other processes wishing to access
the data area send a request message to the controller, are granted access with an
“OK” reply message, and indicate completion of access with a “finished” message.
The controller is equipped with three mailboxes, one for each type of message that
it may receive.

The controller process services write request messages before read request
messages to give writers priority. In addition, mutual exclusion must be enforced.

/* program readersandwriters */
int readcount,writecount; semaphore x = 1, y = 1, z = 1, wsem = 1, rsem = 1;
void reader()
{
 while (true){
 semWait (z);
 semWait (rsem);
 semWait (x);
 readcount++;
 if (readcount == 1)
 semWait (wsem);
 semSignal (x);
 semSignal (rsem);
 semSignal (z);
 READUNIT();
 semWait (x);
 readcount--;
 if (readcount == 0) semSignal (wsem);
 semSignal (x);
 }
}
void writer ()
{
 while (true){
 semWait (y);
 writecount++;
 if (writecount == 1)
 semWait (rsem);
 semSignal (y);
 semWait (wsem);
 WRITEUNIT();
 semSignal (wsem);
 semWait (y);
 writecount--;
 if (writecount == 0) semSignal (rsem);
 semSignal (y);
 }
}
void main()
{
 readcount = writecount = 0;
 parbegin (reader, writer);
}

Figure 5.23 A Solution to the Readers/Writers Problem Using Semaphore: Writers
Have Priority

VideoNote

244 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

To do this the variable count is used, which is initialized to some number greater
than the maximum possible number of readers. In this example, we use a value of
100. The action of the controller can be summarized as follows:

If count > 0, then no writer is waiting and there may or may not be readers ac-
tive. Service all “finished” messages first to clear active readers. Then service
write requests and then read requests.
If count = 0, then the only request outstanding is a write request. Allow the
writer to proceed and wait for a “finished” message.
If count < 0, then a writer has made a request and is being made to wait to clear
all active readers. Therefore, only “finished” messages should be serviced.

 5.7 SUMMARY

The central themes of modern operating systems are multiprogramming, multipro-
cessing, and distributed processing. Fundamental to these themes, and fundamental to
the technology of OS design, is concurrency. When multiple processes are executing

void reader(int i) void controller()
{ {
 message rmsg; while (true)
 while (true) { {
 rmsg = i; if (count > 0) {
 send (readrequest, rmsg); if (!empty (finished)) {
 receive (mbox[i], rmsg); receive (finished, msg);
 READUNIT (); count++;
 rmsg = i; }
 send (finished, rmsg); else if (!empty (writerequest)) {
 } receive (writerequest, msg);
} writer_id = msg.id;
void writer(int j) count = count − 100;
{ }
 message rmsg; else if (!empty (readrequest)) {
 while(true) { receive (readrequest, msg);
 rmsg = j; count--;
 send (writerequest, rmsg); send (msg.id, “OK”);
 receive (mbox[j], rmsg); }
 WRITEUNIT (); }
 rmsg = j; if (count == 0) {
 send (finished, rmsg); send (writer_id, “OK”);
 } receive (finished, msg);
} count = 100;
 }
 while (count < 0) {
 receive (finished, msg);
 count++;
 }
 }
 }

Figure 5.24 A Solution to the Readers/Writers Problem Using Message PassingVideoNote

5.8 / RECOMMENDED READING 245

concurrently, either actually in the case of a multiprocessor system or virtually in the
case of a single-processor multiprogramming system, issues of conflict resolution and
cooperation arise.

Concurrent processes may interact in a number of ways. Processes that are
unaware of each other may nevertheless compete for resources, such as processor
time or access to I/O devices. Processes may be indirectly aware of one another
because they share access to a common object, such as a block of main memory or
a file. Finally, processes may be directly aware of each other and cooperate by the
exchange of information. The key issues that arise in these interactions are mutual
exclusion and deadlock.

Mutual exclusion is a condition in which there is a set of concurrent pro-
cesses, only one of which is able to access a given resource or perform a given
function at any time. Mutual exclusion techniques can be used to resolve conflicts,
such as competition for resources, and to synchronize processes so that they can
cooperate. An example of the latter is the producer/consumer model, in which one
process is putting data into a buffer and one or more processes are extracting data
from that buffer.

One approach to supporting mutual exclusion involves the use of special-
purpose machine instructions. This approach reduces overhead but is still inef-
ficient because it uses busy waiting.

Another approach to supporting mutual exclusion is to provide features
within the OS. Two of the most common techniques are semaphores and mes-
sage facilities. Semaphores are used for signaling among processes and can be
readily used to enforce a mutual exclusion discipline. Messages are useful for the
enforcement of mutual exclusion and also provide an effective means of inter-
process communication.

 5.8 RECOMMENDED READING

The misnamed Little Book of Semaphores (291 pages) [DOWN08] provides numer-
ous examples of the uses of semaphores; available free online.

[ANDR83] and [BEN06] survey many of the mechanisms described in this
chapter. [RAYN86] is a comprehensive and lucid collection of algorithms for
mutual exclusion, covering software (e.g., Dekker) and hardware approaches,
as well as semaphores and messages. [HOAR85] is a very readable classic that
presents a formal approach to defining sequential processes and concurrency.
[LAMP86] is a lengthy formal treatment of mutual exclusion. [RUDO90] is a
useful aid in understanding concurrency. [BACO03] is a well-organized treat-
ment of concurrency. [BIRR89] provides a good practical introduction to pro-
gramming using concurrency. [BUHR95] is an exhaustive survey of monitors.
[KANG98] is an instructive analysis of 12 different scheduling policies for the
readers/writers problem.

[GOTT12] is an enlightening look at the difficulties that can be created by
using mutexes with C++. [LU08] provides an excellent look at the types of concur-
rency bugs that commonly appear.

246 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Animations

A set of animation that illustrates concepts from this chapter is available at the
Premium Web site. The reader is encouraged to view the animations to reinforce
concepts from this chapter.

 5.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

ANDR83 Andrews, G., and Schneider, F. “Concepts and Notations for Concurrent
Programming.” Computing Surveys, March 1983.

BACO03 Bacon, J., and Harris, T. Operating Systems: Concurrent and Distributed
Software Design. Reading, MA: Addison-Wesley, 2003.

BEN06 Ben-Ari, M. Principles of Concurrent and Distributed Programming. Harlow,
England: Addison-Wesley, 2006.

BIRR89 Birrell, A. An Introduction to Programming with Threads. SRC Research
Report 35, Compaq Systems Research Center, Palo Alto, CA, January 1989.
Available at http://www.hpl.hp.com/techreports/Compaq-DEC

BUHR95 Buhr, P., and Fortier, M. “Monitor Classification.” ACM Computing
Surveys, March 1995.

DOWN08 Downey, A. The Little Book of Semaphores. www.greenteapress.com/
semaphores/

GOTT12 Gottschlich, J., and Boehm, H. “Why Locks Should Not Be Used In Generic
Programming.” HP Laboratories, HPL-2012-246, December 2012.

HOAR85 Hoare, C. Communicating Sequential Processes. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

KANG98 Kang, S., and Lee, J. “Analysis and Solution of Non-Preemptive Policies for
Scheduling Readers and Writers.” Operating Systems Review, July 1998.

LAMP86 Lamport, L. “The Mutual Exclusion Problem.” Journal of the ACM, April 1986.
LU08 Lu, S., et al. “Learning from Mistakes—A Comprehensive Study on Real World

Concurrency Bug Characteristics.” ACM ASPLOS’08, March 2008.
RAYN86 Raynal, M. Algorithms for Mutual Exclusion. Cambridge, MA: MIT Press,

1986.
RUDO90 Rudolph, B. “Self-Assessment Procedure XXI: Concurrency.” Communications

of the ACM, May 1990.

atomic
binary semaphore
blocking
busy waiting
concurrency
concurrent processes
coroutine
counting semaphore

critical resource
critical section
deadlock
general semaphore
message passing
monitor
mutual exclusion
mutual exclusion lock (mutex)

nonblocking
race condition
semaphore
spin waiting
starvation
strong semaphore
weak semaphore

Animation

http://www.hpl.hp.com/techreports/Compaq-DEC
www.greenteapress.com/semaphores/
www.greenteapress.com/semaphores/

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 247

Review Questions

 5.1. List four design issues for which the concept of concurrency is relevant.
 5.2. What are three contexts in which concurrency arises?
 5.3. What is the basic requirement for the execution of concurrent processes?
 5.4. List three degrees of awareness between processes and briefly define each.
 5.5. What is the distinction between competing processes and cooperating processes?
 5.6. List the three control problems associated with competing processes and briefly

define each.
 5.7. List the requirements for mutual exclusion.
 5.8. What operations can be performed on a semaphore?
 5.9. What is the difference between binary and general semaphores?
 5.10. What is the difference between strong and weak semaphores?
 5.11. What is a monitor?
 5.12. What is the distinction between blocking and nonblocking with respect to messages?
 5.13. What conditions are generally associated with the readers/writers problem?

Problems

 5.1. At the beginning of Section 5.1, it is stated that multiprogramming and multiprocess-
ing present the same problems, with respect to concurrency. This is true as far as it
goes. However, cite two differences in terms of concurrency between multiprogram-
ming and multiprocessing.

 5.2. Processes and threads provide a powerful structuring tool for implementing programs
that would be much more complex as simple sequential programs. An earlier con-
struct that is instructive to examine is the coroutine. The purpose of this problem is to
introduce coroutines and compare them to processes. Consider this simple problem
from [CONW63]:

Read 80-column cards and print them on 125-character lines, with the following
changes. After every card image an extra blank is inserted, and every adjacent pair
of asterisks (**) on a card is replaced by the character.

a. Develop a solution to this problem as an ordinary sequential program. You will
find that the program is tricky to write. The interactions among the various el-
ements of the program are uneven because of the conversion from a length of
80 to 125; furthermore, the length of the card image, after conversion, will vary
depending on the number of double asterisk occurrences. One way to improve
clarity, and to minimize the potential for bugs, is to write the application as three
separate procedures. The first procedure reads in card images, pads each image
with a blank, and writes a stream of characters to a temporary file. After all of
the cards have been read, the second procedure reads the temporary file, does the
character substitution, and writes out a second temporary file. The third procedure
reads the stream of characters from the second temporary file and prints lines of
125 characters each.

b. The sequential solution is unattractive because of the overhead of I/O and tempo-
rary files. Conway proposed a new form of program structure, the coroutine, that
allows the application to be written as three programs connected by one-character
buffers (Figure 5.25). In a traditional procedure, there is a master/slave relationship
between the called and calling procedure. The calling procedure may execute a call
from any point in the procedure; the called procedure is begun at its entry point
and returns to the calling procedure at the point of call. The coroutine exhibits
a more symmetric relationship. As each call is made, execution takes up from the

248 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

last active point in the called procedure. Because there is no sense in which a call-
ing procedure is “higher” than the called, there is no return. Rather, any coroutine
can pass control to any other coroutine with a resume command. The first time a
coroutine is invoked, it is “resumed” at its entry point. Subsequently, the coroutine
is reactivated at the point of its own last resume command. Note that only one co-
routine in a program can be in execution at one time and that the transition points
are explicitly defined in the code, so this is not an example of concurrent process-
ing. Explain the operation of the program in Figure 5.25.

c. The program does not address the termination condition. Assume that the I/O rou-
tine READCARD returns the value true if it has placed an 80-character image in
inbuf; otherwise it returns false. Modify the program to include this contingency.
Note that the last printed line may therefore contain less than 125 characters.

d. Rewrite the solution as a set of three processes using semaphores.
 5.3. Consider the following program:

 P1: { P2:{
 shared int x; shared int x;
x = 10; x = 10;
while (1) { while (1) {
 x = x - 1; x = x - 1;
 x = x + 1; x = x + 1;
 if (x != 10) if (x!=10)
 printf(“x is %d”,x) printf(“x is %d”,x)
 } }
 } }
} }

Note that the scheduler in a uniprocessor system would implement pseudo parallel
execution of these two concurrent processes by interleaving their instructions, with-
out restriction on the order of the interleaving.

char rs, sp; void squash()
char inbuf[80], outbuf[125] ; {
void read() while (true) {
{ if (rs != “*”) {
 while (true) { sp = rs;
 READCARD (inbuf); RESUME print;
 for (int i=0; i < 80; i++){ }
 rs = inbuf [i]; else{
 RESUME squash RESUME read;
 } if (rs == “*”) {
 rs = “ “; sp = “ ”;
 RESUME squash; RESUME print;
 } }
} else {
void print() sp = “*”;
{ RESUME print;
 while (true) { sp = rs;
 for (int j = 0; j < 125; j++){ RESUME print;
 outbuf [j] = sp; }
 RESUME squash }
 } RESUME read;
 OUTPUT (outbuf); }
 } }
}

Figure 5.25 An Application of CoroutinesVideoNote

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 249

a. Show a sequence (i.e., trace the sequence of interleavings of statements) such that
the statement “x is 10” is printed.

b. Show a sequence such that the statement “x is 8” is printed. You should remember
that the increment/decrements at the source language level are not done atomi-
cally, that is, the assembly language code:

LD R0,X /* load R0 from memory location x */
INCR R0 /* increment R0 */
STO R0,X /* store the incremented value back in X */

implements the single C increment instruction (x = x + 1).
 5.4. Consider the following program:

const int n = 50;
int tally;
void total()
{
 int count;
 for (count = 1; count<= n; count++){
 tally++;
 }
}
void main()
{
 tally = 0;
 parbegin (total (), total ());
 write (tally);
}

a. Determine the proper lower bound and upper bound on the final value of the
shared variable tally output by this concurrent program. Assume processes can
execute at any relative speed and that a value can only be incremented after it has
been loaded into a register by a separate machine instruction.

b. Suppose that an arbitrary number of these processes are permitted to execute in
parallel under the assumptions of part (a). What effect will this modification have
on the range of final values of tally?

 5.5. Is busy waiting always less efficient (in terms of using processor time) than a blocking
wait? Explain.

 5.6. Consider the following program:

boolean blocked [2];
int turn;
void P (int id)
{
 while (true) {
 blocked[id] = true;
 while (turn != id) {
 while (blocked[1-id])
 /* do nothing */;
 turn = id;
 }
 /* critical section */
 blocked[id] = false;
 /* remainder */
 }
}

250 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

void main()
{
 blocked[0] = false;
 blocked[1] = false;
 turn = 0;
 parbegin (P(0), P(1));
}

This software solution to the mutual exclusion problem for two processes is proposed
in [HYMA66]. Find a counterexample that demonstrates that this solution is incor-
rect. It is interesting to note that even the Communications of the ACM was fooled
on this one.

 5.7. A software approach to mutual exclusion is Lamport’s bakery algorithm [LAMP74],
so called because it is based on the practice in bakeries and other shops in which
every customer receives a numbered ticket on arrival, allowing each to be served in
turn. The algorithm is as follows:

boolean choosing[n];
int number[n];
while (true) {
 choosing[i] = true;
 number[i] = 1 + getmax(number[], n);
 choosing[i] = false;
 for (int j = 0; j < n; j++){
 while (choosing[j]) { };
 while ((number[j] != 0) && (number[j],j) < (number[i],i)) { };
 }
 /* critical section */;
 number [i] = 0;
 /* remainder */;
}

The arrays choosing and number are initialized to false and 0, respectively. The ith
element of each array may be read and written by process i but only read by other
processes. The notation (a, b) < (c, d) is defined as:1a 6 c2 or 1a = c and b 6 d2
a. Describe the algorithm in words.
b. Show that this algorithm avoids deadlock.
c. Show that it enforces mutual exclusion.

 5.8. Now consider a version of the bakery algorithm without the variable choosing. Then
we have

1 int number[n];
2 while (true) {
3 number[i] = 1 + getmax(number[], n);
4 for (int j = 0; j < n; j++){
5 while ((number[j] != 0) && (number[j],j) < (number[i],i)) { };
6 }
7 /* critical section */;
8 number [i] = 0;
9 /* remainder */;
10 }

Does this version violate mutual exclusion? Explain why or why not.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 251

 5.9. Consider the following program which provides a software approach to mutual exclusion:

integer array control [1 :N]; integer k
where 1 ≤ k ≤ N, and each element of “control” is either 0, 1,
or 2. All elements of “control” are initially zero; the initial value
of k is immaterial.

The program of the ith process (1 ≤ i ≤ N) is

begin integer j;
L0: control [i] := l;
LI: for j:=k step l until N, l step l until k do
 begin
 if j = i then goto L2;
 if control [j] ≠ 0 then goto L1
 end;
L2: control [i] := 2;
 for j := 1 step 1 until N do
 if j ≠ i and control [j] = 2 then goto L0;
L3: if control [k] ≠ 0 and k ≠ i then goto L0;
L4: k := i;
 critical section;
L5: for j := k step 1 until N, 1 step 1 until k do
 if j ≠ k and control [j] ≠ 0 then
 begin
 k := j;
 goto L6
 end;
L6: control [i] := 0;
L7: remainder of cycle;
 goto L0;
end

This is referred to as the Eisenberg-McGuire algorithm. Explain its operation and its
key features.

 5.10. Consider the first instance of the statement bolt = 0 in Figure 5.2b.
a. Achieve the same result using the exchange instruction.
b. Which method is preferable?

 5.11. When a special machine instruction is used to provide mutual exclusion in the fash-
ion of Figure 5.2, there is no control over how long a process must wait before being
granted access to its critical section. Devise an algorithm that uses the compare&swap
instruction but that guarantees that any process waiting to enter its critical section will
do so within n −1 turns, where n is the number of processes that may require access to
the critical section and a “turn” is an event consisting of one process leaving the critical
section and another process being granted access.

 5.12. Consider the following definition of semaphores:

void semWait(s)
{
 if (s.count > 0) {
 s.count--;
 }
 else {
 place this process in s.queue;
 block;
 }
}

252 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

void semSignal (s)
{
 if (there is at least one process blocked on
 semaphore s) {
 remove a process P from s.queue;
 place process P on ready list;
 }
 else
 s.count++;
}

Compare this set of definitions with that of Figure 5.3. Note one difference: With the
preceding definition, a semaphore can never take on a negative value. Is there any
difference in the effect of the two sets of definitions when used in programs? That
is, could you substitute one set for the other without altering the meaning of the
program?

 5.13. Consider a sharable resource with the following characteristics: (1) As long as there
are fewer than three processes using the resource, new processes can start using it
right away. (2) Once there are three process using the resource, all three must leave
before any new processes can begin using it. We realize that counters are needed to
keep track of how many processes are waiting and active, and that these counters are
themselves shared resources that must be protected with mutual exclusion. So we
might create the following solution:

1 semaphore mutex = 1, block = 0; /* share variables: semaphores, */
2 int active = 0, waiting = 0; /* counters, and */
3 boolean must_wait = false; /* state information */
4
5 semWait(mutex); /* Enter the mutual exclusion */
6 if(must_wait) { /* If there are (or were) 3, then */
7 ++waiting; /* we must wait, but we must leave */
8 semSignal(mutex); /* the mutual exclusion first */
9 semWait(block); /* Wait for all current users to depart */
10 SemWait(mutex); /* Reenter the mutual exclusion */
11 --waiting; /* and update the waiting count */
12 }
13 ++active; /* Update active count, and remember */
14 must_wait = active == 3; /* if the count reached 3 */
15 semSignal(mutex); /* Leave the mutual exclusion */
16
17 /* critical section */
18
19 semWait(mutex); /* Enter mutual exclusion */
20 --active; /* and update the active count */
21 if(active == 0) { /* Last one to leave? */
22 int n;
23 if (waiting < 3) n = waiting;
24 else n = 3; /* If so, unblock up to 3 */
25 while(n > 0) { /* waiting processes */
26 semSignal(block);
27 --n;
28 }
29 must_wait = false; /* All active processes have left */
30 }
31 semSignal(mutex); /* Leave the mutual exclusion */

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 253

The solution appears to do everything right: All accesses to the shared variables
are protected by mutual exclusion, processes do not block themselves while in the
mutual exclusion, new processes are prevented from using the resource if there are
(or were) three active users, and the last process to depart unblocks up to three
waiting processes.
a. The program is nevertheless incorrect. Explain why.
b. Suppose we change the if in line 6 to a while. Does this solve any problem in the

program? Do any difficulties remain?
 5.14. Now consider this correct solution to the preceding problem:

1 semaphore mutex = 1, block = 0; /* share variables: semaphores, */
2 int active = 0, waiting = 0; /* counters, and */
3 boolean must_wait = false; /* state information */
4
5 semWait(mutex); /* Enter the mutual exclusion */
6 if(must_wait) { /* If there are (or were) 3, then */
7 ++waiting; /* we must wait, but we must leave */
8 semSignal(mutex); /* the mutual exclusion first */
9 semWait(block); /* Wait for all current users to depart */
10 } else {
11 ++active; /* Update active count, and */
12 must_wait = active == 3; /* remember if the count reached 3 */
13 semSignal(mutex); /* Leave mutual exclusion */
14 }
15
16 /* critical section */
17
18 semWait(mutex); /* Enter mutual exclusion */
19 --active; /* and update the active count */
20 if(active == 0) { /* Last one to leave? */
21 int n;
22 if (waiting < 3) n = waiting;
23 else n = 3; /* If so, see how many processes to unblock */
24 waiting -= n; /* Deduct this number from waiting count */
25 active = n; /* and set active to this number */
26 while(n > 0) { /* Now unblock the processes */
27 semSignal(block); /* one by one */
28 --n;
29 }
30 must_wait = active == 3; /* Remember if the count is 3 */
31 }
32 semSignal(mutex); /* Leave the mutual exclusion */

a. Explain how this program works and why it is correct.
b. This solution does not completely prevent newly arriving processes from cutting

in line but it does make it less likely. Give an example of cutting in line.
c. This program is an example of a general design pattern that is a uniform way

to implement solutions to many concurrency problems using semaphores. It has
been referred to as the I’ll Do It For You pattern. Describe the pattern.

 5.15. Now consider another correct solution to the preceding problem:

1 semaphore mutex = 1, block = 0; /* share variables: semaphores, */
2 int active = 0, waiting = 0; /* counters, and */
3 boolean must_wait = false; /* state information */
4

254 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

5 semWait(mutex); /* Enter the mutual exclusion */
6 if(must_wait) { /* If there are (or were) 3, then */
7 ++waiting; /* we must wait, but we must leave */
8 semSignal(mutex); /* the mutual exclusion first */
9 semWait(block); /* Wait for all current users to depart */
10 --waiting; /* We’ve got the mutual exclusion; update count */
11 }
12 ++active; /* Update active count, and remember */
13 must_wait = active == 3; /* if the count reached 3 */
14 if(waiting > 0 && !must_wait) /* If there are others waiting */
15 semSignal(block);; /* and we don’t yet have 3 active, */
16 /* unblock a waiting process */
17 else semSignal(mutex); /* otherwise open the mutual exclusion */
18
19 /* critical section */
20
21 semWait(mutex); /* Enter mutual exclusion */
22 --active; /* and update the active count */
23 if(active == 0) /* If last one to leave? */
24 must_wait = false; /* set up to let new processes enter */
25 if(waiting == 0 && !must_wait) /* If there are others waiting */
26 semSignal(block);; /* and we don’t have 3 active, */
27 /* unblock a waiting process */
28 else semSignal(mutex); /* otherwise open the mutual exclusion */

a. Explain how this program works and why it is correct.
b. Does this solution differ from the preceding one in terms of the number of pro-

cesses that can be unblocked at a time? Explain.
c. This program is an example of a general design pattern that is a uniform way

to implement solutions to many concurrency problems using semaphores. It has
been referred to as the Pass The Baton pattern. Describe the pattern.

 5.16. It should be possible to implement general semaphores using binary semaphores. We
can use the operations semWaitB and semSignalB and two binary semaphores,
delay and mutex. Consider the following:

void semWait(semaphore s)
{
 semWaitB(mutex);
 s--;
 if (s < 0) {
 semSignalB(mutex);
 semWaitB(delay);
 }
 else SemsignalB(mutex);
}
void semSignal(semaphore s);
{
 semWaitB(mutex);
 s++;
 if (s <= 0)
 semSignalB(delay);
 semSignalB(mutex);
}

Initially, s is set to the desired semaphore value. Each semWait operation decrements
s, and each semSignal operation increments s. The binary semaphore mutex, which is
initialized to 1, assures that there is mutual exclusion for the updating of s. The binary
semaphore delay, which is initialized to 0, is used to block processes.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 255

There is a flaw in the preceding program. Demonstrate the flaw and propose a
change that will fix it. Hint: Suppose two processes each call semWait(s) when s is
initially 0, and after the first has just performed semSignalB(mutex) but not per-
formed semWaitB(delay), the second call to semWait(s) proceeds to the same
point. All that you need to do is move a single line of the program.

 5.17. In 1978, Dijkstra put forward the conjecture that there was no solution to the mutual
exclusion problem avoiding starvation, applicable to an unknown but finite number
of processes, using a finite number of weak semaphores. In 1979, J. M. Morris refuted
this conjecture by publishing an algorithm using three weak semaphores. The behav-
ior of the algorithm can be described as follows: If one or several process are waiting
in a semWait(S) operation and another process is executing semSignal(S), the
value of the semaphore S is not modified and one of the waiting processes is un-
blocked independently of semWait(S). Apart from the three semaphores, the algo-
rithm uses two nonnegative integer variables as counters of the number of processes
in certain sections of the algorithm. Thus, semaphores A and B are initialized to 1,
while semaphore M and counters NA and NM are initialized to 0. The mutual exclu-
sion semaphore B protects access to the shared variable NA. A process attempting to
enter its critical section must cross two barriers represented by semaphores A and M.
Counters NA and NM, respectively, contain the number of processes ready to cross
barrier A and those having already crossed barrier A but not yet barrier M. In the
second part of the protocol, the NM processes blocked at M will enter their critical
sections one by one, using a cascade technique similar to that used in the first part.
Define an algorithm that conforms to this description.

 5.18. The following problem was once used on an exam:

Jurassic Park consists of a dinosaur museum and a park for safari riding. There
are m passengers and n single-passenger cars. Passengers wander around the
museum for a while, then line up to take a ride in a safari car. When a car is
available, it loads the one passenger it can hold and rides around the park for a
random amount of time. If the n cars are all out riding passengers around, then
a passenger who wants to ride waits; if a car is ready to load but there are no
waiting passengers, then the car waits. Use semaphores to synchronize the m
passenger processes and the n car processes.

The following skeleton code was found on a scrap of paper on the floor of the exam
room. Grade it for correctness. Ignore syntax and missing variable declarations.
Remember that P and V correspond to semWait and semSignal.

resource Jurassic_Park()
 sem car_avail := 0, car_taken := 0, car_filled := 0, passenger_released := 0
 process passenger(i := 1 to num_passengers)
 do true -> nap(int(random(1000*wander_time)))
 P(car_avail); V(car_taken); P(car_filled)
 P(passenger_released)
 od
end passenger

process car(j := 1 to num_cars)
 do true -> V(car_avail); P(car_taken); V(car_filled)
 nap(int(random(1000*ride_time)))
 V(passenger_released)
 od
 end car
end Jurassic_Park

 5.19. In the commentary on Figure 5.9 and Table 5.4, it was stated that “it would not do
simply to move the conditional statement inside the critical section (controlled by s)
of the consumer because this could lead to deadlock.” Demonstrate this with a table
similar to Table 5.4.

256 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 5.20. Consider the solution to the infinite-buffer producer/consumer problem defined in
Figure 5.10. Suppose we have the (common) case in which the producer and consumer
are running at roughly the same speed. The scenario could be:

Producer: append; semSignal; produce; … ; append; semSignal; produce; …
Consumer: consume; … ; take; semWait; consume; … ; take; semWait; …

The producer always manages to append a new element to the buffer and signal
during the consumption of the previous element by the consumer. The producer
is always appending to an empty buffer and the consumer is always taking the
sole item in the buffer. Although the consumer never blocks on the semaphore, a
large number of calls to the semaphore mechanism is made, creating considerable
overhead.

Construct a new program that will be more efficient under these circumstances. Hints:
Allow n to have the value –1, which is to mean that not only is the buffer empty but
that the consumer has detected this fact and is going to block until the producer sup-
plies fresh data. The solution does not require the use of the local variable m found
in Figure 5.10.

 5.21. Consider Figure 5.13. Would the meaning of the program change if the following were
interchanged?
a. semWait(e);semWait(s)
b. semSignal(s);semSignal(n)
c. semWait(n);semWait(s)
d. semSignal(s);semSignal(e)

 5.22. The following pseudocode is a correct implementation of the producer/consumer
problem with a bounded buffer:

item[3] buffer; // initially empty
semaphore empty; // initialized to +3
semaphore full; // initialized to 0
binary_semaphore mutex; // initialized to 1

void producer() void consumer()
{ {
 … …
 while (true) { while (true) {
 item = produce(); c1: wait(full);
p1: wait(empty); / wait(mutex);
 / wait(mutex); c2: item = take();
p2: append(item); \ signal(mutex);
 \ signal(mutex); c3: signal(empty);
p3: signal(full); consume(item);
 } }
} }

Labels p1, p2, p3 and c1, c2, c3 refer to the lines of code shown above (p2 and c2
each cover three lines of code). Semaphores empty and full are linear semaphores
that can take unbounded negative and positive values. There are multiple producer
processes, referred to as Pa, Pb, Pc, etc., and multiple consumer processes, referred
to as Ca, Cb, Cc, etc. Each semaphore maintains a FIFO (first-in-first-out) queue
of blocked processes. In the scheduling chart below, each line represents the state
of the buffer and semaphores after the scheduled execution has occurred. To sim-
plify, we assume that scheduling is such that processes are never interrupted while
executing a given portion of code p1, or p2, …, or c3. Your task is to complete the
following chart.

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 257

Scheduled
Step of Execution

full’s State and
Queue Buffer

empty’s State
and Queue

Initialization full = 0 OOO empty = +3
Ca executes c1 full = –1 (Ca) OOO empty = +3
Cb executes c1 full = –2 (Ca, Cb) OOO empty = +3
Pa executes p1 full = –2 (Ca, Cb) OOO empty = +2
Pa executes p2 full = –2 (Ca, Cb) X OO empty = +2
Pa executes p3 full = –1 (Cb) Ca X OO empty = +2
Ca executes c2 full = –1 (Cb) OOO empty = +2
Ca executes c3 full = –1 (Cb) OOO empty = +3
Pb executes p1 full = empty =
Pa executes p1 full = empty =
Pa executes __ full = empty =
Pb executes __ full = empty =
Pb executes __ full = empty =
Pc executes p1 full = empty =
Cb executes __ full = empty =
Pc executes __ full = empty =
Cb executes __ full = empty =
Pa executes __ full = empty =

Pb executes p1-p3 full = empty =
Pc executes __ full = empty =
Pa executes p1 full = empty =
Pd executes p1 full = empty =

Ca executes c1-c3 full = empty =
Pa executes __ full = empty =

Cc executes c1-c2 full = empty =
Pa executes __ full = empty =
Cc executes c3 full = empty =

Pd executes p2-p3 full = empty =

 5.23. This problem demonstrates the use of semaphores to coordinate three types of pro-
cesses.6 Santa Claus sleeps in his shop at the North Pole and can only be wakened
by either (1) all nine reindeer being back from their vacation in the South Pacific,
or (2) some of the elves having difficulties making toys; to allow Santa to get some
sleep, the elves can only wake him when three of them have problems. When three
elves are having their problems solved, any other elves wishing to visit Santa must
wait for those elves to return. If Santa wakes up to find three elves waiting at his
shop’s door, along with the last reindeer having come back from the tropics, Santa
has decided that the elves can wait until after Christmas, because it is more impor-
tant to get his sleigh ready. (It is assumed that the reindeer do not want to leave the
tropics, and therefore they stay there until the last possible moment.) The last rein-
deer to arrive must get Santa while the others wait in a warming hut before being
harnessed to the sleigh. Solve this problem using semaphores.

6I am grateful to John Trono of St. Michael’s College in Vermont for supplying this problem.

258 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

 5.24. Show that message passing and semaphores have equivalent functionality by
a. Implementing message passing using semaphores. Hint: Make use of a shared

buffer area to hold mailboxes, each one consisting of an array of message slots.
b. Implementing a semaphore using message passing. Hint: Introduce a separate

synchronization process.
 5.25. Explain what is the problem with this implementation of the one-writer many-readers

problem?

int readcount; // shared and initialized to 0
Semaphore mutex, wrt; // shared and initialized to 1;

// Writer : // Readers :
 semWait(mutex);
 readcount := readcount + 1;
semWait(wrt); if readcount == 1 then semWait(wrt);
/* Writing performed*/ semSignal(mutex);
semSignal(wrt); /*reading performed*/
 semWait(mutex);
 readcount := readcount - 1;
 if readcount == 0 then Up(wrt);
 semSignal(mutex);

259

 6.1 Principles of Deadlock
Reusable Resources
Consumable Resources
Resource Allocation Graphs
The Conditions for Deadlock

 6.2 Deadlock Prevention
Mutual Exclusion
Hold and Wait
No Preemption
Circular Wait

 6.3 Deadlock Avoidance
Process Initiation Denial
Resource Allocation Denial

 6.4 Deadlock Detection
Deadlock Detection Algorithm
Recovery

 6.5 An Integrated Deadlock Strategy
 6.6 Dining Philosophers Problem

Solution Using Semaphores
Solution Using a Monitor

 6.7 UNIX Concurrency Mechanisms
Pipes
Messages
Shared Memory
Semaphores
Signals

 6.8 Linux Kernel Concurrency Mechanisms
Atomic Operations
Spinlocks
Semaphores
Barriers

 6.9 Solaris Thread Synchronization Primitives
Mutual Exclusion Lock
Semaphores
Readers/Writer Lock
Condition Variables

 6.10 Windows 7 Concurrency Mechanisms
Wait Functions
Dispatcher Objects
Critical Sections
Slim Reader–Writer Locks and Condition Variables
Lock-free Synchronization

 6.11 Android Interprocess Communication
 6.12 Summary
 6.13 Recommended Reading and Animations
 6.14 Key Terms, Review Questions, and Problems

CONCURRENCY: DEADLOCK
AND STARVATION

CHAPTER

Animation

260 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

This chapter examines two problems that plague all efforts to support concur-
rent processing: deadlock and starvation. We begin with a discussion of the un-
derlying principles of deadlock and the related problem of starvation. Then we
examine the three common approaches to dealing with deadlock: prevention,
detection, and avoidance. We then look at one of the classic problems used to
illustrate both synchronization and deadlock issues: the dining philosophers
problem.

As with Chapter 5, the discussion in this chapter is limited to a consideration
of concurrency and deadlock on a single system. Measures to deal with distributed
deadlock problems are assessed in Chapter 18. An animation illustrating deadlock is
available online. Click on the rotating globe at WilliamStallings.com/OS/OS7e.html
for access.

 6.1 PRINCIPLES OF DEADLOCK

Deadlock can be defined as the permanent blocking of a set of processes that either
compete for system resources or communicate with each other. A set of processes
is deadlocked when each process in the set is blocked awaiting an event (typically
the freeing up of some requested resource) that can only be triggered by another
blocked process in the set. Deadlock is permanent because none of the events is
ever triggered. Unlike other problems in concurrent process management, there is
no efficient solution in the general case.

All deadlocks involve conflicting needs for resources by two or more processes.
A common example is the traffic deadlock. Figure 6.1a shows a situation in which
four cars have arrived at a four-way stop intersection at approximately the same

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

List and explain the conditions for deadlock.
Define deadlock prevention and describe deadlock prevention strategies re-
lated to each of the conditions for deadlock.
Explain the difference between deadlock prevention and deadlock
avoidance.
Understand two approaches to deadlock avoidance.
Explain the fundamental difference in approach between deadlock detection
and deadlock prevention or avoidance.
Understand how an integrated deadlock strategy can be designed.
Analyze the dining philosophers problem.
Explain the concurrency and synchronization methods used in UNIX, Linux,
Solaris, Windows, and Android.

6.1 / PRINCIPLES OF DEADLOCK 261

time. The four quadrants of the intersection are the resources over which control is
needed. In particular, if all four cars wish to go straight through the intersection, the
resource requirements are as follows:

Car 1, traveling north, needs quadrants a and b.
Car 2 needs quadrants b and c.
Car 3 needs quadrants c and d.
Car 4 needs quadrants d and a.

The rule of the road in the United States is that a car at a four-way stop
should defer to a car immediately to its right. This rule works if there are only
two or three cars at the intersection. For example, if only the northbound and
westbound cars arrive at the intersection, the northbound car will wait and the
westbound car proceeds. However, if all four cars arrive at about the same time
and all four follow the rule, each will refrain from entering the intersection. This
causes a potential deadlock. It is only a potential deadlock, because the neces-
sary resources are available for any of the cars to proceed. If one car eventually
chooses to proceed, it can do so.

However, if all four cars ignore the rules and proceed (cautiously) into the
intersection at the same time, then each car seizes one resource (one quadrant) but
cannot proceed because the required second resource has already been seized by
another car. This is an actual deadlock.

Let us now look at a depiction of deadlock involving processes and computer
resources. Figure 6.2, which we refer to as a joint progress diagram, illustrates the
progress of two processes competing for two resources. Each process needs exclusive

c b

d a

(a) Deadlock possible (b) Deadlock

4 4

1

1

3

32 2

Figure 6.1 Illustration of Deadlock

262 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

use of both resources for a certain period of time. Two processes, P and Q, have the
following general form:

Progress
of Q

Progress
of PGet A

Get A

Get B

Get B

B Required

A
Required

A
Required

Release A

Release
A

Release B

Release
B

Deadlock
inevitable

P and Q
want A

P and Q
want B

1 2

3

4

5

6

! Possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

! Both P and Q want resource A

! Both P and Q want resource B

! Deadlock-inevitable region

B
Required

Figure 6.2 Example of Deadlock

Process P Process Q

Get A Get B

Get B Get A

Release A Release B

Release B Release A

In Figure 6.2, the x-axis represents progress in the execution of P and the y-axis
represents progress in the execution of Q. The joint progress of the two processes is
therefore represented by a path that progresses from the origin in a northeasterly
direction. For a uniprocessor system, only one process at a time may execute, and
the path consists of alternating horizontal and vertical segments, with a horizontal

6.1 / PRINCIPLES OF DEADLOCK 263

segment representing a period when P executes and Q waits and a vertical segment
representing a period when Q executes and P waits. The figure indicates areas in
which both P and Q require resource A (upward slanted lines); both P and Q require
resource B (downward slanted lines); and both P and Q require both resources.
Because we assume that each process requires exclusive control of any resource,
these are all forbidden regions; that is, it is impossible for any path representing the
joint execution progress of P and Q to enter these regions.

The figure shows six different execution paths. These can be summarized as
follows:

 1. Q acquires B and then A and then releases B and A. When P resumes execu-
tion, it will be able to acquire both resources.

 2. Q acquires B and then A. P executes and blocks on a request for A. Q releases B
and A. When P resumes execution, it will be able to acquire both resources.

 3. Q acquires B and then P acquires A. Deadlock is inevitable, because as execu-
tion proceeds, Q will block on A and P will block on B.

 4. P acquires A and then Q acquires B. Deadlock is inevitable, because as execu-
tion proceeds, Q will block on A and P will block on B.

 5. P acquires A and then B. Q executes and blocks on a request for B. P releases A
and B. When Q resumes execution, it will be able to acquire both resources.

 6. P acquires A and then B and then releases A and B. When Q resumes execu-
tion, it will be able to acquire both resources.

The gray-shaded area of Figure 6.2, which can be referred to as a fatal region,
applies to the commentary on paths 3 and 4. If an execution path enters this fatal
region, then deadlock is inevitable. Note that the existence of a fatal region depends
on the logic of the two processes. However, deadlock is only inevitable if the joint
progress of the two processes creates a path that enters the fatal region.

Whether or not deadlock occurs depends on both the dynamics of the
 execution and on the details of the application. For example, suppose that P does
not need both resources at the same time so that the two processes have the
 following form:

Process P Process Q

Get A Get B

Release A Get A

Get B Release B

Release B Release A

This situation is reflected in Figure 6.3. Some thought should convince you that re-
gardless of the relative timing of the two processes, deadlock cannot occur.

As shown, the joint progress diagram can be used to record the execution
history of two processes that share resources. In cases where more than two

264 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

processes may compete for the same resource, a higher-dimensional diagram
would be required. The principles concerning fatal regions and deadlock would
remain the same.

Reusable Resources

Two general categories of resources can be distinguished: reusable and consumable.
A reusable resource is one that can be safely used by only one process at a time and
is not depleted by that use. Processes obtain resource units that they later release
for reuse by other processes. Examples of reusable resources include processors;
I/O channels; main and secondary memory; devices; and data structures such as files,
databases, and semaphores.

As an example of deadlock involving reusable resources, consider two processes
that compete for exclusive access to a disk file D and a tape drive T. The programs
engage in the operations depicted in Figure 6.4. Deadlock occurs if each process holds
one resource and requests the other. For example, deadlock occurs if the multipro-
gramming system interleaves the execution of the two processes as follows:

p0 p1 q0 q1 p2 q2

Progress
of PGet A Get B

A Required B Required
! Both P and Q want resource A

! Both P and Q want resource B

Release A Release B

1 2 3

4

5

6

P and Q
want A

P and Q
want B

! Possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

Progress
of Q

Get A

Get B

A
Required

Release
A

Release
B

B
Required

Figure 6.3 Example of No Deadlock [BACO03]

6.1 / PRINCIPLES OF DEADLOCK 265

It may appear that this is a programming error rather than a problem for the
OS designer. However, we have seen that concurrent program design is challeng-
ing. Such deadlocks do occur, and the cause is often embedded in complex program
logic, making detection difficult. One strategy for dealing with such a deadlock is to
impose system design constraints concerning the order in which resources can be
requested.

Another example of deadlock with a reusable resource has to do with requests
for main memory. Suppose the space available for allocation is 200 Kbytes, and the
following sequence of requests occurs:

P1 P2

… …
Request 80 Kbytes; Request 70 Kbytes;
… …
Request 60 Kbytes; Request 80 Kbytes;

Deadlock occurs if both processes progress to their second request. If the
amount of memory to be requested is not known ahead of time, it is difficult to deal
with this type of deadlock by means of system design constraints. The best way to
deal with this particular problem is, in effect, to eliminate the possibility by using
virtual memory, which is discussed in Chapter 8.

Consumable Resources

A consumable resource is one that can be created (produced) and destroyed (con-
sumed). Typically, there is no limit on the number of consumable resources of a
particular type. An unblocked producing process may create any number of such
resources. When a resource is acquired by a consuming process, the resource ceases
to exist. Examples of consumable resources are interrupts, signals, messages, and
information in I/O buffers.

Figure 6.4 Example of Two Processes Competing for Reusable Resources

Step Process P Action Step Process Q Action
p0 Request (D) q0 Request (T)
p1 Lock (D) q1 Lock (T)
p2 Request (T) q2 Request (D)
p3 Lock (T) q3 Lock (D)
p4 Perform function q4 Perform function
p5 Unlock (D) q5 Unlock (T)
p6 Unlock (T) q6 Unlock (D)

266 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

As an example of deadlock involving consumable resources, consider the fol-
lowing pair of processes, in which each process attempts to receive a message from
the other process and then send a message to the other process:

P1 P2

… …
Receive (P2); Receive (P1);
… …
Send (P2, M1); Send (P1, M2);

Deadlock occurs if the Receive is blocking (i.e., the receiving process is blocked
until the message is received). Once again, a design error is the cause of the deadlock.
Such errors may be quite subtle and difficult to detect. Furthermore, it may take a
rare combination of events to cause the deadlock; thus a program could be in use for
a considerable period of time, even years, before the deadlock actually occurs.

There is no single effective strategy that can deal with all types of deadlock.
Table 6.1 summarizes the key elements of the most important approaches that have

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance Approaches for Operating
Systems [ISLO80]

Approach

Resource
Allocation
Policy

Different
Schemes Major Advantages Major Disadvantages

Prevention Conservative;
undercommits
resources

Requesting all
resources at
once

 Works well for processes
that perform a single
burst of activity
 No preemption necessary

 Inefficient
 Delays process initiation
 Future resource require-
ments must be known by
processes

Preemption Convenient when
applied to resources
whose state can be saved
and restored easily

 Preempts more often
than necessary

Resource
ordering

 Feasible to enforce via
compile-time checks
 Needs no run-time com-
putation since problem is
solved in system design

 Disallows incremental
resource requests

Avoidance Midway
 between that
of detection
and prevention

Manipulate to
find at least
one safe path

 No preemption
necessary

 Future resource require-
ments must be known
by OS
 Processes can be blocked
for long periods

Detection Very liberal;
requested
resources are
granted where
possible

Invoke
periodically
to test for
deadlock

 Never delays process
initiation
 Facilitates online
handling

 Inherent preemption
losses

6.1 / PRINCIPLES OF DEADLOCK 267

been developed: prevention, avoidance, and detection. We examine each of these in
turn, after first introducing resource allocation graphs and then discussing the condi-
tions for deadlock.

Resource Allocation Graphs

A useful tool in characterizing the allocation of resources to processes is the
 resource allocation graph, introduced by Holt [HOLT72]. The resource allocation
graph is a directed graph that depicts a state of the system of resources and pro-
cesses, with each process and each resource represented by a node. A graph edge
directed from a process to a resource indicates a resource that has been requested
by the process but not yet granted (Figure 6.5a). Within a resource node, a dot is
shown for each instance of that resource. Examples of resource types that may
have multiple instances are I/O devices that are allocated by a resource manage-
ment module in the OS. A graph edge directed from a reusable resource node dot
to a process indicates a request that has been granted (Figure 6.5b); that is, the
process has been assigned one unit of that resource. A graph edge directed from
a consumable resource node dot to a process indicates that the process is the pro-
ducer of that resource.

Rb

Ra

Ra

(c) Circular wait

(a) Resource is requested

Rb

Ra

(d) No deadlock

Ra

(b) Resource is held

Requests Held by

Request
s

Held by

Request
sHeld by

Request
s

Held by

Request
sHeld by

P1

P1

P1

P2 P1 P2

Figure 6.5 Examples of Resource Allocation Graphs

268 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Figure 6.5c shows an example deadlock. There is only one unit each of re-
sources Ra and Rb. Process P1 holds Rb and requests Ra, while P2 holds Ra but re-
quests Rb. Figure 6.5d has the same topology as Figure 6.5c, but there is no deadlock
because multiple units of each resource are available.

The resource allocation graph of Figure 6.6 corresponds to the deadlock situa-
tion in Figure 6.1b. Note that in this case, we do not have a simple situation in which
two processes each have one resource the other needs. Rather, in this case, there is a
circular chain of processes and resources that results in deadlock.

The Conditions for Deadlock

Three conditions of policy must be present for a deadlock to be possible:

 1. Mutual exclusion. Only one process may use a resource at a time. No process
may access a resource unit that has been allocated to another process.

 2. Hold and wait. A process may hold allocated resources while awaiting assign-
ment of other resources.

 3. No preemption. No resource can be forcibly removed from a process holding it.

In many ways these conditions are quite desirable. For example, mutual ex-
clusion is needed to ensure consistency of results and the integrity of a database.
Similarly, preemption should not be done arbitrarily. For example, when data re-
sources are involved, preemption must be supported by a rollback recovery mecha-
nism, which restores a process and its resources to a suitable previous state from
which the process can eventually repeat its actions.

The first three conditions are necessary but not sufficient for a deadlock to
exist. For deadlock to actually take place, a fourth condition is required:

 4. Circular wait. A closed chain of processes exists, such that each process holds
at least one resource needed by the next process in the chain (e.g., Figure 6.5c
and Figure 6.6).

The fourth condition is, actually, a potential consequence of the first three. That is,
given that the first three conditions exist, a sequence of events may occur that lead

Ra Rb Rc Rd

P1 P2 P3 P4

Figure 6.6 Resource Allocation Graph for Figure 6.1b

6.2 / DEADLOCK PREVENTION 269

to an unresolvable circular wait. The unresolvable circular wait is in fact the defini-
tion of deadlock. The circular wait listed as condition 4 is unresolvable because the
first three conditions hold. Thus, the four conditions, taken together, constitute nec-
essary and sufficient conditions for deadlock.1

To clarify this discussion, it is useful to return to the concept of the joint prog-
ress diagram, such as the one shown in Figure 6.2. Recall that we defined a fatal
region as one such that once the processes have progressed into that region, those
processes will deadlock. A fatal region exists only if all of the first three conditions
listed above are met. If one or more of these conditions are not met, there is no fatal
region and deadlock cannot occur. Thus, these are necessary conditions for dead-
lock. For deadlock to occur, there must be not only fatal region but also a sequence
of resource requests that has led into the fatal region. If a circular wait condition
occurs, then in fact the fatal region has been entered. Thus, all four conditions listed
above are sufficient for deadlock. To summarize,

Possibility of Deadlock Existence of Deadlock

1. Mutual exclusion
2. No preemption
3. Hold and wait

1. Mutual exclusion
2. No preemption
3. Hold and wait
4. Circular wait

Three general approaches exist for dealing with deadlock. First, one can
prevent deadlock by adopting a policy that eliminates one of the conditions
 (conditions 1 through 4). Second, one can avoid deadlock by making the appro-
priate dynamic choices based on the current state of resource allocation. Third,
one can attempt to detect the presence of deadlock (conditions 1 through 4 hold)
and take action to recover. We discuss each of these approaches in turn.

 6.2 DEADLOCK PREVENTION

The strategy of deadlock prevention is, simply put, to design a system in such a
way that the possibility of deadlock is excluded. We can view deadlock prevention
 methods as falling into two classes. An indirect method of deadlock prevention is
to prevent the occurrence of one of the three necessary conditions listed previously
(items 1 through 3). A direct method of deadlock prevention is to prevent the occur-
rence of a circular wait (item 4). We now examine techniques related to each of the
four conditions.

1Virtually all textbooks simply list these four conditions as the conditions needed for deadlock, but such
a presentation obscures some of the subtler issues. Item 4, the circular wait condition, is fundamentally
different from the other three conditions. Items 1 through 3 are policy decisions, while item 4 is a circum-
stance that might occur depending on the sequencing of requests and releases by the involved processes.
Linking circular wait with the three necessary conditions leads to inadequate distinction between preven-
tion and avoidance. See [SHUB90] and [SHUB03] for a discussion.

270 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Mutual Exclusion

In general, the first of the four listed conditions cannot be disallowed. If access to
a resource requires mutual exclusion, then mutual exclusion must be supported by
the OS. Some resources, such as files, may allow multiple accesses for reads but only
exclusive access for writes. Even in this case, deadlock can occur if more than one
process requires write permission.

Hold and Wait

The hold-and-wait condition can be prevented by requiring that a process re-
quest all of its required resources at one time and blocking the process until all
requests can be granted simultaneously. This approach is inefficient in two ways.
First, a process may be held up for a long time waiting for all of its resource re-
quests to be filled, when in fact it could have proceeded with only some of the
resources. Second, resources allocated to a process may remain unused for a con-
siderable period, during which time they are denied to other processes. Another
problem is that a process may not know in advance all of the resources that it
will require.

There is also the practical problem created by the use of modular program-
ming or a multithreaded structure for an application. An application would need to
be aware of all resources that will be requested at all levels or in all modules to make
the simultaneous request.

No Preemption

This condition can be prevented in several ways. First, if a process holding certain
resources is denied a further request, that process must release its original resources
and, if necessary, request them again together with the additional resource.
Alternatively, if a process requests a resource that is currently held by another pro-
cess, the OS may preempt the second process and require it to release its resources.
This latter scheme would prevent deadlock only if no two processes possessed the
same priority.

This approach is practical only when applied to resources whose state can be
easily saved and restored later, as is the case with a processor.

Circular Wait

The circular-wait condition can be prevented by defining a linear ordering of re-
source types. If a process has been allocated resources of type R, then it may subse-
quently request only those resources of types following R in the ordering.

To see that this strategy works, let us associate an index with each resource
type. Then resource Ri precedes Rj in the ordering if i 6 j. Now suppose that two
processes, A and B, are deadlocked because A has acquired Ri and requested Rj,
and B has acquired Rj and requested Ri. This condition is impossible because it
implies i 6 j and j 6 i.

As with hold-and-wait prevention, circular-wait prevention may be inefficient,
slowing down processes and denying resource access unnecessarily.

6.3 / DEADLOCK AVOIDANCE 271

 6.3 DEADLOCK AVOIDANCE

An approach to solving the deadlock problem that differs subtly from deadlock
 prevention is deadlock avoidance.2 In deadlock prevention, we constrain resource
requests to prevent at least one of the four conditions of deadlock. This is either
done indirectly, by preventing one of the three necessary policy conditions (mutual
exclusion, hold and wait, no preemption), or directly, by preventing circular wait.
This leads to inefficient use of resources and inefficient execution of processes.
Deadlock avoidance, on the other hand, allows the three necessary conditions but
makes judicious choices to assure that the deadlock point is never reached. As such,
avoidance allows more concurrency than prevention. With deadlock avoidance, a
decision is made dynamically whether the current resource allocation request will,
if granted, potentially lead to a deadlock. Deadlock avoidance thus requires knowl-
edge of future process resource requests.

In this section, we describe two approaches to deadlock avoidance:

Do not start a process if its demands might lead to deadlock.
Do not grant an incremental resource request to a process if this allocation
might lead to deadlock.

Process Initiation Denial

Consider a system of n processes and m different types of resources. Let us define
the following vectors and matrices:

Resource = R = 1R1, R2, c, Rm2 Total amount of each resource in the system

Available = V = 1V1, V2, c, Vm2 Total amount of each resource not allocated to any process

Claim = C =

C11 C12 c C1m

C21 C22 c C2m

f f f f
Cn1 Cn2 c Cnm

µ Cij = requirement of process i for resource j

Allocation = A =

A11 A12 c A1m

A21 A22 c A2m

f f f f
An1 An2 c Anm

µ Aij = current allocation to process i of resource j

The matrix Claim gives the maximum requirement of each process for
each resource, with one row dedicated to each process. This information must be

2The term avoidance is a bit confusing. In fact, one could consider the strategies discussed in this section
to be examples of deadlock prevention because they indeed prevent the occurrence of a deadlock.

272 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

declared in advance by a process for deadlock avoidance to work. Similarly, the
matrix Allocation gives the current allocation to each process. The following rela-
tionships hold:

1. Rj = Vj + a
n

i= 1
 Aij, for all j All resources are either available or allocated.

2. Cij … Rj, for all i, j No process can claim more than the total
amount of resources in the system.

3. Aij … Cij, for all i, j No process is allocated more resources of any
type than the process originally claimed to need.

With these quantities defined, we can define a deadlock avoidance policy that
refuses to start a new process if its resource requirements might lead to deadlock.
Start a new process Pn + 1 only if

Rj Ú C1n + 12j + a
n

i= 1
Cij for all j

That is, a process is only started if the maximum claim of all current processes
plus those of the new process can be met. This strategy is hardly optimal, because it
assumes the worst: that all processes will make their maximum claims together.

Resource Allocation Denial

The strategy of resource allocation denial, referred to as the banker’s algorithm,3
was first proposed in [DIJK65]. Let us begin by defining the concepts of state and
safe state. Consider a system with a fixed number of processes and a fixed number
of resources. At any time a process may have zero or more resources allocated to
it. The state of the system reflects the current allocation of resources to processes.
Thus, the state consists of the two vectors, Resource and Available, and the two ma-
trices, Claim and Allocation, defined earlier. A safe state is one in which there is
at least one sequence of resource allocations to processes that does not result in a
deadlock (i.e., all of the processes can be run to completion). An unsafe state is, of
course, a state that is not safe.

The following example illustrates these concepts. Figure 6.7a shows the state
of a system consisting of four processes and three resources. The total amount of
resources R1, R2, and R3 are 9, 3, and 6 units, respectively. In the current state

3Dijkstra used this name because of the analogy of this problem to one in banking, with customers who
wish to borrow money corresponding to processes and the money to be borrowed corresponding to
resources. Stated as a banking problem, the bank has a limited reserve of money to lend and a list of
customers, each with a line of credit. A customer may choose to borrow against the line of credit a por-
tion at a time, and there is no guarantee that the customer will make any repayment until after having
taken out the maximum amount of loan. The banker can refuse a loan to a customer if there is a risk
that the bank will have insufficient funds to make further loans that will permit the customers to repay
eventually.

6.3 / DEADLOCK AVOIDANCE 273

R1 R2 R3
P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 1 0 0
P2 6 1 2
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 2 2 2
P2 0 0 1
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
0 1 1

(a) Initial state

R1 R2 R3
P1 3 2 2
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 1 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 2 2 2
P2 0 0 0
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
6 2 3

(b) P2 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
7 2 3

(c) P1 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
9 3 4

(d) P3 runs to completion

Figure 6.7 Determination of a Safe State

274 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

allocations have been made to the four processes, leaving 1 unit of R2 and 1 unit
of R3 available. Is this a safe state? To answer this question, we ask an interme-
diate question: Can any of the four processes be run to completion with the re-
sources available? That is, can the difference between the maximum requirement
and current allocation for any process be met with the available resources? In
terms of the matrices and vectors introduced earlier, the condition to be met for
process i is:

Cij - Aij … Vj, for all j

Clearly, this is not possible for P1, which has only 1 unit of R1 and requires
2 more units of R1, 2 units of R2, and 2 units of R3. However, by assigning one
unit of R3 to process P2, P2 has its maximum required resources allocated and can
run to completion. Let us assume that this is accomplished. When P2 completes, its
resources can be returned to the pool of available resources. The resulting state is
shown in Figure 6.7b. Now we can ask again if any of the remaining processes can
be completed. In this case, each of the remaining processes could be completed.
Suppose we choose P1, allocate the required resources, complete P1, and return
all of P1’s resources to the available pool. We are left in the state shown in Figure
6.7c. Next, we can complete P3, resulting in the state of Figure 6.7d. Finally, we can
complete P4. At this point, all of the processes have been run to completion. Thus,
the state defined by Figure 6.7a is a safe state.

These concepts suggest the following deadlock avoidance strategy, which en-
sures that the system of processes and resources is always in a safe state. When a
process makes a request for a set of resources, assume that the request is granted,
update the system state accordingly, and then determine if the result is a safe state.
If so, grant the request and, if not, block the process until it is safe to grant the
request.

Consider the state defined in Figure 6.8a. Suppose P2 makes a request for
one additional unit of R1 and one additional unit of R3. If we assume the request
is granted, then the resulting state is that of Figure 6.7a. We have already seen that
this is a safe state; therefore, it is safe to grant the request. Now let us return to
the state of Figure 6.8a and suppose that P1 makes the request for one additional
unit each of R1 and R3; if we assume that the request is granted, we are left in the
state of Figure 6.8b. Is this a safe state? The answer is no, because each process will
need at least one additional unit of R1, and there are none available. Thus, on the
basis of deadlock avoidance, the request by P1 should be denied and P1 should be
blocked.

It is important to point out that Figure 6.8b is not a deadlocked state. It merely
has the potential for deadlock. It is possible, for example, that if P1 were run from
this state it would subsequently release one unit of R1 and one unit of R3 prior
to needing these resources again. If that happened, the system would return to a
safe state. Thus, the deadlock avoidance strategy does not predict deadlock with
certainty; it merely anticipates the possibility of deadlock and assures that there is
never such a possibility.

6.3 / DEADLOCK AVOIDANCE 275

Figure 6.9 gives an abstract version of the deadlock avoidance logic. The
main algorithm is shown in part (b). With the state of the system defined by the
data structure state, request[*] is a vector defining the resources requested
by process i. First, a check is made to assure that the request does not exceed the
original claim of the process. If the request is valid, the next step is to determine if
it is possible to fulfill the request (i.e., there are sufficient resources available). If
it is not possible, then the process is suspended. If it is possible, the final step is to
determine if it is safe to fulfill the request. To do this, the resources are tentatively
assigned to process i to form newstate. Then a test for safety is made using the
algorithm in Figure 6.9c.

Deadlock avoidance has the advantage that it is not necessary to preempt and
rollback processes, as in deadlock detection, and is less restrictive than deadlock
prevention. However, it does have a number of restrictions on its use:

The maximum resource requirement for each process must be stated in
advance.
The processes under consideration must be independent; that is, the order
in which they execute must be unconstrained by any synchronization
requirements.
There must be a fixed number of resources to allocate.
No process may exit while holding resources.

R1 R2 R3
P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 1 0 0
P2 5 1 1
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 2 2 2
P2 1 0 2
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
1 1 2

(a) Initial state

R1 R2 R3
P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 2 0 1
P2 5 1 1
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 1 2 1
P2 1 0 2
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
0 1 1

(b) P1 requests one unit each of R1 and R3

Figure 6.8 Determination of an Unsafe State

276 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Figure 6.9 Deadlock Avoidance Logic

struct state {

 int resource[m];
 int available[m];
 int claim[n][m];
 int alloc[n][m];
}

if (alloc [i,*] + request [*] > claim [i,*])
 <error>; /* total request > claim*/
else if (request [*] > available [*])
 <suspend process>;
else { /* simulate alloc */
 <define newstate by:
 alloc [i,*] = alloc [i,*] + request [*];
 available [*] = available [*] - request [*]>;
}
if (safe (newstate))
 <carry out allocation>;
else {
 <restore original state>;
 <suspend process>;
}

boolean safe (state S) {
 int currentavail[m];
 process rest[<number of processes>];
 currentavail = available;
 rest = {all processes};
 possible = true;
 while (possible) {
 <find a process Pk in rest such that
 claim [k,*] – alloc [k,*]<= currentavail;
 if (found) { /* simulate execution of Pk */
 currentavail = currentavail + alloc [k,*];
 rest = rest - {Pk};
 }
 else possible = false;
 }
 return (rest == null);
}

(a) Global data structures

(b) Resource alloc algorithm

(c) Test for safety algorithm (banker’s algorithm)

VideoNote

6.4 / DEADLOCK DETECTION 277

 6.4 DEADLOCK DETECTION

Deadlock prevention strategies are very conservative; they solve the problem of
deadlock by limiting access to resources and by imposing restrictions on processes.
At the opposite extreme, deadlock detection strategies do not limit resource access
or restrict process actions. With deadlock detection, requested resources are granted
to processes whenever possible. Periodically, the OS performs an algorithm that al-
lows it to detect the circular wait condition described earlier in condition (4) and
illustrated in Figure 6.6.

Deadlock Detection Algorithm

A check for deadlock can be made as frequently as each resource request or, less
frequently, depending on how likely it is for a deadlock to occur. Checking at each
resource request has two advantages: It leads to early detection, and the algorithm is
relatively simple because it is based on incremental changes to the state of the sys-
tem. On the other hand, such frequent checks consume considerable processor time.

A common algorithm for deadlock detection is one described in [COFF71],
which is designed to detect a deadlock by accounting for all possibilities of sequencing
of the tasks that remain to be completed. The Allocation matrix and Available vector
described in the previous section are used. In addition, a request matrix Q is defined
such that Qij represents the amount of resources of type j requested by process i.
The algorithm proceeds by marking processes that are not part of a deadlocked set.
Initially, all processes are unmarked. Then the following steps are performed:

 1. Mark each process that has a row in the Allocation matrix of all zeros. A pro-
cess that has no allocated resources cannot participate in a deadlock.

 2. Initialize a temporary vector W to equal the Available vector.
 3. Find an index i such that process i is currently unmarked and the ith row of Q

is less than or equal to W. That is, Qik … Wk, for 1 … k … m. If no such row is
found, terminate the algorithm.

 4. If such a row is found, mark process i and add the corresponding row of the alloca-
tion matrix to W. That is, set Wk = Wk + Aik, for 1 … k … m. Return to step 3.

A deadlock exists if and only if there are unmarked processes at the end of the
algorithm. The set of unmarked rows corresponds precisely to the set of deadlocked
processes. The strategy in this algorithm is to find a process whose resource requests
can be satisfied with the available resources, and then assume that those resources
are granted and that the process runs to completion and releases all of its resources.
The algorithm then looks for another process to satisfy. Note that this algorithm
does not guarantee to prevent deadlock; that will depend on the order in which
future requests are granted. All that it does is determine if deadlock currently exists.

We can use Figure 6.10 to illustrate the deadlock detection algorithm. The al-
gorithm proceeds as follows:

 1. Mark P4, because P4 has no allocated resources.
 2. Set W = (0 0 0 0 1).

278 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 3. The request of process P3 is less than or equal to W, so mark P3 and set

W = W + 10 0 0 1 02 = 10 0 0 1 02.

 4. No other unmarked process has a row in Q that is less than or equal to W.
Therefore, terminate the algorithm.

The algorithm concludes with P1 and P2 unmarked, indicating that these pro-
cesses are deadlocked.

Recovery

Once deadlock has been detected, some strategy is needed for recovery. The follow-
ing are possible approaches, listed in the order of increasing sophistication:

 1. Abort all deadlocked processes. This is, believe it or not, one of the most
 common, if not the most common, solution adopted in operating systems.

 2. Back up each deadlocked process to some previously defined checkpoint, and
restart all processes. This requires that rollback and restart mechanisms be
built in to the system. The risk in this approach is that the original deadlock
may recur. However, the nondeterminancy of concurrent processing may en-
sure that this does not happen.

 3. Successively abort deadlocked processes until deadlock no longer exists. The
order in which processes are selected for abortion should be on the basis of
some criterion of minimum cost. After each abortion, the detection algorithm
must be reinvoked to see whether deadlock still exists.

 4. Successively preempt resources until deadlock no longer exists. As in (3), a cost-
based selection should be used, and reinvocation of the detection algorithm is
required after each preemption. A process that has a resource preempted from
it must be rolled back to a point prior to its acquisition of that resource.

For (3) and (4), the selection criteria could be one of the following. Choose the
process with the

least amount of processor time consumed so far
least amount of output produced so far
most estimated time remaining

R1 R2 R3 R4 R5

P1 0 1 0 0 1

P2 0 0 1 0 1

P3 0 0 0 0 1

P4 1 0 1 0 1

Request matrix Q

R1 R2 R3 R4 R5

P1 1 0 1 1 0

P2 1 1 0 0 0

P3 0 0 0 1 0

P4 0 0 0 0 0

Allocation matrix A

R1 R2 R3 R4 R5

2 1 1 2 1

Resource vector

R1 R2 R3 R4 R5

0 0 0 0 1

Available vector

Figure 6.10 Example for Deadlock Detection

6.5 / AN INTEGRATED DEADLOCK STRATEGY 279

least total resources allocated so far
lowest priority

Some of these quantities are easier to measure than others. Estimated time
remaining is particularly suspect. Also, other than by means of the priority measure,
there is no indication of the “cost” to the user, as opposed to the cost to the system
as a whole.

 6.5 AN INTEGRATED DEADLOCK STRATEGY

As Table 6.1 suggests, there are strengths and weaknesses to all of the strategies for
dealing with deadlock. Rather than attempting to design an OS facility that employs
only one of these strategies, it might be more efficient to use different strategies in
different situations. [HOWA73] suggests one approach:

Group resources into a number of different resource classes.
Use the linear ordering strategy defined previously for the prevention of circu-
lar wait to prevent deadlocks between resource classes.
Within a resource class, use the algorithm that is most appropriate for that class.

As an example of this technique, consider the following classes of resources:

Swappable space: Blocks of memory on secondary storage for use in swapping
processes
Process resources: Assignable devices, such as tape drives, and files
Main memory: Assignable to processes in pages or segments
Internal resources: Such as I/O channels

The order of the preceding list represents the order in which resources are
assigned. The order is a reasonable one, considering the sequence of steps that a
process may follow during its lifetime. Within each class, the following strategies
could be used:

Swappable space: Prevention of deadlocks by requiring that all of the required
resources that may be used be allocated at one time, as in the hold-and-wait
prevention strategy. This strategy is reasonable if the maximum storage re-
quirements are known, which is often the case. Deadlock avoidance is also a
possibility.
Process resources: Avoidance will often be effective in this category, because
it is reasonable to expect processes to declare ahead of time the resources that
they will require in this class. Prevention by means of resource ordering within
this class is also possible.
Main memory: Prevention by preemption appears to be the most appropriate
strategy for main memory. When a process is preempted, it is simply swapped
to secondary memory, freeing space to resolve the deadlock.
Internal resources: Prevention by means of resource ordering can be used.

280 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 6.6 DINING PHILOSOPHERS PROBLEM

We now turn to the dining philosophers problem, introduced by Dijkstra [DIJK71].
Five philosophers live in a house, where a table is laid for them. The life of each phi-
losopher consists principally of thinking and eating, and through years of thought, all
of the philosophers had agreed that the only food that contributed to their thinking
efforts was spaghetti. Due to a lack of manual skill, each philosopher requires two
forks to eat spaghetti.

The eating arrangements are simple (Figure 6.11): a round table on which is
set a large serving bowl of spaghetti, five plates, one for each philosopher, and five
forks. A philosopher wishing to eat goes to his or her assigned place at the table
and, using the two forks on either side of the plate, takes and eats some spaghetti.
The problem: Devise a ritual (algorithm) that will allow the philosophers to eat. The
algorithm must satisfy mutual exclusion (no two philosophers can use the same fork
at the same time) while avoiding deadlock and starvation (in this case, the term has
literal as well as algorithmic meaning!).

This problem may not seem important or relevant in itself. However, it does
illustrate basic problems in deadlock and starvation. Furthermore, attempts to de-
velop solutions reveal many of the difficulties in concurrent programming (e.g., see
[GING90]). In addition, the dining philosophers problem can be seen as representa-
tive of problems dealing with the coordination of shared resources, which may occur

P3

P0

P2

P4

P1

Figure 6.11 Dining Arrangement for Philosophers

6.6 / DINING PHILOSOPHERS PROBLEM 281

when an application includes concurrent threads of execution. Accordingly, this prob-
lem is a standard test case for evaluating approaches to synchronization.

Solution Using Semaphores

Figure 6.12 suggests a solution using semaphores. Each philosopher picks up first
the fork on the left and then the fork on the right. After the philosopher is finished
eating, the two forks are replaced on the table. This solution, alas, leads to deadlock:
If all of the philosophers are hungry at the same time, they all sit down, they all pick
up the fork on their left, and they all reach out for the other fork, which is not there.
In this undignified position, all philosophers starve.

To overcome the risk of deadlock, we could buy five additional forks (a more
sanitary solution!) or teach the philosophers to eat spaghetti with just one fork. As
another approach, we could consider adding an attendant who only allows four phi-
losophers at a time into the dining room. With at most four seated philosophers, at
least one philosopher will have access to two forks. Figure 6.13 shows such a solu-
tion, again using semaphores. This solution is free of deadlock and starvation.

Solution Using a Monitor

Figure 6.14 shows a solution to the dining philosophers problem using a monitor. A
vector of five condition variables is defined, one condition variable per fork. These
condition variables are used to enable a philosopher to wait for the availability of
a fork. In addition, there is a Boolean vector that records the availability status of
each fork (true means the fork is available). The monitor consists of two proce-
dures. The get_forks procedure is used by a philosopher to seize his or her left

Figure 6.12 A First Solution to the Dining Philosophers Problem

/* program diningphilosophers */
semaphore fork [5] = {1};
int i;
void philosopher (int i)
{
 while (true) {
 think();
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal(fork [(i+1) mod 5]);
 signal(fork[i]);
 }
}
void main()
{
 parbegin (philosopher (0), philosopher (1),
 philosopher (2), philosopher (3),
 philosopher (4));
 }

VideoNote

282 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

and right forks. If either fork is unavailable, the philosopher process is queued on
the appropriate condition variable. This enables another philosopher process to
enter the monitor. The release-forks procedure is used to make two forks avail-
able. Note that the structure of this solution is similar to that of the semaphore so-
lution proposed in Figure 6.12. In both cases, a philosopher seizes first the left fork
and then the right fork. Unlike the semaphore solution, this monitor solution does
not suffer from deadlock, because only one process at a time may be in the monitor.
For example, the first philosopher process to enter the monitor is guaranteed that it
can pick up the right fork after it picks up the left fork before the next philosopher
to the right has a chance to seize its left fork, which is this philosopher’s right fork.

 6.7 UNIX CONCURRENCY MECHANISMS

UNIX provides a variety of mechanisms for interprocessor communication and syn-
chronization. Here, we look at the most important of these:

Pipes
Messages
Shared memory
Semaphores
Signals

Figure 6.13 A Second Solution to the Dining Philosophers Problem

/* program diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};
int i;
void philosopher (int i)
{
 while (true) {
 think();
 wait (room);
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal (fork [(i+1) mod 5]);
 signal (fork[i]);
 signal (room);
 }
}
void main()
{
 parbegin (philosopher (0), philosopher (1),
 philosopher (2), philosopher (3),
 philosopher (4));
}

VideoNote

6.7 / UNIX CONCURRENCY MECHANISMS 283

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */

void get_forks(int pid) /* pid is the philosopher id number */
{
 int left = pid;
 int right = (++pid) % 5;
 /*grant the left fork*/
 if (!fork[left])
 cwait(ForkReady[left]); /* queue on condition variable */
 fork(left) = false;
 /*grant the right fork*/
 if (!fork[right])
 cwait(ForkReady[right]); /* queue on condition variable */
 fork[right] = false:
}
void release_forks(int pid)
{
 int left = pid;
 int right = (++pid) % 5;
 /*release the left fork*/
 if (empty(ForkReady[left]) /*no one is waiting for this fork */
 fork[left] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[left]);
 /*release the right fork*/
 if (empty(ForkReady[right]) /*no one is waiting for this fork */
 fork[right] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[right]);
}

void philosopher[k=0 to 4] /* the five philosopher clients */
{
 while (true) {
 <think>;
 get_forks(k); /* client requests two forks via monitor */
 <eat spaghetti>;
 release_forks(k); /* client releases forks via the monitor */
 }
}

VideoNote

284 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Pipes, messages, and shared memory can be used to communicate data between
processes, whereas semaphores and signals are used to trigger actions by other
processes.

Pipes

One of the most significant contributions of UNIX to the development of operating
systems is the pipe. Inspired by the concept of coroutines [RITC84], a pipe is a circu-
lar buffer allowing two processes to communicate on the producer–consumer model.
Thus, it is a first-in-first-out queue, written by one process and read by another.

When a pipe is created, it is given a fixed size in bytes. When a process at-
tempts to write into the pipe, the write request is immediately executed if there
is sufficient room; otherwise the process is blocked. Similarly, a reading process is
blocked if it attempts to read more bytes than are currently in the pipe; otherwise
the read request is immediately executed. The OS enforces mutual exclusion: that is,
only one process can access a pipe at a time.

There are two types of pipes: named and unnamed. Only related processes
can share unnamed pipes, while either related or unrelated processes can share
named pipes.

Messages

A message is a block of bytes with an accompanying type. UNIX provides msgsnd
and msgrcv system calls for processes to engage in message passing. Associated
with each process is a message queue, which functions like a mailbox.

The message sender specifies the type of message with each message sent, and
this can be used as a selection criterion by the receiver. The receiver can either re-
trieve messages in first-in-first-out order or by type. A process will block when try-
ing to send a message to a full queue. A process will also block when trying to read
from an empty queue. If a process attempts to read a message of a certain type and
fails because no message of that type is present, the process is not blocked.

Shared Memory

The fastest form of interprocess communication provided in UNIX is shared
memory. This is a common block of virtual memory shared by multiple processes.
Processes read and write shared memory using the same machine instructions they
use to read and write other portions of their virtual memory space. Permission is
read-only or read-write for a process, determined on a per-process basis. Mutual ex-
clusion constraints are not part of the shared-memory facility but must be provided
by the processes using the shared memory.

Semaphores

The semaphore system calls in UNIX System V are a generalization of the semWait
and semSignal primitives defined in Chapter 5; several operations can be performed
simultaneously and the increment and decrement operations can be values greater
than 1. The kernel does all of the requested operations atomically; no other process
may access the semaphore until all operations have completed.

6.7 / UNIX CONCURRENCY MECHANISMS 285

A semaphore consists of the following elements:

Current value of the semaphore
Process ID of the last process to operate on the semaphore
Number of processes waiting for the semaphore value to be greater than its
current value
Number of processes waiting for the semaphore value to be zero

Associated with the semaphore are queues of processes blocked on that semaphore.
Semaphores are actually created in sets, with a semaphore set consisting of one

or more semaphores. There is a semctl system call that allows all of the semaphore
values in the set to be set at the same time. In addition, there is a sem_op system
call that takes as an argument a list of semaphore operations, each defined on one
of the semaphores in a set. When this call is made, the kernel performs the indicated
operations one at a time. For each operation, the actual function is specified by the
value sem_op. The following are the possibilities:

If sem_op is positive, the kernel increments the value of the semaphore and
awakens all processes waiting for the value of the semaphore to increase.
If sem_op is 0, the kernel checks the semaphore value. If the semaphore value
equals 0, the kernel continues with the other operations on the list. Otherwise, the
kernel increments the number of processes waiting for this semaphore to be 0 and
suspends the process to wait for the event that the value of the semaphore equals 0.
If sem_op is negative and its absolute value is less than or equal to the sema-
phore value, the kernel adds sem_op (a negative number) to the semaphore
value. If the result is 0, the kernel awakens all processes waiting for the value
of the semaphore to equal 0.
If sem_op is negative and its absolute value is greater than the semaphore
value, the kernel suspends the process on the event that the value of the sema-
phore increases.

This generalization of the semaphore provides considerable flexibility in per-
forming process synchronization and coordination.

Signals

A signal is a software mechanism that informs a process of the occurrence of asyn-
chronous events. A signal is similar to a hardware interrupt but does not employ
priorities. That is, all signals are treated equally; signals that occur at the same time
are presented to a process one at a time, with no particular ordering.

Processes may send each other signals, or the kernel may send signals inter-
nally. A signal is delivered by updating a field in the process table for the process
to which the signal is being sent. Because each signal is maintained as a single bit,
signals of a given type cannot be queued. A signal is processed just after a process
wakes up to run or whenever the process is preparing to return from a system call.
A process may respond to a signal by performing some default action (e.g., termina-
tion), executing a signal-handler function, or ignoring the signal.

Table 6.2 lists signals defined for UNIX SVR4.

286 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 6.8 LINUX KERNEL CONCURRENCY MECHANISMS

Linux includes all of the concurrency mechanisms found in other UNIX systems,
such as SVR4, including pipes, messages, shared memory, and signals. Linux also
supports a special type of signaling known as real-time (RT) signals. These are part
of the POSIX.1b Real-time Extensions feature. RT signals differ from standard
UNIX (or POSIX.1) signals in three primary ways:

Signal delivery in priority order is supported.
Multiple signals can be queued.
With standard signals, no value or message can be sent to the target process; it
is only a notification. With RT signals, it is possible to send a value (an integer
or a pointer) along with the signal.

Linux also includes a rich set of concurrency mechanisms specifically intended for
use when a thread is executing in kernel mode. That is, these are mechanisms used
within the kernel to provide concurrency in the execution of kernel code. This sec-
tion examines the Linux kernel concurrency mechanisms.

Table 6.2 UNIX Signals

Value Name Description

01 SIGHUP Hang up; sent to process when kernel assumes that the user of that process is doing
no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and production of core dump

04 SIGILL Illegal instruction

05 SIGTRAP Trace trap; triggers the execution of code for process tracing

06 SIGIOT IOT instruction

07 SIGEMT EMT instruction

08 SIGFPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGBUS Bus error

11 SIGSEGV Segmentation violation; process attempts to access location outside its virtual
 address space

12 SIGSYS Bad argument to system call

13 SIGPIPE Write on a pipe that has no readers attached to it

14 SIGALRM Alarm clock; issued when a process wishes to receive a signal after a period of time

15 SIGTERM Software termination

16 SIGUSR1 User-defined signal 1

17 SIGUSR2 User-defined signal 2

18 SIGCHLD Death of a child

19 SIGPWR Power failure

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 287

Atomic Operations

Linux provides a set of operations that guarantee atomic operations on a variable. These
operations can be used to avoid simple race conditions. An atomic operation executes
without interruption and without interference. On a uniprocessor system, a thread per-
forming an atomic operation cannot be interrupted once the operation has started until
the operation is finished. In addition, on a multiprocessor system, the variable being
operated on is locked from access by other threads until this operation is completed.

Two types of atomic operations are defined in Linux: integer operations, which
operate on an integer variable, and bitmap operations, which operate on one bit in a
bitmap (Table 6.3). These operations must be implemented on any architecture that
implements Linux. For some architectures, there are corresponding assembly lan-
guage instructions for the atomic operations. On other architectures, an operation
that locks the memory bus is used to guarantee that the operation is atomic.

Table 6.3 Linux Atomic Operations

Atomic Integer Operations

ATOMIC_INIT (int i) At declaration: initialize an atomic_t to i

int atomic_read(atomic_t *v) Read integer value of v

void atomic_set(atomic_t *v, int i) Set the value of v to integer i

void atomic_add(int i, atomic_t *v) Add i to v

void atomic_sub(int i, atomic_t *v) Subtract i from v

void atomic_inc(atomic_t *v) Add 1 to v

void atomic_dec(atomic_t *v) Subtract 1 from v

int atomic_sub_and_test(int i,
atomic_t *v)

Subtract i from v; return 1 if the result is zero;
return 0 otherwise

int atomic_add_negative(int i,
atomic_t *v)

Add i to v; return 1 if the result is negative; return
0 otherwise (used for implementing semaphores)

int atomic_dec_and_test(atomic_t *v) Subtract 1 from v; return 1 if the result is zero;
return 0 otherwise

int atomic_inc_and_test(atomic_t *v) Add 1 to v; return 1 if the result is zero; return 0
otherwise

Atomic Bitmap Operations

void set_bit(int nr, void *addr) Set bit nr in the bitmap pointed to by addr

void clear_bit(int nr, void *addr) Clear bit nr in the bitmap pointed to by addr

void change_bit(int nr, void *addr) Invert bit nr in the bitmap pointed to by addr

int test_and_set_bit(int nr,
void *addr)

Set bit nr in the bitmap pointed to by addr; return
the old bit value

int test_and_clear_bit(int nr,
void *addr)

Clear bit nr in the bitmap pointed to by addr; re-
turn the old bit value

int test_and_change_bit(int nr,
void *addr)

Invert bit nr in the bitmap pointed to by addr; re-
turn the old bit value

int test_bit(int nr, void *addr) Return the value of bit nr in the bitmap pointed
to by addr

288 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

For atomic integer operations, a special data type is used, atomic_t. The atomic
integer operations can be used only on this data type, and no other operations are al-
lowed on this data type. [LOVE04] lists the following advantages for these restrictions:

 1. The atomic operations are never used on variables that might in some circum-
stances be unprotected from race conditions.

 2. Variables of this data type are protected from improper use by nonatomic
operations.

 3. The compiler cannot erroneously optimize access to the value (e.g., by using
an alias rather than the correct memory address).

 4. This data type serves to hide architecture-specific differences in its
implementation.

A typical use of the atomic integer data type is to implement counters.
The atomic bitmap operations operate on one of a sequence of bits at an arbi-

trary memory location indicated by a pointer variable. Thus, there is no equivalent
to the atomic_t data type needed for atomic integer operations.

Atomic operations are the simplest of the approaches to kernel synchroniza-
tion. More complex locking mechanisms can be built on top of them.

Spinlocks

The most common technique used for protecting a critical section in Linux is the
spinlock. Only one thread at a time can acquire a spinlock. Any other thread at-
tempting to acquire the same lock will keep trying (spinning) until it can acquire the
lock. In essence a spinlock is built on an integer location in memory that is checked
by each thread before it enters its critical section. If the value is 0, the thread sets the
value to 1 and enters its critical section. If the value is nonzero, the thread continu-
ally checks the value until it is zero. The spinlock is easy to implement but has the
disadvantage that locked-out threads continue to execute in a busy-waiting mode.
Thus, spinlocks are most effective in situations where the wait time for acquiring a
lock is expected to be very short, say on the order of less than two context switches.

The basic form of use of a spinlock is the following:
spin_lock(&lock)
/* critical section */
spin_unlock(&lock)

BASIC SPINLOCKS The basic spinlock (as opposed to the reader–writer spinlock
explained subsequently) comes in four flavors (Table 6.4):

Plain: If the critical section of code is not executed by interrupt handlers or
if the interrupts are disabled during the execution of the critical section, then
the plain spinlock can be used. It does not affect the interrupt state on the
 processor on which it is run.
_irq: If interrupts are always enabled, then this spinlock should be used.
_irqsave: If it is not known which, if any, interrupts will be enabled or disabled
at the time of execution, then this version should be used. When a lock is ac-
quired, the current state of interrupts on the local processor is saved, to be re-
stored when the lock is released.

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 289

_bh: When an interrupt occurs, the minimum amount of work necessary is per-
formed by the corresponding interrupt handler. A piece of code, called the
bottom half, performs the remainder of the interrupt-related work, allowing
the current interrupt to be enabled as soon as possible. The _bh spinlock is
used to disable and then enable bottom halves to avoid conflict with the pro-
tected critical section.

The plain spinlock is used if the programmer knows that the protected data
is not accessed by an interrupt handler or bottom half. Otherwise, the appropriate
nonplain spinlock is used.

Spinlocks are implemented differently on a uniprocessor system versus a mul-
tiprocessor system. For a uniprocessor system, the following considerations apply. If
kernel preemption is turned off, so that a thread executing in kernel mode cannot
be interrupted, then the locks are deleted at compile time; they are not needed. If
kernel preemption is enabled, which does permit interrupts, then the spinlocks again
compile away (i.e., no test of a spinlock memory location occurs) but are simply im-
plemented as code that enables/disables interrupts. On a multiple processor system,
the spinlock is compiled into code that does in fact test the spinlock location. The
use of the spinlock mechanism in a program allows it to be independent of whether
it is executed on a uniprocessor or multiprocessor system.

READER–WRITER SPINLOCK The reader–writer spinlock is a mechanism that
allows a greater degree of concurrency within the kernel than the basic spinlock. The
reader–writer spinlock allows multiple threads to have simultaneous access to the
same data structure for reading only but gives exclusive access to the spinlock for a

Table 6.4 Linux Spinlocks

void spin_lock(spinlock_t *lock) Acquires the specified lock, spinning if needed
until it is available

void spin_lock_irq(spinlock_t *lock) Like spin_lock, but also disables interrupts on the
local processor

void spin_lock_irqsave(spinlock_t *lock,
unsigned long flags)

Like spin_lock_irq, but also saves the current
interrupt state in flags

void spin_lock_bh(spinlock_t *lock) Like spin_lock, but also disables the execution
of all bottom halves

void spin_unlock(spinlock_t *lock) Releases given lock

void spin_unlock_irq(spinlock_t *lock) Releases given lock and enables local interrupts

void spin_unlock_irqrestore(spinlock_t
*lock, unsigned long flags)

Releases given lock and restores local interrupts to
given previous state

void spin_unlock_bh(spinlock_t *lock) Releases given lock and enables bottom halves

void spin_lock_init(spinlock_t *lock) Initializes given spinlock

int spin_trylock(spinlock_t *lock) Tries to acquire specified lock; returns nonzero if
lock is currently held and zero otherwise

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is currently held and zero
otherwise

290 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

thread that intends to update the data structure. Each reader–writer spinlock consists
of a 24-bit reader counter and an unlock flag, with the following interpretation:

Counter Flag Interpretation

0 1 The spinlock is released and available for use.

0 0 Spinlock has been acquired for writing by one thread.

n (n 7 0) 0 Spinlock has been acquired for reading by n threads.

n (n 7 0) 1 Not valid.

As with the basic spinlock, there are plain, _irq, and _irqsave versions of
the reader–writer spinlock.

Note that the reader–writer spinlock favors readers over writers. If the spin-
lock is held for readers, then so long as there is at least one reader, the spinlock
cannot be preempted by a writer. Furthermore, new readers may be added to the
spinlock even while a writer is waiting.

Semaphores

At the user level, Linux provides a semaphore interface corresponding to that in
UNIX SVR4. Internally, Linux provides an implementation of semaphores for its
own use. That is, code that is part of the kernel can invoke kernel semaphores. These
kernel semaphores cannot be accessed directly by the user program via system calls.
They are implemented as functions within the kernel and are thus more efficient
than user-visible semaphores.

Linux provides three types of semaphore facilities in the kernel: binary sema-
phores, counting semaphores, and reader–writer semaphores.

BINARY AND COUNTING SEMAPHORES The binary and counting semaphores
defined in Linux 2.6 (Table 6.5) have the same functionality as described for
such semaphores in Chapter 5. The function names down and up are used for the
functions referred to in Chapter 5 as semWait and semSignal, respectively.

A counting semaphore is initialized using the sema_init function, which gives
the semaphore a name and assigns an initial value to the semaphore. Binary sema-
phores, called MUTEXes in Linux, are initialized using the init_MUTEX and init_
MUTEX_LOCKED functions, which initialize the semaphore to 1 or 0, respectively.

Linux provides three versions of the down (semWait) operation.

 1. The down function corresponds to the traditional semWait operation. That is,
the thread tests the semaphore and blocks if the semaphore is not available.
The thread will awaken when a corresponding up operation on this semaphore
occurs. Note that this function name is used for an operation on either a count-
ing semaphore or a binary semaphore.

 2. The down_interruptible function allows the thread to receive and re-
spond to a kernel signal while being blocked on the down operation. If the
thread is woken up by a signal, the down_interruptible function incre-
ments the count value of the semaphore and returns an error code known in

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS 291

Linux as -EINTR. This alerts the thread that the invoked semaphore function
has aborted. In effect, the thread has been forced to “give up” the semaphore.
This feature is useful for device drivers and other services in which it is conve-
nient to override a semaphore operation.

 3. The down_trylock function makes it possible to try to acquire a semaphore
without being blocked. If the semaphore is available, it is acquired. Otherwise,
this function returns a nonzero value without blocking the thread.

READER–WRITER SEMAPHORES The reader–writer semaphore divides users into
readers and writers; it allows multiple concurrent readers (with no writers) but only
a single writer (with no concurrent readers). In effect, the semaphore functions as
a counting semaphore for readers but a binary semaphore (MUTEX) for writers.
Table 6.5 shows the basic reader–writer semaphore operations. The reader–writer
semaphore uses uninterruptible sleep, so there is only one version of each of the
down operations.

Table 6.5 Linux Semaphores

Traditional Semaphores

void sema_init(struct semaphore *sem,
int count)

Initializes the dynamically created semaphore to the
given count

void init_MUTEX(struct semaphore *sem) Initializes the dynamically created semaphore with a
count of 1 (initially unlocked)

void init_MUTEX_LOCKED(struct sema-
phore *sem)

Initializes the dynamically created semaphore with a
count of 0 (initially locked)

void down(struct semaphore *sem) Attempts to acquire the given semaphore, entering
uninterruptible sleep if semaphore is unavailable

int down_interruptible(struct
semaphore *sem)

Attempts to acquire the given semaphore, entering
interruptible sleep if semaphore is unavailable;
returns EINTR value if a signal other than the result
of an up operation is received

int down_trylock(struct semaphore
*sem)

Attempts to acquire the given semaphore, and
returns a nonzero value if semaphore is unavailable

void up(struct semaphore *sem) Releases the given semaphore

Reader–Writer Semaphores

void init_rwsem(struct rw_semaphore,
*rwsem)

Initializes the dynamically created semaphore with a
count of 1

void down_read(struct rw_semaphore,
*rwsem)

Down operation for readers

void up_read(struct rw_semaphore,
*rwsem)

Up operation for readers

void down_write(struct rw_semaphore,
*rwsem)

Down operation for writers

void up_write(struct rw_semaphore,
*rwsem)

Up operation for writers

292 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Barriers

In some architectures, compilers and/or the processor hardware may reorder mem-
ory accesses in source code to optimize performance. These reorderings are done
to optimize the use of the instruction pipeline in the processor. The reordering al-
gorithms contain checks to ensure that data dependencies are not violated. For ex-
ample, the code:

a = 1;
b = 1;

may be reordered so that memory location b is updated before memory location a
is updated. However, the code:

a = 1;
b = a;

will not be reordered. Even so, there are occasions when it is important that reads or
writes are executed in the order specified because of use of the information that is
made by another thread or a hardware device.

To enforce the order in which instructions are executed, Linux provides the
memory barrier facility. Table 6.6 lists the most important functions that are defined
for this facility. The rmb() operation insures that no reads occur across the barrier
defined by the place of the rmb() in the code. Similarly, the wmb() operation in-
sures that no writes occur across the barrier defined by the place of the wmb() in the
code. The mb() operation provides both a load and store barrier.

Two important points to note about the barrier operations:

 1. The barriers relate to machine instructions, namely loads and stores. Thus, the
higher-level language instruction a = b involves both a load (read) from loca-
tion b and a store (write) to location a.

 2. The rmb, wmb, and mb operations dictate the behavior of both the compiler
and the processor. In the case of the compiler, the barrier operation dictates
that the compiler not reorder instructions during the compile process. In the
case of the processor, the barrier operation dictates that any instructions pend-
ing in the pipeline before the barrier must be committed for execution before
any instructions encountered after the barrier.

Table 6.6 Linux Memory Barrier Operations

rmb() Prevents loads from being reordered across the barrier

wmb() Prevents stores from being reordered across the barrier

mb() Prevents loads and stores from being reordered across the barrier

Barrier() Prevents the compiler from reordering loads or stores across the barrier

smp_rmb() On SMP, provides a rmb() and on UP provides a barrier()

smp_wmb() On SMP, provides a wmb() and on UP provides a barrier()

smp_mb() On SMP, provides a mb() and on UP provides a barrier()

Note: SMP = symmetric multiprocessor;
UP = uniprocessor

6.9 / SOLARIS THREAD SYNCHRONIZATION PRIMITIVES 293

The barrier() operation is a lighter-weight version of the mb() operation, in
that it only controls the compiler’s behavior. This would be useful if it is known that
the processor will not perform undesirable reorderings. For example, the Intel x86
processors do not reorder writes.

The smp_rmb, smp_wmb, and smp_mb operations provide an optimization for
code that may be compiled on either a uniprocessor (UP) or a symmetric multipro-
cessor (SMP). These instructions are defined as the usual memory barriers for an
SMP, but for a UP, they are all treated only as compiler barriers. The smp_ opera-
tions are useful in situations in which the data dependencies of concern will only
arise in an SMP context.

 6.9 SOLARIS THREAD SYNCHRONIZATION PRIMITIVES

In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four
thread synchronization primitives:

Mutual exclusion (mutex) locks
Semaphores
Multiple readers, single writer (readers/writer) locks
Condition variables

Solaris implements these primitives within the kernel for kernel threads; they
are also provided in the threads library for user-level threads. Figure 6.15 shows the
data structures for these primitives. The initialization functions for the primitives
fill in some of the data members. Once a synchronization object is created, there
are essentially only two operations that can be performed: enter (acquire lock) and
release (unlock). There are no mechanisms in the kernel or the threads library to en-
force mutual exclusion or to prevent deadlock. If a thread attempts to access a piece
of data or code that is supposed to be protected but does not use the appropriate
synchronization primitive, then such access occurs. If a thread locks an object and
then fails to unlock it, no kernel action is taken.

All of the synchronization primitives require the existence of a hardware in-
struction that allows an object to be tested and set in one atomic operation.

Mutual Exclusion Lock

A mutex is used to ensure that only one thread at a time can access the resource
protected by the mutex. The thread that locks the mutex must be the one that un-
locks it. A thread attempts to acquire a mutex lock by executing the mutex_enter
primitive. If mutex_enter cannot set the lock (because it is already set by another
thread), the blocking action depends on type-specific information stored in the
mutex object. The default blocking policy is a spinlock: A blocked thread polls the
status of the lock while executing in a busy waiting loop. An interrupt-based block-
ing mechanism is optional. In this latter case, the mutex includes a turnstile id
that identifies a queue of threads sleeping on this lock.

294 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

The operations on a mutex lock are:

mutex_enter() Acquires the lock, potentially blocking if it is
 already held

mutex_exit() Releases the lock, potentially unblocking a waiter
mutex_tryenter() Acquires the lock if it is not already held

The mutex_tryenter() primitive provides a nonblocking way of performing
the mutual exclusion function. This enables the programmer to use a busy-wait ap-
proach for user-level threads, which avoids blocking the entire process because one
thread is blocked.

Semaphores

Solaris provides classic counting semaphores, with the following primitives:

sema_p() Decrements the semaphore, potentially blocking the thread
sema_v() Increments the semaphore, potentially unblocking a waiting

thread
sema_tryp() Decrements the semaphore if blocking is not required

Again, the sema_tryp() primitive permits busy waiting.

(a) MUTEX lock

(b) Semaphore

(c) Reader/writer lock

(d) Condition variable

Owner (3 octets)

Lock (1 octet)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Waiters (2 octets)

Thread owner (4 octets)

Union (4 octets)
(statistic pointer or

number of write requests)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Count (4 octets)

Waiters (2 octets)

Type-specific info (4 octets)
(possibly a turnstile id,

lock type filler,
or statistics pointer)

Figure 6.15 Solaris Synchronization Data Structures

6.10 / WINDOWS 7 CONCURRENCY MECHANISMS 295

Readers/Writer Lock

The readers/writer lock allows multiple threads to have simultaneous read-only ac-
cess to an object protected by the lock. It also allows a single thread to access the
object for writing at one time, while excluding all readers. When the lock is acquired
for writing it takes on the status of write lock: All threads attempting access for
reading or writing must wait. If one or more readers have acquired the lock, its sta-
tus is read lock. The primitives are as follows:

rw_enter() Attempts to acquire a lock as reader or writer
rw_exit() Releases a lock as reader or writer
rw_tryenter() Acquires the lock if blocking is not required
rw_downgrade() A thread that has acquired a write lock converts it to

a read lock. Any waiting writer remains waiting until
this thread releases the lock. If there are no waiting
writers, the primitive wakes up any pending readers.

rw_tryupgrade() Attempts to convert a reader lock into a writer lock

Condition Variables

A condition variable is used to wait until a particular condition is true. Condition
variables must be used in conjunction with a mutex lock. This implements a monitor
of the type illustrated in Figure 6.14. The primitives are as follows:

cv_wait() Blocks until the condition is signaled
cv_signal() Wakes up one of the threads blocked in cv_wait()
cv_broadcast() Wakes up all of the threads blocked in cv_wait()

cv_wait() releases the associated mutex before blocking and reacquires
it before returning. Because reacquisition of the mutex may be blocked by other
threads waiting for the mutex, the condition that caused the wait must be retested.
Thus, typical usage is as follows:

mutex_enter(&m)
* *
while (some_condition) {
 cv_wait(&cv, &m);
}
* *
mutex_exit(&m);

This allows the condition to be a complex expression, because it is protected by the
mutex.

 6.10 WINDOWS 7 CONCURRENCY MECHANISMS

Windows provides synchronization among threads as part of the object architec-
ture. The most important methods of synchronization are Executive dispatcher
objects, user–mode critical sections, slim reader–writer locks, condition variables,

296 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

and lock-free operations. Dispatcher objects make use of wait functions. We first
describe wait functions and then look at the synchronization methods.

Wait Functions

The wait functions allow a thread to block its own execution. The wait functions do
not return until the specified criteria have been met. The type of wait function deter-
mines the set of criteria used. When a wait function is called, it checks whether the
wait criteria have been met. If the criteria have not been met, the calling thread en-
ters the wait state. It uses no processor time while waiting for the criteria to be met.

The most straightforward type of wait function is one that waits on a single
object. The WaitForSingleObject function requires a handle to one synchroni-
zation object. The function returns when one of the following occurs:

The specified object is in the signaled state.
The time-out interval elapses. The time-out interval can be set to INFINITE to
specify that the wait will not time out.

Dispatcher Objects

The mechanism used by the Windows Executive to implement synchronization fa-
cilities is the family of dispatcher objects, which are listed with brief descriptions in
Table 6.7.

Table 6.7 Windows Synchronization Objects

Object Type Definition
Set to Signaled State
When

Effect on Waiting
Threads

Notification
event

An announcement that a system
event has occurred

Thread sets the event All released

Synchronization
event

An announcement that a system
event has occurred

Thread sets the event One thread released

Mutex A mechanism that provides mutual
exclusion capabilities; equivalent to
a binary semaphore

Owning thread or other
thread releases the
mutex

One thread released

Semaphore A counter that regulates the number
of threads that can use a resource

Semaphore count drops
to zero

All released

Waitable timer A counter that records the passage
of time

Set time arrives or time
interval expires

All released

File An instance of an opened file or
I/O device

I/O operation completes All released

Process A program invocation, including
the address space and resources re-
quired to run the program

Last thread terminates All released

Thread An executable entity within a
process

Thread terminates All released

Note: Shaded rows correspond to objects that exist for the sole purpose of synchronization.

6.10 / WINDOWS 7 CONCURRENCY MECHANISMS 297

The first five object types in the table are specifically designed to support syn-
chronization. The remaining object types have other uses but also may be used for
synchronization.

Each dispatcher object instance can be in either a signaled or an unsignaled state.
A thread can be blocked on an object in an unsignaled state; the thread is released
when the object enters the signaled state. The mechanism is straightforward: A thread
issues a wait request to the Windows Executive, using the handle of the synchroniza-
tion object. When an object enters the signaled state, the Windows Executive releases
one or all of the thread objects that are waiting on that dispatcher object.

The event object is useful in sending a signal to a thread indicating that a par-
ticular event has occurred. For example, in overlapped input and output, the system
sets a specified event object to the signaled state when the overlapped operation has
been completed. The mutex object is used to enforce mutually exclusive access to a
resource, allowing only one thread object at a time to gain access. It therefore func-
tions as a binary semaphore. When the mutex object enters the signaled state, only
one of the threads waiting on the mutex is released. Mutexes can be used to syn-
chronize threads running in different processes. Like mutexes, semaphore objects
may be shared by threads in multiple processes. The Windows semaphore is a count-
ing semaphore. In essence, the waitable timer object signals at a certain time and/or
at regular intervals.

Critical Sections

Critical sections provide a synchronization mechanism similar to that provided by
mutex objects, except that critical sections can be used only by the threads of a single
process. Event, mutex, and semaphore objects can also be used in a single-process
application, but critical sections provide a much faster, more efficient mechanism
for mutual–exclusion synchronization.

The process is responsible for allocating the memory used by a critical section.
Typically, this is done by simply declaring a variable of type CRITICAL_SECTION.
Before the threads of the process can use it, initialize the critical section by using the
InitializeCriticalSection function.

A thread uses the EnterCriticalSection or TryEnterCritical
Section function to request ownership of a critical section. It uses the
LeaveCriticalSection function to release ownership of a critical section. If the
critical section is currently owned by another thread, EnterCriticalSection
waits indefinitely for ownership. In contrast, when a mutex object is used for
mutual exclusion, the wait functions accept a specified time-out interval. The
TryEnterCriticalSection function attempts to enter a critical section without
blocking the calling thread.

Critical sections use a sophisticated algorithm when trying to acquire the
mutex. If the system is a multiprocessor, the code will attempt to acquire a spinlock.
This works well in situations where the critical section is acquired for only a short
time. Effectively the spinlock optimizes for the case where the thread that currently
owns the critical section is executing on another processor. If the spinlock cannot
be acquired within a reasonable number of iterations, a dispatcher object is used to
block the thread so that the Kernel can dispatch another thread onto the processor.

298 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

The dispatcher object is only allocated as a last resort. Most critical sections are
needed for correctness, but in practice are rarely contended. By lazily allocating the
dispatcher object the system saves significant amounts of kernel virtual memory.

Slim Reader–Writer Locks and Condition Variables

Windows Vista added a user mode reader–writer. Like critical sections, the reader–
writer lock enters the kernel to block only after attempting to use a spinlock. It is
slim in the sense that it normally only requires allocation of a single pointer-sized
piece of memory.

To use an SRW lock, a process declares a variable of type SRWLOCK and a calls
InitializeSRWLock to initialize it. Threads call AcquireSRWLockExclusive or
AcquireSRWLockShared to acquire the lock and ReleaseSRWLockExclusive
or ReleaseSRWLockShared to release it.

Windows also has condition variables. The process must declare a
CONDITION_VARIABLE and initialize it in some thread by calling
InitializeConditionVariable. Condition variables can be used with either crit-
ical sections or SRW locks, so there are two methods, SleepConditionVariableCS
and SleepConditionVariableSRW, which sleep on the specified condition and
releases the specified lock as an atomic operation.

There are two wake methods, WakeConditionVariable and Wake
AllConditionVariable, which wake one or all of the sleeping threads, respec-
tively. Condition variables are used as follows:

 1. Acquire exclusive lock
 2. While (predicate() == FALSE) SleepConditionVariable()
 3. Perform the protected operation
 4. Release the lock

Lock-free Synchronization

Windows also relies heavily on interlocked operations for synchronization.
Interlocked operations use hardware facilities to guarantee that memory loca-
tions can be read, modified, and written in a single atomic operation. Examples
include InterlockedIncrement and InterlockedCompareExchange; the
latter allows a memory location to be updated only if it hasn’t changed values
since being read.

Many of the synchronization primitives use interlocked operations within
their implementation, but these operations are also available to programmers for
situations where they want to synchronize without taking a software lock. These
so-called lock-free synchronization primitives have the advantage that a thread can
never be switched away from a processor, say at the end of its timeslice, while still
holding a lock. Thus they cannot block another thread from running.

More complex lock-free primitives can be built out of the interlocked op-
erations, most notably Windows SLists, which provide a lock-free LIFO queue.
SLists are managed using functions like InterlockedPushEntrySList and
InterlockedPopEntrySList.

6.11 / ANDROID INTERPROCESS COMMUNICATION 299

 6.11 ANDROID INTERPROCESS COMMUNICATION

The Linux kernel includes a number of features that can be used for interprocess
communication (IPC), including pipes, shared memory, messages, sockets, sema-
phores, and signals. Android does not use these features for IPC but rather adds
to the kernel a new capability known as Binder. Binder provides a lightweight re-
mote procedure call (RPC) capability that is efficient in terms of both memory and
processing requirements, and is well suited to the requirements of an embedded
system.

The Binder is used to mediate all interaction between two processes. A com-
ponent in one process (the client) issues a call. This call is directed to the Binder in
the kernel, which passes the call on to the destination component in the destination
process (the service). The return from the destination goes through the Binder and
is delivered to the calling component in the calling process.

Traditionally, the term RPC referred to a call/return interaction between
a client process on one machine and a server process on another machine. In the
Android case, the RPC mechanism works between two processes on the same sys-
tem but running on different virtual machines.

The method used for communicating with the Binder is the ioctl system call.
The ioctl call is a general-purpose system call for device-specific I/O operations. It
can be used to access device drivers and also what are called pseudodevice driv-
ers, of which Binder is an example. A pseudodevice driver uses the same general
interface as a device driver, but is used to control some kernel function. The ioctl
call includes as parameters the command to be performed and the appropriate
arguments.

Figure 6.16 illustrates a typical use of the Binder. The dashed vertical lines rep-
resent threads in a process. Before a process can make use of a service, that service
must be known. A process that hosts a service will spawn multiple threads so that it
can handle multiple requests concurrently. Each thread makes itself known to the
Binder by a blocking ioctl.

2

Proxy Service

1
3

4

5

7
8

Client

Process A Kernel Process B

StubBinder
driver

6

Figure 6.16 Binder Operation

300 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

The interaction proceeds as follows:

 1. A client component, such as an activity, invokes a service in the form of a call
with argument data.

 2. The call invokes a proxy, which is able to translate the call into a transaction
with the Binder driver. The proxy performs a procedure called marshalling,
which converts higher-level applications data structures (i.e., request/
response parameters) into a parcel. The parcel is a container for a message
(data and object references) that can be sent through the Binder driver. The
proxy then submits the transaction to the binder by a blocking ioctl call.

 3. The Binder sends a signal to the target thread that wakes the thread up from
its blocking ioctl call. The parcel is delivered to a stub component in the target
process.

 4. The stub performs a procedure called unmarshalling, which reconstructs
higher-level application data structures from parcels received through binder
transactions. The proxy then calls the service component with a call that is
identical to the call issued by the client component.

 5. The called service component returns the appropriate result to the stub.
 6. The stub marshals the return data into a reply parcel and then submits the

reply parcel to the Binder via an ioctl.
 7. The Binder wakes up the calling ioctl in the client proxy, which gets the trans-

action reply data.
 8. The proxy unmarshals the result from the reply parcel and returns the result to

the client component that issued the service call.

 6.12 SUMMARY

Deadlock is the blocking of a set of processes that either compete for system re-
sources or communicate with each other. The blockage is permanent unless the OS
takes some extraordinary action, such as killing one or more processes or forcing
one or more processes to backtrack. Deadlock may involve reusable resources or
consumable resources. A reusable resource is one that is not depleted or destroyed
by use, such as an I/O channel or a region of memory. A consumable resource is one
that is destroyed when it is acquired by a process; examples include messages and
information in I/O buffers.

There are three general approaches to dealing with deadlock: prevention,
detection, and avoidance. Deadlock prevention guarantees that deadlock will not
occur, by assuring that one of the necessary conditions for deadlock is not met.
Deadlock detection is needed if the OS is always willing to grant resource requests;
periodically, the OS must check for deadlock and take action to break the deadlock.
Deadlock avoidance involves the analysis of each new resource request to deter-
mine if it could lead to deadlock, and granting it only if deadlock is not possible.

6.13 / RECOMMENDED READING AND ANIMATIONS 301

ABRA06 Abramson, T. “Detecting Potential Deadlocks.” Dr. Dobb’s Journal, January
2006.

COFF71 Coffman, E.; Elphick, M.; and Shoshani, A. “System Deadlocks.” Computing
Surveys, June 1971.

CORB96 Corbett, J. “Evaluating Deadlock Detection Methods for Concurrent
Software.” IEEE Transactions on Software Engineering, March 1996.

DIMI98 Dimitoglou, G. “Deadlocks and Methods for Their Detection, Prevention, and
Recovery in Modern Operating Systems.” Operating Systems Review, July 1998.

GRAY97 Gray, J. Interprocess Communications in UNIX: The Nooks and Crannies.
Upper Saddle River, NJ: Prentice Hall, 1997.

HALL10 Hall, B. Beej’s Guide to Unix IPC. 2010. http://beej.us/guide/bgipc/
HOLT72 Holt, R. “Some Deadlock Properties of Computer Systems.” Computing

Surveys, September 1972.
ISLO80 Isloor, S., and Marsland, T. “The Deadlock Problem: An Overview.” Computer,

September 1980.
LEVI03a Levine, G. “Defining Deadlock.” Operating Systems Review, January 2003.
LEVI03b Levine, G. “Defining Deadlock with Fungible Resources.” Operating Systems

Review, July 2003.
LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-

Wesley, 2010.
MCDO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris

Kernel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.
SCHR11 Schreiber, T. “Android Binder: Android Interprocess Communication.”

Seminar Thesis, Ruhr University Bochum, October 5, 2011. www.nds.rub.de/
media/attachments/files/2012/03/binder.pdf?

SHUB03 Shub, C. “A Unified Treatment of Deadlock.” Journal of Computing in Small
Colleges, October 2003. Available through the ACM digital library.

 6.13 RECOMMENDED READING AND ANIMATIONS

The classic paper on deadlocks, [HOLT72], is still well worth a read, as is [COFF71].
Another good survey is [ISLO80]. [CORB96] is a thorough treatment of dead-
lock detection. [DIMI98] is a nice overview of deadlocks. Two papers by Levine
[LEVI03a, LEVI03b] clarify some of the concepts used in discussions of deadlock.
[SHUB03] is a useful overview of deadlock. [ABRA06] describes a deadlock detec-
tion package.

The concurrency mechanisms in UNIX SVR4, Linux, and Solaris 2 are
well covered in [GRAY97], [LOVE10], and [MCDO07], respectively. [HALL10]
is a thorough treatment of UNIX concurrency and interprocess communication
mechanisms.

[SCHR11] is an excellent detailed discussion of Android Binder.

www.nds.rub.de/media/attachments/files/2012/03/binder.pdf?
www.nds.rub.de/media/attachments/files/2012/03/binder.pdf?
http://beej.us/guide/bgipc/

302 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

Review Questions

 6.1. Give examples of reusable and consumable resources.
 6.2. What are the three conditions that must be present for deadlock to be possible?
 6.3. What are the four conditions that create deadlock?
 6.4. How can the hold-and-wait condition be prevented?
 6.5. List two ways in which the no-preemption condition can be prevented.
 6.6. How can the circular-wait condition be prevented?
 6.7. What is the difference among deadlock avoidance, detection, and prevention?

Problems

 6.1. Show that the four conditions of deadlock apply to Figure 6.1a.
 6.2. Show how each of the techniques of prevention, avoidance, and detection can be ap-

plied to Figure 6.1.
 6.3. For Figure 6.3, provide a narrative description of each of the six depicted paths, simi-

lar to the description of the paths of Figure 6.2 provided in Section 6.1.
 6.4. It was stated that deadlock cannot occur for the situation reflected in Figure 6.3.

Justify that statement.
 6.5. Given the following state for the Banker’s Algorithm.

6 processes P0 through P5
4 resource types: A (15 instances); B (6 instances)
C (9 instances); D (10 instances)
Snapshot at time T0:

Available
A B C D
6 3 5 4

Animations

An animation that illustrates deadlock is available at the Premium Web site. The
reader is encouraged to view the animation to reinforce concepts from this chapter.

Animation

 6.14 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

banker’s algorithm
circular wait
consumable resource
deadlock
deadlock avoidance
deadlock detection

deadlock prevention
hold and wait
joint progress diagram
memory barrier
message
mutual exclusion

pipe
preemption
resource allocation graph
reusable resource
spinlock
starvation

6.14 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 303

Current allocation Maximum demand
Process A B C D A B C D

P0 2 0 2 1 9 5 5 5
P1 0 1 1 1 2 2 3 3
P2 4 1 0 2 7 5 4 4
P3 1 0 0 1 3 3 3 2
P4 1 1 0 0 5 2 2 1
P5 1 0 1 1 4 4 4 4

a. Verify that the Available array has been calculated correctly.
b. Calculate the Need matrix.
c. Show that the current state is safe, that is, show a safe sequence of processes. In

addition, to the sequence show how the Available (working array) changes as each
process terminates.

d. Given the request (3,2,3,3) from Process P5. Should this request be granted? Why
or why not?

 6.6. In the code below, three processes are competing for six resources labeled A to F.
a. Using a resource allocation graph (Figures 6.5 and 6.6), show the possibility of a

deadlock in this implementation.
b. Modify the order of some of the get requests to prevent the possibility of any

deadlock. You cannot move requests across procedures, only change the order in-
side each procedure. Use a resource allocation graph to justify your answer.

void P0()
{
 while (true) {
 get(A);
 get(B);
 get(C);
 // critical region:
 // use A, B, C
 release(A);
 release(B);
 release(C);
 }
}

void P1()
{
 while (true) {
 get(D);
 get(E);
 get(B);
 // critical region:
 // use D, E, B
 release(D);
 release(E);
 release(B);
 }
}

void P2()
{
 while (true) {
 get(C);
 get(F);
 get(D);
 // critical region:
 // use C, F, D
 release(C);
 release(F);
 release(D);
 }
}

 6.7. A spooling system (Figure 6.17) consists of an input process I, a user process P, and an
output process O connected by two buffers. The processes exchange data in blocks of
equal size. These blocks are buffered on a disk using a floating boundary between the

I PInput
buffer OOutput

buffer

Figure 6.17 A Spooling System

304 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

input and the output buffers, depending on the speed of the processes. The communi-
cation primitives used ensure that the following resource constraint is satisfied:

i + o … max

where

max = maximum number of blocks on disk
i = number of input blocks on disk

o = number of output blocks on disk

The following is known about the processes:
1. As long as the environment supplies data, process I will eventually input it to the

disk (provided disk space becomes available).
2. As long as input is available on the disk, process P will eventually consume it and

output a finite amount of data on the disk for each block input (provided disk
space becomes available).

3. As long as output is available on the disk, process O will eventually consume it.

Show that this system can become deadlocked.
 6.8. Suggest an additional resource constraint that will prevent the deadlock in Problem

6.7 but still permit the boundary between input and output buffers to vary in accor-
dance with the present needs of the processes.

 6.9. In the THE multiprogramming system [DIJK68], a drum (precursor to the disk for
secondary storage) is divided into input buffers, processing areas, and output buffers,
with floating boundaries, depending on the speed of the processes involved. The cur-
rent state of the drum can be characterized by the following parameters:

max = maximum number of pages on drum
i = number of input pages on drum

p = number of processing pages on drum
o = number of output pages on drum

reso = minimum number of pages reserved for output
resp = minimum number of pages reserved for processing

Formulate the necessary resource constraints that guarantee that the drum capacity
is not exceeded and that a minimum number of pages is reserved permanently for
output and processing.

 6.10. In the THE multiprogramming system, a page can make the following state transitions:

1. empty S input buffer (input production)
2. input buffer S processing area (input consumption)
3. processing area S output buffer (output production)
4. output buffer S empty (output consumption)
5. empty S processing area (procedure call)
6. processing area S empty (procedure return)

a. Define the effect of these transitions in terms of the quantities i, o, and p.
b. Can any of them lead to a deadlock if the assumptions made in Problem 6.6 about

input processes, user processes, and output processes hold?
 6.11. Consider a system with a total of 150 units of memory, allocated to three processes as

shown:

Process Max Hold
1 70 45
2 60 40
3 60 15

6.14 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 305

Apply the banker’s algorithm to determine whether it would be safe to grant each of
the following requests. If yes, indicate a sequence of terminations that could be guar-
anteed possible. If no, show the reduction of the resulting allocation table.
a. A fourth process arrives, with a maximum memory need of 60 and an initial need

of 25 units.
b. A fourth process arrives, with a maximum memory need of 60 and an initial need

of 35 units.
 6.12. Evaluate the banker’s algorithm for its usefulness in an OS.
 6.13. A pipeline algorithm is implemented so that a stream of data elements of type T pro-

duced by a process P0 passes through a sequence of processes P1, P2, …, Pn - 1, which
operates on the elements in that order.
a. Define a generalized message buffer that contains all the partially consumed data

elements and write an algorithm for process Pi (0 … i … n - 1), of the form

repeat
 receive from predecessor;
 consume element;
 send to successor:

forever

 Assume P0 receives input elements sent by Pn - 1. The algorithm should en-
able the processes to operate directly on messages stored in the buffer so that
copying is unnecessary.

b. Show that the processes cannot be deadlocked with respect to the common buffer.
 6.14. Suppose the following two processes, foo and bar, are executed concurrently and

share the semaphore variables S and R (each initialized to 1) and the integer variable
x (initialized to 0).

void foo() {
 do {
 semWait(S);
 semWait(R);
 x++;
 semSignal(S);
 SemSignal(R);
 } while (1);
}

void bar() {
do {
 semWait(R);
 semWait(S);
 x--;
 semSignal(S;
 SemSignal(R);
} while (1);
}

a. Can the concurrent execution of these two processes result in one or both being
blocked forever? If yes, give an execution sequence in which one or both are
blocked forever.

b. Can the concurrent execution of these two processes result in the indefinite post-
ponement of one of them? If yes, give an execution sequence in which one is in-
definitely postponed.

 6.15. Consider a system consisting of four processes and a single resource. The current state
of the claim and allocation matrices are:

C = §3
2
9
7

¥ A = §1
1
3
2

¥
What is the minimum number of units of the resource needed to be available for this
state to be safe?

306 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION

 6.16. Consider the following ways of handling deadlock: (1) banker’s algorithm, (2) detect
deadlock and kill thread, releasing all resources, (3) reserve all resources in advance,
(4) restart thread and release all resources if thread needs to wait, (5) resource order-
ing, and (6) detect deadlock and roll back thread’s actions.
a. One criterion to use in evaluating different approaches to deadlock is which

approach permits the greatest concurrency. In other words, which approach al-
lows the most threads to make progress without waiting when there is no dead-
lock? Give a rank order from 1 to 6 for each of the ways of handling deadlock
just listed, where 1 allows the greatest degree of concurrency. Comment on your
ordering.

b. Another criterion is efficiency; in other words, which requires the least processor
overhead. Rank order the approaches from 1 to 6, with 1 being the most efficient,
assuming that deadlock is a very rare event. Comment on your ordering. Does
your ordering change if deadlocks occur frequently?

 6.17. Comment on the following solution to the dining philosophers problem. A hungry
philosopher first picks up his left fork; if his right fork is also available, he picks up his
right fork and starts eating; otherwise he puts down his left fork again and repeats the
cycle.

 6.18. Suppose that there are two types of philosophers. One type always picks up his
left fork first (a “lefty”), and the other type always picks up his right fork first (a
“righty”). The behavior of a lefty is defined in Figure 6.12. The behavior of a righty
is as follows:

begin
 repeat
 think;
 wait (fork[(i+1) mod 5]);
 wait (fork[i]);
 eat;
 signal (fork[i]);
 signal (fork[(i+1) mod 5]);
 forever
end;

Prove the following:
a. Any seating arrangement of lefties and righties with at least one of each avoids

deadlock.
b. Any seating arrangement of lefties and righties with at least one of each prevents

starvation.
 6.19. Figure 6.18 shows another solution to the dining philosophers problem using moni-

tors. Compare to Figure 6.14 and report your conclusions.
 6.20. In Table 6.3, some of the Linux atomic operations do not involve two accesses to a

variable, such as atomic_read(atomic_t *v). A simple read operation is obvi-
ously atomic in any architecture. Therefore, why is this operation added to the reper-
toire of atomic operations?

 6.21. Consider the following fragment of code on a Linux system.
read_lock(&mr_rwlock);
write_lock(&mr_rwlock);

 Where mr_rwlock is a reader–writer lock. What is the effect of this code?

6.14 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 307

 6.22. The two variables a and b have initial values of 1 and 2, respectively. The following
code is for a Linux system:

Thread 1 Thread 2
a = 3; —
mb(); —
b = 4; c = b;
— rmb();
— d = a;

What possible errors are avoided by the use of the memory barriers?

Figure 6.18 Another Solution to the Dining Philosophers Problem Using a Monitor

monitor dining_controller;
enum states {thinking, hungry, eating} state[5];
cond needFork[5] /* condition variable */

void get_forks(int pid) /* pid is the philosopher id number */
{
 state[pid] = hungry; /* announce that I’m hungry */
 if (state[(pid+1) % 5] == eating || (state[(pid-1) % 5] == eating)
 cwait(needFork[pid]); /* wait if either neighbor is eating */
 state[pid] = eating; /* proceed if neither neighbor is eating */
}

void release_forks(int pid)
{
 state[pid] = thinking;
 /* give right (higher) neighbor a chance to eat */
 if (state[(pid+1) % 5] == hungry) && (state[(pid+2)
 % 5]) != eating)
 csignal(needFork[pid+1]);
 /* give left (lower) neighbor a chance to eat */
 else if (state[(pid–1) % 5] == hungry) && (state[(pid–2)
 % 5]) != eating)
 csignal(needFork[pid–1]);
}

void philosopher[k=0 to 4] /* the five philosopher clients */
{
 while (true) {
 <think>;
 get_forks(k); /* client requests two forks via monitor */
 <eat spaghetti>;
 release_forks(k); /* client releases forks via the monitor */
 }
}

VideoNote

This page intentionally left blank

309

 7.1 Memory Management Requirements
Relocation
Protection
Sharing
Logical Organization
Physical Organization

 7.2 Memory Partitioning
Fixed Partitioning
Dynamic Partitioning
Buddy System
Relocation

 7.3 Paging

 7.4 Segmentation

 7.5 Summary

 7.6 Recommended Reading and Animations

 7.7 Key Terms, Review Questions, and Problems

 APPENDIX 7A Loading and Linking

MEMORY MANAGEMENT

CHAPTER

MemoryPART 3

Animation

310 CHAPTER 7 / MEMORY MANAGEMENT

In a uniprogramming system, main memory is divided into two parts: one part
for the operating system (resident monitor, kernel) and other part for the pro-
gram currently being executed. In a multiprogramming system, the “user” part of
memory must be further subdivided to accommodate multiple processes. The task
of subdivision is carried out dynamically by the operating system and is known as
memory management.

Effective memory management is vital in a multiprogramming system. If only
a few processes are in memory, then for much of the time all of the processes will be
waiting for I/O (input/output) and the processor will be idle. Thus memory needs to
be allocated to ensure a reasonable supply of ready processes to consume available
processor time.

We begin with the requirements that memory management is intended to sat-
isfy. Next, we discuss a variety of simple schemes that have been used for memory
management.

Table 7.1 introduces some key terms for our discussion.

Table 7.1 Memory Management Terms

Frame A fixed-length block of main memory.

Page A fixed-length block of data that resides in secondary memory (such as disk). A page of data
may temporarily be copied into a frame of main memory.

Segment A variable-length block of data that resides in secondary memory. An entire segment may
 temporarily be copied into an available region of main memory (segmentation) or the segment
may be divided into pages which can be individually copied into main memory (combined
 segmentation and paging).

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Discuss the principal requirements for memory management.
Understand the reason for memory partitioning and explain the various
techniques that are used.
Understand and explain the concept of paging.
Understand and explain the concept of segmentation.
Assess the relative advantages of paging and segmentation.
Describe the concepts of loading and linking.

 7.1 MEMORY MANAGEMENT REQUIREMENTS

While surveying the various mechanisms and policies associated with memory man-
agement, it is helpful to keep in mind the requirements that memory management is
intended to satisfy. These requirements include the following:

Relocation
Protection

7.1 / MEMORY MANAGEMENT REQUIREMENTS 311

Sharing
Logical organization
Physical organization

Relocation

In a multiprogramming system, the available main memory is generally shared
among a number of processes. Typically, it is not possible for the programmer to
know in advance which other programs will be resident in main memory at the time
of execution of his or her program. In addition, we would like to be able to swap
active processes in and out of main memory to maximize processor utilization by
providing a large pool of ready processes to execute. Once a program is swapped out
to disk, it would be quite limiting to specify that when it is next swapped back in, it
must be placed in the same main memory region as before. Instead, we may need to
relocate the process to a different area of memory.

Thus, we cannot know ahead of time where a program will be placed, and we
must allow for the possibility that the program may be moved about in main mem-
ory due to swapping. These facts raise some technical concerns related to address-
ing, as illustrated in Figure 7.1. The figure depicts a process image. For simplicity, let
us assume that the process image occupies a contiguous region of main memory.
Clearly, the operating system will need to know the location of process control infor-
mation and of the execution stack, as well as the entry point to begin execution of
the program for this process. Because the operating system is managing memory and
is responsible for bringing this process into main memory, these addresses are easy
to come by. In addition, however, the processor must deal with memory references

Process control block

Program

Data

Stack

Current top
of stack

Entry point
to program

Process control
information

Increasing
address
values

Branch
instruction

Reference
to data

Figure 7.1 Addressing Requirements for a Process

312 CHAPTER 7 / MEMORY MANAGEMENT

within the program. Branch instructions contain an address to reference the instruc-
tion to be executed next. Data reference instructions contain the address of the byte
or word of data referenced. Somehow, the processor hardware and operating system
software must be able to translate the memory references found in the code of the
program into actual physical memory addresses, reflecting the current location of
the program in main memory.

Protection

Each process should be protected against unwanted interference by other processes,
whether accidental or intentional. Thus, programs in other processes should not be
able to reference memory locations in a process for reading or writing purposes
without permission. In one sense, satisfaction of the relocation requirement in-
creases the difficulty of satisfying the protection requirement. Because the location
of a program in main memory is unpredictable, it is impossible to check absolute
addresses at compile time to assure protection. Furthermore, most programming
languages allow the dynamic calculation of addresses at run time (e.g., by computing
an array subscript or a pointer into a data structure). Hence all memory references
generated by a process must be checked at run time to ensure that they refer only
to the memory space allocated to that process. Fortunately, we shall see that mecha-
nisms that support relocation also support the protection requirement.

Normally, a user process cannot access any portion of the operating system,
neither program nor data. Again, usually a program in one process cannot branch
to an instruction in another process. Without special arrangement, a program in one
process cannot access the data area of another process. The processor must be able
to abort such instructions at the point of execution.

Note that the memory protection requirement must be satisfied by the proces-
sor (hardware) rather than the operating system (software). This is because the OS
cannot anticipate all of the memory references that a program will make. Even if
such anticipation were possible, it would be prohibitively time consuming to screen
each program in advance for possible memory-reference violations. Thus, it is only
possible to assess the permissibility of a memory reference (data access or branch)
at the time of execution of the instruction making the reference. To accomplish this,
the processor hardware must have that capability.

Sharing

Any protection mechanism must have the flexibility to allow several processes
to access the same portion of main memory. For example, if a number of pro-
cesses are executing the same program, it is advantageous to allow each process
to access the same copy of the program rather than have its own separate copy.
Processes that are cooperating on some task may need to share access to the
same data structure. The memory management system must therefore allow con-
trolled access to shared areas of memory without compromising essential protec-
tion. Again, we will see that the mechanisms used to support relocation support
sharing capabilities.

7.1 / MEMORY MANAGEMENT REQUIREMENTS 313

Logical Organization

Almost invariably, main memory in a computer system is organized as a linear, or
one-dimensional, address space, consisting of a sequence of bytes or words. Secondary
memory, at its physical level, is similarly organized. While this organization closely
mirrors the actual machine hardware, it does not correspond to the way in which
programs are typically constructed. Most programs are organized into modules, some
of which are unmodifiable (read only, execute only) and some of which contain data
that may be modified. If the operating system and computer hardware can effectively
deal with user programs and data in the form of modules of some sort, then a number
of advantages can be realized:

 1. Modules can be written and compiled independently, with all references from
one module to another resolved by the system at run time.

 2. With modest additional overhead, different degrees of protection (read only,
execute only) can be given to different modules.

 3. It is possible to introduce mechanisms by which modules can be shared among
processes. The advantage of providing sharing on a module level is that this
corresponds to the user’s way of viewing the problem, and hence it is easy for
the user to specify the sharing that is desired.

The tool that most readily satisfies these requirements is segmentation, which is one
of the memory management techniques explored in this chapter.

Physical Organization

As we discussed in Section 1.5, computer memory is organized into at least two
levels, referred to as main memory and secondary memory. Main memory provides
fast access at relatively high cost. In addition, main memory is volatile; that is, it does
not provide permanent storage. Secondary memory is slower and cheaper than main
memory and is usually not volatile. Thus secondary memory of large capacity can be
provided for long-term storage of programs and data, while a smaller main memory
holds programs and data currently in use.

In this two-level scheme, the organization of the flow of information between
main and secondary memory is a major system concern. The responsibility for this
flow could be assigned to the individual programmer, but this is impractical and un-
desirable for two reasons:

 1. The main memory available for a program plus its data may be insufficient. In
that case, the programmer must engage in a practice known as overlaying, in
which the program and data are organized in such a way that various modules
can be assigned the same region of memory, with a main program responsible
for switching the modules in and out as needed. Even with the aid of compiler
tools, overlay programming wastes programmer time.

 2. In a multiprogramming environment, the programmer does not know at the
time of coding how much space will be available or where that space will be.

314 CHAPTER 7 / MEMORY MANAGEMENT

It is clear, then, that the task of moving information between the two levels
of memory should be a system responsibility. This task is the essence of memory
management.

 7.2 MEMORY PARTITIONING

The principal operation of memory management is to bring processes into main mem-
ory for execution by the processor. In almost all modern multiprogramming systems,
this involves a sophisticated scheme known as virtual memory. Virtual memory is,
in turn, based on the use of one or both of two basic techniques: segmentation and
paging. Before we can look at these virtual memory techniques, we must prepare the
ground by looking at simpler techniques that do not involve virtual memory (Table 7.2
summarizes all the techniques examined in this chapter and the next). One of these
techniques, partitioning, has been used in several variations in some now-obsolete op-
erating systems. The other two techniques, simple paging and simple segmentation,
are not used by themselves. However, it will clarify the discussion of virtual memory if
we look first at these two techniques in the absence of virtual memory considerations.

Fixed Partitioning

In most schemes for memory management, we can assume that the OS occupies
some fixed portion of main memory and that the rest of main memory is avail-
able for use by multiple processes. The simplest scheme for managing this available
memory is to partition it into regions with fixed boundaries.

PARTITION SIZES Figure 7.2 shows examples of two alternatives for fixed
partitioning. One possibility is to make use of equal-size partitions. In this case, any
process whose size is less than or equal to the partition size can be loaded into any
available partition. If all partitions are full and no process is in the Ready or Running
state, the operating system can swap a process out of any of the partitions and load
in another process, so that there is some work for the processor.

There are two difficulties with the use of equal-size fixed partitions:

A program may be too big to fit into a partition. In this case, the programmer
must design the program with the use of overlays so that only a portion of the
program need be in main memory at any one time. When a module is needed
that is not present, the user’s program must load that module into the pro-
gram’s partition, overlaying whatever programs or data are there.
Main memory utilization is extremely inefficient. Any program, no matter how
small, occupies an entire partition. In our example, there may be a program
whose length is less than 2 Mbytes; yet it occupies an 8-Mbyte partition when-
ever it is swapped in. This phenomenon, in which there is wasted space internal
to a partition due to the fact that the block of data loaded is smaller than the
partition, is referred to as internal fragmentation.

Both of these problems can be lessened, though not solved, by using unequal-
size partitions (Figure 7.2b). In this example, programs as large as 16 Mbytes can

7.2 / MEMORY PARTITIONING 315

be accommodated without overlays. Partitions smaller than 8 Mbytes allow smaller
programs to be accommodated with less internal fragmentation.

PLACEMENT ALGORITHM With equal-size partitions, the placement of processes in
memory is trivial. As long as there is any available partition, a process can be loaded
into that partition. Because all partitions are of equal size, it does not matter which
partition is used. If all partitions are occupied with processes that are not ready

Table 7.2 Memory Management Techniques

Technique Description Strengths Weaknesses

Fixed
Partitioning

Main memory is divided into
a number of static partitions
at system generation time.
A process may be loaded
into a partition of equal or
greater size.

Simple to implement;
little operating system
overhead.

Inefficient use of memory
due to internal fragmenta-
tion; maximum number of
active processes is fixed.

Dynamic
Partitioning

Partitions are created dynam-
ically, so that each process
is loaded into a partition of
exactly the same size as that
process.

No internal fragmentation;
more efficient use of main
memory.

Inefficient use of proces-
sor due to the need for
compaction to counter
external fragmentation.

Simple Paging Main memory is divided into
a number of equal-size frames.
Each process is divided into a
number of equal-size pages of
the same length as frames. A
process is loaded by loading
all of its pages into available,
not necessarily contiguous,
frames.

No external fragmentation. A small amount of internal
fragmentation.

Simple
Segmentation

Each process is divided into
a number of segments. A pro-
cess is loaded by loading all
of its segments into dynamic
partitions that need not be
contiguous.

No internal fragmentation;
improved memory utiliza-
tion and reduced overhead
compared to dynamic
partitioning.

External fragmentation.

Virtual Memory
Paging

As with simple paging, except
that it is not necessary to load
all of the pages of a process.
Nonresident pages that are
needed are brought in later
automatically.

No external fragmentation;
higher degree of multipro-
gramming; large virtual
address space.

Overhead of complex
memory management.

Virtual Memory
Segmentation

As with simple segmenta-
tion, except that it is not
necessary to load all of
the segments of a process.
Nonresident segments that
are needed are brought in
later automatically.

No internal fragmentation,
higher degree of multipro-
gramming; large virtual ad-
dress space; protection and
sharing support.

Overhead of complex
memory management.

316 CHAPTER 7 / MEMORY MANAGEMENT

to run, then one of these processes must be swapped out to make room for a new
process. Which one to swap out is a scheduling decision; this topic is explored in
Part Four.

With unequal-size partitions, there are two possible ways to assign processes to
partitions. The simplest way is to assign each process to the smallest partition within
which it will fit.1 In this case, a scheduling queue is needed for each partition to
hold swapped-out processes destined for that partition (Figure 7.3a). The advantage
of this approach is that processes are always assigned in such a way as to minimize
wasted memory within a partition (internal fragmentation).

Although this technique seems optimum from the point of view of an indi-
vidual partition, it is not optimum from the point of view of the system as a whole.

Operating system
8M

Operating system
8M

8M

2M

4M

6M

8M

8M

12M

16M

8M

8M

8M

8M

8M

8M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

1This assumes that one knows the maximum amount of memory that a process will require. This is not
always the case. If it is not known how large a process may become, the only alternatives are an overlay
scheme or the use of virtual memory.

7.2 / MEMORY PARTITIONING 317

In Figure 7.2b, for example, consider a case in which there are no processes with a
size between 12 and 16M at a certain point in time. In that case, the 16M partition
will remain unused, even though some smaller process could have been assigned to
it. Thus, a preferable approach would be to employ a single queue for all processes
(Figure 7.3b). When it is time to load a process into main memory, the smallest avail-
able partition that will hold the process is selected. If all partitions are occupied,
then a swapping decision must be made. Preference might be given to swapping out
of the smallest partition that will hold the incoming process. It is also possible to
consider other factors, such as priority, and a preference for swapping out blocked
processes versus ready processes.

The use of unequal-size partitions provides a degree of flexibility to fixed par-
titioning. In addition, it can be said that fixed-partitioning schemes are relatively
simple and require minimal OS software and processing overhead. However, there
are disadvantages:

The number of partitions specified at system generation time limits the num-
ber of active (not suspended) processes in the system.
Because partition sizes are preset at system generation time, small jobs will not
utilize partition space efficiently. In an environment where the main storage
requirement of all jobs is known beforehand, this may be reasonable, but in
most cases, it is an inefficient technique.

The use of fixed partitioning is almost unknown today. One example of a suc-
cessful operating system that did use this technique was an early IBM mainframe
operating system, OS/MFT (Multiprogramming with a Fixed Number of Tasks).

Operating
system

New
processes

New
processes

Operating
system

(a) One process queue per partition (b) Single queue

Figure 7.3 Memory Assignment for Fixed Partitioning

318 CHAPTER 7 / MEMORY MANAGEMENT

Dynamic Partitioning

To overcome some of the difficulties with fixed partitioning, an approach known
as dynamic partitioning was developed. Again, this approach has been supplanted
by more sophisticated memory management techniques. An important operating
system that used this technique was IBM’s mainframe operating system, OS/MVT
(Multiprogramming with a Variable Number of Tasks).

With dynamic partitioning, the partitions are of variable length and number.
When a process is brought into main memory, it is allocated exactly as much mem-
ory as it requires and no more. An example, using 64 Mbytes of main memory, is
shown in Figure 7.4. Initially, main memory is empty, except for the OS (a). The first
three processes are loaded in, starting where the operating system ends and occu-
pying just enough space for each process (b, c, d). This leaves a “hole” at the end of
memory that is too small for a fourth process. At some point, none of the processes
in memory is ready. The operating system swaps out process 2 (e), which leaves suf-
ficient room to load a new process, process 4 (f). Because process 4 is smaller than

(a)

Operating
system 8M

20M

36M

56M

(b)

Operating
system

Process 1 20M

14M

22M

(c)

Operating
system

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating
system

Process 1

Process 2

14MProcess 2

Process 3

(e)

Operating
system

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating
system

Process 1

Process 4

Process 3

(g)

Operating
system

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating
system

Process 4

Process 3

20M

14M

18M

4M

18M

20M

8M

6M

18M

4M

18M

Figure 7.4 The Effect of Dynamic Partitioning

7.2 / MEMORY PARTITIONING 319

process 2, another small hole is created. Later, a point is reached at which none of
the processes in main memory is ready, but process 2, in the Ready-Suspend state, is
available. Because there is insufficient room in memory for process 2, the operating
system swaps process 1 out (g) and swaps process 2 back in (h).

As this example shows, this method starts out well, but eventually it leads to a
situation in which there are a lot of small holes in memory. As time goes on, memory
becomes more and more fragmented, and memory utilization declines. This phe-
nomenon is referred to as external fragmentation, indicating that the memory that
is external to all partitions becomes increasingly fragmented. This is in contrast to
internal fragmentation, referred to earlier.

One technique for overcoming external fragmentation is compaction: From
time to time, the OS shifts the processes so that they are contiguous and so that all
of the free memory is together in one block. For example, in Figure 7.4h, compac-
tion will result in a block of free memory of length 16M. This may well be sufficient
to load in an additional process. The difficulty with compaction is that it is a time-
consuming procedure and wasteful of processor time. Note that compaction implies
the need for a dynamic relocation capability. That is, it must be possible to move
a program from one region to another in main memory without invalidating the
memory references in the program (see Appendix 7A).

PLACEMENT ALGORITHM Because memory compaction is time consuming, the OS
designer must be clever in deciding how to assign processes to memory (how to plug
the holes). When it is time to load or swap a process into main memory, and if there
is more than one free block of memory of sufficient size, then the operating system
must decide which free block to allocate.

Three placement algorithms that might be considered are best-fit, first-fit, and
next-fit. All, of course, are limited to choosing among free blocks of main memory
that are equal to or larger than the process to be brought in. Best-fit chooses the
block that is closest in size to the request. First-fit begins to scan memory from the
beginning and chooses the first available block that is large enough. Next-fit begins
to scan memory from the location of the last placement and chooses the next avail-
able block that is large enough.

Figure 7.5a shows an example memory configuration after a number of place-
ment and swapping-out operations. The last block that was used was a 22-Mbyte
block from which a 14-Mbyte partition was created. Figure 7.5b shows the differ-
ence between the best-, first-, and next-fit placement algorithms in satisfying a
16-Mbyte allocation request. Best-fit will search the entire list of available blocks
and make use of the 18-Mbyte block, leaving a 2-Mbyte fragment. First-fit results in
a 6-Mbyte fragment, and next-fit results in a 20-Mbyte fragment.

Which of these approaches is best will depend on the exact sequence of pro-
cess swappings that occurs and the size of those processes. However, some general
comments can be made (see also [BREN89], [SHOR75], and [BAYS77]). The first-
fit algorithm is not only the simplest but usually the best and fastest as well. The
next-fit algorithm tends to produce slightly worse results than the first-fit. The next-
fit algorithm will more frequently lead to an allocation from a free block at the end
of memory. The result is that the largest block of free memory, which usually appears
at the end of the memory space, is quickly broken up into small fragments. Thus,

320 CHAPTER 7 / MEMORY MANAGEMENT

compaction may be required more frequently with next-fit. On the other hand, the
first-fit algorithm may litter the front end with small free partitions that need to be
searched over on each subsequent first-fit pass. The best-fit algorithm, despite its
name, is usually the worst performer. Because this algorithm looks for the smallest
block that will satisfy the requirement, it guarantees that the fragment left behind
is as small as possible. Although each memory request always wastes the smallest
amount of memory, the result is that main memory is quickly littered by blocks too
small to satisfy memory allocation requests. Thus, memory compaction must be
done more frequently than with the other algorithms.

REPLACEMENT ALGORITHM In a multiprogramming system using dynamic
partitioning, there will come a time when all of the processes in main memory are
in a blocked state and there is insufficient memory, even after compaction, for an
additional process. To avoid wasting processor time waiting for an active process to
become unblocked, the OS will swap one of the processes out of main memory to
make room for a new process or for a process in a Ready-Suspend state. Therefore,

8M

12M

22M

18M

8M

6M

14M

36M

(a) Before

Last
allocated
block (14K)

8M

12M

6M

2M

8M

6M

14M

20M

(b) After

Next-fit

Allocated block

Best-fit

First-fit

Free block

Possible new allocation

Figure 7.5 Example of Memory Configuration before and after Allocation
of 16-Mbyte Block

7.2 / MEMORY PARTITIONING 321

the operating system must choose which process to replace. Because the topic of
replacement algorithms will be covered in some detail with respect to various virtual
memory schemes, we defer a discussion of replacement algorithms until then.

Buddy System

Both fixed and dynamic partitioning schemes have drawbacks. A fixed partitioning
scheme limits the number of active processes and may use space inefficiently if there is
a poor match between available partition sizes and process sizes. A dynamic partition-
ing scheme is more complex to maintain and includes the overhead of compaction. An
interesting compromise is the buddy system ([KNUT97], [PETE77]).

In a buddy system, memory blocks are available of size 2K words, L 8 K 8 U,
where

2L = smallest size block that is allocated
2U = largest size block that is allocated; generally 2U is the size of the entire

memory available for allocation

To begin, the entire space available for allocation is treated as a single block
of size 2U. If a request of size s such that 2U−1 6 s 8 2U is made, then the en-
tire block is allocated. Otherwise, the block is split into two equal buddies of size
2U−1. If 2U−2 6 s 8 2U−1, then the request is allocated to one of the two buddies.
Otherwise, one of the buddies is split in half again. This process continues until the
smallest block greater than or equal to s is generated and allocated to the request.
At any time, the buddy system maintains a list of holes (unallocated blocks) of each
size 2i. A hole may be removed from the (i + 1) list by splitting it in half to create
two buddies of size 2i in the i list. Whenever a pair of buddies on the i list both be-
come unallocated, they are removed from that list and coalesced into a single block
on the (i + 1) list. Presented with a request for an allocation of size k such that
2i−1 6 k 8 2i, the following recursive algorithm is used to find a hole of size 2i:

void get_hole(int i)
{
 if (i == (U + 1)) <failure>;
 if (<i_list empty>) {
 get_hole(i + 1);
 <split hole into buddies>;
 <put buddies on i_list>;
 }
 <take first hole on i_list>;
}

Figure 7.6 gives an example using a 1-Mbyte initial block. The first request, A,
is for 100 Kbytes, for which a 128K block is needed. The initial block is divided into
two 512K buddies. The first of these is divided into two 256K buddies, and the first
of these is divided into two 128K buddies, one of which is allocated to A. The next
request, B, requires a 256K block. Such a block is already available and is allocated.
The process continues with splitting and coalescing occurring as needed. Note that

322 CHAPTER 7 / MEMORY MANAGEMENT

when E is released, two 128K buddies are coalesced into a 256K block, which is im-
mediately coalesced with its buddy.

Figure 7.7 shows a binary tree representation of the buddy allocation immedi-
ately after the Release B request. The leaf nodes represent the current partitioning
of the memory. If two buddies are leaf nodes, then at least one must be allocated;
otherwise they would be coalesced into a larger block.

The buddy system is a reasonable compromise to overcome the disadvantages
of both the fixed and variable partitioning schemes, but in contemporary operating
systems, virtual memory based on paging and segmentation is superior. However, the
buddy system has found application in parallel systems as an efficient means of alloca-
tion and release for parallel programs (e.g., see [JOHN92]). A modified form of the
buddy system is used for UNIX kernel memory allocation (described in Chapter 8).

Relocation

Before we consider ways of dealing with the shortcomings of partitioning, we must
clear up one loose end, which relates to the placement of processes in memory.
When the fixed partition scheme of Figure 7.3a is used, we can expect that a process
will always be assigned to the same partition. That is, whichever partition is selected
when a new process is loaded will always be used to swap that process back into
memory after it has been swapped out. In that case, a simple relocating loader, such
as is described in Appendix 7A, can be used: When the process is first loaded, all
relative memory references in the code are replaced by absolute main memory ad-
dresses, determined by the base address of the loaded process.

1-Mbyte block 1M

1M

Request 100K

Request 240K

Request 64K

Request 256K

Release B

Release A

Request 75K

Release C

Release E

Release D

512K256KA ! 128K 128K

512KB ! 256KA ! 128K 128K

512KB ! 256KA ! 128K C ! 64K 64K

256KB ! 256K D ! 256KA ! 128K C ! 64K 64K

256K 256KD ! 256KA ! 128K C ! 64K 64K

256K 256KD ! 256KE ! 128K C ! 64K 64K

256K 256KD ! 256KE ! 128K 128K

512K 256KD ! 256K

256K 256KD ! 256K128K C ! 64K 64K

Figure 7.6 Example of Buddy System

7.2 / MEMORY PARTITIONING 323

In the case of equal-size partitions (Figure 7.2) and in the case of a single process
queue for unequal-size partitions (Figure 7.3b), a process may occupy different parti-
tions during the course of its life. When a process image is first created, it is loaded
into some partition in main memory. Later, the process may be swapped out; when it is
subsequently swapped back in, it may be assigned to a different partition than the last
time. The same is true for dynamic partitioning. Observe in Figure 7.4c and Figure 7.4h
that process 2 occupies two different regions of memory on the two occasions when it
is brought in. Furthermore, when compaction is used, processes are shifted while they
are in main memory. Thus, the locations (of instructions and data) referenced by a
process are not fixed. They will change each time a process is swapped in or shifted. To
solve this problem, a distinction is made among several types of addresses. A logical
address is a reference to a memory location independent of the current assignment of
data to memory; a translation must be made to a physical address before the memory
access can be achieved. A relative address is a particular example of logical address,
in which the address is expressed as a location relative to some known point, usually a
value in a processor register. A physical address, or absolute address, is an actual loca-
tion in main memory.

Programs that employ relative addresses in memory are loaded using dynamic
run-time loading (see Appendix 7A for a discussion). Typically, all of the memory ref-
erences in the loaded process are relative to the origin of the program. Thus, a hardware

256K 256KA ! 128K D ! 256KC ! 64K 64K

1M

512K

256K

128K

64K

Leaf node for
allocated block

Leaf node for
unallocated block

Non-leaf node

Figure 7.7 Tree Representation of Buddy System

324 CHAPTER 7 / MEMORY MANAGEMENT

mechanism is needed for translating relative addresses to physical main memory
 addresses at the time of execution of the instruction that contains the reference.

Figure 7.8 shows the way in which this address translation is typically accom-
plished. When a process is assigned to the Running state, a special processor regis-
ter, sometimes called the base register, is loaded with the starting address in main
memory of the program. There is also a “bounds” register that indicates the ending
location of the program; these values must be set when the program is loaded into
memory or when the process image is swapped in. During the course of execution
of the process, relative addresses are encountered. These include the contents of the
instruction register, instruction addresses that occur in branch and call instructions,
and data addresses that occur in load and store instructions. Each such relative ad-
dress goes through two steps of manipulation by the processor. First, the value in
the base register is added to the relative address to produce an absolute address.
Second, the resulting address is compared to the value in the bounds register. If the
address is within bounds, then the instruction execution may proceed. Otherwise, an
interrupt is generated to the operating system, which must respond to the error in
some fashion.

The scheme of Figure 7.8 allows programs to be swapped in and out of mem-
ory during the course of execution. It also provides a measure of protection: Each
process image is isolated by the contents of the base and bounds registers and safe
from unwanted accesses by other processes.

Process control block

Program

Data

Stack

Comparator

Interrupt to
operating system

Absolute
address

Process image in
main memory

Relative address

Base register

Bounds register

Adder

Figure 7.8 Hardware Support for Relocation

7.3 / PAGING 325

 7.3 PAGING

Both unequal fixed-size and variable-size partitions are inefficient in the use of
memory; the former results in internal fragmentation, the latter in external frag-
mentation. Suppose, however, that main memory is partitioned into equal fixed-size
chunks that are relatively small, and that each process is also divided into small
fixed-size chunks of the same size. Then the chunks of a process, known as pages,
could be assigned to available chunks of memory, known as frames, or page frames.
We show in this section that the wasted space in memory for each process is due
to internal fragmentation consisting of only a fraction of the last page of a process.
There is no external fragmentation.

Figure 7.9 illustrates the use of pages and frames. At a given point in time,
some of the frames in memory are in use and some are free. A list of free frames is
maintained by the OS. Process A, stored on disk, consists of four pages. When it is
time to load this process, the OS finds four free frames and loads the four pages of
process A into the four frames (Figure 7.9b). Process B, consisting of three pages,
and process C, consisting of four pages, are subsequently loaded. Then process B is
suspended and is swapped out of main memory. Later, all of the processes in main
memory are blocked, and the OS needs to bring in a new process, process D, which
consists of five pages.

Now suppose, as in this example, that there are not sufficient unused con-
tiguous frames to hold the process. Does this prevent the operating system from
loading D? The answer is no, because we can once again use the concept of logical
address. A simple base address register will no longer suffice. Rather, the operating
system maintains a page table for each process. The page table shows the frame
location for each page of the process. Within the program, each logical address con-
sists of a page number and an offset within the page. Recall that in the case of sim-
ple partition, a logical address is the location of a word relative to the beginning of
the program; the processor translates that into a physical address. With paging, the
logical-to- physical address translation is still done by processor hardware. Now the
processor must know how to access the page table of the current process. Presented
with a logical address (page number, offset), the processor uses the page table to
produce a physical address (frame number, offset).

Continuing our example, the five pages of process D are loaded into frames 4,
5, 6, 11, and 12. Figure 7.10 shows the various page tables at this time. A page table
contains one entry for each page of the process, so that the table is easily indexed
by the page number (starting at page 0). Each page table entry contains the number
of the frame in main memory, if any, that holds the corresponding page. In addition,
the OS maintains a single free-frame list of all the frames in main memory that are
currently unoccupied and available for pages.

Thus we see that simple paging, as described here, is similar to fixed partition-
ing. The differences are that, with paging, the partitions are rather small; a program
may occupy more than one partition; and these partitions need not be contiguous.

To make this paging scheme convenient, let us dictate that the page size, hence
the frame size, must be a power of 2. With the use of a page size that is a power of
2, it is easy to demonstrate that the relative address, which is defined with reference

326 CHAPTER 7 / MEMORY MANAGEMENT

Frame
number

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(a) Fifteen available frames

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(d) Load process C

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(e) Swap out B

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(f) Load process D

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Load process A

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(c) Load process B

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

C.0
C.1
C.2
C.3

C.1
C.2
C.3

C.1
C.2
C.3

C.0 C.0

D.0
D.1
D.2

B.0
B.1
B.2

D.3
D.4

B.0
B.1
B.2

Figure 7.9 Assignment of Process to Free Frames

00
11
22
33

Process A
page table

13
14

Free-frame
list

70
81
92
103

Process C
page table Process D

page table

40
51
62
113
124

0
1
2

Process B
page table

—
—
—

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

7.3 / PAGING 327

to the origin of the program, and the logical address, expressed as a page number
and offset, are the same. An example is shown in Figure 7.11. In this example, 16-bit
addresses are used, and the page size is 1K = 1,024 bytes. The relative address 1502
in binary form is 0000010111011110. With a page size of 1K, an offset field of 10
bits is needed, leaving 6 bits for the page number. Thus a program can consist of a
maximum of 26 = 64 pages of 1K bytes each. As Figure 7.11b shows, relative address
1502 corresponds to an offset of 478 (0111011110) on page 1 (000001), which yields
the same 16-bit number, 0000010111011110.

The consequences of using a page size that is a power of 2 are twofold. First,
the logical addressing scheme is transparent to the programmer, the assembler, and
the linker. Each logical address (page number, offset) of a program is identical to
its relative address. Second, it is a relatively easy matter to implement a function in
hardware to perform dynamic address translation at run time. Consider an address
of n + m bits, where the leftmost n bits are the page number and the rightmost m
bits are the offset. In our example (Figure 7.11b), n = 6 and m = 10. The following
steps are needed for address translation:

Extract the page number as the leftmost n bits of the logical address.
Use the page number as an index into the process page table to find the frame
number, k.
The starting physical address of the frame is k * 2m, and the physical address of
the referenced byte is that number plus the offset. This physical address need not
be calculated; it is easily constructed by appending the frame number to the offset.

Logical address !
Segment# ! 1, Offset ! 752

In
te

rn
al

fr
ag

m
en

ta
tio

n

(c) Segmentation(a) Partitioning

(b) Paging
(page size ! 1K)

75
2

Se
gm

en
t 1

1,
95

0
by

te
s

0000010111011110 0001 001011110000

Logical address !
Page# ! 1, Offset ! 478Relative address ! 1502

0000010111011110

47
8

U
se

r p
ro

ce
ss

(2
,7

00
 b

yt
es

)

Se
gm

en
t 0

75
0

by
te

s

Pa
ge

 2
Pa

ge
 1

Pa
ge

 0

Figure 7.11 Logical Addresses

328 CHAPTER 7 / MEMORY MANAGEMENT

In our example, we have the logical address 0000010111011110, which is
page number 1, offset 478. Suppose that this page is residing in main memory
frame 6 = binary 000110. Then the physical address is frame number 6, offset
478 = 0001100111011110 (Figure 7.12a).

To summarize, with simple paging, main memory is divided into many small
equal-size frames. Each process is divided into frame-size pages. Smaller processes
require fewer pages; larger processes require more. When a process is brought in, all
of its pages are loaded into available frames, and a page table is set up. This approach
solves many of the problems inherent in partitioning.

 7.4 SEGMENTATION

A user program can be subdivided using segmentation, in which the program and its
associated data are divided into a number of segments. It is not required that all seg-
ments of all programs be of the same length, although there is a maximum segment

0

0
1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process
page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address
(a) Paging

000101

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100
1

0000010000000000
0111100111100010000000100000 +

000110
011001

4-bit segment #

Figure 7.12 Examples of Logical-to-Physical Address Translation

7.4 / SEGMENTATION 329

length. As with paging, a logical address using segmentation consists of two parts, in
this case a segment number and an offset.

Because of the use of unequal-size segments, segmentation is similar to dy-
namic partitioning. In the absence of an overlay scheme or the use of virtual mem-
ory, it would be required that all of a program’s segments be loaded into memory
for execution. The difference, compared to dynamic partitioning, is that with seg-
mentation a program may occupy more than one partition, and these partitions
need not be contiguous. Segmentation eliminates internal fragmentation but, like
dynamic partitioning, it suffers from external fragmentation. However, because a
process is broken up into a number of smaller pieces, the external fragmentation
should be less.

Whereas paging is invisible to the programmer, segmentation is usually visible
and is provided as a convenience for organizing programs and data. Typically, the
programmer or compiler will assign programs and data to different segments. For
purposes of modular programming, the program or data may be further broken down
into multiple segments. The principal inconvenience of this service is that the pro-
grammer must be aware of the maximum segment size limitation.

Another consequence of unequal-size segments is that there is no simple re-
lationship between logical addresses and physical addresses. Analogous to paging, a
simple segmentation scheme would make use of a segment table for each process
and a list of free blocks of main memory. Each segment table entry would have to
give the starting address in main memory of the corresponding segment. The entry
should also provide the length of the segment to assure that invalid addresses are
not used. When a process enters the Running state, the address of its segment table is
loaded into a special register used by the memory management hardware. Consider
an address of n + m bits, where the leftmost n bits are the segment number and the
rightmost m bits are the offset. In our example (Figure 7.11c), n = 4 and m = 12.
Thus the maximum segment size is 212 = 4096. The following steps are needed for
address translation:

Extract the segment number as the leftmost n bits of the logical address.
Use the segment number as an index into the process segment table to find the
starting physical address of the segment.
Compare the offset, expressed in the rightmost m bits, to the length of the seg-
ment. If the offset is greater than or equal to the length, the address is invalid.
The desired physical address is the sum of the starting physical address of the
segment plus the offset.

In our example, we have the logical address 0001001011110000, which is
segment number 1, offset 752. Suppose that this segment is residing in main mem-
ory starting at physical address 0010000000100000. Then the physical address is
0010000000100000 + 001011110000 = 0010001100010000 (Figure 7.12b).

To summarize, with simple segmentation, a process is divided into a num-
ber of segments that need not be of equal size. When a process is brought in, all
of its segments are loaded into available regions of memory, and a segment table
is set up.

330 CHAPTER 7 / MEMORY MANAGEMENT

 7.5 SUMMARY

One of the most important and complex tasks of an operating system is memory
management. Memory management involves treating main memory as a resource to
be allocated to and shared among a number of active processes. To use the proces-
sor and the I/O facilities efficiently, it is desirable to maintain as many processes in
main memory as possible. In addition, it is desirable to free programmers from size
restrictions in program development.

The basic tools of memory management are paging and segmentation. With
paging, each process is divided into relatively small, fixed-size pages. Segmentation
provides for the use of pieces of varying size. It is also possible to combine segmen-
tation and paging in a single memory management scheme.

 7.6 RECOMMENDED READING AND ANIMATIONS

A thorough discussion of partitioning strategies is found in [KNUT97]. [PRES72] is a
classic treatment of linkers and loaders, still well worth reading. [BEAZ01] provides
a useful introduction to linkers, shared libraries, and dynamically loadable extension
modules. A practical discussion of linking and loading, with numerous OS examples,
is [LEVI00].

BEAZ01 Beazley, D.; Ward, B.; and Cooke, I. “The Inside Story on Shared Libraries
and Dynamic Loading.” Computing in Science & Engineering, September/
October 2001.

KNUT97 Knuth, D. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Reading, MA: Addison-Wesley, 1997.

LEVI00 Levine, J. Linkers and Loaders. San Francisco: Morgan Kaufmann, 2000.
PRES72 Presser, L., and White, J. “Linkers and Loaders.” Computing Surveys,

September 1972.

Animations

A set of animation that illustrates concepts from this chapter is available at the
Premium Web site. The reader is encouraged to view the animations to reinforce
concepts from this chapter.

 7.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

absolute loading
buddy system

compaction
dynamic linking

dynamic partitioning
dynamic run-time loading

Animation

7.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 331

Review Questions

 7.1. What requirements is memory management intended to satisfy?
 7.2. Why is the capability to relocate processes desirable?
 7.3. Why is it not possible to enforce memory protection at compile time?
 7.4. What are some reasons to allow two or more processes to all have access to a particu-

lar region of memory?
 7.5. In a fixed-partitioning scheme, what are the advantages of using unequal-size

partitions?
 7.6. What is the difference between internal and external fragmentation?
 7.7. What are the distinctions among logical, relative, and physical addresses?
 7.8. What is the difference between a page and a frame?
 7.9. What is the difference between a page and a segment?

Problems

 7.1. In Section 2.3, we listed five objectives of memory management, and in Section 7.1,
we listed five requirements. Argue that each list encompasses all of the concerns ad-
dressed in the other.

 7.2. Consider a fixed partitioning scheme with equal-size partitions of 216 bytes and a total
main memory size of 224 bytes. A process table is maintained that includes a pointer
to a partition for each resident process. How many bits are required for the pointer?

 7.3. Consider a dynamic partitioning scheme. Show that, on average, the memory contains
half as many holes as segments.

 7.4. To implement the various placement algorithms discussed for dynamic partitioning
(Section 7.2), a list of the free blocks of memory must be kept. For each of the three
methods discussed (best-fit, first-fit, next-fit), what is the average length of the search?

 7.5. Another placement algorithm for dynamic partitioning is referred to as worst-fit. In
this case, the largest free block of memory is used for bringing in a process.
a. Discuss the pros and cons of this method compared to first-, next-, and best-fit.
b. What is the average length of the search for worst-fit?

 7.6. This diagram shows an example of memory configuration under dynamic partition-
ing, after a number of placement and swapping-out operations have been carried out.
Addresses go from left to right; gray areas indicate blocks occupied by processes;
white areas indicate free memory blocks. The last process placed is 2-Mbyte and is
marked with an X. Only one process was swapped out after that.

4M X 5M 8M 2M 4M 3M
1
M

external fragmentation
fixed partitioning
frame
internal fragmentation
linkage editor
linking
loading
logical address

logical organization
memory management
page
page table
paging
partitioning
physical address
physical organization

protection
relative address
relocatable loading
relocation
segment
segmentation
sharing

332 CHAPTER 7 / MEMORY MANAGEMENT

a. What was the maximum size of the swapped-out process?
b. What was the size of the free block just before it was partitioned by X?
c. A new 3-Mbyte allocation request must be satisfied next. Indicate the intervals

of memory where a partition will be created for the new process under the fol-
lowing four placement algorithms: best-fit, first-fit, next-fit, and worst-fit. For
each algorithm, draw a horizontal segment under the memory strip and label it
clearly.

 7.7. A 1-Mbyte block of memory is allocated using the buddy system.
a. Show the results of the following sequence in a figure similar to Figure 7.6:

Request 70; Request 35; Request 80; Return A; Request 60; Return B; Return D;
Return C.

b. Show the binary tree representation following Return B.
 7.8. Consider a buddy system in which a particular block under the current allocation has

an address of 011011110000.
a. If the block is of size 4, what is the binary address of its buddy?
b. If the block is of size 16, what is the binary address of its buddy?

 7.9. Let buddyk(x) = address of the buddy of the block of size 2k whose address is x.
Write a general expression for buddyk(x).

 7.10. The Fibonacci sequence is defined as follows:

F0 = 0, F1 = 1, Fn + 2 = Fn+1 + Fn, n Ú 0

a. Could this sequence be used to establish a buddy system?
b. What would be the advantage of this system over the binary buddy system de-

scribed in this chapter?
 7.11. During the course of execution of a program, the processor will increment the con-

tents of the instruction register (program counter) by one word after each instruction
fetch, but will alter the contents of that register if it encounters a branch or call in-
struction that causes execution to continue elsewhere in the program. Now consider
Figure 7.8. There are two alternatives with respect to instruction addresses:

Maintain a relative address in the instruction register and do the dynamic address
translation using the instruction register as input. When a successful branch or call
is encountered, the relative address generated by that branch or call is loaded into
the instruction register.
Maintain an absolute address in the instruction register. When a successful branch
or call is encountered, dynamic address translation is employed, with the results
stored in the instruction register.

Which approach is preferable?
 7.12. Consider a simple paging system with the following parameters: 232 bytes of physical

memory; page size of 210 bytes; 216 pages of logical address space.
a. How many bits are in a logical address?
b. How many bytes in a frame?
c. How many bits in the physical address specify the frame?
d. How many entries in the page table?
e. How many bits in each page table entry? Assume each page table entry contains a

valid/invalid bit.
 7.13. Write the binary translation of the logical address 0001010010111010 under the

following hypothetical memory management schemes, and explain your answer:
a. a paging system with a 256-address page size, using a page table in which the frame

number happens to be four times smaller than the page number
b. a segmentation system with a 1K-address maximum segment size, using a

segment table in which bases happen to be regularly placed at real addresses:
22 + 4,096 + segment #

APPENDIX 7A / LOADING AND LINKING 333

 7.14. Consider a simple segmentation system that has the following segment table:

Starting Address Length (bytes)

660 248

1,752 422

222 198

996 604

For each of the following logical addresses, determine the physical address or indicate
if a segment fault occurs:
a. 0, 198
b. 2, 156
c. 1, 530
d. 3, 444
e. 0, 222

 7.15. Consider a memory in which contiguous segments S1, S2, …, Sn are placed in their
order of creation from one end of the store to the other, as suggested by the following
figure:

HoleS2 SnS1

When segment Sn+1 is being created, it is placed immediately after segment Sn even
though some of the segments S1, S2, …, Sn may already have been deleted. When the
boundary between segments (in use or deleted) and the hole reaches the other end of
the memory, the segments in use are compacted.
a. Show that the fraction of time F spent on compacting obeys the following

inequality:

F Ú
1 - f

1 + kf
 where k =

t
2s

 - 1

where
s = average length of a segment, in words
t = average lifetime of a segment, in memory references
f = fraction of the memory that is unused under equilibrium conditions

Hint: Find the average speed at which the boundary crosses the memory and as-
sume that the copying of a single word requires at least two memory references.

b. Find F for f = 0.2, t = 1,000, and s = 50.

 APPENDIX 7A LOADING AND LINKING

The first step in the creation of an active process is to load a program into main
memory and create a process image (Figure 7.13). Figure 7.14 depicts a scenario typi-
cal for most systems. The application consists of a number of compiled or assembled
modules in object-code form. These are linked to resolve any references between
modules. At the same time, references to library routines are resolved. The library

334 CHAPTER 7 / MEMORY MANAGEMENT

routines themselves may be incorporated into the program or referenced as shared
code that must be supplied by the operating system at run time. In this appendix, we
summarize the key features of linkers and loaders. For clarity in the presentation,
we begin with a description of the loading task when a single program module is
involved; no linking is required.

Loader
Load

moduleLinker

Module 2

Module 1

Module n
Main memory

Run-time
linker/
loader

x

Dynamic
library

Dynamic
library

Static
library

Figure 7.14 A Linking and Loading Scenario

Process control block

Program

Data

Stack

Process image in
main memory

Program

Data

Object code

Figure 7.13 The Loading Function

Loading

In Figure 7.14, the loader places the load module in main memory starting at loca-
tion x. In loading the program, the addressing requirement illustrated in Figure 7.1
must be satisfied. In general, three approaches can be taken:

Absolute loading
Relocatable loading
Dynamic run-time loading

ABSOLUTE LOADING An absolute loader requires that a given load module always
be loaded into the same location in main memory. Thus, in the load module presented
to the loader, all address references must be to specific, or absolute, main memory
addresses. For example, if x in Figure 7.14 is location 1024, then the first word in a
load module destined for that region of memory has address 1024.

The assignment of specific address values to memory references within a
program can be done either by the programmer or at compile or assembly time
(Table 7.3a). There are several disadvantages to the former approach. First, every

Table 7.3 Address Binding

(a) Loader

Binding Time Function

Programming time All actual physical addresses are directly specified by the programmer in the
program itself.

Compile or assembly time The program contains symbolic address references, and these are converted to
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates
these to absolute addresses at the time of program loading.

Run time The loaded program retains relative addresses. These are converted dynamically
to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

Programming time No external program or data references are allowed. The programmer must
place into the program the source code for all subprograms that are referenced.

Compile or assembly time The assembler must fetch the source code of every subroutine that is referenced
and assemble them as a unit.

Load module creation All object modules have been assembled using relative addresses. These
modules are linked together and all references are restated relative to the
origin of the final load module.

Load time External references are not resolved until the load module is to be loaded into
main memory. At that time, referenced dynamic link modules are appended to
the load module, and the entire package is loaded into main or virtual memory.

Run time External references are not resolved until the external call is executed by the
processor. At that time, the process is interrupted and the desired module is
linked to the calling program.

APPENDIX 7A / LOADING AND LINKING 335

336 CHAPTER 7 / MEMORY MANAGEMENT

programmer would have to know the intended assignment strategy for placing mod-
ules into main memory. Second, if any modifications are made to the program that
involve insertions or deletions in the body of the module, then all of the addresses
will have to be altered. Accordingly, it is preferable to allow memory references
within programs to be expressed symbolically and then resolve those symbolic refer-
ences at the time of compilation or assembly. This is illustrated in Figure 7.15. Every
reference to an instruction or item of data is initially represented by a symbol. In
preparing the module for input to an absolute loader, the assembler or compiler will
convert all of these references to specific addresses (in this example, for a module to
be loaded starting at location 1024), as shown in Figure 7.15b.

RELOCATABLE LOADING The disadvantage of binding memory references to
specific addresses prior to loading is that the resulting load module can only be
placed in one region of main memory. However, when many programs share main
memory, it may not be desirable to decide ahead of time into which region of memory
a particular module should be loaded. It is better to make that decision at load time.
Thus, we need a load module that can be located anywhere in main memory.

To satisfy this new requirement, the assembler or compiler produces not ac-
tual main memory addresses (absolute addresses) but addresses that are relative to
some known point, such as the start of the program. This technique is illustrated in
Figure 7.15c. The start of the load module is assigned the relative address 0, and all
other memory references within the module are expressed relative to the beginning
of the module.

With all memory references expressed in relative format, it becomes a simple
task for the loader to place the module in the desired location. If the module is to be
loaded beginning at location x, then the loader must simply add x to each memory
reference as it loads the module into memory. To assist in this task, the load module

JUMP X

X

Y

PROGRAM

DATA

(a) Object module

LOAD Y

JUMP 1424

1424

1024 0

2224

PROGRAM

DATA

(b) Absolute load module

LOAD 2224

JUMP 400

400

1200

PROGRAM

DATA

(c) Relative load module

LOAD 1200

JUMP 400

PROGRAM

DATA

LOAD 1200

1200 + x

400 + x

x

Main memory
addresses

(d) Relative load module
loaded into main memory

starting at location x

Symbolic
addresses

Absolute
addresses

Relative
addresses

Figure 7.15 Absolute and Relocatable Load Modules

must include information that tells the loader where the address references are and
how they are to be interpreted (usually relative to the program origin, but also pos-
sibly relative to some other point in the program, such as the current location). This
set of information is prepared by the compiler or assembler and is usually referred
to as the relocation dictionary.

DYNAMIC RUN-TIME LOADING Relocatable loaders are common and provide
obvious benefits relative to absolute loaders. However, in a multiprogramming
environment, even one that does not depend on virtual memory, the relocatable
loading scheme is inadequate. We have referred to the need to swap process
images in and out of main memory to maximize the utilization of the processor. To
maximize main memory utilization, we would like to be able to swap the process
image back into different locations at different times. Thus, a program, once loaded,
may be swapped out to disk and then swapped back in at a different location. This
would be impossible if memory references had been bound to absolute addresses at
the initial load time.

The alternative is to defer the calculation of an absolute address until it is
actually needed at run time. For this purpose, the load module is loaded into main
memory with all memory references in relative form (Figure 7.15c). It is not until an
instruction is actually executed that the absolute address is calculated. To assure that
this function does not degrade performance, it must be done by special processor
hardware rather than software. This hardware is described in Section 7.2.

Dynamic address calculation provides complete flexibility. A program can be
loaded into any region of main memory. Subsequently, the execution of the program
can be interrupted and the program can be swapped out of main memory, to be later
swapped back in at a different location.

Linking

The function of a linker is to take as input a collection of object modules and pro-
duce a load module, consisting of an integrated set of program and data modules, to
be passed to the loader. In each object module, there may be address references to
locations in other modules. Each such reference can only be expressed symbolically
in an unlinked object module. The linker creates a single load module that is the
contiguous joining of all of the object modules. Each intramodule reference must
be changed from a symbolic address to a reference to a location within the overall
load module. For example, module A in Figure 7.16a contains a procedure invocation
of module B. When these modules are combined in the load module, this symbolic
reference to module B is changed to a specific reference to the location of the entry
point of B within the load module.

LINKAGE EDITOR The nature of this address linkage will depend on the type of
load module to be created and when the linkage occurs (Table 7.3b). If, as is usually
the case, a relocatable load module is desired, then linkage is usually done in the
following fashion. Each compiled or assembled object module is created with
references relative to the beginning of the object module. All of these modules are
put together into a single relocatable load module with all references relative to the

APPENDIX 7A / LOADING AND LINKING 337

338 CHAPTER 7 / MEMORY MANAGEMENT

origin of the load module. This module can be used as input for relocatable loading
or dynamic run-time loading.

A linker that produces a relocatable load module is often referred to as a link-
age editor. Figure 7.16 illustrates the linkage editor function.

DYNAMIC LINKER As with loading, it is possible to defer some linkage functions.
The term dynamic linking is used to refer to the practice of deferring the linkage of
some external modules until after the load module has been created. Thus, the load
module contains unresolved references to other programs. These references can be
resolved either at load time or run time.

For load-time dynamic linking (involving upper dynamic library in Figure 7.14),
the following steps occur. The load module (application module) to be loaded is
read into memory. Any reference to an external module (target module) causes the
loader to find the target module, load it, and alter the reference to a relative address
in memory from the beginning of the application module. There are several advan-
tages to this approach over what might be called static linking:

It becomes easier to incorporate changed or upgraded versions of the target
module, which may be an operating system utility or some other general-purpose
routine. With static linking, a change to such a supporting module would require

0

Relative
addresses

JSR "L"

Return

Return

Return

L ! 1
L

L " M ! 1
L " M

L " M " N ! 1

Module A

JSR "L " M"

Module B

Module C

CALL B;External
reference to
module B

Return

Module A

(a) Object modules

CALL C;

Module B

Return

(b) Load moduleReturn

Module C

Length L

Length N

Length M

Figure 7.16 The Linking Function

the relinking of the entire application module. Not only is this inefficient, but it
may be impossible in some circumstances. For example, in the personal computer
field, most commercial software is released in load module form; source and ob-
ject versions are not released.
Having target code in a dynamic link file paves the way for automatic code
sharing. The operating system can recognize that more than one application is
using the same target code because it loaded and linked that code. It can use
that information to load a single copy of the target code and link it to both ap-
plications, rather than having to load one copy for each application.
It becomes easier for independent software developers to extend the function-
ality of a widely used operating system such as Linux. A developer can come
up with a new function that may be useful to a variety of applications and
package it as a dynamic link module.

With run-time dynamic linking (involving lower dynamic library in Figure 7.14),
some of the linking is postponed until execution time. External references to target
modules remain in the loaded program. When a call is made to the absent module,
the operating system locates the module, loads it, and links it to the calling mod-
ule. Such modules are typically shareable. In the Windows environment, these are
call dynamic-link libraries (DLLs). Thus, if one process is already making use of a
dynamically linked shared module, then that module is in main memory and a new
process can simply link to the already-loaded module.

The use of DLLs can lead to a problem commonly referred to as DLL hell.
DLL hell occurs if two or more processes are sharing a DLL module but expect dif-
ferent versions of the module. For example, an application or system function might
be reinstalled and bring in with it an older version of a DLL file.

We have seen that dynamic loading allows an entire load module to be moved
around; however, the structure of the module is static, being unchanged throughout
the execution of the process and from one execution to the next. However, in some
cases, it is not possible to determine prior to execution which object modules will be
required. This situation is typified by transaction-processing applications, such as an
airline reservation system or a banking application. The nature of the transaction
dictates which program modules are required, and they are loaded as appropriate
and linked with the main program. The advantage of the use of such a dynamic
linker is that it is not necessary to allocate memory for program units unless those
units are referenced. This capability is used in support of segmentation systems.

One additional refinement is possible: An application need not know the
names of all the modules or entry points that may be called. For example, a charting
program may be written to work with a variety of plotters, each of which is driven by
a different driver package. The application can learn the name of the plotter that is
currently installed on the system from another process or by looking it up in a con-
figuration file. This allows the user of the application to install a new plotter that did
not exist at the time the application was written.

APPENDIX 7A / LOADING AND LINKING 339

340

 8.1 Hardware and Control Structures
Locality and Virtual Memory
Paging
Segmentation
Combined Paging and Segmentation
Protection and Sharing

 8.2 Operating System Software
Fetch Policy
Placement Policy
Replacement Policy
Resident Set Management
Cleaning Policy
Load Control

 8.3 UNIX and Solaris Memory Management
Paging System
Kernel Memory Allocator

 8.4 Linux Memory Management
Linux Virtual Memory
Kernel Memory Allocation

 8.5 Windows Memory Management
Windows Virtual Address Map
Windows Paging
Windows 8 Swapping

 8.6 Android Memory Management

 8.7 Summary

 8.8 Recommended Reading and Animations

 8.9 Key Terms, Review Questions, and Problems

VIRTUAL MEMORY

CHAPTER

Animation

8.1 / HARDWARE AND CONTROL STRUCTURES 341

Chapter 7 introduced the concepts of paging and segmentation and analyzed their
shortcomings. We now move to a discussion of virtual memory. An analysis of this
topic is complicated by the fact that memory management is a complex interrela-
tionship between processor hardware and operating system software. We focus first
on the hardware aspect of virtual memory, looking at the use of paging, segmenta-
tion, and combined paging and segmentation. Then we look at the issues involved in
the design of a virtual memory facility in operating systems.

Table 8.1 defines some key terms related to virtual memory.

 8.1 HARDWARE AND CONTROL STRUCTURES

Comparing simple paging and simple segmentation, on the one hand, with fixed and
dynamic partitioning, on the other, we see the foundation for a fundamental break-
through in memory management. Two characteristics of paging and segmentation
are the keys to this breakthrough:

 1. All memory references within a process are logical addresses that are dynami-
cally translated into physical addresses at run time. This means that a process
may be swapped in and out of main memory such that it occupies different
regions of main memory at different times during the course of execution.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Define virtual memory.
Describe the hardware and control structures that support virtual memory.
Describe the various OS mechanisms used to implement virtual memory.
Describe the virtual memory management mechanisms in UNIX, Linux, and
Windows 7.

Table 8.1 Virtual Memory Terminology

Virtual memory A storage allocation scheme in which secondary memory can be addressed as
though it were part of main memory. The addresses a program may use to reference
memory are distinguished from the addresses the memory system uses to identify
physical storage sites, and program-generated addresses are translated automati-
cally to the corresponding machine addresses. The size of virtual storage is limited
by the addressing scheme of the computer system and by the amount of secondary
memory available and not by the actual number of main storage locations.

Virtual address The address assigned to a location in virtual memory to allow that location to be
accessed as though it were part of main memory.

Virtual address space The virtual storage assigned to a process.

Address space The range of memory addresses available to a process.

Real address The address of a storage location in main memory.

342 CHAPTER 8 / VIRTUAL MEMORY

 2. A process may be broken up into a number of pieces (pages or segments) and
these pieces need not be contiguously located in main memory during execu-
tion. The combination of dynamic run-time address translation and the use of
a page or segment table permits this.

Now we come to the breakthrough. If the preceding two characteristics are
present, then it is not necessary that all of the pages or all of the segments of a process
be in main memory during execution. If the piece (segment or page) that holds the
next instruction to be fetched and the piece that holds the next data location to be
accessed are in main memory, then at least for a time execution may proceed.

Let us consider how this may be accomplished. For now, we can talk in general
terms, and we will use the term piece to refer to either page or segment, depending
on whether paging or segmentation is employed. Suppose that it is time to bring a
new process into memory. The OS begins by bringing in only one or a few pieces,
to include the initial program piece and the initial data piece to which those in-
structions refer. The portion of a process that is actually in main memory at any
time is called the resident set of the process. As the process executes, things pro-
ceed smoothly as long as all memory references are to locations that are in the resi-
dent set. Using the segment or page table, the processor always is able to determine
whether this is so. If the processor encounters a logical address that is not in main
memory, it generates an interrupt indicating a memory access fault. The OS puts the
interrupted process in a blocking state. For the execution of this process to proceed
later, the OS must bring into main memory the piece of the process that contains the
logical address that caused the access fault. For this purpose, the OS issues a disk
I/O (input/output) read request. After the I/O request has been issued, the OS can
dispatch another process to run while the disk I/O is performed. Once the desired
piece has been brought into main memory, an I/O interrupt is issued, giving control
back to the OS, which places the affected process back into a Ready state.

It may immediately occur to you to question the efficiency of this maneuver,
in which a process may be executing and have to be interrupted for no other rea-
son than that you have failed to load in all of the needed pieces of the process. For
now, let us defer consideration of this question with the assurance that efficiency is
possible. Instead, let us ponder the implications of our new strategy. There are two
implications, the second more startling than the first, and both lead to improved
system utilization:

 1. More processes may be maintained in main memory. Because we are only
going to load some of the pieces of any particular process, there is room for
more processes. This leads to more efficient utilization of the processor be-
cause it is more likely that at least one of the more numerous processes will be
in a Ready state at any particular time.

 2. A process may be larger than all of main memory. One of the most funda-
mental restrictions in programming is lifted. Without the scheme we have
been discussing, a programmer must be acutely aware of how much memory
is available. If the program being written is too large, the programmer must
devise ways to structure the program into pieces that can be loaded sepa-
rately in some sort of overlay strategy. With virtual memory based on paging

8.1 / HARDWARE AND CONTROL STRUCTURES 343

or segmentation, that job is left to the OS and the hardware. As far as the
programmer is concerned, he or she is dealing with a huge memory, the size as-
sociated with disk storage. The OS automatically loads pieces of a process into
main memory as required.

Because a process executes only in main memory, that memory is referred
to as real memory. But a programmer or user perceives a potentially much larger
memory—that which is allocated on disk. This latter is referred to as virtual memory.
Virtual memory allows for very effective multiprogramming and relieves the user of
the unnecessarily tight constraints of main memory. Table 8.2 summarizes character-
istics of paging and segmentation with and without the use of virtual memory.

Locality and Virtual Memory

The benefits of virtual memory are attractive, but is the scheme practical? At one
time, there was considerable debate on this point, but experience with numerous
operating systems has demonstrated beyond doubt that virtual memory does work.

Table 8.2 Characteristics of Paging and Segmentation

Simple Paging Virtual Memory
Paging

Simple Segmentation Virtual Memory
Segmentation

Main memory partitioned into small fixed-size
chunks called frames.

Main memory not partitioned.

Program broken into pages by the compiler or
memory management system.

Program segments specified by the programmer
to the compiler (i.e., the decision is made by the
programmer).

Internal fragmentation within frames. No internal fragmentation.

No external fragmentation. External fragmentation.

Operating system must maintain a page table
for each process showing which frame each page
occupies.

Operating system must maintain a segment table for
each process showing the load address and length of
each segment.

Operating system must maintain a free-frame list. Operating system must maintain a list of free holes in
main memory.

Processor uses page number, offset to calculate
absolute address.

Processor uses segment number, offset to calculate
absolute address.

All the pages of a
 process must be in main
memory for process to
run, unless overlays are
used.

Not all pages of a
 process need be in
main memory frames
for the process to run.
Pages may be read in as
needed.

All the segments of a
process must be in main
memory for process to
run, unless overlays are
used.

Not all segments of a
process need be in main
memory for the process
to run. Segments may be
read in as needed.

Reading a page into
main memory may re-
quire writing a page out
to disk.

Reading a segment
into main memory may
require writing one or
more segments out to
disk.

344 CHAPTER 8 / VIRTUAL MEMORY

Accordingly, virtual memory, based on either paging or paging plus segmentation,
has become an essential component of contemporary operating systems.

To understand the key issue and why virtual memory was a matter of much de-
bate, let us examine again the task of the OS with respect to virtual memory. Consider
a large process, consisting of a long program plus a number of arrays of data. Over
any short period of time, execution may be confined to a small section of the program
(e.g., a subroutine) and access to perhaps only one or two arrays of data. If this is so,
then it would clearly be wasteful to load in dozens of pieces for that process when
only a few pieces will be used before the program is suspended and swapped out. We
can make better use of memory by loading in just a few pieces. Then, if the program
branches to an instruction or references a data item on a piece not in main memory, a
fault is triggered. This tells the OS to bring in the desired piece.

Thus, at any one time, only a few pieces of any given process are in memory,
and therefore more processes can be maintained in memory. Furthermore, time is
saved because unused pieces are not swapped in and out of memory. However, the
OS must be clever about how it manages this scheme. In the steady state, practically
all of main memory will be occupied with process pieces, so that the processor and
OS have direct access to as many processes as possible. Thus, when the OS brings
one piece in, it must throw another out. If it throws out a piece just before it is used,
then it will just have to go get that piece again almost immediately. Too much of
this leads to a condition known as thrashing: The system spends most of its time
swapping pieces rather than executing instructions. The avoidance of thrashing was
a major research area in the 1970s and led to a variety of complex but effective al-
gorithms. In essence, the OS tries to guess, based on recent history, which pieces are
least likely to be used in the near future.

This reasoning is based on belief in the principle of locality, which was intro-
duced in Chapter 1 (see especially Appendix 1A). To summarize, the principle of
locality states that program and data references within a process tend to cluster.
Hence, the assumption that only a few pieces of a process will be needed over a
short period of time is valid. Also, it should be possible to make intelligent guesses
about which pieces of a process will be needed in the near future, which avoids
thrashing.

The principle of locality suggests that a virtual memory scheme may be effec-
tive. For virtual memory to be practical and effective, two ingredients are needed.
First, there must be hardware support for the paging and/or segmentation scheme
to be employed. Second, the OS must include software for managing the movement
of pages and/or segments between secondary memory and main memory. In this
 section, we examine the hardware aspect and look at the necessary control structures,
which are created and maintained by the OS but are used by the memory manage-
ment hardware. An examination of the OS issues is provided in the next section.

Paging

The term virtual memory is usually associated with systems that employ paging,
although virtual memory based on segmentation is also used and is discussed next.
The use of paging to achieve virtual memory was first reported for the Atlas com-
puter [KILB62] and soon came into widespread commercial use.

8.1 / HARDWARE AND CONTROL STRUCTURES 345

In the discussion of simple paging, we indicated that each process has its own
page table, and when all of its pages are loaded into main memory, the page table
for a process is created and loaded into main memory. Each page table entry (PTE)
contains the frame number of the corresponding page in main memory. A page table
is also needed for a virtual memory scheme based on paging. Again, it is typical to
associate a unique page table with each process. In this case, however, the page table
entries become more complex (Figure 8.1a). Because only some of the pages of a
process may be in main memory, a bit is needed in each page table entry to indicate
whether the corresponding page is present (P) in main memory or not. If the bit
indicates that the page is in memory, then the entry also includes the frame number
of that page.

The page table entry includes a modify (M) bit, indicating whether the con-
tents of the corresponding page have been altered since the page was last loaded
into main memory. If there has been no change, then it is not necessary to write the

Virtual address

Page number Offset

(a) Paging only

Page table entry

Frame numberP M Other control bits

Virtual address

Segment number Offset

(b) Segmentation only

Segment table entry

Length Segment baseP M Other control bits

Segment number Page number Offset

Virtual address

Segment table entry

(c) Combined segmentation and paging

Page table entry

Frame numberP M Other control bits

Length Segment baseControl bits

P ! present bit
M ! modified bit

Figure 8.1 Typical Memory Management Formats

346 CHAPTER 8 / VIRTUAL MEMORY

page out when it comes time to replace the page in the frame that it currently occu-
pies. Other control bits may also be present. For example, if protection or sharing is
managed at the page level, then bits for that purpose will be required.

PAGE TABLE STRUCTURE The basic mechanism for reading a word from memory
involves the translation of a virtual, or logical, address, consisting of page number
and offset, into a physical address, consisting of frame number and offset, using a
page table. Because the page table is of variable length, depending on the size of the
process, we cannot expect to hold it in registers. Instead, it must be in main memory
to be accessed. Figure 8.2 suggests a hardware implementation. When a particular
process is running, a register holds the starting address of the page table for that
process. The page number of a virtual address is used to index that table and look
up the corresponding frame number. This is combined with the offset portion of the
virtual address to produce the desired real address. Typically, the page number field
is longer than the frame number field (n 7 m).

In most systems, there is one page table per process. But each process can
 occupy huge amounts of virtual memory. For example, in the VAX (Virtual Address
Extension) architecture, each process can have up to 231 = 2 Gbytes of virtual
memory. Using 29 = 512-byte pages means that as many as 222 page table entries
are required per process. Clearly, the amount of memory devoted to page tables
alone could be unacceptably high. To overcome this problem, most virtual memory
schemes store page tables in virtual memory rather than real memory. This means

Page # Offset Frame #

Virtual address Physical address

Offset

Offset

Program Paging mechanism Main memory

Pa
ge

#

Page table ptrn bits

m bits

Register

Page table

Frame #

!

Page
frame

Figure 8.2 Address Translation in a Paging System

8.1 / HARDWARE AND CONTROL STRUCTURES 347

that page tables are subject to paging just as other pages are. When a process is run-
ning, at least a part of its page table must be in main memory, including the page
table entry of the currently executing page. Some processors make use of a two-level
scheme to organize large page tables. In this scheme, there is a page directory, in
which each entry points to a page table. Thus, if the length of the page directory is X,
and if the maximum length of a page table is Y, then a process can consist of up to
X * Y pages. Typically, the maximum length of a page table is restricted to be equal
to one page. For example, the Pentium processor uses this approach.

Figure 8.3 shows an example of a two-level scheme typical for use with a 32-bit
address. If we assume byte-level addressing and 4-Kbyte (212) pages, then the 4-Gbyte
(232) virtual address space is composed of 220 pages. If each of these pages is mapped
by a 4-byte page table entry, we can create a user page table composed of 220 PTEs
requiring 4 Mbytes (222). This huge user page table, occupying 210 pages, can be kept
in virtual memory and mapped by a root page table with 210 PTEs occupying 4 Kbytes
(212) of main memory. Figure 8.4 shows the steps involved in address translation for
this scheme. The root page always remains in main memory. The first 10 bits of a vir-
tual address are used to index into the root page to find a PTE for a page of the user
page table. If that page is not in main memory, a page fault occurs. If that page is in
main memory, then the next 10 bits of the virtual address index into the user PTE
page to find the PTE for the page that is referenced by the virtual address.

INVERTED PAGE TABLE A drawback of the type of page tables that we have been
discussing is that their size is proportional to that of the virtual address space.

An alternative approach to the use of one or multiple-level page tables is the
use of an inverted page table structure. Variations on this approach are used on the
PowerPC, UltraSPARC, and the IA-64 architecture. An implementation of the Mach
operating system on the RT-PC also uses this technique.

In this approach, the page number portion of a virtual address is mapped into
a hash value using a simple hashing function.1 The hash value is a pointer to the

4-Kbyte root
page table

4-Mbyte user
page table

4-Gbyte user
address space

Figure 8.3 A Two-Level Hierarchical Page Table

1See Appendix F for a discussion of hashing.

348 CHAPTER 8 / VIRTUAL MEMORY

inverted page table, which contains the page table entries. There is one entry in the
inverted page table for each real memory page frame rather than one per virtual
page. Thus, a fixed proportion of real memory is required for the tables regardless
of the number of processes or virtual pages supported. Because more than one
virtual address may map into the same hash table entry, a chaining technique is
used for managing the overflow. The hashing technique results in chains that are
typically short—between one and two entries. The page table’s structure is called
inverted because it indexes page table entries by frame number rather than by vir-
tual page number.

Figure 8.5 shows a typical implementation of the inverted page table approach.
For a physical memory size of 2m frames, the inverted page table contains 2m entries,
so that the ith entry refers to frame i. Each entry in the page table includes the
following:

Page number: This is the page number portion of the virtual address.
Process identifier: The process that owns this page. The combination of page
number and process identifier identifies a page within the virtual address
space of a particular process.
Control bits: This field includes flags, such as valid, referenced, and modified;
and protection and locking information.
Chain pointer: This field is null (perhaps indicated by a separate bit) if there
are no chained entries for this entry. Otherwise, the field contains the index
value (number between 0 and 2m − 1) of the next entry in the chain.

10 bits10 bits 12 bits

Root page
table ptr

Frame # Offset

Virtual address

4-Kbyte page
table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

!
!

Program Paging mechanism Main memory

Page
frame

Figure 8.4 Address Translation in a Two-Level Paging System

8.1 / HARDWARE AND CONTROL STRUCTURES 349

In this example, the virtual address includes an n-bit page number, with n 7 m.
The hash function maps the n-bit page number into an m-bit quantity, which is used
to index into the inverted page table.

TRANSLATION LOOKASIDE BUFFER In principle, every virtual memory reference
can cause two physical memory accesses: one to fetch the appropriate page table
entry and another to fetch the desired data. Thus, a straightforward virtual memory
scheme would have the effect of doubling the memory access time. To overcome
this problem, most virtual memory schemes make use of a special high-speed cache
for page table entries, usually called a translation lookaside buffer (TLB). This
cache functions in the same way as a memory cache (see Chapter 1) and contains
those page table entries that have been most recently used. The organization
of the resulting paging hardware is illustrated in Figure 8.6. Given a virtual address,
the processor will first examine the TLB. If the desired page table entry is present
(TLB hit), then the frame number is retrieved and the real address is formed. If
the desired page table entry is not found (TLB miss), then the processor uses the
page number to index the process page table and examine the corresponding page
table entry. If the “present bit” is set, then the page is in main memory, and the
processor can retrieve the frame number from the page table entry to form the
real address. The processor also updates the TLB to include this new page table
entry. Finally, if the present bit is not set, then the desired page is not in main
memory and a memory access fault, called a page fault, is issued. At this point, we

Page # Offset

OffsetFrame #

m bits

m bits

n bits

n bits

Virtual address

Hash
function

Page #
Process

ID

Control
bits

Chain

Inverted page table
(one entry for each

physical memory frame)
Real address

i

0

j

2m ! 1

Figure 8.5 Inverted Page Table Structure

350 CHAPTER 8 / VIRTUAL MEMORY

leave the realm of hardware and invoke the OS, which loads the needed page and
updates the page table.

Figure 8.7 is a flowchart that shows the use of the TLB. The flowchart shows
that if the desired page is not in main memory, a page fault interrupt causes the page
fault handling routine to be invoked. To keep the flowchart simple, the fact that the
OS may dispatch another process while disk I/O is underway is not shown. By the
principle of locality, most virtual memory references will be to locations in recently
used pages. Therefore, most references will involve page table entries in the cache.
Studies of the VAX TLB have shown that this scheme can significantly improve per-
formance [CLAR85, SATY81].

There are a number of additional details concerning the actual organization
of the TLB. Because the TLB contains only some of the entries in a full page table,
we cannot simply index into the TLB based on page number. Instead, each entry
in the TLB must include the page number as well as the complete page table entry.
The processor is equipped with hardware that allows it to interrogate simultane-
ously a number of TLB entries to determine if there is a match on page number.
This technique is referred to as associative mapping and is contrasted with the direct
mapping, or indexing, used for lookup in the page table in Figure 8.8. The design of
the TLB also must consider the way in which entries are organized in the TLB and
which entry to replace when a new entry is brought in. These issues must be consid-
ered in any hardware cache design. This topic is not pursued here; the reader may
consult a treatment of cache design for further details (e.g., [STAL13]).

Page # Offset

Frame #

Virtual address

Offset

Offset

Load
pagePage table

Main memory Secondary
memory

Real address

Translation
lookaside buffer

TLB hit

TLB miss

Page fault

Figure 8.6 Use of a Translation Lookaside Buffer

8.1 / HARDWARE AND CONTROL STRUCTURES 351

Start

CPU checks the TLB

Page table
entry in
TLB?

Access page table

Update TLB

Yes

Yes

No

No

No

Yes

CPU generates
physical address

OS instructs CPU
to read the page

from disk

CPU activates
I/O hardware

Page fault
handling routine

Return to
faulted instruction

Page tables
updated

Perform page
replacement

Page transferred
from disk to

main memory

Page
in main

memory?

Memory
full?

Figure 8.7 Operation of Paging and Translation Lookaside Buffer (TLB)

Finally, the virtual memory mechanism must interact with the cache system
(not the TLB cache, but the main memory cache). This is illustrated in Figure 8.9.
A virtual address will generally be in the form of a page number, offset. First, the
memory system consults the TLB to see if the matching page table entry is present.
If it is, the real (physical) address is generated by combining the frame number with
the offset. If not, the entry is accessed from a page table. Once the real address is
generated, which is in the form of a tag2 and a remainder, the cache is consulted to

2See Figure 1.17. Typically, a tag is just the leftmost bits of the real address. Again, for a more detailed
discussion of caches, see [STAL13].

352 CHAPTER 8 / VIRTUAL MEMORY

(b) Associative mapping(a) Direct mapping

Page table

Page #
5 502

Offset

Virtual address

37

37

19
511
37
27
14

5
211
1

90

PT entries

Translation lookaside buffer

Page #
5 502

Offset

Virtual address

Frame #
37 502

Offset
Real address

Frame #
37 502

Offset
Real address

Page #

Figure 8.8 Direct versus Associative Lookup for Page Table Entries

Page # Offset

Virtual address

TLB operation

Page table

Main
memory

TLB miss

Miss

Hit Value

TLB
hit

TLB

Tag Remainder

Real address

Cache operation

Cache
!

Value

Figure 8.9 Translation Lookaside Buffer and Cache Operation

8.1 / HARDWARE AND CONTROL STRUCTURES 353

see if the block containing that word is present. If so, it is returned to the CPU. If not,
the word is retrieved from main memory.

The reader should be able to appreciate the complexity of the CPU hardware
involved in a single memory reference. The virtual address is translated into a real
address. This involves reference to a page table entry, which may be in the TLB, in
main memory, or on disk. The referenced word may be in cache, main memory, or on
disk. If the referenced word is only on disk, the page containing the word must be
loaded into main memory and its block loaded into the cache. In addition, the page
table entry for that page must be updated.

PAGE SIZE An important hardware design decision is the size of page to be used.
There are several factors to consider. One is internal fragmentation. Clearly, the
smaller the page size, the lesser is the amount of internal fragmentation. To optimize
the use of main memory, we would like to reduce internal fragmentation. On the
other hand, the smaller the page, the greater is the number of pages required per
process. More pages per process means larger page tables. For large programs in
a heavily multiprogrammed environment, this may mean that some portion of the
page tables of active processes must be in virtual memory, not in main memory.
Thus, there may be a double page fault for a single reference to memory: first to
bring in the needed portion of the page table and second to bring in the process
page. Another factor is that the physical characteristics of most secondary-memory
devices, which are rotational, favor a larger page size for more efficient block
transfer of data.

Complicating these matters is the effect of page size on the rate at which page
faults occur. This behavior, in general terms, is depicted in Figure 8.10a and is based
on the principle of locality. If the page size is very small, then ordinarily a relatively
large number of pages will be available in main memory for a process. After a time,

P NW

(a) Page size

Pa
ge

 fa
ul

t r
at

e

Pa
ge

 fa
ul

t r
at

e

(b) Number of page frames allocated

P ! size of entire process
W ! working set size
N ! total number of pages in process

Figure 8.10 Typical Paging Behavior of a Program

354 CHAPTER 8 / VIRTUAL MEMORY

the pages in memory will all contain portions of the process near recent references.
Thus, the page fault rate should be low. As the size of the page is increased, each
individual page will contain locations further and further from any particular recent
reference. Thus, the effect of the principle of locality is weakened and the page fault
rate begins to rise. Eventually, however, the page fault rate will begin to fall as the
size of a page approaches the size of the entire process (point P in the diagram).
When a single page encompasses the entire process, there will be no page faults.

A further complication is that the page fault rate is also determined by the
number of frames allocated to a process. Figure 8.10b shows that for a fixed page
size, the fault rate drops as the number of pages maintained in main memory grows.3
Thus, a software policy (the amount of memory to allocate to each process) interacts
with a hardware design decision (page size).

Table 8.3 lists the page sizes used on some machines.
Finally, the design issue of page size is related to the size of physical main

memory and program size. At the same time that main memory is getting larger,
the address space used by applications is also growing. The trend is most obvious
on personal computers and workstations, where applications are becoming increas-
ingly complex. Furthermore, contemporary programming techniques used in large
programs tend to decrease the locality of references within a process [HUCK93].
For example,

Object-oriented techniques encourage the use of many small program and
data modules with references scattered over a relatively large number of ob-
jects over a relatively short period of time.
Multithreaded applications may result in abrupt changes in the instruction
stream and in scattered memory references.

Table 8.3 Example of Page Sizes

Computer Page Size

Atlas 512 48-bit words

Honeywell-Multics 1,024 36-bit words

IBM 370/XA and 370/ESA 4 Kbytes

VAX family 512 bytes

IBM AS/400 512 bytes

DEC Alpha 8 Kbytes

MIPS 4 Kbytes to 16 Mbytes

UltraSPARC 8 Kbytes to 4 Mbytes

Pentium 4 Kbytes or 4 Mbytes

Intel Itanium 4 Kbytes to 256 Mbytes

Intel core i7 4 Kbytes to 1 Gbyte

3The parameter W represents working set size, a concept discussed in Section 8.2.

8.1 / HARDWARE AND CONTROL STRUCTURES 355

For a given size of TLB, as the memory size of processes grows and as locality
decreases, the hit ratio on TLB accesses declines. Under these circumstances, the
TLB can become a performance bottleneck (e.g., see [CHEN92]).

One way to improve TLB performance is to use a larger TLB with more en-
tries. However, TLB size interacts with other aspects of the hardware design, such as
the main memory cache and the number of memory accesses per instruction cycle
[TALL92]. The upshot is that TLB size is unlikely to grow as rapidly as main mem-
ory size. An alternative is to use larger page sizes so that each page table entry in the
TLB refers to a larger block of memory. But we have just seen that the use of large
page sizes can lead to performance degradation.

Accordingly, a number of designers have investigated the use of multiple page
sizes [TALL92, KHAL93], and several microprocessor architectures support mul-
tiple pages sizes, including MIPS R4000, Alpha, UltraSPARC, Pentium, and IA-64.
Multiple page sizes provide the flexibility needed to use a TLB effectively. For ex-
ample, large contiguous regions in the address space of a process, such as program
instructions, may be mapped using a small number of large pages rather than a large
number of small pages, while thread stacks may be mapped using the small page
size. However, most commercial operating systems still support only one page size,
regardless of the capability of the underlying hardware. The reason for this is that
page size affects many aspects of the OS; thus, a change to multiple page sizes is a
complex undertaking (see [GANA98] for a discussion).

Segmentation

VIRTUAL MEMORY IMPLICATIONS Segmentation allows the programmer to view
memory as consisting of multiple address spaces or segments. Segments may be of
unequal, indeed dynamic, size. Memory references consist of a (segment number,
offset) form of address.

This organization has a number of advantages to the programmer over a non-
segmented address space:

 1. It simplifies the handling of growing data structures. If the programmer does not
know ahead of time how large a particular data structure will become, it is neces-
sary to guess unless dynamic segment sizes are allowed. With segmented virtual
memory, the data structure can be assigned its own segment, and the OS will
expand or shrink the segment as needed. If a segment that needs to be expanded
is in main memory and there is insufficient room, the OS may move the segment
to a larger area of main memory, if available, or swap it out. In the latter case, the
enlarged segment would be swapped back in at the next opportunity.

 2. It allows programs to be altered and recompiled independently, without re-
quiring the entire set of programs to be relinked and reloaded. Again, this is
accomplished using multiple segments.

 3. It lends itself to sharing among processes. A programmer can place a utility
program or a useful table of data in a segment that can be referenced by other
processes.

 4. It lends itself to protection. Because a segment can be constructed to contain a
well-defined set of programs or data, the programmer or system administrator
can assign access privileges in a convenient fashion.

356 CHAPTER 8 / VIRTUAL MEMORY

ORGANIZATION In the discussion of simple segmentation, we indicated that each
process has its own segment table, and when all of its segments are loaded into main
memory, the segment table for a process is created and loaded into main memory.
Each segment table entry contains the starting address of the corresponding segment
in main memory, as well as the length of the segment. The same device, a segment
table, is needed when we consider a virtual memory scheme based on segmentation.
Again, it is typical to associate a unique segment table with each process. In this case,
however, the segment table entries become more complex (Figure 8.1b). Because
only some of the segments of a process may be in main memory, a bit is needed in
each segment table entry to indicate whether the corresponding segment is present
in main memory or not. If the bit indicates that the segment is in memory, then the
entry also includes the starting address and length of that segment.

Another control bit in the segmentation table entry is a modify bit, indicat-
ing whether the contents of the corresponding segment have been altered since the
segment was last loaded into main memory. If there has been no change, then it is
not necessary to write the segment out when it comes time to replace the segment
in the frame that it currently occupies. Other control bits may also be present. For
example, if protection or sharing is managed at the segment level, then bits for that
purpose will be required.

The basic mechanism for reading a word from memory involves the transla-
tion of a virtual, or logical, address, consisting of segment number and offset, into
a physical address, using a segment table. Because the segment table is of variable
length, depending on the size of the process, we cannot expect to hold it in registers.
Instead, it must be in main memory to be accessed. Figure 8.11 suggests a hardware
implementation of this scheme (note similarity to Figure 8.2). When a particular
process is running, a register holds the starting address of the segment table for that
process. The segment number of a virtual address is used to index that table and

Seg #

Se
g

#

Offset = d

Seg Table Ptr

Virtual address

Register

Segment table

Physical address

Length Base

Se
gm

en
t

Base + d

d

+

+

Program Segmentation mechanism Main memory

Figure 8.11 Address Translation in a Segmentation System

8.1 / HARDWARE AND CONTROL STRUCTURES 357

look up the corresponding main memory address for the start of the segment. This is
added to the offset portion of the virtual address to produce the desired real address.

Combined Paging and Segmentation

Both paging and segmentation have their strengths. Paging, which is transparent
to the programmer, eliminates external fragmentation and thus provides efficient
use of main memory. In addition, because the pieces that are moved in and out of
main memory are of fixed, equal size, it is possible to develop sophisticated mem-
ory management algorithms that exploit the behavior of programs, as we shall see.
Segmentation, which is visible to the programmer, has the strengths listed earlier,
including the ability to handle growing data structures, modularity, and support
for sharing and protection. To combine the advantages of both, some systems are
equipped with processor hardware and OS software to provide both.

In a combined paging/segmentation system, a user’s address space is broken
up into a number of segments, at the discretion of the programmer. Each segment
is, in turn, broken up into a number of fixed-size pages, which are equal in length to
a main memory frame. If a segment has length less than that of a page, the segment
occupies just one page. From the programmer’s point of view, a logical address still
consists of a segment number and a segment offset. From the system’s point of view,
the segment offset is viewed as a page number and page offset for a page within the
specified segment.

Figure 8.12 suggests a structure to support combined paging/segmentation
(note similarity to Figure 8.4). Associated with each process is a segment table and
a number of page tables, one per process segment. When a particular process is

Page #Seg #

Se
g

#

Offset

Seg table ptr

Frame #

Virtual address

Segment
table

Page
table

Offset

Offset

! !

Pa
ge

 #

Program Segmentation
mechanism

Paging
mechanism

Main memory

Page
frame

Figure 8.12 Address Translation in a Segmentation/Paging System

358 CHAPTER 8 / VIRTUAL MEMORY

running, a register holds the starting address of the segment table for that process.
Presented with a virtual address, the processor uses the segment number portion to
index into the process segment table to find the page table for that segment. Then
the page number portion of the virtual address is used to index the page table and
look up the corresponding frame number. This is combined with the offset portion
of the virtual address to produce the desired real address.

Figure 8.1c suggests the segment table entry and page table entry formats. As
before, the segment table entry contains the length of the segment. It also contains
a base field, which now refers to a page table. The present and modified bits are not
needed because these matters are handled at the page level. Other control bits may
be used, for purposes of sharing and protection. The page table entry is essentially
the same as is used in a pure paging system. Each page number is mapped into a cor-
responding frame number if the page is present in main memory. The modified bit
indicates whether this page needs to be written back out when the frame is allocated
to another page. There may be other control bits dealing with protection or other
aspects of memory management.

Protection and Sharing

Segmentation lends itself to the implementation of protection and sharing policies.
Because each segment table entry includes a length as well as a base address, a pro-
gram cannot inadvertently access a main memory location beyond the limits of a
segment. To achieve sharing, it is possible for a segment to be referenced in the seg-
ment tables of more than one process. The same mechanisms are, of course, avail-
able in a paging system. However, in this case the page structure of programs and
data is not visible to the programmer, making the specification of protection and
sharing requirements more awkward. Figure 8.13 illustrates the types of protection
relationships that can be enforced in such a system.

More sophisticated mechanisms can also be provided. A common scheme is to
use a ring-protection structure, of the type we referred to in Chapter 3 (Figure 3.18).
In this scheme, lower-numbered, or inner, rings enjoy greater privilege than higher-
numbered, or outer, rings. Typically, ring 0 is reserved for kernel functions of the
OS, with applications at a higher level. Some utilities or OS services may occupy an
intermediate ring. Basic principles of the ring system are as follows:

 1. A program may access only data that reside on the same ring or a less privi-
leged ring.

 2. A program may call services residing on the same or a more privileged ring.

 8.2 OPERATING SYSTEM SOFTWARE

The design of the memory management portion of an OS depends on three funda-
mental areas of choice:

Whether or not to use virtual memory techniques
The use of paging or segmentation or both
The algorithms employed for various aspects of memory management

8.2 / OPERATING SYSTEM SOFTWARE 359

The choices made in the first two areas depend on the hardware platform available.
Thus, earlier UNIX implementations did not provide virtual memory because the
processors on which the system ran did not support paging or segmentation. Neither
of these techniques is practical without hardware support for address translation
and other basic functions.

Two additional comments about the first two items in the preceding list: First,
with the exception of operating systems for some of the older personal computers,
such as MS-DOS, and specialized systems, all important operating systems provide
virtual memory. Second, pure segmentation systems are becoming increasingly rare.
When segmentation is combined with paging, most of the memory management is-
sues confronting the OS designer are in the area of paging.4 Thus, we can concen-
trate in this section on the issues associated with paging.

The choices related to the third item are the domain of operating system
software and are the subject of this section. Table 8.4 lists the key design elements

Main memoryAddress

Dispatcher

Process A

Process B

Process C

0

20K

No access
allowed

Branch instruction
(not allowed)

Reference to
data (allowed)

Reference to
data (not allowed)

35K

50K

80K

90K

140K

190K

Figure 8.13 Protection Relationships between Segments

4Protection and sharing are usually dealt with at the segment level in a combined segmentation/paging
system. We will deal with these issues in later chapters.

360 CHAPTER 8 / VIRTUAL MEMORY

that we examine. In each case, the key issue is one of performance: We would
like to minimize the rate at which page faults occur, because page faults cause
considerable software overhead. At a minimum, the overhead includes deciding
which resident page or pages to replace, and the I/O of exchanging pages. Also, the
OS must schedule another process to run during the page I/O, causing a process
switch. Accordingly, we would like to arrange matters so that during the time that
a process is executing, the probability of referencing a word on a missing page is
minimized. In all of the areas referred to in Table 8.4, there is no definitive policy
that works best.

As we shall see, the task of memory management in a paging environment is
fiendishly complex. Furthermore, the performance of any particular set of policies
depends on main memory size, the relative speed of main and secondary memory,
the size and number of processes competing for resources, and the execution be-
havior of individual programs. This latter characteristic depends on the nature of
the application, the programming language and compiler employed, the style of the
programmer who wrote it, and, for an interactive program, the dynamic behavior
of the user. Thus, the reader must expect no final answers here or anywhere. For
smaller systems, the OS designer should attempt to choose a set of policies that
seems “good” over a wide range of conditions, based on the current state of knowl-
edge. For larger systems, particularly mainframes, the operating system should be
equipped with monitoring and control tools that allow the site manager to tune the
operating system to get “good” results based on site conditions.

Fetch Policy

The fetch policy determines when a page should be brought into main memory. The
two common alternatives are demand paging and prepaging. With demand paging,
a page is brought into main memory only when a reference is made to a location on
that page. If the other elements of memory management policy are good, the fol-
lowing should happen. When a process is first started, there will be a flurry of page
faults. As more and more pages are brought in, the principle of locality suggests that
most future references will be to pages that have recently been brought in. Thus,

Table 8.4 Operating System Policies for Virtual Memory

Fetch Policy Resident Set Management
 Demand paging Resident set size
 Prepaging Fixed

 Variable
Placement Policy Replacement Scope

 Global
Replacement Policy Local
 Basic Algorithms
 Optimal Cleaning Policy
 Least recently used (LRU) Demand
 First-in-first-out (FIFO) Precleaning
 Clock
 Page Buffering Load Control

 Degree of multiprogramming

8.2 / OPERATING SYSTEM SOFTWARE 361

after a time, matters should settle down and the number of page faults should drop
to a very low level.

With prepaging, pages other than the one demanded by a page fault are
brought in. Prepaging exploits the characteristics of most secondary memory devices,
such as disks, which have seek times and rotational latency. If the pages of a process
are stored contiguously in secondary memory, then it is more efficient to bring in a
number of contiguous pages at one time rather than bringing them in one at a time
over an extended period. Of course, this policy is ineffective if most of the extra pages
that are brought in are not referenced.

The prepaging policy could be employed either when a process first starts up,
in which case the programmer would somehow have to designate desired pages, or
every time a page fault occurs. This latter course would seem preferable because it
is invisible to the programmer. However, the utility of prepaging has not been estab-
lished [MAEK87].

Prepaging should not be confused with swapping. When a process is swapped
out of memory and put in a suspended state, all of its resident pages are moved out.
When the process is resumed, all of the pages that were previously in main memory
are returned to main memory.

Placement Policy

The placement policy determines where in real memory a process piece is to reside.
In a pure segmentation system, the placement policy is an important design issue;
policies such as best-fit, first-fit, and so on, which were discussed in Chapter 7, are
possible alternatives. However, for a system that uses either pure paging or paging
combined with segmentation, placement is usually irrelevant because the address
translation hardware and the main memory access hardware can perform their func-
tions for any page-frame combination with equal efficiency.

There is one area in which placement does become a concern, and this is a
subject of research and development. On a so-called nonuniform memory access
(NUMA) multiprocessor, the distributed, shared memory of the machine can be
referenced by any processor on the machine, but the time for accessing a particular
physical location varies with the distance between the processor and the memory
module. Thus, performance depends heavily on the extent to which data reside close
to the processors that use them [LARO92, BOLO89, COX89]. For NUMA systems,
an automatic placement strategy is desirable to assign pages to the memory module
that provides the best performance.

Replacement Policy

In most operating system texts, the treatment of memory management includes
a section entitled “replacement policy,” which deals with the selection of a
page in main memory to be replaced when a new page must be brought in. This
topic is sometimes difficult to explain because several interrelated concepts are
involved:

How many page frames are to be allocated to each active process

362 CHAPTER 8 / VIRTUAL MEMORY

Whether the set of pages to be considered for replacement should be limited
to those of the process that caused the page fault or encompass all the page
frames in main memory
Among the set of pages considered, which particular page should be selected
for replacement

We shall refer to the first two concepts as resident set management, which is dealt
with in the next subsection, and reserve the term replacement policy for the third
concept, which is discussed in this subsection.

The area of replacement policy is probably the most studied of any area of
memory management. When all of the frames in main memory are occupied and it
is necessary to bring in a new page to satisfy a page fault, the replacement policy de-
termines which page currently in memory is to be replaced. All of the policies have
as their objective that the page that is removed should be the page least likely to be
referenced in the near future. Because of the principle of locality, there is often a
high correlation between recent referencing history and near-future referencing pat-
terns. Thus, most policies try to predict future behavior on the basis of past behavior.
One trade-off that must be considered is that the more elaborate and sophisticated
the replacement policy, the greater will be the hardware and software overhead to
implement it.

FRAME LOCKING One restriction on replacement policy needs to be mentioned
before looking at various algorithms: Some of the frames in main memory may be
locked. When a frame is locked, the page currently stored in that frame may not be
replaced. Much of the kernel of the OS, as well as key control structures, are held in
locked frames. In addition, I/O buffers and other time-critical areas may be locked
into main memory frames. Locking is achieved by associating a lock bit with each
frame. This bit may be kept in a frame table as well as being included in the current
page table.

BASIC ALGORITHMS Regardless of the resident set management strategy (discussed
in the next subsection), there are certain basic algorithms that are used for the
selection of a page to replace. Replacement algorithms that have been discussed in
the literature include

Optimal
Least recently used (LRU)
First-in-first-out (FIFO)
Clock

The optimal policy selects for replacement that page for which the time to
the next reference is the longest. It can be shown that this policy results in the
fewest number of page faults [BELA66]. Clearly, this policy is impossible to im-
plement, because it would require the OS to have perfect knowledge of future
events. However, it does serve as a standard against which to judge real-world
algorithms.

8.2 / OPERATING SYSTEM SOFTWARE 363

Figure 8.14 gives an example of the optimal policy. The example assumes a
fixed frame allocation (fixed resident set size) for this process of three frames. The
execution of the process requires reference to five distinct pages. The page address
stream formed by executing the program is

2 3 2 1 5 2 4 5 3 2 5 2

which means that the first page referenced is 2, the second page referenced is 3, and
so on. The optimal policy produces three page faults after the frame allocation has
been filled.

The least recently used (LRU) policy replaces the page in memory that has
not been referenced for the longest time. By the principle of locality, this should be
the page least likely to be referenced in the near future. And, in fact, the LRU policy
does nearly as well as the optimal policy. The problem with this approach is the dif-
ficulty in implementation. One approach would be to tag each page with the time
of its last reference; this would have to be done at each memory reference, both in-
struction and data. Even if the hardware would support such a scheme, the overhead
would be tremendous. Alternatively, one could maintain a stack of page references,
again an expensive prospect.

Figure 8.14 shows an example of the behavior of LRU, using the same page
address stream as for the optimal policy example. In this example, there are four
page faults.

2

2 3 2 1 5 2 4 5 3 2 5 2

2
3

2
3

2
3
1

F

F

F F F F F F

F F F

F F

2
3
5

2
3
5

4
3
5

4
3
5

4
3
5

2
3
5

2
3
5

2
3
5

2 2
3

2
3

2
3
1

2
5
1

2
5
1

2
5
4

2
5
4

3
5
4

3
5
2

3
5
2

3
5
2

2 2
3

2
3

2
3
1

5
3
1

5
2
1

5
2
4

5
2
4

3
2
4

3
2
4

3
5
4

3
5
2

2* 2*
3*

2*
3*

2*
3*
1*

5*
3
1
F

F = page fault occurring after the frame allocation is initially filled

F F F F

5*
2*
1

5*
2*
4*

5*
2*
4*

3*
2
4

3*
2*
4

3*
2
5*

3*
2*
5*

OPT

Page address
stream

LRU

FIFO

CLOCK

Figure 8.14 Behavior of Four Page Replacement Algorithms

364 CHAPTER 8 / VIRTUAL MEMORY

The first-in-first-out (FIFO) policy treats the page frames allocated to a process
as a circular buffer, and pages are removed in round-robin style. All that is required
is a pointer that circles through the page frames of the process. This is therefore one
of the simplest page replacement policies to implement. The logic behind this choice,
other than its simplicity, is that one is replacing the page that has been in memory the
longest: A page fetched into memory a long time ago may have now fallen out of use.
This reasoning will often be wrong, because there will often be regions of program
or data that are heavily used throughout the life of a program. Those pages will be
repeatedly paged in and out by the FIFO algorithm.

Continuing our example in Figure 8.14, the FIFO policy results in six page
faults. Note that LRU recognizes that pages 2 and 5 are referenced more frequently
than other pages, whereas FIFO does not.

Although the LRU policy does nearly as well as an optimal policy, it is dif-
ficult to implement and imposes significant overhead. On the other hand, the FIFO
policy is very simple to implement but performs relatively poorly. Over the years, OS
designers have tried a number of other algorithms to approximate the performance
of LRU while imposing little overhead. Many of these algorithms are variants of a
scheme referred to as the clock policy.

The simplest form of clock policy requires the association of an additional bit
with each frame, referred to as the use bit. When a page is first loaded into a frame in
memory, the use bit for that frame is set to 1. Whenever the page is subsequently ref-
erenced (after the reference that generated the page fault), its use bit is set to 1. For
the page replacement algorithm, the set of frames that are candidates for replace-
ment (this process: local scope; all of main memory: global scope5) is considered
to be a circular buffer, with which a pointer is associated. When a page is replaced,
the pointer is set to indicate the next frame in the buffer after the one just updated.
When it comes time to replace a page, the OS scans the buffer to find a frame with a
use bit set to 0. Each time it encounters a frame with a use bit of 1, it resets that bit to
0 and continues on. If any of the frames in the buffer have a use bit of 0 at the begin-
ning of this process, the first such frame encountered is chosen for replacement. If
all of the frames have a use bit of 1, then the pointer will make one complete cycle
through the buffer, setting all the use bits to 0, and stop at its original position, re-
placing the page in that frame. We can see that this policy is similar to FIFO, except
that, in the clock policy, any frame with a use bit of 1 is passed over by the algorithm.
The policy is referred to as a clock policy because we can visualize the page frames
as laid out in a circle. A number of operating systems have employed some variation
of this simple clock policy (e.g., Multics [CORB68]).

Figure 8.15 provides an example of the simple clock policy mechanism. A cir-
cular buffer of n main memory frames is available for page replacement. Just prior
to the replacement of a page from the buffer with incoming page 727, the next frame
pointer points at frame 2, which contains page 45. The clock policy is now executed.
Because the use bit for page 45 in frame 2 is equal to 1, this page is not replaced.
Instead, the use bit is set to 0 and the pointer advances. Similarly, page 191 in frame
3 is not replaced; its use bit is set to 0 and the pointer advances. In the next frame,

5The concept of scope is discussed in the subsection “Replacement Scope,” subsequently.

8.2 / OPERATING SYSTEM SOFTWARE 365

frame 4, the use bit is set to 0. Therefore, page 556 is replaced with page 727. The use
bit is set to 1 for this frame and the pointer advances to frame 5, completing the page
replacement procedure.

The behavior of the clock policy is illustrated in Figure 8.14. The presence of
an asterisk indicates that the corresponding use bit is equal to 1, and the arrow in-
dicates the current position of the pointer. Note that the clock policy is adept at
protecting frames 2 and 5 from replacement.

0

6

1

2

3

4

5

7

8

n ! 1

n ! 1

Page 19
Use " 1

Page 1
Use " 1

Next frame
pointer

Page 45
Use " 1

Page 191
Use " 1

Page 556
Use " 0

Page 13
Use " 0

Page 67
Use " 1

Page 33
Use " 1

Page 222
Use " 0

Page 9
Use " 1

(a) State of buffer just prior to a page replacement

0

6

1

2

3

4

5

7

8

Page 19
Use " 1

Page 1
Use " 1

Page 45
Use " 0

Page 191
Use " 0

Page 727
Use " 1

Page 13
Use " 0

Page 67
Use " 1

Page 33
Use " 1

Page 222
Use " 0

Page 9
Use " 1

(b) State of buffer just after the next page replacement

First frame in
circular buffer of
frames that are
candidates for replacement

Figure 8.15 Example of Clock Policy Operation

366 CHAPTER 8 / VIRTUAL MEMORY

Figure 8.16 shows the results of an experiment reported in [BAER80], which
compares the four algorithms that we have been discussing; it is assumed that the num-
ber of page frames assigned to a process is fixed. The results are based on the execution
of 0.25 × 106 references in a FORTRAN program, using a page size of 256 words. Baer
ran the experiment with frame allocations of 6, 8, 10, 12, and 14 frames. The differences
among the four policies are most striking at small allocations, with FIFO being over a
factor of 2 worse than optimal. All four curves have the same shape as the idealized
behavior shown in Figure 8.10b. In order to run efficiently, we would like to be to the
right of the knee of the curve (with a small page fault rate) while keeping a small frame
allocation (to the left of the knee of the curve). These two constraints indicate that a
desirable mode of operation would be at the knee of the curve.

Almost identical results have been reported in [FINK88], again showing a
maximum spread of about a factor of 2. Finkel’s approach was to simulate the ef-
fects of various policies on a synthesized page-reference string of 10,000 references
selected from a virtual space of 100 pages. To approximate the effects of the prin-
ciple of locality, an exponential distribution for the probability of referencing a par-
ticular page was imposed. Finkel observes that some might be led to conclude that
there is little point in elaborate page replacement algorithms when only a factor of
2 is at stake. But he notes that this difference will have a noticeable effect either on
main memory requirements (to avoid degrading operating system performance) or
operating system performance (to avoid enlarging main memory).

The clock algorithm has also been compared to these other algorithms when a
variable allocation and either global or local replacement scope (see the following
discussion of replacement policy) is used [CARR81]. The clock algorithm was found
to approximate closely the performance of LRU.

The clock algorithm can be made more powerful by increasing the number of
bits that it employs.6 In all processors that support paging, a modify bit is associated

0
6 8

Number of frames allocated

Pa
ge

 fa
ul

ts
 p

er
 1

00
0

re
fe

re
nc

es

10 12 14

5

10

15

20

25

30

35
FIFO

CLOCK

LRU

OPT

40

Figure 8.16 Comparison of Fixed-Allocation, Local Page
Replacement Algorithms

6On the other hand, if we reduce the number of bits employed to zero, the clock algorithm degenerates
to FIFO.

8.2 / OPERATING SYSTEM SOFTWARE 367

with every page in main memory and hence with every frame of main memory. This
bit is needed so that when a page has been modified, it is not replaced until it has been
written back into secondary memory. We can exploit this bit in the clock algorithm in
the following way. If we take the use and modify bits into account, each frame falls
into one of four categories:

Not accessed recently, not modified (u = 0; m = 0)
Accessed recently, not modified (u = 1; m = 0)
Not accessed recently, modified (u = 0; m = 1)
Accessed recently, modified (u = 1; m = 1)

With this classification, the clock algorithm performs as follows:

 1. Beginning at the current position of the pointer, scan the frame buffer. During
this scan, make no changes to the use bit. The first frame encountered with
(u = 0; m = 0) is selected for replacement.

 2. If step 1 fails, scan again, looking for the frame with (u = 0; m = 1). The first
such frame encountered is selected for replacement. During this scan, set the
use bit to 0 on each frame that is bypassed.

 3. If step 2 fails, the pointer should have returned to its original position and all
of the frames in the set will have a use bit of 0. Repeat step 1 and, if necessary,
step 2. This time, a frame will be found for the replacement.

In summary, the page replacement algorithm cycles through all of the pages
in the buffer looking for one that has not been modified since being brought in and
has not been accessed recently. Such a page is a good bet for replacement and has
the advantage that, because it is unmodified, it does not need to be written back
out to secondary memory. If no candidate page is found in the first sweep, the al-
gorithm cycles through the buffer again, looking for a modified page that has not
been accessed recently. Even though such a page must be written out to be replaced,
because of the principle of locality, it may not be needed again anytime soon. If this
second pass fails, all of the frames in the buffer are marked as having not been ac-
cessed recently and a third sweep is performed.

This strategy was used on an earlier version of the Macintosh virtual memory
scheme [GOLD89]. The advantage of this algorithm over the simple clock algorithm
is that pages that are unchanged are given preference for replacement. Because a
page that has been modified must be written out before being replaced, there is an
immediate saving of time.

PAGE BUFFERING Although LRU and the clock policies are superior to FIFO,
they both involve complexity and overhead not suffered with FIFO. In addition,
there is the related issue that the cost of replacing a page that has been modified is
greater than for one that has not, because the former must be written back out to
secondary memory.

An interesting strategy that can improve paging performance and allow the
use of a simpler page replacement policy is page buffering. The VAX VMS ap-
proach is representative. The page replacement algorithm is simple FIFO. To im-
prove performance, a replaced page is not lost but rather is assigned to one of two

368 CHAPTER 8 / VIRTUAL MEMORY

lists: the free page list if the page has not been modified, or the modified page list
if it has. Note that the page is not physically moved about in main memory; instead,
the entry in the page table for this page is removed and placed in either the free or
modified page list.

The free page list is a list of page frames available for reading in pages. VMS
tries to keep some small number of frames free at all times. When a page is to be read
in, the page frame at the head of the list is used, destroying the page that was there.
When an unmodified page is to be replaced, it remains in memory and its page frame
is added to the tail of the free page list. Similarly, when a modified page is to be written
out and replaced, its page frame is added to the tail of the modified page list.

The important aspect of these maneuvers is that the page to be replaced remains
in memory. Thus if the process references that page, it is returned to the resident set
of that process at little cost. In effect, the free and modified page lists act as a cache of
pages. The modified page list serves another useful function: Modified pages are writ-
ten out in clusters rather than one at a time. This significantly reduces the number of
I/O operations and therefore the amount of disk access time.

A simpler version of page buffering is implemented in the Mach operating
system [RASH88]. In this case, no distinction is made between modified and un-
modified pages.

REPLACEMENT POLICY AND CACHE SIZE As discussed earlier, main memory size
is getting larger and the locality of applications is decreasing. In compensation,
cache sizes have been increasing. Large cache sizes, even multimegabyte ones, are
now feasible design alternatives [BORG90]. With a large cache, the replacement of
virtual memory pages can have a performance impact. If the page frame selected
for replacement is in the cache, then that cache block is lost as well as the page
that it holds.

In systems that use some form of page buffering, it is possible to improve
cache performance by supplementing the page replacement policy with a policy for
page placement in the page buffer. Most operating systems place pages by selecting
an arbitrary page frame from the page buffer; typically a first-in-first-out discipline
is used. A study reported in [KESS92] shows that a careful page placement strategy
can result in 10–20% fewer cache misses than naive placement.

Several page placement algorithms are examined in [KESS92]. The details are
beyond the scope of this book, as they depend on the details of cache structure
and policies. The essence of these strategies is to bring consecutive pages into main
memory in such a way as to minimize the number of page frames that are mapped
into the same cache slots.

Resident Set Management

RESIDENT SET SIZE With paged virtual memory, it is not necessary and indeed may
not be possible to bring all of the pages of a process into main memory to prepare
it for execution. Thus, the OS must decide how many pages to bring in, that is, how
much main memory to allocate to a particular process. Several factors come into play:

The smaller the amount of memory allocated to a process, the more processes
that can reside in main memory at any one time. This increases the probability

8.2 / OPERATING SYSTEM SOFTWARE 369

that the OS will find at least one ready process at any given time and hence
reduces the time lost due to swapping.
If a relatively small number of pages of a process are in main memory, then,
despite the principle of locality, the rate of page faults will be rather high (see
Figure 8.10b).
Beyond a certain size, additional allocation of main memory to a particular
process will have no noticeable effect on the page fault rate for that process
because of the principle of locality.

With these factors in mind, two sorts of policies are to be found in contempo-
rary operating systems. A fixed-allocation policy gives a process a fixed number of
frames in main memory within which to execute. That number is decided at initial
load time (process creation time) and may be determined based on the type of pro-
cess (interactive, batch, type of application) or may be based on guidance from the
programmer or system manager. With a fixed-allocation policy, whenever a page
fault occurs in the execution of a process, one of the pages of that process must be
replaced by the needed page.

A variable-allocation policy allows the number of page frames allocated to a
process to be varied over the lifetime of the process. Ideally, a process that is suf-
fering persistently high levels of page faults, indicating that the principle of locality
only holds in a weak form for that process, will be given additional page frames to
reduce the page fault rate; whereas a process with an exceptionally low page fault
rate, indicating that the process is quite well behaved from a locality point of view,
will be given a reduced allocation, with the hope that this will not noticeably in-
crease the page fault rate. The use of a variable-allocation policy relates to the con-
cept of replacement scope, as explained in the next subsection.

The variable-allocation policy would appear to be the more powerful one.
However, the difficulty with this approach is that it requires the OS to assess the be-
havior of active processes. This inevitably requires software overhead in the OS and
is dependent on hardware mechanisms provided by the processor platform.

REPLACEMENT SCOPE The scope of a replacement strategy can be categorized as
global or local. Both types of policies are activated by a page fault when there are no
free page frames. A local replacement policy chooses only among the resident pages
of the process that generated the page fault in selecting a page to replace. A global
replacement policy considers all unlocked pages in main memory as candidates for
replacement, regardless of which process owns a particular page. While it happens
that local policies are easier to analyze, there is no convincing evidence that they
perform better than global policies, which are attractive because of their simplicity
of implementation and minimal overhead [CARR81, MAEK87].

There is a correlation between replacement scope and resident set size
(Table 8.5). A fixed resident set implies a local replacement policy: To hold the size
of a resident set fixed, a page that is removed from main memory must be replaced
by another page from the same process. A variable-allocation policy can clearly em-
ploy a global replacement policy: The replacement of a page from one process in
main memory with that of another causes the allocation of one process to grow
by one page and that of the other to shrink by one page. We shall also see that

370 CHAPTER 8 / VIRTUAL MEMORY

variable allocation and local replacement is a valid combination. We now examine
these three combinations.

FIXED ALLOCATION, LOCAL SCOPE For this case, we have a process that is running
in main memory with a fixed number of frames. When a page fault occurs, the OS
must choose which page from among the currently resident pages for this process
is to be replaced. Replacement algorithms such as those discussed in the preceding
subsection can be used.

With a fixed-allocation policy, it is necessary to decide ahead of time the amount
of allocation to give to a process. This could be decided on the basis of the type of
 application and the amount requested by the program. The drawback to this approach
is twofold: If allocations tend to be too small, then there will be a high page fault rate,
causing the entire multiprogramming system to run slowly. If allocations tend to be
unnecessarily large, then there will be too few programs in main memory and there
will be either considerable processor idle time or considerable time spent in swapping.

VARIABLE ALLOCATION, GLOBAL SCOPE This combination is perhaps the easiest
to implement and has been adopted in a number of operating systems. At any given
time, there are a number of processes in main memory, each with a certain number
of frames allocated to it. Typically, the OS also maintains a list of free frames. When
a page fault occurs, a free frame is added to the resident set of a process and the
page is brought in. Thus, a process experiencing page faults will gradually grow in
size, which should help reduce overall page faults in the system.

The difficulty with this approach is in the replacement choice. When there are
no free frames available, the OS must choose a page currently in memory to replace.
The selection is made from among all of the frames in memory, except for locked
frames such as those of the kernel. Using any of the policies discussed in the preced-
ing subsection, the page selected for replacement can belong to any of the resident
processes; there is no discipline to determine which process should lose a page from
its resident set. Therefore, the process that suffers the reduction in resident set size
may not be optimum.

Table 8.5 Resident Set Management

Local Replacement Global Replacement

Fixed Allocation Number of frames allocated to a
 process is fixed.

 Page to be replaced is chosen from
among the frames allocated to that
process.

Not possible.

Variable Allocation The number of frames allocated to a
process may be changed from time to
time to maintain the working set of the
process.

 Page to be replaced is chosen from
among the frames allocated to that
process.

 Page to be replaced is chosen from
all available frames in main memory;
this causes the size of the resident
set of processes to vary.

8.2 / OPERATING SYSTEM SOFTWARE 371

One way to counter the potential performance problems of a variable-allocation,
global-scope policy is to use page buffering. In this way, the choice of which page to
replace becomes less significant, because the page may be reclaimed if it is referenced
before the next time that a block of pages are overwritten.

VARIABLE ALLOCATION, LOCAL SCOPE The variable-allocation, local-scope strategy
attempts to overcome the problems with a global-scope strategy. It can be summarized
as follows:

 1. When a new process is loaded into main memory, allocate to it a certain number
of page frames as its resident set, based on application type, program request, or
other criteria. Use either prepaging or demand paging to fill up the allocation.

 2. When a page fault occurs, select the page to replace from among the resident
set of the process that suffers the fault.

 3. From time to time, reevaluate the allocation provided to the process, and in-
crease or decrease it to improve overall performance.

With this strategy, the decision to increase or decrease a resident set size is a
deliberate one and is based on an assessment of the likely future demands of active
processes. Because of this evaluation, such a strategy is more complex than a simple
global replacement policy. However, it may yield better performance.

The key elements of the variable-allocation, local-scope strategy are the criteria
used to determine resident set size and the timing of changes. One specific strategy
that has received much attention in the literature is known as the working set strategy.
Although a true working set strategy would be difficult to implement, it is useful to
examine it as a baseline for comparison.

The working set is a concept introduced and popularized by Denning
[DENN68, DENN70, DENN80b]; it has had a profound impact on virtual memory
management design. The working set with parameter ∆ for a process at virtual time
t, which we designate as W(t, ∆), is the set of pages of that process that have been
referenced in the last ∆ virtual time units.

Virtual time is defined as follows. Consider a sequence of memory references,
r(1), r(2), .…, in which r(i) is the page that contains the ith virtual address generated
by a given process. Time is measured in memory references; thus t = 1, 2, 3, .… mea-
sures the process’s internal virtual time.

Let us consider each of the two variables of W. The variable ∆ is a window of
virtual time over which the process is observed. The working set size will be a non-
decreasing function of the window size. The result is illustrated in Figure 8.17 (based
on [BACH86]), which shows a sequence of page references for a process. The dots
indicate time units in which the working set does not change. Note that the larger
the window size, the larger is the working set. This can be expressed in the following
relationship:

W1t, ∆ + 12 ⊇ W1t, ∆2
The working set is also a function of time. If a process executes over ∆ time

units and uses only a single page, then # W1t, ∆2 # = 1. A working set can also grow

372 CHAPTER 8 / VIRTUAL MEMORY

as large as the number of pages N of the process if many different pages are rapidly
addressed and if the window size allows. Thus,

1 … # W1t, ∆2 # … min 1∆, N2
Figure 8.18 indicates the way in which the working set size can vary over time

for a fixed value of ∆. For many programs, periods of relatively stable working set
sizes alternate with periods of rapid change. When a process first begins execut-
ing, it gradually builds up to a working set as it references new pages. Eventually,
by the principle of locality, the process should stabilize on a certain set of pages.
Subsequent transient periods reflect a shift of the program to a new locality. During
the transition phase, some of the pages from the old locality remain within the win-
dow, ∆, causing a surge in the size of the working set as new pages are referenced. As
the window slides past these page references, the working set size declines until it
contains only those pages from the new locality.

This concept of a working set can be used to guide a strategy for resident
set size:

 1. Monitor the working set of each process.

Figure 8.17 Working Set of Process as Defined by Window Size

Sequence of
Page

References

Window Size, ∆
W 2 3 4 5
24 24 24 24 24
15 24 15 24 15 24 15 24 15
18 15 18 24 15 18 24 15 18 24 15 18
23 18 23 15 18 23 24 15 18 23 24 15 18 23
24 23 24 18 23 24
17 24 17 23 24 17 18 23 24 17 15 18 23 24 17
18 17 18 24 17 18 18 23 24 17
24 18 24 24 17 18
18 18 24 24 17 18
17 18 17 24 18 17
17 17 18 17
15 17 15 17 15 18 17 15 24 18 17 15
24 15 24 17 15 24 17 15 24
17 24 17 17 15 24
24 24 17
18 24 18 17 24 18 17 24 18 15 17 24 18

8.2 / OPERATING SYSTEM SOFTWARE 373

 2. Periodically remove from the resident set of a process those pages that are not
in its working set. This is essentially an LRU policy.

 3. A process may execute only if its working set is in main memory (i.e., if its
resident set includes its working set).

This strategy is appealing because it takes an accepted principle, the principle
of locality, and exploits it to achieve a memory management strategy that should
minimize page faults. Unfortunately, there are a number of problems with the work-
ing set strategy:

 1. The past does not always predict the future. Both the size and the membership
of the working set will change over time (e.g., see Figure 8.18).

 2. A true measurement of working set for each process is impractical. It would
be necessary to time-stamp every page reference for every process using the
virtual time of that process and then maintain a time-ordered queue of pages
for each process.

 3. The optimal value of ∆ is unknown and in any case would vary.

Nevertheless, the spirit of this strategy is valid, and a number of operating sys-
tems attempt to approximate a working set strategy. One way to do this is to focus not
on the exact page references but on the page fault rate of a process. As Figure 8.10b
illustrates, the page fault rate falls as we increase the resident set size of a process. The
working set size should fall at a point on this curve such as indicated by W in the fig-
ure. Therefore, rather than monitor the working set size directly, we can achieve com-
parable results by monitoring the page fault rate. The line of reasoning is as follows:

Transient Transient Transient Transient

Stable

!

Stable Stable Stable

W
or

ki
ng

 s
et

 s
iz

e

Time

Figure 8.18 Typical Graph of Working Set Size [MAEK87]

374 CHAPTER 8 / VIRTUAL MEMORY

If the page fault rate for a process is below some minimum threshold, the system as
a whole can benefit by assigning a smaller resident set size to this process (because
more page frames are available for other processes) without harming the process (by
causing it to incur increased page faults). If the page fault rate for a process is above
some maximum threshold, the process can benefit from an increased resident set size
(by incurring fewer faults) without degrading the system.

An algorithm that follows this strategy is the page fault frequency (PFF)
 algorithm [CHU72, GUPT78]. It requires a use bit to be associated with each
page in memory. The bit is set to 1 when that page is accessed. When a page fault
occurs, the OS notes the virtual time since the last page fault for that process;
this could be done by maintaining a counter of page references. A threshold F is
defined. If the amount of time since the last page fault is less than F, then a page
is added to the resident set of the process. Otherwise, discard all pages with a use
bit of 0, and shrink the resident set accordingly. At the same time, reset the use bit
on the remaining pages of the process to 0. The strategy can be refined by using
two thresholds: an upper threshold that is used to trigger a growth in the resident
set size, and a lower threshold that is used to trigger a contraction in the resident
set size.

The time between page faults is the reciprocal of the page fault rate. Although
it would seem to be better to maintain a running average of the page fault rate, the
use of a single time measurement is a reasonable compromise that allows decisions
about resident set size to be based on the page fault rate. If such a strategy is supple-
mented with page buffering, the resulting performance should be quite good.

Nevertheless, there is a major flaw in the PFF approach, which is that it does
not perform well during the transient periods when there is a shift to a new locality.
With PFF, no page ever drops out of the resident set before F virtual time units have
elapsed since it was last referenced. During interlocality transitions, the rapid suc-
cession of page faults causes the resident set of a process to swell before the pages
of the old locality are expelled; the sudden peaks of memory demand may produce
unnecessary process deactivations and reactivations, with the corresponding unde-
sirable switching and swapping overheads.

An approach that attempts to deal with the phenomenon of interlocality tran-
sition with a similar relatively low overhead to that of PFF is the variable-interval
sampled working set (VSWS) policy [FERR83]. The VSWS policy evaluates the
working set of a process at sampling instances based on elapsed virtual time. At the
beginning of a sampling interval, the use bits of all the resident pages for the process
are reset; at the end, only the pages that have been referenced during the interval
will have their use bit set; these pages are retained in the resident set of the process
throughout the next interval, while the others are discarded. Thus the resident set
size can only decrease at the end of an interval. During each interval, any faulted
pages are added to the resident set; thus the resident set remains fixed or grows dur-
ing the interval.

The VSWS policy is driven by three parameters:

M: The minimum duration of the sampling interval
L: The maximum duration of the sampling interval
Q: The number of page faults that are allowed to occur between sampling instances

8.2 / OPERATING SYSTEM SOFTWARE 375

The VSWS policy is as follows:

 1. If the virtual time since the last sampling instance reaches L, then suspend the
process and scan the use bits.

 2. If, prior to an elapsed virtual time of L, Q page faults occur,
a. If the virtual time since the last sampling instance is less than M, then wait

until the elapsed virtual time reaches M to suspend the process and scan the
use bits.

b. If the virtual time since the last sampling instance is greater than or equal to
M, suspend the process and scan the use bits.

The parameter values are to be selected so that the sampling will normally
be triggered by the occurrence of the Qth page fault after the last scan (case 2b).
The other two parameters (M and L) provide boundary protection for exceptional
conditions. The VSWS policy tries to reduce the peak memory demands caused by
abrupt interlocality transitions by increasing the sampling frequency, and hence the
rate at which unused pages drop out of the resident set, when the page fault rate
increases. Experience with this technique in the Bull mainframe operating system,
GCOS 8, indicates that this approach is as simple to implement as PFF and more
effective [PIZZ89].

Cleaning Policy

A cleaning policy is the opposite of a fetch policy; it is concerned with determining
when a modified page should be written out to secondary memory. Two common
alternatives are demand cleaning and precleaning. With demand cleaning, a page is
written out to secondary memory only when it has been selected for replacement.
A precleaning policy writes modified pages before their page frames are needed so
that pages can be written out in batches.

There is a danger in following either policy to the full. With precleaning, a page
is written out but remains in main memory until the page replacement algorithm
dictates that it be removed. Precleaning allows the writing of pages in batches, but it
makes little sense to write out hundreds or thousands of pages only to find that the
majority of them have been modified again before they are replaced. The transfer
capacity of secondary memory is limited and should not be wasted with unnecessary
cleaning operations.

On the other hand, with demand cleaning, the writing of a dirty page is cou-
pled to, and precedes, the reading in of a new page. This technique may minimize
page writes, but it means that a process that suffers a page fault may have to wait
for two page transfers before it can be unblocked. This may decrease processor
utilization.

A better approach incorporates page buffering. This allows the adoption of the
following policy: Clean only pages that are replaceable, but decouple the cleaning
and replacement operations. With page buffering, replaced pages can be placed on
two lists: modified and unmodified. The pages on the modified list can periodically
be written out in batches and moved to the unmodified list. A page on the unmodi-
fied list is either reclaimed if it is referenced or lost when its frame is assigned to
another page.

376 CHAPTER 8 / VIRTUAL MEMORY

Load Control

Load control is concerned with determining the number of processes that will be
resident in main memory, which has been referred to as the multiprogramming
level. The load control policy is critical in effective memory management. If too
few processes are resident at any one time, then there will be many occasions when
all processes are blocked, and much time will be spent in swapping. On the other
hand, if too many processes are resident, then, on average, the size of the resident
set of each process will be inadequate and frequent faulting will occur. The result
is thrashing.

MULTIPROGRAMMING LEVEL Thrashing is illustrated in Figure 8.19. As the
multiprogramming level increases from a small value, one would expect to see
processor utilization rise, because there is less chance that all resident processes are
blocked. However, a point is reached at which the average resident set is inadequate.
At this point, the number of page faults rises dramatically, and processor utilization
collapses.

There are a number of ways to approach this problem. A working set or PFF
algorithm implicitly incorporates load control. Only those processes whose resident
set is sufficiently large are allowed to execute. In providing the required resident set
size for each active process, the policy automatically and dynamically determines
the number of active programs.

Another approach, suggested by Denning and his colleagues [DENN80b], is
known as the L = S criterion, which adjusts the multiprogramming level so that the
mean time between faults equals the mean time required to process a page fault.
Performance studies indicate that this is the point at which processor utilization
attained a maximum. A policy with a similar effect, proposed in [LERO76], is the
50% criterion, which attempts to keep utilization of the paging device at approxi-
mately 50%. Again, performance studies indicate that this is a point of maximum
processor utilization.

Multiprogramming level

Pr
oc

es
so

r u
til

iz
at

io
n

Figure 8.19 Multiprogramming Effects

8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT 377

Another approach is to adapt the clock page replacement algorithm described
earlier (Figure 8.15). [CARR81] describes a technique, using a global scope, that in-
volves monitoring the rate at which the pointer scans the circular buffer of frames. If the
rate is below a given lower threshold, this indicates one or both of two circumstances:

 1. Few page faults are occurring, resulting in few requests to advance the pointer.
 2. For each request, the average number of frames scanned by the pointer is

small, indicating that there are many resident pages not being referenced and
are readily replaceable.

In both cases, the multiprogramming level can safely be increased. On the
other hand, if the pointer scan rate exceeds an upper threshold, this indicates either
a high fault rate or difficulty in locating replaceable pages, which implies that the
multiprogramming level is too high.

PROCESS SUSPENSION If the degree of multiprogramming is to be reduced, one
or more of the currently resident processes must be suspended (swapped out).
[CARR81] lists six possibilities:

Lowest-priority process: This implements a scheduling policy decision and is
unrelated to performance issues.
Faulting process: The reasoning is that there is a greater probability that the
faulting task does not have its working set resident, and performance would
suffer least by suspending it. In addition, this choice has an immediate payoff
because it blocks a process that is about to be blocked anyway and it elimi-
nates the overhead of a page replacement and I/O operation.
Last process activated: This is the process least likely to have its working set
resident.
Process with the smallest resident set: This will require the least future effort
to reload. However, it penalizes programs with strong locality.
Largest process: This obtains the most free frames in an overcommitted mem-
ory, making additional deactivations unlikely soon.
Process with the largest remaining execution window: In most process sched-
uling schemes, a process may only run for a certain quantum of time before
being interrupted and placed at the end of the Ready queue. This approxi-
mates a shortest-processing-time-first scheduling discipline.

As in so many other areas of OS design, which policy to choose is a matter of
judgment and depends on many other design factors in the OS as well as the charac-
teristics of the programs being executed.

 8.3 UNIX AND SOLARIS MEMORY MANAGEMENT

Because UNIX is intended to be machine independent, its memory management
scheme will vary from one system to the next. Earlier versions of UNIX simply used
variable partitioning with no virtual memory scheme. Current implementations of
UNIX and Solaris make use of paged virtual memory.

378 CHAPTER 8 / VIRTUAL MEMORY

In SVR4 and Solaris, there are actually two separate memory management
schemes. The paging system provides a virtual memory capability that allocates page
frames in main memory to processes and also allocates page frames to disk block
buffers. Although this is an effective memory management scheme for user pro-
cesses and disk I/O, a paged virtual memory scheme is less suited to managing the
memory allocation for the kernel. For this latter purpose, a kernel memory allocator
is used. We examine these two mechanisms in turn.

Paging System

DATA STRUCTURES For paged virtual memory, UNIX makes use of a number of
data structures that, with minor adjustment, are machine independent (Figure 8.20
and Table 8.6):

Page table: Typically, there will be one page table per process, with one entry
for each page in virtual memory for that process.
Disk block descriptor: Associated with each page of a process is an entry in
this table that describes the disk copy of the virtual page.
Page frame data table: Describes each frame of real memory and is indexed by
frame number. This table is used by the replacement algorithm.
Swap-use table: There is one swap-use table for each swap device, with one
entry for each page on the device.

(a) Page table entry

(b) Disk block descriptor

(c) Page frame data table entry

(d) Swap-use table entry

Reference
count

Page/storage
unit number

Page state Reference
count

Logical
device

Block
number

Pfdata
pointer

Swap device number Device block number Type of storage

Page frame number Age
Pro-
tect

Valid
Refe-
rence

Mod-
ify

Copy
on

write

Figure 8.20 UNIX SVR4 Memory Management Formats

8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT 379

Table 8.6 UNIX SVR4 Memory Management Parameters

Page Table Entry

Page frame number
Refers to frame in real memory.

Age
Indicates how long the page has been in memory without being referenced. The length and contents of
this field are processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes into the page, a separate
copy of the page must first be made for all other processes that share the page. This feature allows the
copy operation to be deferred until necessary and avoided in cases where it turns out not to be necessary.

Modify
Indicates page has been modified.

Reference
Indicates page has been referenced. This bit is set to 0 when the page is first loaded and may be periodi-
cally reset by the page replacement algorithm.

Valid
Indicates page is in main memory.

Protect
Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number
Logical device number of the secondary device that holds the corresponding page. This allows more
than one device to be used for swapping.

Device block number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executable file. In the latter case, there is an indication as to whether the
virtual memory to be allocated should be cleared first.

Page Frame Data Table Entry

Page state
 Indicates whether this frame is available or has an associated page. In the latter case, the status of the
page is specified: on swap device, in executable file, or DMA in progress.

Reference count
Number of processes that reference the page.

Logical device
Logical device that contains a copy of the page.

Block number
Block location of the page copy on the logical device.

Pfdata pointer
Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages.

Swap-Use Table Entry

Reference count
Number of page table entries that point to a page on the swap device.

Page/storage unit number
Page identifier on storage unit.

380 CHAPTER 8 / VIRTUAL MEMORY

Most of the fields defined in Table 8.6 are self-explanatory. A few warrant fur-
ther comment. The Age field in the page table entry is an indication of how long it
has been since a program referenced this frame. However, the number of bits and the
frequency of update of this field are implementation dependent. Therefore, there is
no universal UNIX use of this field for page replacement policy.

The Type of Storage field in the disk block descriptor is needed for the following
reason: When an executable file is first used to create a new process, only a portion
of the program and data for that file may be loaded into real memory. Later, as page
faults occur, new portions of the program and data are loaded. It is only at the time of
first loading that virtual memory pages are created and assigned to locations on one
of the devices to be used for swapping. At that time, the OS is told whether it needs
to clear (set to 0) the locations in the page frame before the first loading of a block of
the program or data.

PAGE REPLACEMENT The page frame data table is used for page replacement.
Several pointers are used to create lists within this table. All of the available frames
are linked together in a list of free frames available for bringing in pages. When the
number of available frames drops below a certain threshold, the kernel will steal a
number of frames to compensate.

The page replacement algorithm used in SVR4 is a refinement of the clock pol-
icy algorithm (Figure 8.15) known as the two-handed clock algorithm (Figure 8.21).
The algorithm uses the reference bit in the page table entry for each page in memory

Beginning
of page list

End of
page list

H
an

ds
pr

ea
d

Fronthand

Back
hand

Figure 8.21 Two-Handed Clock Page Replacement
Algorithm

8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT 381

that is eligible (not locked) to be swapped out. This bit is set to 0 when the page is
first brought in and set to 1 when the page is referenced for a read or write. One
hand in the clock algorithm, the fronthand, sweeps through the pages on the list of
eligible pages and sets the reference bit to 0 on each page. Sometime later, the back-
hand sweeps through the same list and checks the reference bit. If the bit is set to 1,
then that page has been referenced since the fronthand swept by; these frames are
ignored. If the bit is still set to 0, then the page has not been referenced in the time
interval between the visit by fronthand and backhand; these pages are placed on a
list to be paged out.

Two parameters determine the operation of the algorithm:

Scanrate: The rate at which the two hands scan through the page list, in pages
per second
Handspread: The gap between fronthand and backhand

These two parameters have default values set at boot time based on the amount
of physical memory. The scanrate parameter can be altered to meet changing condi-
tions. The parameter varies linearly between the values slowscan and fastscan (set at
configuration time) as the amount of free memory varies between the values lotsfree
and minfree. In other words, as the amount of free memory shrinks, the clock hands
move more rapidly to free up more pages. The handspread parameter determines the
gap between the fronthand and the backhand and therefore, together with scanrate,
determines the window of opportunity to use a page before it is swapped out due to
lack of use.

Kernel Memory Allocator

The kernel generates and destroys small tables and buffers frequently during the
course of execution, each of which requires dynamic memory allocation. [VAHA96]
lists the following examples:

The pathname translation routing may allocate a buffer to copy a pathname
from user space.
The allocb() routine allocates STREAMS buffers of arbitrary size.
Many UNIX implementations allocate zombie structures to retain exit status
and resource usage information about deceased processes.
In SVR4 and Solaris, the kernel allocates many objects (such as proc struc-
tures, vnodes, and file descriptor blocks) dynamically when needed.

Most of these blocks are significantly smaller than the typical machine page size, and
therefore the paging mechanism would be inefficient for dynamic kernel memory
allocation. For SVR4, a modification of the buddy system, described in Section 7.2,
is used.

In buddy systems, the cost to allocate and free a block of memory is low com-
pared to that of best-fit or first-fit policies [KNUT97]. However, in the case of kernel
memory management, the allocation and free operations must be made as fast as

382 CHAPTER 8 / VIRTUAL MEMORY

possible. The drawback of the buddy system is the time required to fragment and
coalesce blocks.

Barkley and Lee at AT&T proposed a variation known as a lazy buddy system
[BARK89], and this is the technique adopted for SVR4. The authors observed that
UNIX often exhibits steady-state behavior in kernel memory demand; that is, the
amount of demand for blocks of a particular size varies slowly in time. Therefore, if
a block of size 2i is released and is immediately coalesced with its buddy into a block
of size 2i + 1, the kernel may next request a block of size 2i, which may necessitate
splitting the larger block again. To avoid this unnecessary coalescing and splitting,
the lazy buddy system defers coalescing until it seems likely that it is needed, and
then coalesces as many blocks as possible.

The lazy buddy system uses the following parameters:

Ni = current number of blocks of size 2i.
Ai = current number of blocks of size 2i that are allocated (occupied).
Gi = current number of blocks of size 2i that are globally free; these are blocks

that are eligible for coalescing; if the buddy of such a block becomes
globally free, then the two blocks will be coalesced into a globally free
block of size 2i + 1. All free blocks (holes) in the standard buddy system
could be considered globally free.

Li = current number of blocks of size 2i that are locally free; these are blocks
that are not eligible for coalescing. Even if the buddy of such a block be-
comes free, the two blocks are not coalesced. Rather, the locally free blocks
are retained in anticipation of future demand for a block of that size.

The following relationship holds:

Ni = Ai + Gi + Li

In general, the lazy buddy system tries to maintain a pool of locally free blocks
and only invokes coalescing if the number of locally free blocks exceeds a threshold.
If there are too many locally free blocks, then there is a chance that there will be a
lack of free blocks at the next level to satisfy demand. Most of the time, when a block
is freed, coalescing does not occur, so there is minimal bookkeeping and operational
costs. When a block is to be allocated, no distinction is made between locally and
globally free blocks; again, this minimizes bookkeeping.

The criterion used for coalescing is that the number of locally free blocks
of a given size should not exceed the number of allocated blocks of that size (i.e.,
we must have Li … Ai). This is a reasonable guideline for restricting the growth
of locally free blocks, and experiments in [BARK89] confirm that this scheme
results in noticeable savings.

To implement the scheme, the authors define a delay variable as follows:

Di = Ai - Li = Ni - 2Li - Gi

Figure 8.22 shows the algorithm.

8.4 / LINUX MEMORY MANAGEMENT 383

 8.4 LINUX MEMORY MANAGEMENT

Linux shares many of the characteristics of the memory management schemes of
other UNIX implementations but has its own unique features. Overall, the Linux
memory management scheme is quite complex [DUBE98]. In this section, we give
a brief overview of the two main aspects of Linux memory management: process
virtual memory and kernel memory allocation.

Linux Virtual Memory

VIRTUAL MEMORY ADDRESSING Linux makes use of a three-level page table
structure, consisting of the following types of tables (each individual table is the size
of one page):

Page directory: An active process has a single page directory that is the size of
one page. Each entry in the page directory points to one page of the page mid-
dle directory. The page directory must be in main memory for an active process.

Figure 8.22 Lazy Buddy System Algorithm

Initial value of Di is 0
After an operation, the value of Di is updated as follows

(I) if the next operation is a block allocate request:
 if there is any free block, select one to allocate
 if the selected block is locally free
 then Di := Di + 2
 else Di := Di + 1
 otherwise
 first get two blocks by splitting a larger one into two (recursive operation)
 allocate one and mark the other locally free
 Di remains unchanged (but D may change for other block sizes because

 of the recursive call)

(II) if the next operation is a block free request
 Case Di 7 2
 mark it locally free and free it locally
 Di = 2
 Case Di = 1
 mark it globally free and free it globally; coalesce if possible
 Di = 0
 Case Di = 0
 mark it globally free and free it globally; coalesce if possible
 select one locally free block of size 2i and free it globally; coalesce if possible
 Di := 0

384 CHAPTER 8 / VIRTUAL MEMORY

Page middle directory: The page middle directory may span multiple pages.
Each entry in the page middle directory points to one page in the page table.
Page table: The page table may also span multiple pages. Each page table
entry refers to one virtual page of the process.

To use this three-level page table structure, a virtual address in Linux is viewed
as consisting of four fields (Figure 8.23). The leftmost (most significant) field is used
as an index into the page directory. The next field serves as an index into the page
middle directory. The third field serves as an index into the page table. The fourth
field gives the offset within the selected page of memory.

The Linux page table structure is platform independent and was designed
to accommodate the 64-bit Alpha processor, which provides hardware support for
three levels of paging. With 64-bit addresses, the use of only two levels of pages on
the Alpha would result in very large page tables and directories. The 32-bit Pentium/
x86 architecture has a two-level hardware paging mechanism. The Linux software
accommodates the two-level scheme by defining the size of the page middle direc-
tory as one. Note that all references to an extra level of indirection are optimized
away at compile time, not at run time. Therefore, there is no performance overhead
for using generic three-level design on platforms which support only two levels in
hardware.

PAGE ALLOCATION To enhance the efficiency of reading in and writing out pages
to and from main memory, Linux defines a mechanism for dealing with contiguous
blocks of pages mapped into contiguous blocks of page frames. For this purpose,
the buddy system is used. The kernel maintains a list of contiguous page frame
groups of fixed size; a group may consist of 1, 2, 4, 8, 16, or 32 page frames. As pages

Global directory

cr3
register

Page
directory

Page middle
directory

Page table

Page frame
in physical

memory

Virtual address

Middle directory Page table Offset

!

!

!

!

Figure 8.23 Address Translation in Linux Virtual Memory Scheme

8.4 / LINUX MEMORY MANAGEMENT 385

are allocated and deallocated in main memory, the available groups are split and
merged using the buddy algorithm.

PAGE REPLACEMENT ALGORITHM Prior to Linux release 2.6.28, the Linux page
replacement algorithm was based on the clock algorithm described in Section 8.2 (see
Figure 8.15). In the simple clock algorithm, a use bit and a modify bit are associated
with each page in main memory. In the Linux scheme, the use bit was replaced with an
8-bit age variable. Each time that a page is accessed, the age variable is incremented.
In the background, Linux periodically sweeps through the global page pool and
decrements the age variable for each page as it rotates through all the pages in main
memory. A page with an age of 0 is an “old” page that has not been referenced in
some time and is the best candidate for replacement. The larger the value of age, the
more frequently a page has been used in recent times and the less eligible it is for
replacement. Thus, the Linux algorithm was a form of least frequently used policy.

Beginning with Linux release 2.6.28, the page replacement algorithm described
in the preceding paragraph was scrapped and a new algorithm, referred to as a split
LRU algorithm, was merged into the kernel. One problem with the older algorithm
is that the periodic sweeps through the page pool consumes increasing amounts of
processor time for increasingly large memories.

The new algorithm makes use of two flags added to each page table entry:
PG_active and PG_referenced. The entire physical memory is divided into different
“zones” in Linux based on their address. Two linked lists, namely the active and in-
active lists, are used in each zone for page reclamation by the memory manager. A
kernel daemon kswapd runs in the background periodically to perform periodic page
reclamation in each zone. This daemon sweeps through the page table entries to which
the system page frames are mapped. For all page table entries marked as accessed,
PG_referenced bit is set. This bit is set by the processor the first time a page is ac-
cessed. For each iteration of kswapd, it checks whether the page accessed bit is set in
the page table entry. Every time it reads the page accessed bit, kswapd clears the bit.
We can summarize the steps involved in page management as follows (Figure 8.24):

 1. The first time a page on the inactive list is accessed, the PG_referenced flag
is set.

 2. The next time that page is accessed, it is moved to the active list. That is, it
takes two accesses for a page to be declared active. More precisely, it takes two
accesses in different scans for a page to become active.

 3. If the second access doesn’t happen soon enough, PG_referenced is reset.
 4. Similarly, for active pages, two timeouts are required to move the page to the

inactive list.

Pages on the inactive list are then available for page replacement, using an
LRU type of algorithm.

Kernel Memory Allocation

The Linux kernel memory capability manages physical main memory page frames.
Its primary function is to allocate and deallocate frames for particular uses. Possible
owners of a frame include user-space processes (i.e., the frame is part of the virtual

386 CHAPTER 8 / VIRTUAL MEMORY

memory of a process that is currently resident in real memory), dynamically allocated
kernel data, static kernel code, and the page cache.7

The foundation of kernel memory allocation for Linux is the page allocation
mechanism used for user virtual memory management. As in the virtual memory
scheme, a buddy algorithm is used so that memory for the kernel can be allocated
and deallocated in units of one or more pages. Because the minimum amount of
memory that can be allocated in this fashion is one page, the page allocator alone
would be inefficient because the kernel requires small short-term memory chunks
in odd sizes. To accommodate these small chunks, Linux uses a scheme known as
slab allocation [BONW94] within an allocated page. On a Pentium/x86 machine, the
page size is 4 Kbytes, and chunks within a page may be allocated of sizes 32, 64, 128,
252, 508, 2,040, and 4,080 bytes.

The slab allocator is relatively complex and is not examined in detail here; a
good description can be found in [VAHA96]. In essence, Linux maintains a set of
linked lists, one for each size of chunk. Chunks may be split and aggregated in a
manner similar to the buddy algorithm and moved between lists accordingly.

 8.5 WINDOWS MEMORY MANAGEMENT

The Windows virtual memory manager controls how memory is allocated and
how paging is performed. The memory manager is designed to operate over a va-
riety of platforms and to use page sizes ranging from 4 Kbytes to 64 Kbytes. Intel
and AMD64 platforms have 4 Kbytes per page and Intel Itanium platforms have
8 Kbytes per page.

Inactive Active

used

used
us

edtimeout

timeout

timeout

used timeout

PG_active = 0
PG_referenced = 0

PG_active = 1
PG_referenced = 0

PG_active = 0
PG_referenced = 1

PG_active = 1
PG_referenced = 1

Figure 8.24 Linux Page Reclaiming

7The page cache has properties similar to a disk buffer, described in this chapter, as well as a disk cache,
described in Chapter 11. We defer a discussion of the Linux page cache to Chapter 11.

8.5 / WINDOWS MEMORY MANAGEMENT 387

Windows Virtual Address Map

On 32-bit platforms, each Windows user process sees a separate 32-bit address space,
allowing 4 Gbytes of virtual memory per process. By default, half of this memory is
reserved for the OS, so each user actually has 2 Gbytes of available virtual address
space and all processes share most of the upper 2 Gbytes of system space when
running in kernel mode. Large memory intensive applications, on both clients and
servers, can run more effectively using 64-bit Windows. Other than netbooks, most
modern PCs use the AMD64 processor architecture which is capable of running as
either a 32-bit or 64-bit system.

Figure 8.25 shows the default virtual address space seen by a normal 32-bit
user process. It consists of four regions:

0x00000000 to 0x0000FFFF: Set aside to help programmers catch NULL-
pointer assignments.
0x00010000 to 0x7FFEFFFF: Available user address space. This space is
 divided into pages that may be loaded into main memory.
0x7FFF0000 to 0x7FFFFFFF: A guard page inaccessible to the user. This page
makes it easier for the OS to check on out-of-bounds pointer references.

0
64-Kbyte region for
NULL-pointer assignments
(inaccessible)

64-Kbyte region for
bad-pointer assignments
(inaccessible)

2-Gbyte region for
the operating system
(inaccessible)

2-Gbyte user
address space
(unreserved, usable)

0xFFFFFFFF

Figure 8.25 Windows Default 32-Bit Virtual Address Space

388 CHAPTER 8 / VIRTUAL MEMORY

0x80000000 to 0xFFFFFFFF: System address space. This 2-Gbyte process is
used for the Windows Executive, Kernel, HAL, and device drivers.
On 64-bit platforms, 8 Tbytes of user address space is available in Windows 7.

Windows Paging

When a process is created, it can in principle make use of the entire user space of
almost 2 Gbytes (or 8 Tbytes on 64-bit Windows). This space is divided into fixed-
size pages, any of which can be brought into main memory, but the OS manages the
addresses in contiguous regions allocated on 64-Kbyte boundaries. A region can be
in one of three states:

Available: addresses not currently used by this process.
Reserved: addresses that the virtual memory manager has set aside for a pro-
cess so they cannot be allocated to another use (e.g., saving contiguous space
for a stack to grow).
Committed: addresses that the virtual memory manager has initialized for use
by the process to access virtual memory pages. These pages can reside either
on disk or in physical memory. When on disk they can be either kept in files
(mapped pages) or occupy space in the paging file (i.e., the disk file to which it
writes pages when removing them from main memory).

The distinction between reserved and committed memory is useful because it
(1) reduces the amount of total virtual memory space needed by the system, allow-
ing the page file to be smaller; and (2) allows programs to reserve addresses without
making them accessible to the program or having them charged against their re-
source quotas.

The resident set management scheme used by Windows is variable allocation,
local scope (see Table 8.5). When a process is first activated, it is assigned data struc-
tures to manage its working set. As the pages needed by the process are brought into
physical memory, the memory manager uses the data structures to keep track of the
pages assigned to the process. Working sets of active processes are adjusted using
the following general conventions:

When main memory is plentiful, the virtual memory manager allows the resi-
dent sets of active processes to grow. To do this, when a page fault occurs, a
new physical page is added to the process but no older page is swapped out,
resulting in an increase of the resident set of that process by one page.
When memory becomes scarce, the virtual memory manager recovers memory
for the system by removing less recently used pages out of the working sets of
active processes, reducing the size of those resident sets.
Even when memory is plentiful, Windows watches for large processes that are
rapidly increasing their memory usage. The system begins to remove pages
that have not been recently used from the process. This policy makes the sys-
tem more responsive because a new program will not suddenly cause a scarcity
of memory and make the user wait while the system tries to reduce the resi-
dent sets of the processes that are already running.

8.7 / SUMMARY 389

Windows 8 Swapping

With the Metro UI comes a new virtual memory system to handle the interrupt
requests from Windows Store apps. Swapfile.sys joins its familiar Windows counter-
part pagefile.sys to provide access to temporary memory storage on the hard drive.
Paging will hold items that haven’t been accessed in a long time whereas swapping
holds items that were recently taken out of memory. The items in pagingfile may not
be accessed again for a long time, whereas the items in swapfile might be accessed
much sooner. Only Store apps use the swapfile.sys file, and because of the relatively
small size of Store apps, the fixed size is only 256MB. The pagefile.sys file will be
roughly one to two times the size of the amount of physical RAM found in the sys-
tem. Swapfile.sys operates by swapping the entire process from system memory into
the swapfile. This immediately frees up memory for other applications to use. By
contrast, paging files function by moving “pages” of a program from system memory
into the paging file. These pages are 4KB in size. The entire program does not get
swapped wholesale into the paging file.

 8.6 ANDROID MEMORY MANAGEMENT

Android includes a number of extensions to the normal Linux kernel memory man-
agement facility. These include the following:

ASHMem: This feature provides anonymous shared memory, which abstracts
memory as file descriptors. A file descriptor can be passed to another process
to share memory.
Pmem: This feature allocates virtual memory so that it is physically contigu-
ous. This feature is useful for hardware that does not support virtual memory.
Low Memory Killer: Most mobile devices do not have a swap capability (be-
cause of flash memory lifetime considerations). When main memory is ex-
hausted, the application or applications using the most memory must either
back off their use of memory or be terminated. This feature enables the system
to notify an app or apps that they need to free up memory. If an app does not
cooperate, it is terminated.

 8.7 SUMMARY

To use the processor and the I/O facilities efficiently, it is desirable to maintain as
many processes in main memory as possible. In addition, it is desirable to free pro-
grammers from size restrictions in program development.

The way to address both of these concerns is virtual memory. With virtual
memory, all address references are logical references that are translated at run time
to real addresses. This allows a process to be located anywhere in main memory
and for that location to change over time. Virtual memory also allows a process to
be broken up into pieces. These pieces need not be contiguously located in main

390 CHAPTER 8 / VIRTUAL MEMORY

memory during execution and, indeed, it is not even necessary for all of the pieces of
the process to be in main memory during execution.

Two basic approaches to providing virtual memory are paging and segmen-
tation. With paging, each process is divided into relatively small, fixed-size pages.
Segmentation provides for the use of pieces of varying size. It is also possible to
combine segmentation and paging in a single memory management scheme.

A virtual memory management scheme requires both hardware and software
support. The hardware support is provided by the processor. The support includes
dynamic translation of virtual addresses to physical addresses and the generation
of an interrupt when a referenced page or segment is not in main memory. Such an
interrupt triggers the memory management software in the OS.

A number of design issues relate to OS support for memory management:

Fetch policy: Process pages can be brought in on demand, or a prepaging pol-
icy can be used, which clusters the input activity by bringing in a number of
pages at once.
Placement policy: With a pure segmentation system, an incoming segment
must be fit into an available space in memory.
Replacement policy: When memory is full, a decision must be made as to
which page or pages are to be replaced.
Resident set management: The OS must decide how much main memory to
allocate to a particular process when that process is swapped in. This can be a
static allocation made at process creation time, or it can change dynamically.
Cleaning policy: Modified process pages can be written out at the time of re-
placement, or a precleaning policy can be used, which clusters the output activ-
ity by writing out a number of pages at once.
Load control: Load control is concerned with determining the number of pro-
cesses that will be resident in main memory at any given time.

 8.8 RECOMMENDED READING AND ANIMATIONS

[CARR81] provides an excellent in-depth examination of performance issues.
The classic paper [DENN70] is still well worth a read. [JACO98a] is a good sur-
vey of issues in virtual memory design; it includes a discussion of inverted page
tables. [JACO98b] looks at virtual memory hardware organizations in various
microprocessors.

[VAHA96] is one of the best treatments of the memory management schemes
used in the various flavors of UNIX. [GORM04] is a thorough treatment of Linux
memory management.

CARR81 Carr, R. Virtual Memory Management. SLAN National Accelerator
Laboratory, Report STAN-CS-81-873, 1981. www.slac.stanford.edu/cgi-wrap/
getdoc/slac-r-244.pdf.

DENN70 Denning, P. “Virtual Memory.” Computing Surveys, September 1970.

www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-244.pdf
www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-244.pdf

8.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 391

Animations

A set of animation that illustrates concepts from this chapter is available at the
Premium Web site. The reader is encouraged to view the animations to reinforce
concepts from this chapter.

 8.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

GORM04 Gorman, M. Understanding the Linux Virtual Memory Manager. Upper
Saddle River, NJ: Prentice Hall, 2004.

JACO98a Jacob, B., and Mudge, T. “Virtual Memory: Issues of Implementation.”
Computer, June 1998.

JACO98b Jacob, B., and Mudge, T. “Virtual Memory in Contemporary
Microprocessors.” IEEE Micro, August 1998.

VAHA96 Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ:
Prentice Hall, 1996.

associative mapping
demand paging
external fragmentation
fetch policy
frame
hash table
hashing
internal fragmentation
locality

page
page fault
page placement policy
page replacement policy
page table
paging
prepaging
real memory
resident set

resident set management
segment
segment table
segmentation
slab allocation
thrashing
translation lookaside buffer
virtual memory
working set

Review Questions

 8.1. What is the difference between simple paging and virtual memory paging?
 8.2. Explain thrashing.
 8.3. Why is the principle of locality crucial to the use of virtual memory?
 8.4. What elements are typically found in a page table entry? Briefly define each element.
 8.5. What is the purpose of a translation lookaside buffer?
 8.6. Briefly define the alternative page fetch policies.
 8.7. What is the difference between resident set management and page replacement policy?
 8.8. What is the relationship between FIFO and clock page replacement algorithms?
 8.9. What is accomplished by page buffering?
 8.10. Why is it not possible to combine a global replacement policy and a fixed allocation

policy?
 8.11. What is the difference between a resident set and a working set?
 8.12. What is the difference between demand cleaning and precleaning?

Animation

392 CHAPTER 8 / VIRTUAL MEMORY

Problems

 8.1. Suppose the page table for the process currently executing on the processor looks like
the following. All numbers are decimal, everything is numbered starting from zero,
and all addresses are memory byte addresses. The page size is 1,024 bytes.

Virtual page
number Valid bit Reference bit Modify bit

Page frame
number

0 1 1 0 4
1 1 1 1 7
2 0 0 0 —
3 1 0 0 2
4 0 0 0 —
5 1 0 1 0

a. Describe exactly how, in general, a virtual address generated by the CPU is trans-
lated into a physical main memory address.

b. What physical address, if any, would each of the following virtual addresses cor-
respond to? (Do not try to handle any page faults, if any.)
(i) 1,052
(ii) 2,221
(iii) 5,499

 8.2. Consider the following program.

#define Size 64
int A[Size; Size], B[Size; Size], C[Size; Size];
int register i, j;

for (j = 0; j< Size; j ++)
 for (i = 0; i< Size; i++)
C[i; j] = A[i; j] + B[i; j];

Assume that the program is running on a system using demand paging and the
page size is 1 Kilobyte. Each integer is 4 bytes long. It is clear that each array
requires a 16-page space. As an example, A[0, 0]-A[0, 63], A[1, 0]-A[1, 63], A[2, 0]-
A[2, 63], and A[3, 0]-A[3, 63] will be stored in the first data page. A similar storage
pattern can be derived for the rest of array A and for arrays B and C. Assume that
the system allocates a 4-page working set for this process. One of the pages will
be used by the program and three pages can be used for the data. Also, two index
registers are assigned for i and j (so, no memory accesses are needed for references
to these two variables).
a. Discuss how frequently the page fault would occur (in terms of number of times

C[i, j] = A[i, j] + B[i, j] are executed).
b. Can you modify the program to minimize the page fault frequency?
c. What will be the frequency of page faults after your modification?

 8.3. a. How much memory space is needed for the user page table of Figure 8.3?
b. Assume you want to implement a hashed inverted page table for the same address-

ing scheme as depicted in Figure 8.3, using a hash function that maps the 20-bit
page number into a 6-bit hash value. The table entry contains the page number,
the frame number, and a chain pointer. If the page table allocates space for up to
3 overflow entries per hashed entry, how much memory space does the hashed
inverted page table take?

8.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 393

 8.4. Consider the following string of page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2.
Complete a figure similar to Figure 8.14, showing the frame allocation for:
a. FIFO (first-in-first-out)
b. LRU (least recently used)
c. Clock
d. Optimal (assume the page reference string continues with 1, 2, 0, 1, 7, 0, 1)
e. List the total number of page faults and the miss rate for each policy. Count page

faults only after all frames have been initialized.
 8.5. A process references five pages, A, B, C, D, and E, in the following order:

A; B; C; D; A; B; E; A; B; C; D; E

Assume that the replacement algorithm is first-in-first-out and find the number of
page transfers during this sequence of references starting with an empty main mem-
ory with three page frames. Repeat for four page frames.

 8.6. A process contains eight virtual pages on disk and is assigned a fixed allocation of
four page frames in main memory. The following page trace occurs:

1, 0, 2, 2, 1, 7, 6, 7, 0, 1, 2, 0, 3, 0, 4, 5, 1, 5, 2, 4, 5, 6, 7, 6, 7, 2, 4, 2, 7, 3, 3, 2, 3

a. Show the successive pages residing in the four frames using the LRU replacement
policy. Compute the hit ratio in main memory. Assume that the frames are initially
empty.

b. Repeat part (a) for the FIFO replacement policy.
c. Compare the two hit ratios and comment on the effectiveness of using FIFO to

approximate LRU with respect to this particular trace.
 8.7. In the VAX, user page tables are located at virtual addresses in the system space.

What is the advantage of having user page tables in virtual rather than main memory?
What is the disadvantage?

 8.8. Suppose the program statement

for (i = 1; i 6 6 = n; i + +)
 a[i] = b[i] + c[i];

is executed in a memory with page size of 1,000 words. Let n = 1,000. Using a ma-
chine that has a full range of register-to-register instructions and employs index regis-
ters, write a hypothetical program to implement the foregoing statement. Then show
the sequence of page references during execution.

 8.9. The IBM System/370 architecture uses a two-level memory structure and refers to the
two levels as segments and pages, although the segmentation approach lacks many
of the features described earlier in this chapter. For the basic 370 architecture, the
page size may be either 2 Kbytes or 4 Kbytes, and the segment size is fixed at either
64 Kbytes or 1 Mbyte. For the 370/XA and 370/ESA architectures, the page size is 4
Kbytes and the segment size is 1 Mbyte. Which advantages of segmentation does this
scheme lack? What is the benefit of segmentation for the 370?

 8.10. Assuming a page size of 4 Kbytes and that a page table entry takes 4 bytes, how many
levels of page tables would be required to map a 64-bit address space, if the top-level
page table fits into a single page?

 8.11. Consider a system with memory mapping done on a page basis and using a single-
level page table. Assume that the necessary page table is always in memory.
a. If a memory reference takes 200 ns, how long does a paged memory reference

take?
b. Now we add an MMU that imposes an overhead of 20 ns on a hit or a miss. If

we assume that 85% of all memory references hit in the MMU TLB, what is the
Effective Memory Access Time (EMAT)?

c. Explain how the TLB hit rate affects the EMAT.

394 CHAPTER 8 / VIRTUAL MEMORY

 8.12. Consider a page reference string for a process with a working set of M frames, initially
all empty. The page reference string is of length P with N distinct page numbers in it.
For any page replacement algorithm,
a. What is a lower bound on the number of page faults?
b. What is an upper bound on the number of page faults?

 8.13. In discussing a page replacement algorithm, one author makes an analogy with a
snowplow moving around a circular track. Snow is falling uniformly on the track
and a lone snowplow continually circles the track at constant speed. The snow that is
plowed W the track disappears from the system.
a. For which of the page replacement algorithms discussed in Section 8.2 is this a

useful analogy?
b. What does this analogy suggest about the behavior of the page replacement algo-

rithm in question?
 8.14. In the S/370 architecture, a storage key is a control field associated with each page-

sized frame of real memory. Two bits of that key that are relevant for page replace-
ment are the reference bit and the change bit. The reference bit is set to 1 when any
address within the frame is accessed for read or write, and is set to 0 when a new
page is loaded into the frame. The change bit is set to 1 when a write operation is per-
formed on any location within the frame. Suggest an approach for determining which
page frames are least-recently-used, making use of only the reference bit.

 8.15. Consider the following sequence of page references (each element in the sequence
represents a page number):

1 2 3 4 5 2 1 3 3 2 3 4 5 4 5 1 1 3 2 5

Define the mean working set size after the kth reference as sk1∆2 =
1
k

 ak
t= 1

0W1t, ∆2 0
and define the missing page probability after the kth reference as

mk1∆2 =
1
k

 ak
t= 1

0F1t, ∆2 0 where F (t, ∆) = 1 if a page fault occurs at virtual time t and

0 otherwise.
a. Draw a diagram similar to that of Figure 8.17 for the reference sequence just de-

fined for the values ∆ = 1, 2, 3, 4, 5, 6.
b. Plot s20(∆) as a function of ∆.
c. Plot m20(∆) as a function of ∆.

 8.16. A key to the performance of the VSWS resident set management policy is the value of
Q. Experience has shown that with a fixed value of Q for a process, there are consider-
able differences in page fault frequencies at various stages of execution. Furthermore,
if a single value of Q is used for different processes, dramatically different frequencies
of page faults occur. These differences strongly indicate that a mechanism that would
dynamically adjust the value of Q during the lifetime of a process would improve the
behavior of the algorithm. Suggest a simple mechanism for this purpose.

 8.17. Assume that a task is divided into four equal-sized segments and that the system
builds an eight-entry page descriptor table for each segment. Thus, the system has a
combination of segmentation and paging. Assume also that the page size is 2 Kbytes.
a. What is the maximum size of each segment?
b. What is the maximum logical address space for the task?
c. Assume that an element in physical location 00021ABC is accessed by this task.

What is the format of the logical address that the task generates for it? What is the
maximum physical address space for the system?

8.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 395

 8.18. Consider a paged logical address space (composed of 32 pages of 2 Kbytes each)
mapped into a 1-Mbyte physical memory space.
a. What is the format of the processor’s logical address?
b. What is the length and width of the page table (disregarding the “access rights”

bits)?
c. What is the effect on the page table if the physical memory space is reduced by

half?
 8.19. The UNIX kernel will dynamically grow a process’s stack in virtual memory as

needed, but it will never try to shrink it. Consider the case in which a program calls a
C subroutine that allocates a local array on the stack that consumes 10 K. The kernel
will expand the stack segment to accommodate it. When the subroutine returns, the
stack pointer is adjusted and this space could be released by the kernel, but it is not
released. Explain why it would be possible to shrink the stack at this point and why
the UNIX kernel does not shrink it.

This page intentionally left blank

397

UNIPROCESSOR SCHEDULING
 9.1 Types of Processor Scheduling

Long-Term Scheduling
Medium-Term Scheduling
Short-Term Scheduling

 9.2 Scheduling Algorithms
Short-Term Scheduling Criteria
The Use of Priorities
Alternative Scheduling Policies
Performance Comparison
Fair-Share Scheduling

 9.3 Traditional UNIX Scheduling

 9.4 Summary

 9.5 Recommended Reading and Animations

 9.6 Key Terms, Review Questions, and Problems

SchedulingPART 4

CHAPTER

Animation

398 CHAPTER 9 / UNIPROCESSOR SCHEDULING

In a multiprogramming system, multiple processes exist concurrently in main mem-
ory. Each process alternates between using a processor and waiting for some event
to occur, such as the completion of an I/O operation. The processor or processors
are kept busy by executing one process while the others wait.

The key to multiprogramming is scheduling. In fact, four types of scheduling are
typically involved (Table 9.1). One of these, I/O scheduling, is more conveniently ad-
dressed in Chapter 11, where I/O is discussed. The remaining three types of scheduling,
which are types of processor scheduling, are addressed in this chapter and the next.

This chapter begins with an examination of the three types of processor sched-
uling, showing how they are related. We see that long-term scheduling and medium-
term scheduling are driven primarily by performance concerns related to the degree
of multiprogramming. These issues are dealt with to some extent in Chapter 3 and in
more detail in Chapters 7 and 8. Thus, the remainder of this chapter concentrates on
short-term scheduling and is limited to a consideration of scheduling on a unipro-
cessor system. Because the use of multiple processors adds additional complexity, it
is best to focus on the uniprocessor case first, so that the differences among schedul-
ing algorithms can be clearly seen.

Section 9.2 looks at the various algorithms that may be used to make short-
term scheduling decisions.

 9.1 TYPES OF PROCESSOR SCHEDULING

The aim of processor scheduling is to assign processes to be executed by the proces-
sor or processors over time, in a way that meets system objectives, such as response
time, throughput, and processor efficiency. In many systems, this scheduling activ-
ity is broken down into three separate functions: long-, medium-, and short-term
scheduling. The names suggest the relative time scales with which these functions
are performed.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Explain the differences among long-, medium-, and short-term scheduling.
Assess the performance of different scheduling policies.
Understand the scheduling technique used in traditional UNIX.

Table 9.1 Types of Scheduling

Long-term scheduling The decision to add to the pool of processes to be executed.

Medium-term scheduling The decision to add to the number of processes that are partially or fully in
main memory.

Short-term scheduling The decision as to which available process will be executed by the processor.

I/O scheduling The decision as to which process’s pending I/O request shall be handled by an
available I/O device.

9.1 / TYPES OF PROCESSOR SCHEDULING 399

Figure 9.1 relates the scheduling functions to the process state transition dia-
gram (first shown in Figure 3.9b). Long-term scheduling is performed when a new
process is created. This is a decision whether to add a new process to the set of
processes that are currently active. Medium-term scheduling is a part of the swap-
ping function. This is a decision whether to add a process to those that are at least
partially in main memory and therefore available for execution. Short-term schedul-
ing is the actual decision of which ready process to execute next. Figure 9.2 reorga-
nizes the state transition diagram of Figure 3.9b to suggest the nesting of scheduling
functions.

Scheduling affects the performance of the system because it determines
which processes will wait and which will progress. This point of view is presented
in Figure 9.3, which shows the queues involved in the state transitions of a process.1
Fundamentally, scheduling is a matter of managing queues to minimize queueing
delay and to optimize performance in a queueing environment.

Long-Term Scheduling

The long-term scheduler determines which programs are admitted to the system for
processing. Thus, it controls the degree of multiprogramming. Once admitted, a job
or user program becomes a process and is added to the queue for the short-term
scheduler. In some systems, a newly created process begins in a swapped-out condi-
tion, in which case it is added to a queue for the medium-term scheduler.

In a batch system, or for the batch portion of an OS, newly submitted jobs are
routed to disk and held in a batch queue. The long-term scheduler creates processes
from the queue when it can. There are two decisions involved. The scheduler must

New

Ready/
suspend Ready Running Exit

Long-term
scheduling

Long-term
scheduling

Medium-term
scheduling

Blocked/
suspend Blocked

Medium-term
scheduling

Short-term
scheduling

Figure 9.1 Scheduling and Process State Transitions

1For simplicity, Figure 9.3 shows new processes going directly to the Ready state, whereas Figures 9.1 and
9.2 show the option of either the Ready state or the Ready/Suspend state.

400 CHAPTER 9 / UNIPROCESSOR SCHEDULING

decide when the OS can take on one or more additional processes. And the sched-
uler must decide which job or jobs to accept and turn into processes. We briefly
consider these two decisions.

The decision as to when to create a new process is generally driven by the de-
sired degree of multiprogramming. The more processes that are created, the smaller
is the percentage of time that each process can be executed (i.e., more processes are
competing for the same amount of processor time). Thus, the long-term scheduler
may limit the degree of multiprogramming to provide satisfactory service to the cur-
rent set of processes. Each time a job terminates, the scheduler may decide to add
one or more new jobs. Additionally, if the fraction of time that the processor is idle
exceeds a certain threshold, the long-term scheduler may be invoked.

The decision as to which job to admit next can be on a simple first-come-
first-served (FCFS) basis, or it can be a tool to manage system performance. The
criteria used may include priority, expected execution time, and I/O requirements.

Running

Ready

Blocked

Blocked,
suspend

Ready,
suspend

Short term

Medium term

Long term

New Exit

Figure 9.2 Levels of Scheduling

9.1 / TYPES OF PROCESSOR SCHEDULING 401

For example, if the information is available, the scheduler may attempt to keep a
mix of processor-bound and I/O-bound processes.2 Also, the decision can depend
on which I/O resources are to be requested, in an attempt to balance I/O usage.

For interactive programs in a time-sharing system, a process creation request
can be generated by the act of a user attempting to connect to the system. Time-
sharing users are not simply queued up and kept waiting until the system can
accept them. Rather, the OS will accept all authorized comers until the system is
saturated, using some predefined measure of saturation. At that point, a connec-
tion request is met with a message indicating that the system is full and the user
should try again later.

Medium-Term Scheduling

Medium-term scheduling is part of the swapping function. The issues involved are
discussed in Chapters 3, 7, and 8. Typically, the swapping-in decision is based on the
need to manage the degree of multiprogramming. On a system that does not use vir-
tual memory, memory management is also an issue. Thus, the swapping-in decision
will consider the memory requirements of the swapped-out processes.

Event wait

Timeout

ReleaseReady queue Short-term
scheduling

Medium-term
scheduling

Medium-term
scheduling

Interactive
users

Batch
jobs

Processor

Ready, suspend queue

Event
occurs

Blocked, suspend queue

Blocked queue

Long-term
scheduling

Figure 9.3 Queueing Diagram for Scheduling

2A process is regarded as processor bound if it mainly performs computational work and occasionally
uses I/O devices. A process is regarded as I/O bound if the time it takes to execute the process depends
primarily on the time spent waiting for I/O operations.

402 CHAPTER 9 / UNIPROCESSOR SCHEDULING

Short-Term Scheduling

In terms of frequency of execution, the long-term scheduler executes relatively in-
frequently and makes the coarse-grained decision of whether or not to take on a
new process and which one to take. The medium-term scheduler is executed some-
what more frequently to make a swapping decision. The short-term scheduler, also
known as the dispatcher, executes most frequently and makes the fine-grained deci-
sion of which process to execute next.

The short-term scheduler is invoked whenever an event occurs that may
lead to the blocking of the current process or that may provide an opportunity to
preempt a currently running process in favor of another. Examples of such events
include:

Clock interrupts
I/O interrupts
Operating system calls
Signals (e.g., semaphores)

 9.2 SCHEDULING ALGORITHMS

Short-Term Scheduling Criteria

The main objective of short-term scheduling is to allocate processor time in such a
way as to optimize one or more aspects of system behavior. Generally, a set of crite-
ria is established against which various scheduling policies may be evaluated.

The commonly used criteria can be categorized along two dimensions. First,
we can make a distinction between user-oriented and system-oriented criteria. User-
oriented criteria relate to the behavior of the system as perceived by the individual
user or process. An example is response time in an interactive system. Response
time is the elapsed time between the submission of a request until the response
begins to appear as output. This quantity is visible to the user and is naturally of in-
terest to the user. We would like a scheduling policy that provides “good” service to
various users. In the case of response time, a threshold may be defined, say two sec-
onds. Then a goal of the scheduling mechanism should be to maximize the number
of users who experience an average response time of two seconds or less.

Other criteria are system oriented. That is, the focus is on effective and ef-
ficient utilization of the processor. An example is throughput, which is the rate at
which processes are completed. This is certainly a worthwhile measure of system
performance and one that we would like to maximize. However, it focuses on system
performance rather than service provided to the user. Thus, throughput is of concern
to a system administrator but not to the user population.

Whereas user-oriented criteria are important on virtually all systems, system-
oriented criteria are generally of minor importance on single-user systems. On a
single-user system, it probably is not important to achieve high processor utilization
or high throughput as long as the responsiveness of the system to user applications
is acceptable.

9.2 / SCHEDULING ALGORITHMS 403

Another dimension along which criteria can be classified is those that are per-
formance related and those that are not directly performance related. Performance-
related criteria are quantitative and generally can be readily measured. Examples
include response time and throughput. Criteria that are not performance related
are either qualitative in nature or do not lend themselves readily to measurement
and analysis. An example of such a criterion is predictability. We would like for the
service provided to users to exhibit the same characteristics over time, independent
of other work being performed by the system. To some extent, this criterion can be
measured by calculating variances as a function of workload. However, this is not
nearly as straightforward as measuring throughput or response time as a function of
workload.

Table 9.2 summarizes key scheduling criteria. These are interdependent, and
it is impossible to optimize all of them simultaneously. For example, providing good
response time may require a scheduling algorithm that switches between processes

Table 9.2 Scheduling Criteria

User Oriented, Performance Related

Turnaround time This is the interval of time between the submission of a process and its completion.
Includes actual execution time plus time spent waiting for resources, including the processor. This is an appro-
priate measure for a batch job.

Response time For an interactive process, this is the time from the submission of a request until the
 response begins to be received. Often a process can begin producing some output to the user while
continuing to process the request. Thus, this is a better measure than turnaround time from the user’s point
of view. The scheduling discipline should attempt to achieve low response time and to maximize the number
of interactive users receiving acceptable response time.

Deadlines When process completion deadlines can be specified, the scheduling discipline should subordinate
other goals to that of maximizing the percentage of deadlines met.

User Oriented, Other

Predictability A given job should run in about the same amount of time and at about the same cost regard-
less of the load on the system. A wide variation in response time or turnaround time is distracting to users. It
may signal a wide swing in system workloads or the need for system tuning to cure instabilities.

System Oriented, Performance Related

Throughput The scheduling policy should attempt to maximize the number of processes completed per unit
of time. This is a measure of how much work is being performed. This clearly depends on the average length of
a process but is also influenced by the scheduling policy, which may affect utilization.

Processor utilization This is the percentage of time that the processor is busy. For an expensive shared sys-
tem, this is a significant criterion. In single-user systems and in some other systems, such as real-time systems,
this criterion is less important than some of the others.

System Oriented, Other

Fairness In the absence of guidance from the user or other system-supplied guidance, processes should be
treated the same, and no process should suffer starvation.

Enforcing priorities When processes are assigned priorities, the scheduling policy should favor higher-priority
processes.

Balancing resources The scheduling policy should keep the resources of the system busy. Processes that will
underutilize stressed resources should be favored. This criterion also involves medium-term and long-term
scheduling.

404 CHAPTER 9 / UNIPROCESSOR SCHEDULING

frequently. This increases the overhead of the system, reducing throughput. Thus,
the design of a scheduling policy involves compromising among competing require-
ments; the relative weights given the various requirements will depend on the na-
ture and intended use of the system.

In most interactive operating systems, whether single user or time shared, ad-
equate response time is the critical requirement. Because of the importance of this
requirement, and because the definition of adequacy will vary from one application
to another, the topic is explored further in Appendix G.

The Use of Priorities

In many systems, each process is assigned a priority and the scheduler will always
choose a process of higher priority over one of lower priority. Figure 9.4 illustrates
the use of priorities. For clarity, the queueing diagram is simplified, ignoring the ex-
istence of multiple blocked queues and of suspended states (compare Figure 3.8a).
Instead of a single ready queue, we provide a set of queues, in descending order of
priority: RQ0, RQ1, . . . , RQn, with priority[RQi] 7 priority[RQj] for i 7 j.3 When
a scheduling selection is to be made, the scheduler will start at the highest-priority
ready queue (RQ0). If there are one or more processes in the queue, a process
is selected using some scheduling policy. If RQ0 is empty, then RQ1 is examined,
and so on.

3In UNIX and many other systems, larger priority values represent lower priority processes; unless oth-
erwise stated we follow that convention. Some systems, such as Windows, use the opposite convention: a
higher number means a higher priority.

Event wait

Event
occurs

Preemption

Dispatch
ReleaseRQ0

RQ1

RQn

Admit

Processor

Blocked queue

Figure 9.4 Priority Queueing

9.2 / SCHEDULING ALGORITHMS 405

One problem with a pure priority scheduling scheme is that lower-priority pro-
cesses may suffer starvation. This will happen if there is always a steady supply of
higher-priority ready processes. If this behavior is not desirable, the priority of a
process can change with its age or execution history. We will give one example of
this subsequently.

Alternative Scheduling Policies

Table 9.3 presents some summary information about the various scheduling poli-
cies that are examined in this subsection. The selection function determines which
process, among ready processes, is selected next for execution. The function may be
based on priority, resource requirements, or the execution characteristics of the pro-
cess. In the latter case, three quantities are significant:

w = time spent in system so far, waiting

e = time spent in execution so far
s = total service time required by the process, including e; generally, this quan-

tity must be estimated or supplied by the user

For example, the selection function max[w] indicates an FCFS discipline.

Table 9.3 Characteristics of Various Scheduling Policies

FCFS Round
Robin SPN SRT HRRN Feedback

Selection
Function max[w] constant min[s] min[s - e] max aw + s

s
b (see text)

Decision
Mode

Non-
preemptive

Preemptive
(at time

quantum)

Non-
preemptive

Preemptive
(at arrival)

Non-
preemptive

Preemptive
(at time

quantum)

Throughput Not
emphasized

May be low
if quantum
is too small

High High High
Not

emphasized

Response
Time

May be high,
especially if

there is
a large

variance
in process
execution

times

Provides
good

 response
time for

short
processes

Provides
good

 response
time for

short
processes

Provides
good

 response
time

Provides
good

response
time

Not
emphasized

Overhead Minimum Minimum Can be high Can be high Can be high Can be high

Effect on
Processes

Penalizes
short

processes;
penalizes

I/O bound
processes

Fair
treatment

Penalizes
long

processes

Penalizes
long

processes
Good balance

May favor
I/O bound
processes

Starvation No No Possible Possible No Possible

406 CHAPTER 9 / UNIPROCESSOR SCHEDULING

The decision mode specifies the instants in time at which the selection func-
tion is exercised. There are two general categories:

Nonpreemptive: In this case, once a process is in the Running state, it contin-
ues to execute until (a) it terminates or (b) it blocks itself to wait for I/O or to
request some OS service.
Preemptive: The currently running process may be interrupted and moved to
the Ready state by the OS. The decision to preempt may be performed when a
new process arrives; when an interrupt occurs that places a blocked process in
the Ready state; or periodically, based on a clock interrupt.

Preemptive policies incur greater overhead than nonpreemptive ones but may
provide better service to the total population of processes, because they prevent
any one process from monopolizing the processor for very long. In addition, the
cost of preemption may be kept relatively low by using efficient process-switching
mechanisms (as much help from hardware as possible) and by providing a large
main memory to keep a high percentage of programs in main memory.

As we describe the various scheduling policies, we will use the set of processes
in Table 9.4 as a running example. We can think of these as batch jobs, with the
service time being the total execution time required. Alternatively, we can consider
these to be ongoing processes that require alternate use of the processor and I/O in
a repetitive fashion. In this latter case, the service times represent the processor time
required in one cycle. In either case, in terms of a queueing model, this quantity cor-
responds to the service time.4

For the example of Table 9.4, Figure 9.5 shows the execution pattern for each
policy for one cycle, and Table 9.5 summarizes some key results. First, the finish time
of each process is determined. From this, we can determine the turnaround time.
In terms of the queueing model, turnaround time (TAT) is the residence time Tr,
or total time that the item spends in the system (waiting time plus service time).
A more useful figure is the normalized turnaround time, which is the ratio of turn-
around time to service time. This value indicates the relative delay experienced by a
process. Typically, the longer the process execution time, the greater is the absolute
amount of delay that can be tolerated. The minimum possible value for this ratio is
1.0; increasing values correspond to a decreasing level of service.

4See Appendix H for a summary of queueing model terminology, and Chapter 20 for a more detailed
discussion of queueing analysis.

Table 9.4 Process Scheduling Example

Process Arrival Time Service Time

A 0 3

B 2 6

C 4 4

D 6 5

E 8 2

9.2 / SCHEDULING ALGORITHMS 407

FIRST-COME-FIRST-SERVED The simplest scheduling policy is first-come-first-
served (FCFS), also known as first-in-first-out (FIFO) or a strict queueing scheme.
As each process becomes ready, it joins the ready queue. When the currently running
process ceases to execute, the process that has been in the ready queue the longest
is selected for running.

First-come-first
served (FCFS)

0 5 10 15 20

0 5 10 15 20

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

Round robin
(RR), q ! 1

Round robin
(RR), q ! 4

Shortest process
next (SPN)

Shortest remaining
time (SRT)

Highest response
ratio next (HRRN)

Feedback
q ! 1

Feedback
q ! 2i

Figure 9.5 A Comparison of Scheduling Policies

408 CHAPTER 9 / UNIPROCESSOR SCHEDULING

Table 9.5 A Comparison of Scheduling Policies

Process A B C D E

Arrival Time 0 2 4 6 8

Service Time (Ts) 3 6 4 5 2 Mean

FCFS

Finish Time 3 9 13 18 20

Turnaround Time (Tr) 3 7 9 12 12 8.60

Tr/Ts 1.00 1.17 2.25 2.40 6.00 2.56

RR q = 1

Finish Time 4 18 17 20 15

Turnaround Time (Tr) 4 16 13 14 7 10.80

Tr/Ts 1.33 2.67 3.25 2.80 3.50 2.71

RR q = 4

Finish Time 3 17 11 20 19

Turnaround Time (Tr) 3 15 7 14 11 10.00

Tr/Ts 1.00 2.5 1.75 2.80 5.50 2.71

SPN

Finish Time 3 9 15 20 11

Turnaround Time (Tr) 3 7 11 14 3 7.60

Tr/Ts 1.00 1.17 2.75 2.80 1.50 1.84

SRT

Finish Time 3 15 8 20 10

Turnaround Time (Tr) 3 13 4 14 2 7.20

Tr/Ts 1.00 2.17 1.00 2.80 1.00 1.59

HRRN

Finish Time 3 9 13 20 15

Turnaround Time (Tr) 3 7 9 14 7 8.00

Tr/Ts 1.00 1.17 2.25 2.80 3.5 2.14

FB q = 1

Finish Time 4 20 16 19 11

Turnaround Time (Tr) 4 18 12 13 3 10.00

Tr/Ts 1.33 3.00 3.00 2.60 1.5 2.29

FB q = 2i

Finish Time 4 17 18 20 14

Turnaround Time (Tr) 4 15 14 14 6 10.60

Tr/Ts 1.33 2.50 3.50 2.80 3.00 2.63

9.2 / SCHEDULING ALGORITHMS 409

FCFS performs much better for long processes than short ones. Consider the
following example, based on one in [FINK88]:

Process

Arrival
Time

Service
Time (Ts)

Start Time

Finish
Time

Turnaround
Time (Tr)

Tr /Ts

W 0 1 0 1 1 1

X 1 100 1 101 100 1

Y 2 1 101 102 100 100

Z 3 100 102 202 199 1.99

Mean 100 26

The normalized turnaround time for process Y is way out of line compared to the
other processes: the total time that it is in the system is 100 times the required
processing time. This will happen whenever a short process arrives just after a long
process. On the other hand, even in this extreme example, long processes do not
fare poorly. Process Z has a turnaround time that is almost double that of Y, but its
normalized residence time is under 2.0.

Another difficulty with FCFS is that it tends to favor processor-bound pro-
cesses over I/O-bound processes. Consider that there is a collection of processes,
one of which mostly uses the processor (processor bound) and a number of which
favor I/O (I/O bound). When a processor-bound process is running, all of the
I/O-bound processes must wait. Some of these may be in I/O queues (blocked
state) but may move back to the ready queue while the processor-bound process
is executing. At this point, most or all of the I/O devices may be idle, even though
there is potentially work for them to do. When the currently running process
leaves the Running state, the ready I/O-bound processes quickly move through
the Running state and become blocked on I/O events. If the processor-bound
process is also blocked, the processor becomes idle. Thus, FCFS may result in
inefficient use of both the processor and the I/O devices.

FCFS is not an attractive alternative on its own for a uniprocessor system.
However, it is often combined with a priority scheme to provide an effective sched-
uler. Thus, the scheduler may maintain a number of queues, one for each priority
level, and dispatch within each queue on a first-come-first-served basis. We see one
example of such a system later, in our discussion of feedback scheduling.

ROUND ROBIN A straightforward way to reduce the penalty that short jobs suffer
with FCFS is to use preemption based on a clock. The simplest such policy is round
robin. A clock interrupt is generated at periodic intervals. When the interrupt occurs,
the currently running process is placed in the ready queue, and the next ready job is
selected on a FCFS basis. This technique is also known as time slicing, because each
process is given a slice of time before being preempted.

With round robin, the principal design issue is the length of the time quantum,
or slice, to be used. If the quantum is very short, then short processes will move
through the system relatively quickly. On the other hand, there is processing over-
head involved in handling the clock interrupt and performing the scheduling and

410 CHAPTER 9 / UNIPROCESSOR SCHEDULING

dispatching function. Thus, very short time quanta should be avoided. One useful
guide is that the time quantum should be slightly greater than the time required for
a typical interaction or process function. If it is less, then most processes will require
at least two time quanta. Figure 9.6 illustrates the effect this has on response time.
Note that in the limiting case of a time quantum that is longer than the longest-
running process, round robin degenerates to FCFS.

Figure 9.5 and Table 9.5 show the results for our example using time quanta q
of 1 and 4 time units. Note that process E, which is the shortest job, enjoys significant
improvement for a time quantum of 1.

Round robin is particularly effective in a general-purpose time-sharing sys-
tem or transaction processing system. One drawback to round robin is its relative
treatment of processor-bound and I/O-bound processes. Generally, an I/O-bound
process has a shorter processor burst (amount of time spent executing between I/O
operations) than a processor-bound process. If there is a mix of processor-bound

Process allocated
time quantum

Time

Response time
s

Quantum
q

q ! s

Interaction
complete

(a) Time quantum greater than typical interaction

Process allocated
time quantum

s

q

Process allocated
time quantum

Process
preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction
complete

Figure 9.6 Effect of Size of Preemption Time Quantum

9.2 / SCHEDULING ALGORITHMS 411

and I/O-bound processes, then the following will happen: An I/O-bound process
uses a processor for a short period and then is blocked for I/O; it waits for the I/O
operation to complete and then joins the ready queue. On the other hand, a pro-
cessor-bound process generally uses a complete time quantum while executing and
immediately returns to the ready queue. Thus, processor-bound processes tend to
receive an unfair portion of processor time, which results in poor performance for
I/O-bound processes, inefficient use of I/O devices, and an increase in the variance
of response time.

[HALD91] suggests a refinement to round robin that he refers to as a virtual
round robin (VRR) and that avoids this unfairness. Figure 9.7 illustrates the scheme.
New processes arrive and join the ready queue, which is managed on an FCFS basis.
When a running process times out, it is returned to the ready queue. When a process
is blocked for I/O, it joins an I/O queue. So far, this is as usual. The new feature is
an FCFS auxiliary queue to which processes are moved after being released from
an I/O block. When a dispatching decision is to be made, processes in the auxiliary
queue get preference over those in the main ready queue. When a process is dis-
patched from the auxiliary queue, it runs no longer than a time equal to the basic
time quantum minus the total time spent running since it was last selected from the
main ready queue. Performance studies by the authors indicate that this approach is
indeed superior to round robin in terms of fairness.

I/O 1 wait

I/O 2 wait

I/O n wait

Dispatch

Timeout

Release
Ready queue

Admit
Processor

I/O 1 queue

Auxiliary queue

I/O 1
occurs

I/O 2
occurs

I/O n
occurs

I/O 2 queue

I/O n queue

Figure 9.7 Queueing Diagram for Virtual Round-Robin Scheduler

412 CHAPTER 9 / UNIPROCESSOR SCHEDULING

SHORTEST PROCESS NEXT Another approach to reducing the bias in favor of
long processes inherent in FCFS is the shortest process next (SPN) policy. This is
a nonpreemptive policy in which the process with the shortest expected processing
time is selected next. Thus, a short process will jump to the head of the queue past
longer jobs.

Figure 9.5 and Table 9.5 show the results for our example. Note that pro-
cess E receives service much earlier than under FCFS. Overall performance is also
significantly improved in terms of response time. However, the variability of re-
sponse times is increased, especially for longer processes, and thus predictability is
reduced.

One difficulty with the SPN policy is the need to know or at least estimate the
required processing time of each process. For batch jobs, the system may require the
programmer to estimate the value and supply it to the OS. If the programmer’s esti-
mate is substantially under the actual running time, the system may abort the job. In
a production environment, the same jobs run frequently, and statistics may be gath-
ered. For interactive processes, the OS may keep a running average of each “burst”
for each process. The simplest calculation would be the following:

 Sn + 1 =
1
n

 a
n

i= 1
Ti (9.1)

where

Ti = processor execution time for the ith instance of this process (total execu-
tion time for batch job; processor burst time for interactive job)

Si = predicted value for the ith instance
S1 = predicted value for first instance; not calculated

To avoid recalculating the entire summation each time, we can rewrite
Equation (9.1) as

 Sn + 1 =
1
n

 Tn +
n - 1

n
 Sn (9.2)

Note that each term in this summation is given equal weight; that is, each term
is multiplied by the same constant 1/(n). Typically, we would like to give greater
weight to more recent instances, because these are more likely to reflect future be-
havior. A common technique for predicting a future value on the basis of a time
series of past values is exponential averaging:

 Sn + 1 = aTn + 11 - a2Sn (9.3)

where a is a constant weighting factor (0 7 a 7 1) that determines the relative
weight given to more recent observations relative to older observations. Compare
with Equation (9.2). By using a constant value of a, independent of the number
of past observations, Equation (9.3) considers all past values, but the less recent
ones have less weight. To see this more clearly, consider the following expansion of
Equation (9.3):

Sn + 1 = aTn + 11 - a2aTn - 1 + g+ 11 - a2iaTn - i + g+ 11 - a2nS1 (9.4)

9.2 / SCHEDULING ALGORITHMS 413

Because both a and (1 - a) are less than 1, each successive term in the pre-
ceding equation is smaller. For example, for a = 0.8, Equation (9.4) becomes

Sn + 1 = 0.8Tn + 0.16Tn - 1 + 0.032Tn - 2 + 0.0064Tn - 3 + g+ 10.22nS1

The older the observation, the less it is counted in to the average.
The size of the coefficient as a function of its position in the expansion is shown

in Figure 9.8. The larger the value of a, the greater is the weight given to the more
recent observations. For a = 0.8, virtually all of the weight is given to the four most
recent observations, whereas for a = 0.2, the averaging is effectively spread out over
the eight or so most recent observations. The advantage of using a value of a close to
1 is that the average will quickly reflect a rapid change in the observed quantity. The
disadvantage is that if there is a brief surge in the value of the observed quantity and
it then settles back to some average value, the use of a large value of a will result in
jerky changes in the average.

Figure 9.9 compares simple averaging with exponential averaging (for two dif-
ferent values of a). In Figure 9.9a, the observed value begins at 1, grows gradually
to a value of 10, and then stays there. In Figure 9.9b, the observed value begins at
20, declines gradually to 10, and then stays there. In both cases, we start out with an
estimate of S1 = 0. This gives greater priority to new processes. Note that exponen-
tial averaging tracks changes in process behavior faster than does simple averaging
and that the larger value of a results in a more rapid reaction to the change in the
observed value.

A risk with SPN is the possibility of starvation for longer processes, as long
as there is a steady supply of shorter processes. On the other hand, although SPN
reduces the bias in favor of longer jobs, it still is not desirable for a time-sharing
or transaction-processing environment because of the lack of preemption. Looking
back at our worst-case analysis described under FCFS, processes W, X, Y, and Z will
still execute in the same order, heavily penalizing the short process Y.

SHORTEST REMAINING TIME The shortest remaining time (SRT) policy is a
preemptive version of SPN. In this case, the scheduler always chooses the process

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10987654321
Age of observation

C
oe

ff
ic

ie
nt

 v
al

ue a ! 0.2
a ! 0.5
a ! 0.8

Figure 9.8 Exponential Smoothing Coefficients

414 CHAPTER 9 / UNIPROCESSOR SCHEDULING

that has the shortest expected remaining processing time. When a new process joins
the ready queue, it may in fact have a shorter remaining time than the currently
running process. Accordingly, the scheduler may preempt the current process when
a new process becomes ready. As with SPN, the scheduler must have an estimate of
processing time to perform the selection function, and there is a risk of starvation of
longer processes.

SRT does not have the bias in favor of long processes found in FCFS. Unlike
round robin, no additional interrupts are generated, reducing overhead. On the

0

2

4

6

8

10

! = 0.8

! = 0.5

Simple average

Observed value

2019181716151413121110987654321

0

5

10

15

20

! = 0.8

! = 0.5
Simple average
Observed value

2019181716151413121110987654321

(a) Increasing function

(b) Decreasing function

Time

Time

O
bs

er
ve

d
or

 a
ve

ra
ge

 v
al

ue
O

bs
er

ve
d

or
 a

ve
ra

ge
 v

al
ue

Figure 9.9 Use of Exponential Averaging

9.2 / SCHEDULING ALGORITHMS 415

other hand, elapsed service times must be recorded, contributing to overhead. SRT
should also give superior turnaround time performance to SPN, because a short job
is given immediate preference to a running longer job.

Note that in our example (Table 9.5), the three shortest processes all receive
immediate service, yielding a normalized turnaround time for each of 1.0.

HIGHEST RESPONSE RATIO NEXT In Table 9.5, we have used the normalized
turnaround time, which is the ratio of turnaround time to actual service time, as a
figure of merit. For each individual process, we would like to minimize this ratio, and
we would like to minimize the average value over all processes. In general, we cannot
know ahead of time what the service time is going to be, but we can approximate it,
either based on past history or some input from the user or a configuration manager.
Consider the following ratio:

R =
w + s

s

where

R = response ratio
w = time spent waiting for the processor
s = expected service time

If the process with this value is dispatched immediately, R is equal to the normal-
ized turnaround time. Note that the minimum value of R is 1.0, which occurs when a
process first enters the system.

Thus, our scheduling rule becomes the following: When the current process com-
pletes or is blocked, choose the ready process with the greatest value of R. This ap-
proach is attractive because it accounts for the age of the process. While shorter jobs are
favored (a smaller denominator yields a larger ratio), aging without service increases
the ratio so that a longer process will eventually get past competing shorter jobs.

As with SRT and SPN, the expected service time must be estimated to use
highest response ratio next (HRRN).

FEEDBACK If we have no indication of the relative length of various processes,
then none of SPN, SRT, and HRRN can be used. Another way of establishing a
preference for shorter jobs is to penalize jobs that have been running longer. In
other words, if we cannot focus on the time remaining to execute, let us focus on the
time spent in execution so far.

The way to do this is as follows. Scheduling is done on a preemptive (at time
quantum) basis, and a dynamic priority mechanism is used. When a process first en-
ters the system, it is placed in RQ0 (see Figure 9.4). After its first preemption, when
it returns to the Ready state, it is placed in RQ1. Each subsequent time that it is pre-
empted, it is demoted to the next lower-priority queue. A short process will complete
quickly, without migrating very far down the hierarchy of ready queues. A longer
process will gradually drift downward. Thus, newer, shorter processes are favored
over older, longer processes. Within each queue, except the lowest-priority queue, a
simple FCFS mechanism is used. Once in the lowest-priority queue, a process cannot

416 CHAPTER 9 / UNIPROCESSOR SCHEDULING

go lower, but is returned to this queue repeatedly until it completes execution. Thus,
this queue is treated in round-robin fashion.

Figure 9.10 illustrates the feedback scheduling mechanism by showing the
path that a process will follow through the various queues.5 This approach is known
as multilevel feedback, meaning that the OS allocates the processor to a process
and, when the process blocks or is preempted, feeds it back into one of several prior-
ity queues.

There are a number of variations on this scheme. A simple version is to per-
form preemption in the same fashion as for round robin: at periodic intervals. Our
example shows this (Figure 9.5 and Table 9.5) for a quantum of one time unit. Note
that in this case, the behavior is similar to round robin with a time quantum of q = 1.

One problem with the simple scheme just outlined is that the turnaround time
of longer processes can stretch out alarmingly. Indeed, it is possible for starvation to
occur if new jobs are entering the system frequently. To compensate for this, we can
vary the preemption times according to the queue: A process scheduled from RQ0
is allowed to execute for one time unit and then is preempted; a process scheduled
from RQ1 is allowed to execute two time units, and so on. In general, a process
scheduled from RQi is allowed to execute q = 2i time units before preemption. This
scheme is illustrated for our example in Figure 9.5 and Table 9.5.

ReleaseRQ0
Admit

Processor

ReleaseRQ1

Processor

ReleaseRQn

Processor

Figure 9.10 Feedback Scheduling

5Dotted lines are used to emphasize that this is a time sequence diagram rather than a static depiction of
possible transitions, such as Figure 9.4.

9.2 / SCHEDULING ALGORITHMS 417

Even with the allowance for greater time allocation at lower priority, a longer
process may still suffer starvation. A possible remedy is to promote a process to a
higher-priority queue after it spends a certain amount of time waiting for service in
its current queue.

Performance Comparison

Clearly, the performance of various scheduling policies is a critical factor in the
choice of a scheduling policy. However, it is impossible to make definitive compari-
sons because relative performance will depend on a variety of factors, including the
probability distribution of service times of the various processes, the efficiency of
the scheduling and context switching mechanisms, and the nature of the I/O demand
and the performance of the I/O subsystem. Nevertheless, we attempt in what follows
to draw some general conclusions.

QUEUEING ANALYSIS In this section, we make use of basic queueing formulas, with
the common assumptions of Poisson arrivals and exponential service times.6

First, we make the observation that any such scheduling discipline that
chooses the next item to be served independent of service time obeys the following
relationship:

Tr

Ts
=

1
1 - r

where

Tr = turnaround time or residence time; total time in system, waiting plus
execution

Ts = average service time; average time spent in Running state
r = processor utilization

In particular, a priority-based scheduler, in which the priority of each process
is assigned independent of expected service time, provides the same average turn-
around time and average normalized turnaround time as a simple FCFS discipline.
Furthermore, the presence or absence of preemption makes no differences in these
averages.

With the exception of round robin and FCFS, the various scheduling disci-
plines considered so far do make selections on the basis of expected service time.
Unfortunately, it turns out to be quite difficult to develop closed analytic models
of these disciplines. However, we can get an idea of the relative performance of
such scheduling algorithms, compared to FCFS, by considering priority scheduling
in which priority is based on service time.

If scheduling is done on the basis of priority and if processes are assigned to
a priority class on the basis of service time, then differences do emerge. Table 9.6
shows the formulas that result when we assume two priority classes, with different
service times for each class. In the table, λ refers to the arrival rate. These results can

6The queueing terminology used in this chapter is summarized in Appendix H. Poisson arrivals essen-
tially means random arrivals, as explained in Appendix H.

418 CHAPTER 9 / UNIPROCESSOR SCHEDULING

be generalized to any number of priority classes. Note that the formulas differ for
nonpreemptive versus preemptive scheduling. In the latter case, it is assumed that
a lower-priority process is immediately interrupted when a higher-priority process
becomes ready.

As an example, let us consider the case of two priority classes, with an equal
number of process arrivals in each class and with the average service time for the
lower-priority class being five times that of the upper-priority class. Thus, we wish
to give preference to shorter processes. Figure 9.11 shows the overall result. By giv-
ing preference to shorter jobs, the average normalized turnaround time is improved
at higher levels of utilization. As might be expected, the improvement is greatest
with the use of preemption. Notice, however, that overall performance is not much
affected.

However, significant differences emerge when we consider the two priority
classes separately. Figure 9.12 shows the results for the higher-priority, shorter pro-
cesses. For comparison, the upper line on the graph assumes that priorities are not
used but that we are simply looking at the relative performance of that half of all
processes that have the shorter processing time. The other two lines assume that
these processes are assigned a higher priority. When the system is run using prior-
ity scheduling without preemption, the improvements are significant. They are even
more significant when preemption is used.

Table 9.6 Formulas for Single-Server Queues with Two Priority Categories

Assumptions: 1. Poisson arrival rate.

 2. Priority 1 items are serviced before priority 2 items.

 3. First-come-first-served dispatching for items of equal priority.

 4. No item is interrupted while being served.

 5. No items leave the queue (lost calls delayed).

(a) General formulas

l = l1 + l2

r1 = l1Ts1; r2 = l2Ts2

r = r1 + r2

Ts =
l1

l
 Ts1 +

l2

l
 Ts2

Tr =
l1

l
 Tr1 +

l2

l
 Tr2

(b) No interrupts; exponential service times

 Tr1 = Ts1 +
r1Ts1 + r2Ts2

1 + r1

 Tr2 = Ts2 +
Tr1 - Ts1

1 - r

(c) Preemptive-resume queueing discipline;
 exponential service times

 Tr1 = Ts1 +
r1Ts1

1 - r1

 Tr2 = Ts2 + 1
1 - r1

 ar1Ts2 +
rTs

1 - r
b

9.2 / SCHEDULING ALGORITHMS 419

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5

2 priority classes
!1 " !2
ts2 " 5 # ts1

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

(T
r/

T
s)

0.6 0.7 0.8 0.9 1.0

No priority

Priority

Priority
with preemption

Utilization ()!

Figure 9.11 Overall Normalized Response Time

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5

2 priority classes
!1 " !2
ts2 " 5 # ts1

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

(T
r1

/T
s1

)

0.6 0.7 0.8 0.9 1.0

No priority

Priority

Priority
with preemption

Utilization ()!

Figure 9.12 Normalized Response Time for Shorter Processes

420 CHAPTER 9 / UNIPROCESSOR SCHEDULING

Figure 9.13 shows the same analysis for the lower-priority, longer processes.
As expected, such processes suffer a performance degradation under priority
scheduling.

SIMULATION MODELING Some of the difficulties of analytic modeling are
overcome by using discrete-event simulation, which allows a wide range of policies
to be modeled. The disadvantage of simulation is that the results for a given “run”
only apply to that particular collection of processes under that particular set of
assumptions. Nevertheless, useful insights can be gained.

The results of one such study are reported in [FINK88]. The simulation in-
volved 50,000 processes with an arrival rate of λ = 0.8 and an average service time
of Ts = 1. Thus, the assumption is that the processor utilization is r = lTs = 0.8.
Note, therefore, that we are only measuring one utilization point.

To present the results, processes are grouped into service-time percentiles,
each of which has 500 processes. Thus, the 500 processes with the shortest service
time are in the first percentile; with these eliminated, the 500 remaining processes
with the shortest service time are in the second percentile; and so on. This allows
us to view the effect of various policies on processes as a function of the length of
the process.

Figure 9.14 shows the normalized turnaround time, and Figure 9.15 shows the
average waiting time. Looking at the turnaround time, we can see that the per-
formance of FCFS is very unfavorable, with one-third of the processes having a
normalized turnaround time greater than 10 times the service time; furthermore,

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5

2 priority classes
!1 " !2
ts2 " 5 # ts1

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

(T
r2

/T
s2

)

0.6 0.7 0.8 0.9 1.0

Priority

Priority
with preemption

No priority

Utilization ()!

Figure 9.13 Normalized Response Time for Longer Processes

9.2 / SCHEDULING ALGORITHMS 421

Percentile of time required

N
or

m
al

iz
ed

 tu
rn

ar
ou

nd
 ti

m
e

FCFS

FCFS

HRRN

HRRN

SPN

RR (q ! 1)
RR (q ! 1)

FB

FB

SRT

SRT

SPN

0
1

10

100

10 20 30 40 50 60 70 80 90 100

Figure 9.14 Simulation Result for Normalized Turnaround Time

Percentile of time required

W
ai

t t
im

e

FCFS
FCFS

HRRN

HRRN

RR
(q ! 1)

RR (q ! 1)

FB

FB
SRT

SPN

SPN

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Figure 9.15 Simulation Result for Waiting Time

422 CHAPTER 9 / UNIPROCESSOR SCHEDULING

these are the shortest processes. On the other hand, the absolute waiting time is
uniform, as is to be expected because scheduling is independent of service time. The
figures show round robin using a quantum of one time unit. Except for the shortest
processes, which execute in less than one quantum, round robin yields a normalized
turnaround time of about five for all processes, treating all fairly. Shortest process
next performs better than round robin, except for the shortest processes. Shortest
remaining time, the preemptive version of SPN, performs better than SPN except
for the longest 7% of all processes. We have seen that, among nonpreemptive poli-
cies, FCFS favors long processes and SPN favors short ones. Highest response ratio
next is intended to be a compromise between these two effects, and this is indeed
confirmed in the figures. Finally, the figure shows feedback scheduling with fixed,
uniform quanta in each priority queue. As expected, FB performs quite well for
short processes.

Fair-Share Scheduling

All of the scheduling algorithms discussed so far treat the collection of ready pro-
cesses as a single pool of processes from which to select the next running process.
This pool may be broken down by priority but is otherwise homogeneous.

However, in a multiuser system, if individual user applications or jobs may be
organized as multiple processes (or threads), then there is a structure to the collec-
tion of processes that is not recognized by a traditional scheduler. From the user’s
point of view, the concern is not how a particular process performs but rather how
his or her set of processes, which constitute a single application, performs. Thus, it
would be attractive to make scheduling decisions on the basis of these process sets.
This approach is generally known as fair-share scheduling. Further, the concept can
be extended to groups of users, even if each user is represented by a single process.
For example, in a time-sharing system, we might wish to consider all of the users
from a given department to be members of the same group. Scheduling decisions
could then be made that attempt to give each group similar service. Thus, if a large
number of people from one department log onto the system, we would like to see
response time degradation primarily affect members of that department rather than
users from other departments.

The term fair share indicates the philosophy behind such a scheduler. Each
user is assigned a weighting of some sort that defines that user’s share of system
resources as a fraction of the total usage of those resources. In particular, each
user is assigned a share of the processor. Such a scheme should operate in a more
or less linear fashion, so that if user A has twice the weighting of user B, then
in the long run, user A should be able to do twice as much work as user B. The
objective of a fair-share scheduler is to monitor usage to give fewer resources to
users who have had more than their fair share and more to those who have had
less than their fair share.

A number of proposals have been made for fair-share schedulers [HENR84,
KAY88, WOOD86]. In this section, we describe the scheme proposed in [HENR84]
and implemented on a number of UNIX systems. The scheme is simply referred to
as the fair-share scheduler (FSS). FSS considers the execution history of a related
group of processes, along with the individual execution history of each process in

9.2 / SCHEDULING ALGORITHMS 423

making scheduling decisions. The system divides the user community into a set of
fair-share groups and allocates a fraction of the processor resource to each group.
Thus, there might be four groups, each with 25% of the processor usage. In effect,
each fair-share group is provided with a virtual system that runs proportionally
slower than a full system.

Scheduling is done on the basis of priority, which takes into account the un-
derlying priority of the process, its recent processor usage, and the recent processor
usage of the group to which the process belongs. The higher the numerical value of
the priority, the lower is the priority. The following formulas apply for process j in
group k:

 CPUj1i2 =
CPUj1i - 12

2

 GCPUk1i2 =
GCPUk1i - 12

2

Pj1i2 = Basej +
CPUj1i2

2
+

GCPUk1i2
4 * Wk

where

CPUj1i2 = measure of processor utilization by process j through interval i
GCPUk1i2 = measure of processor utilization of group k through interval i
Pj1i2 = priority of process j at beginning of interval i; lower values

equal higher priorities
Basej = base priority of process j
Wk = weighting assigned to group k, with the constraint that and

0 6 Wk … 1 and a

k
Wk = 1

Each process is assigned a base priority. The priority of a process drops as the
process uses the processor and as the group to which the process belongs uses the
processor. In the case of the group utilization, the average is normalized by dividing
by the weight of that group. The greater the weight assigned to the group, the less its
utilization will affect its priority.

Figure 9.16 is an example in which process A is in one group and processes B
and C are in a second group, with each group having a weighting of 0.5. Assume that
all processes are processor bound and are usually ready to run. All processes have
a base priority of 60. Processor utilization is measured as follows: The processor is
interrupted 60 times per second; during each interrupt, the processor usage field of
the currently running process is incremented, as is the corresponding group proces-
sor field. Once per second, priorities are recalculated.

In the figure, process A is scheduled first. At the end of one second, it is pre-
empted. Processes B and C now have the higher priority, and process B is scheduled.
At the end of the second time unit, process A has the highest priority. Note that the
pattern repeats: The kernel schedules the processes in order: A, B, A, C, A, B, and
so on. Thus, 50% of the processor is allocated to process A, which constitutes one
group, and 50% to processes B and C, which constitute another group.

424 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 9.3 TRADITIONAL UNIX SCHEDULING

In this section we examine traditional UNIX scheduling, which is used in both
SVR3 and 4.3 BSD UNIX. These systems are primarily targeted at the time-
sharing interactive environment. The scheduling algorithm is designed to provide
good response time for interactive users while ensuring that low-priority back-
ground jobs do not starve. Although this algorithm has been replaced in modern

Priority

Colored rectangle represents executing process

60 0
1
2

60

0
1
2

60

74 15
16
17

75

15
16
17

75

78 18
19
20

78

18
19
20

78

67 0
1
2

60

15
16
17

75

74 15 15
16
17

75

60 0
1
2

60

60 0

60 0 0

90 30 30

96 37 37

98 39 39 70 3 18 76 15 18

90 30 30

81 7 37 93 30 37

75 0 30

60 0 0

Process
CPU
count

Process A

Group 1 Group 2

Process B Process C
Group
CPU
count

Process
CPU
count

Group
CPU
count

Process
CPU
count

Group
CPU
countPriority Priority

Time
0

1

2

3

4

5

0
1
2

60

0
1
2

60

Figure 9.16 Example of Fair-Share Scheduler—Three Processes, Two Groups

9.3 / TRADITIONAL UNIX SCHEDULING 425

UNIX systems, it is worthwhile to examine the approach because it is representa-
tive of practical time-sharing scheduling algorithms. The scheduling scheme for
SVR4 includes an accommodation for real-time requirements, and so its discus-
sion is deferred to Chapter 10.

The traditional UNIX scheduler employs multilevel feedback using round
robin within each of the priority queues. The system makes use of one-second pre-
emption. That is, if a running process does not block or complete within one second,
it is preempted. Priority is based on process type and execution history. The follow-
ing formulas apply:

CPUj1i2 =
CPUj1i - 12

2

Pj1i2 = Basej +
CPUj1i2

2
+ nicej

where

CPUj1i2 = measure of processor utilization by process j through interval i
Pj1i2 = priority of process j at beginning of interval i; lower values equal

higher priorities
Basej = base priority of process j
nicej = user-controllable adjustment factor

The priority of each process is recomputed once per second, at which time
a new scheduling decision is made. The purpose of the base priority is to divide
all processes into fixed bands of priority levels. The CPU and nice components are
restricted to prevent a process from migrating out of its assigned band (assigned by
the base priority level). These bands are used to optimize access to block devices
(e.g., disk) and to allow the OS to respond quickly to system calls. In decreasing
order of priority, the bands are:

Swapper
Block I/O device control
File manipulation
Character I/O device control
User processes

This hierarchy should provide the most efficient use of the I/O devices. Within
the user process band, the use of execution history tends to penalize processor-
bound processes at the expense of I/O-bound processes. Again, this should improve
efficiency. Coupled with the round-robin preemption scheme, the scheduling strat-
egy is well equipped to satisfy the requirements for general-purpose time sharing.

An example of process scheduling is shown in Figure 9.17. Processes A, B, and C
are created at the same time with base priorities of 60 (we will ignore the nice value).
The clock interrupts the system 60 times per second and increments a counter for the
running process. The example assumes that none of the processes block themselves
and that no other processes are ready to run. Compare this with Figure 9.16.

426 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 9.4 SUMMARY

The OS must make three types of scheduling decisions with respect to the execu-
tion of processes. Long-term scheduling determines when new processes are admit-
ted to the system. Medium-term scheduling is part of the swapping function and
determines when a program is brought partially or fully into main memory so that
it may be executed. Short-term scheduling determines which ready process will be
executed next by the processor. This chapter focuses on the issues relating to short-
term scheduling.

Priority Priority

Colored rectangle represents executing process

60 0
1
2

60 0

60 075 30

67 15 75 30

67 15

68 16

76 33

76 33

67 15

75 30

060
CPU count CPU count

Process A
Priority CPU count

Process CProcess B
Time

0

1

2

3

4

5

60
60 0

1
2

60
60 0

1
2

60
63 7

8
9

67
63 7

8
9

63 7
67

Figure 9.17 Example of a Traditional UNIX Process Scheduling

9.5 / RECOMMENDED READING AND ANIMATIONS 427

A variety of criteria are used in designing the short-term scheduler. Some of
these criteria relate to the behavior of the system as perceived by the individual user
(user oriented), while others view the total effectiveness of the system in meeting
the needs of all users (system oriented). Some of the criteria relate specifically to
quantitative measures of performance, while others are more qualitative in nature.
From a user’s point of view, response time is generally the most important character-
istic of a system, while from a system point of view, throughput or processor utiliza-
tion is important.

A variety of algorithms have been developed for making the short-term sched-
uling decision among all ready processes:

First-come-first-served: Select the process that has been waiting the longest
for service.
Round robin: Use time slicing to limit any running process to a short burst of
processor time, and rotate among all ready processes.
Shortest process next: Select the process with the shortest expected processing
time, and do not preempt the process.
Shortest remaining time: Select the process with the shortest expected remain-
ing process time. A process may be preempted when another process becomes
ready.
Highest response ratio next: Base the scheduling decision on an estimate of
normalized turnaround time.
Feedback: Establish a set of scheduling queues and allocate processes to
queues based on execution history and other criteria.

The choice of scheduling algorithm will depend on expected performance and
on implementation complexity.

 9.5 RECOMMENDED READING AND ANIMATIONS

Rigorous queueing analyses of various scheduling policies are presented in [KLEI04]
and [CONW67].

CONW67 Conway, R.; Maxwell, W.; and Miller, L. Theory of Scheduling. Reading,
MA: Addison-Wesley, 1967. Reprinted by Dover Publications, 2003.

KLEI04 Kleinrock, L. Queuing Systems, Volume Three: Computer Applications. New
York: Wiley, 2004.

Animations

A set of animation that illustrates concepts from this chapter is available at the
Premium Web site. The reader is encouraged to view the animations to reinforce
concepts from this chapter.

Animation

428 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 9.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

arrival rate
dispatcher
exponential averaging
fair-share scheduling
fairness
first-come-first-served
first-in-first-out
long-term scheduler

medium-term scheduler
multilevel feedback
predictability
residence time
response time
round robin
scheduling priority
service time

short-term scheduler
throughput
time slicing
turnaround time
utilization
waiting time

Review Questions

 9.1. Briefly describe the three types of processor scheduling.
 9.2. What is usually the critical performance requirement in an interactive operating

system?
 9.3. What is the difference between turnaround time and response time?
 9.4. For process scheduling, does a low-priority value represent a low priority or a high

priority?
 9.5. What is the difference between preemptive and nonpreemptive scheduling?
 9.6. Briefly define FCFS scheduling.
 9.7. Briefly define round-robin scheduling.
 9.8. Briefly define shortest-process-next scheduling.
 9.9. Briefly define shortest-remaining-time scheduling.
 9.10. Briefly define highest-response-ratio-next scheduling.
 9.11. Briefly define feedback scheduling.

Problems

 9.1. Consider the following workload:

Process Burst Time Priority Arrival Time

P1 50 ms 4 0 ms

P2 20 ms 1 20 ms

P3 100 ms 3 40 ms

P4 40 ms 2 60 ms

a. Show the schedule using shortest remaining time, nonpreemptive priority (a
smaller priority number implies higher priority) and round robin with quantum
30 ms. Use time scale diagram as shown below for the FCFS example to show the
schedule for each requested scheduling policy.

9.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 429

Example for FCFS (1 unit = 10 ms):

P1 P1 P1 P1 P1 P2 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b. What is the average waiting time of the above scheduling policies?
 9.2. Consider the following set of processes:

Process Arrival Time Processing Time

A 0 3

B 1 5

C 3 2

D 9 5

E 12 5

Perform the same analysis as depicted in Table 9.5 and Figure 9.5 for this set.
 9.3. Prove that, among nonpreemptive scheduling algorithms, SPN provides the minimum

average waiting time for a batch of jobs that arrive at the same time. Assume that the
scheduler must always execute a task if one is available.

 9.4. Assume the following burst-time pattern for a process: 6, 4, 6, 4, 13, 13, 13, and assume
that the initial guess is 10. Produce a plot similar to those of Figure 9.9.

 9.5. Consider the following pair of equations as an alternative to Equation (9.3):

 Sn + 1 = aTn + 11 - a2Sn

 Xn + 1 = min 3Ubound, max 3Lbound, 1bSn + 1244
where Ubound and Lbound are prechosen upper and lower bounds on the estimated
value of T. The value of Xn + 1 is used in the shortest-process-next algorithm, instead
of the value of Sn + 1. What functions do a and b perform, and what is the effect of
higher and lower values on each?

 9.6. In the bottom example in Figure 9.5, process A runs for two time units before control
is passed to process B. Another plausible scenario would be that A runs for three time
units before control is passed to process B. What policy differences in the feedback-
scheduling algorithm would account for the two different scenarios?

 9.7. In a nonpreemptive uniprocessor system, the ready queue contains three jobs at time
t immediately after the completion of a job. These jobs arrived at times t1, t2, and t3
with estimated execution times of r1, r2, and r3, respectively. Figure 9.18 shows the
linear increase of their response ratios over time. Use this example to find a variant
of response ratio scheduling, known as minimax response ratio scheduling, that mini-
mizes the maximum response ratio for a given batch of jobs ignoring further arrivals.
(Hint: Decide, first, which job to schedule as the last one.)

 9.8. Prove that the minimax response ratio algorithm of the preceding problem mini-
mizes the maximum response ratio for a given batch of jobs. (Hint: Focus attention
on the job that will achieve the highest response ratio and all jobs executed before
it. Consider the same subset of jobs scheduled in any other order and observe the
response ratio of the job that is executed as the last one among them. Notice that this
subset may now be mixed with other jobs from the total set.)

 9.9. Define residence time Tr as the average total time a process spends waiting and being
served. Show that for FIFO, with mean service time Ts, we have Tr = Ts/11 - r2,
where r is utilization.

430 CHAPTER 9 / UNIPROCESSOR SCHEDULING

 9.10. A processor is multiplexed at infinite speed among all processes present in a ready
queue with no overhead. (This is an idealized model of round-robin scheduling
among ready processes using time slices that are very small compared to the mean
service time.) Show that for Poisson input from an infinite source with exponential
service times, the mean response time Rx of a process with service time x is given
by Rx = x/11 - r2. (Hint: Review the basic queueing equations in Appendix H or
Chapter 20. Then consider the number of items waiting, w, in the system upon arrival
of the given process.)

 9.11. Consider a variant of the RR scheduling algorithm where the entries in the ready
queue are pointers to the PCBs.
a. What would be the effect of putting two pointers to the same process in the ready

queue?
b. What would be the major advantage of this scheme?
c. How could you modify the basic RR algorithm to achieve the same effect without

the duplicate pointers?
 9.12. In a queueing system, new jobs must wait for a while before being served. While a job

waits, its priority increases linearly with time from zero at a rate a. A job waits until its
priority reaches the priority of the jobs in service; then, it begins to share the proces-
sor equally with other jobs in service using round robin while its priority continues to
increase at a slower rate b. The algorithm is referred to as selfish round robin, because
the jobs in service try (in vain) to monopolize the processor by increasing their prior-
ity continuously. Use Figure 9.19 to show that the mean response time Rx for a job of
service time x is given by:

Rx =
s

1 - r
+ x - s

1 - r=

where

r = ls r= = ra1 -
b

a
b 0 … b 6 a

assuming that arrival and service times are exponentially distributed with means
1/λ and s, respectively. (Hint: Consider the total system and the two subsystems
separately.)

 9.13. An interactive system using round-robin scheduling and swapping tries to give guar-
anteed response to trivial requests as follows: After completing a round-robin cycle
among all ready processes, the system determines the time slice to allocate to each

t1 t2

r1

t3 t4
Time

1

1

R
es

po
ns

e
ra

ti
o

r2
1

r3
1

Figure 9.18 Response Ratio as a Function of Time

9.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 431

ready process for the next cycle by dividing a maximum response time by the number
of processes requiring service. Is this a reasonable policy?

 9.14. Which type of process is generally favored by a multilevel feedback queueing
 scheduler—a processor-bound process or an I/O-bound process? Briefly explain why.

 9.15. In priority-based process scheduling, the scheduler only gives control to a particular
process if no other process of higher priority is currently in the Ready state. Assume
that no other information is used in making the process scheduling decision. Also
assume that process priorities are established at process creation time and do not
change. In a system operating with such assumptions, why would using Dekker’s solu-
tion (see Section A.1) to the mutual exclusion problem be “dangerous”? Explain this
by telling what undesired event could occur and how it could occur.

 9.16. Five batch jobs, A through E, arrive at a computer center at essentially the same time.
They have an estimated running time of 15, 9, 3, 6, and 12 minutes, respectively. Their
(externally defined) priorities are 6, 3, 7, 9, and 4, respectively, with a lower value cor-
responding to a higher priority. For each of the following scheduling algorithms, de-
termine the turnaround time for each process and the average turnaround for all jobs.
Ignore process switching overhead. Explain how you arrived at your answers. In the
last three cases, assume that only one job at a time runs until it finishes and that all
jobs are completely processor bound.
a. round robin with a time quantum of 1 minute
b. priority scheduling
c. FCFS (run in order 15, 9, 3, 6, and 12)
d. shortest job first

Waiting jobs

a
l l!

b

1/l

1/l!

a a

b

Served jobs

Time

In
cr

ea
si

ng
 p

ri
or

it
y

Departures

Figure 9.19 Selfish Round Robin

432

 10.1 Multiprocessor and Multicore Scheduling
Granularity
Design Issues
Process Scheduling
Thread Scheduling
Multicore Thread Scheduling

 10.2 Real-Time Scheduling
Background
Characteristics of Real-Time Operating Systems
Real-Time Scheduling
Deadline Scheduling
Rate Monotonic Scheduling
Priority Inversion

 10.3 Linux Scheduling
Real-Time Scheduling
Non-Real-Time Scheduling

 10.4 UNIX SVR4 Scheduling

 10.5 UNIX FreeBSD Scheduling
Priority Classes
SMP and Multicore Support

 10.6 Windows Scheduling
Process and Thread Priorities
Multiprocessor Scheduling

 10.7 Summary

 10.8 Recommended Reading

 10.9 Key Terms, Review Questions, and Problems

MULTIPROCESSOR, MULTICORE,
AND REAL-TIME SCHEDULING

CHAPTER

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING 433

This chapter continues our survey of process and thread scheduling. We begin with
an examination of issues raised by the availability of more than one processor. A
number of design issues are explored. This is followed by a look at the scheduling of
processes on a multiprocessor system. Then the somewhat different design consid-
erations for multiprocessor thread scheduling are examined. The second section of
this chapter covers real-time scheduling. The section begins with a discussion of the
characteristics of real-time processes and then looks at the nature of the schedul-
ing process. Two approaches to real-time scheduling, deadline scheduling and rate
monotonic scheduling, are examined.

 10.1 MULTIPROCESSOR AND MULTICORE SCHEDULING

When a computer system contains more than a single processor, several new issues
are introduced into the design of the scheduling function. We begin with a brief
overview of multiprocessors and then look at the rather different considerations
when scheduling is done at the process level and at the thread level.

We can classify multiprocessor systems as follows:

Loosely coupled or distributed multiprocessor, or cluster: It consists of a col-
lection of relatively autonomous systems, each processor having its own main
memory and I/O channels. We address this type of configuration in Chapter 16.
Functionally specialized processors: An example is an I/O processor. In this
case, there is a master, general-purpose processor; specialized processors are
controlled by the master processor and provide services to it. Issues relating to
I/O processors are addressed in Chapter 11.
Tightly coupled multiprocessor: It consists of a set of processors that share a com-
mon main memory and are under the integrated control of an operating system.

Our concern in this section is with the last category, and specifically with issues relat-
ing to scheduling.

Granularity

A good way of characterizing multiprocessors and placing them in context with
other architectures is to consider the synchronization granularity, or frequency of

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Understand the concept of thread granularity.
Discuss the key design issues in multiprocessor thread scheduling and some
of the key approaches to scheduling.
Understand the requirements imposed by real-time scheduling.
Explain the scheduling methods used in Linux, UNIX SVR4, and Windows 7.

434 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

synchronization, between processes in a system. We can distinguish five categories
of parallelism that differ in the degree of granularity. These are summarized in
Table 10.1.

INDEPENDENT PARALLELISM With independent parallelism, there is no explicit
synchronization among processes. Each represents a separate, independent
application or job. A typical use of this type of parallelism is in a time-sharing system.
Each user is performing a particular application such as word processing or using a
spreadsheet. The multiprocessor provides the same service as a multiprogrammed
uniprocessor. Because more than one processor is available, average response time
to the users will be less.

It is possible to achieve a similar performance gain by providing each user with
a personal computer or workstation. If any files or information are to be shared,
then the individual systems must be hooked together into a distributed system sup-
ported by a network. This approach is examined in Chapter 16. On the other hand, a
single, multiprocessor shared system in many instances is more cost-effective than a
distributed system, allowing economies of scale in disks and other peripherals.

COARSE AND VERY COARSE-GRAINED PARALLELISM With coarse and very coarse-
grained parallelism, there is synchronization among processes, but at a very gross
level. This kind of situation is easily handled as a set of concurrent processes running
on a multiprogrammed uniprocessor and can be supported on a multiprocessor with
little or no change to user software.

A simple example of an application that can exploit the existence of a multi-
processor is given in [WOOD89]. The authors have developed a program that takes
a specification of files needing recompilation to rebuild a piece of software and de-
termines which of these compiles (usually all of them) can be run simultaneously.
The program then spawns one process for each parallel compile. The authors report
that the speedup on a multiprocessor actually exceeds what would be expected by
simply adding up the number of processors in use, due to synergies in the disk buf-
fer caches (a topic explored in Chapter 11) and sharing of compiler code, which is
loaded into memory only once.

Table 10.1 Synchronization Granularity and Processes

Grain Size Description
Synchronization

Interval (Instructions)

Fine Parallelism inherent in a single instruction stream < 20

Medium Parallel processing or multitasking within a single application 20–200

Coarse Multiprocessing of concurrent processes in a multiprogramming
environment

200–2,000

Very Coarse Distributed processing across network nodes to form a single
computing environment

2,000–1M

Independent Multiple unrelated processes Not applicable

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING 435

In general, any collection of concurrent processes that need to communicate or
synchronize can benefit from the use of a multiprocessor architecture. In the case of
very infrequent interaction among processes, a distributed system can provide good
support. However, if the interaction is somewhat more frequent, then the overhead
of communication across the network may negate some of the potential speedup. In
that case, the multiprocessor organization provides the most effective support.

MEDIUM-GRAINED PARALLELISM We saw in Chapter 4 that a single application can
be effectively implemented as a collection of threads within a single process. In this
case, the programmer must explicitly specify the potential parallelism of an application.
Typically, there will need to be rather a high degree of coordination and interaction
among the threads of an application, leading to a medium-grain level of synchronization.

Whereas independent, very coarse, and coarse-grained parallelism can be sup-
ported on either a multiprogrammed uniprocessor or a multiprocessor with little
or no impact on the scheduling function, we need to reexamine scheduling when
dealing with the scheduling of threads. Because the various threads of an application
interact so frequently, scheduling decisions concerning one thread may affect the
performance of the entire application. We return to this issue later in this section.

FINE-GRAINED PARALLELISM Fine-grained parallelism represents a much more
complex use of parallelism than is found in the use of threads. Although much work has
been done on highly parallel applications, this is so far a specialized and fragmented
area, with many different approaches.

Chapter 4 provides an example of the use of granularity for the Valve game
software.

Design Issues

Scheduling on a multiprocessor involves three interrelated issues:

The assignment of processes to processors
The use of multiprogramming on individual processors
The actual dispatching of a process

In looking at these three issues, it is important to keep in mind that the approach
taken will depend, in general, on the degree of granularity of the applications and on
the number of processors available.

ASSIGNMENT OF PROCESSES TO PROCESSORS If we assume that the architecture
of the multiprocessor is uniform, in the sense that no processor has a particular
physical advantage with respect to access to main memory or to I/O devices, then
the simplest scheduling approach is to treat the processors as a pooled resource and
assign processes to processors on demand. The question then arises as to whether
the assignment should be static or dynamic.

If a process is permanently assigned to one processor from activation until its
completion, then a dedicated short-term queue is maintained for each processor.
An advantage of this approach is that there may be less overhead in the scheduling

436 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

function, because the processor assignment is made once and for all. Also, the use
of dedicated processors allows a strategy known as group or gang scheduling, as
discussed later.

A disadvantage of static assignment is that one processor can be idle, with an
empty queue, while another processor has a backlog. To prevent this situation, a com-
mon queue can be used. All processes go into one global queue and are scheduled to
any available processor. Thus, over the life of a process, the process may be executed
on different processors at different times. In a tightly coupled shared-memory archi-
tecture, the context information for all processes will be available to all processors,
and therefore the cost of scheduling a process will be independent of the identity of
the processor on which it is scheduled. Yet another option is dynamic load balancing,
in which threads are moved from a queue for one processor to a queue for another
processor; Linux uses this approach.

Regardless of whether processes are dedicated to processors, some means is
needed to assign processes to processors. Two approaches have been used: master/
slave and peer. With a master/slave architecture, key kernel functions of the oper-
ating system always run on a particular processor. The other processors may only
execute user programs. The master is responsible for scheduling jobs. Once a process
is active, if the slave needs service (e.g., an I/O call), it must send a request to the
master and wait for the service to be performed. This approach is quite simple and
requires little enhancement to a uniprocessor multiprogramming operating system.
Conflict resolution is simplified because one processor has control of all memory
and I/O resources. There are two disadvantages to this approach: (1) A failure of
the master brings down the whole system, and (2) the master can become a perfor-
mance bottleneck.

In a peer architecture, the kernel can execute on any processor, and each pro-
cessor does self-scheduling from the pool of available processes. This approach com-
plicates the operating system. The operating system must ensure that two processors
do not choose the same process and that the processes are not somehow lost from
the queue. Techniques must be employed to resolve and synchronize competing
claims to resources.

There is, of course, a spectrum of approaches between these two extremes.
One approach is to provide a subset of processors dedicated to kernel processing
instead of just one. Another approach is simply to manage the difference between
the needs of kernel processes and other processes on the basis of priority and execu-
tion history.

THE USE OF MULTIPROGRAMMING ON INDIVIDUAL PROCESSORS When each
process is statically assigned to a processor for the duration of its lifetime, a new
question arises: Should that processor be multiprogrammed? The reader’s first
reaction may be to wonder why the question needs to be asked; it would appear
particularly wasteful to tie up a processor with a single process when that process may
frequently be blocked waiting for I/O or because of concurrency/synchronization
considerations.

In the traditional multiprocessor, which is dealing with coarse-grained or inde-
pendent synchronization granularity (see Table 10.1), it is clear that each individual
processor should be able to switch among a number of processes to achieve high

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING 437

utilization and therefore better performance. However, for medium-grained appli-
cations running on a multiprocessor with many processors, the situation is less clear.
When many processors are available, it is no longer paramount that every single
processor be busy as much as possible. Rather, we are concerned to provide the
best performance, on average, for the applications. An application that consists of
a number of threads may run poorly unless all of its threads are available to run
simultaneously.

PROCESS DISPATCHING The final design issue related to multiprocessor scheduling
is the actual selection of a process to run. We have seen that, on a multiprogrammed
uniprocessor, the use of priorities or of sophisticated scheduling algorithms based on
past usage may improve performance over a simple-minded first-come-first-served
strategy. When we consider multiprocessors, these complexities may be unnecessary
or even counterproductive, and a simpler approach may be more effective with less
overhead. In the case of thread scheduling, new issues come into play that may be
more important than priorities or execution histories. We address each of these
topics in turn.

Process Scheduling

In most traditional multiprocessor systems, processes are not dedicated to processors.
Rather there is a single queue for all processors, or if some sort of priority scheme is
used, there are multiple queues based on priority, all feeding into the common pool
of processors. In any case, we can view the system as being a multiserver queueing
architecture.

Consider the case of a dual-processor system in which each processor of the
dual-processor system has half the processing rate of a processor in the single-
processor system. [SAUE81] reports a queueing analysis that compares FCFS
scheduling to round robin and to shortest remaining time. The study is concerned
with process service time, which measures the amount of processor time a process
needs, either for a total job or the amount of time needed each time the process is
ready to use the processor. In the case of round robin, it is assumed that the time
quantum is large compared to context-switching overhead and small compared
to mean service time. The results depend on the variability that is seen in service
times. A common measure of variability is the coefficient of variation, Cs.1 A value
of Cs = 0 corresponds to the case where there is no variability: the service times of
all processes are equal. Increasing values of Cs correspond to increasing variability
among the service times. That is, the larger the value of Cs, the more widely do the
values of the service times vary. Values of Cs of 5 or more are not unusual for proces-
sor service time distributions.

Figure 10.1a compares round-robin throughput to FCFS throughput as a func-
tion of Css. Note that the difference in scheduling algorithms is much smaller in the
dual-processor case. With two processors, a single process with long service time is

1The value of Cs is calculated as σs/Ts, where σs is the standard deviation of service time and Ts is the
mean service time. For a further explanation of Cs, see the discussion in Chapter 20.

438 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

much less disruptive in the FCFS case; other processes can use the other processor.
Similar results are shown in Figure 10.1b.

The study in [SAUE81] repeated this analysis under a number of assumptions
about degree of multiprogramming, mix of I/O-bound versus CPU-bound processes,
and the use of priorities. The general conclusion is that the specific scheduling disci-
pline is much less important with two processors than with one. It should be evident
that this conclusion is even stronger as the number of processors increases. Thus, a
simple FCFS discipline or the use of FCFS within a static priority scheme may suf-
fice for a multiple-processor system.

Single
processor

Dual
processorSR

T
 to

 F
C

F
S

th
ro

ug
hp

ut
 r

at
io

0
1.00

1.05

1.10

1.15

1.20

1.25

1 2 3 4 5

Coefficient of variation

(a) Comparison of RR and FCFS

Coefficient of variation

(b) Comparison of SRT and FCFS

0 1 2

Single
processor

Dual
processor

0.98

R
R

 to
 F

C
F

S
th

ro
ug

hp
ut

 r
at

io

3 4 5

1.00

1.05

1.10

1.15

Figure 10.1 Comparison of Scheduling Performance for One
and Two Processors

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING 439

Thread Scheduling

As we have seen, with threads, the concept of execution is separated from the rest
of the definition of a process. An application can be implemented as a set of threads
that cooperate and execute concurrently in the same address space.

On a uniprocessor, threads can be used as a program structuring aid and to
overlap I/O with processing. Because of the minimal penalty in doing a thread
switch compared to a process switch, these benefits are realized with little cost.
However, the full power of threads becomes evident in a multiprocessor system. In
this environment, threads can be used to exploit true parallelism in an application.
If the various threads of an application are simultaneously run on separate proces-
sors, dramatic gains in performance are possible. However, it can be shown that
for applications that require significant interaction among threads (medium-grain
parallelism), small differences in thread management and scheduling can have a
significant performance impact [ANDE89].

Among the many proposals for multiprocessor thread scheduling and proces-
sor assignment, four general approaches stand out:

Load sharing: Processes are not assigned to a particular processor. A global
queue of ready threads is maintained, and each processor, when idle, selects a
thread from the queue. The term load sharing is used to distinguish this strategy
from load-balancing schemes in which work is allocated on a more permanent
basis (e.g., see [FEIT90a]).2

Gang scheduling: A set of related threads is scheduled to run on a set of pro-
cessors at the same time, on a one-to-one basis.
Dedicated processor assignment: This is the opposite of the load-sharing ap-
proach and provides implicit scheduling defined by the assignment of threads
to processors. Each program, for the duration of its execution, is allocated a
number of processors equal to the number of threads in the program. When
the program terminates, the processors return to the general pool for possible
allocation to another program.
Dynamic scheduling: The number of threads in a process can be altered during
the course of execution.

LOAD SHARING Load sharing is perhaps the simplest approach and the one that
carries over most directly from a uniprocessor environment. It has several advantages:

The load is distributed evenly across the processors, assuring that no processor
is idle while work is available to do.
No centralized scheduler is required; when a processor is available, the sched-
uling routine of the operating system is run on that processor to select the
next thread.

2Some of the literature on this topic refers to this approach as self-scheduling, because each processor
schedules itself without regard to other processors. However, this term is also used in the literature to
refer to programs written in a language that allows the programmer to specify the scheduling (e.g., see
[FOST91]).

440 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

The global queue can be organized and accessed using any of the schemes
discussed in Chapter 9, including priority-based schemes and schemes that
consider execution history or anticipated processing demands.

[LEUT90] analyzes three different versions of load sharing:

First-come-first-served (FCFS): When a job arrives, each of its threads is placed
consecutively at the end of the shared queue. When a processor becomes idle, it
picks the next ready thread, which it executes until completion or blocking.
Smallest number of threads first: The shared ready queue is organized as a pri-
ority queue, with highest priority given to threads from jobs with the smallest
number of unscheduled threads. Jobs of equal priority are ordered according to
which job arrives first. As with FCFS, a scheduled thread is run to completion
or blocking.
Preemptive smallest number of threads first: Highest priority is given to jobs
with the smallest number of unscheduled threads. An arriving job with a smaller
number of threads than an executing job will preempt threads belonging to the
scheduled job.

Using simulation models, the authors report that, over a wide range of job charac-
teristics, FCFS is superior to the other two policies in the preceding list. Further, the
authors find that some form of gang scheduling, discussed in the next subsection, is
generally superior to load sharing.

There are several disadvantages of load sharing:

The central queue occupies a region of memory that must be accessed in a
manner that enforces mutual exclusion. Thus, it may become a bottleneck if
many processors look for work at the same time. When there is only a small
number of processors, this is unlikely to be a noticeable problem. However,
when the multiprocessor consists of dozens or even hundreds of processors,
the potential for bottleneck is real.
Preempted threads are unlikely to resume execution on the same processor. If
each processor is equipped with a local cache, caching becomes less efficient.
If all threads are treated as a common pool of threads, it is unlikely that all of
the threads of a program will gain access to processors at the same time. If a
high degree of coordination is required between the threads of a program, the
process switches involved may seriously compromise performance.

Despite the potential disadvantages, load sharing is one of the most commonly
used schemes in current multiprocessors.

A refinement of the load-sharing technique is used in the Mach operating sys-
tem [BLAC90, WEND89]. The operating system maintains a local run queue for each
processor and a shared global run queue. The local run queue is used by threads that
have been temporarily bound to a specific processor. A processor examines the local
run queue first to give bound threads absolute preference over unbound threads.
As an example of the use of bound threads, one or more processors could be dedi-
cated to running processes that are part of the operating system. Another example is
that the threads of a particular application could be distributed among a number of

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING 441

processors; with the proper additional software, this provides support for gang sched-
uling, discussed next.

GANG SCHEDULING The concept of scheduling a set of processes simultaneously
on a set of processors predates the use of threads. [JONE80] refers to the concept as
group scheduling. This approach has the following performance benefits:

If processes in the group are related or coordinated in some fashion, synchro-
nization blocking may be reduced, less process switching may be necessary,
and performance will increase.
A single scheduling decision affects a number of processors and processes at
one time, reducing scheduling overhead.

On the Cm* multiprocessor, the term coscheduling is used [GEHR87].
Coscheduling is based on the concept of scheduling a related set of tasks, called a
task force. The individual elements of a task force tend to be quite small and are
hence close to the idea of a thread.

The term gang scheduling has been applied to the simultaneous scheduling of
the threads that make up a single process [FEIT90b]. Gang scheduling is useful for
medium-grained to fine-grained parallel applications whose performance severely
degrades when any part of the application is not running while other parts are ready
to run. It is also beneficial for any parallel application, even one that is not quite
so performance sensitive. The need for gang scheduling is widely recognized, and
implementations exist on a variety of multiprocessor operating systems.

One obvious way in which gang scheduling improves the performance of a
single application is that process switches are minimized. Suppose one thread of a
process is executing and reaches a point at which it must synchronize with another
thread of the same process. If that other thread is not running, but is in a ready
queue, the first thread is hung up until a process switch can be done on some other
processor to bring in the needed thread. In an application with tight coordination
among threads, such switches will dramatically reduce performance. The simultane-
ous scheduling of cooperating threads can also save time in resource allocation. For
example, multiple gang-scheduled threads can access a file without the additional
overhead of locking during a seek, read/write operation.

The use of gang scheduling creates a requirement for processor allocation. One
possibility is the following. Suppose that we have N processors and M applications,
each of which has N or fewer threads. Then each application could be given 1/M of
the available time on the N processors, using time slicing. [FEIT90a] notes that this
strategy can be inefficient. Consider an example in which there are two applica-
tions, one with four threads and one with one thread. Using uniform time allocation
wastes 37.5% of the processing resource, because when the single-thread application
runs, three processors are left idle (see Figure 10.2). If there are several one-thread
applications, these could all be fit together to increase processor utilization. If that
option is not available, an alternative to uniform scheduling is scheduling that is
weighted by the number of threads. Thus, the four-thread application could be given
four-fifths of the time and the one-thread application given only one-fifth of the
time, reducing the processor waste to 15%.

442 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

DEDICATED PROCESSOR ASSIGNMENT An extreme form of gang scheduling,
suggested in [TUCK89], is to dedicate a group of processors to an application for
the duration of the application. That is, when an application is scheduled, each of
its threads is assigned a processor that remains dedicated to that thread until the
application runs to completion.

This approach would appear to be extremely wasteful of processor time. If
a thread of an application is blocked waiting for I/O or for synchronization with
another thread, then that thread’s processor remains idle: There is no multiprogram-
ming of processors. Two observations can be made in defense of this strategy:

 1. In a highly parallel system, with tens or hundreds of processors, each of which
represents a small fraction of the cost of the system, processor utilization is no
longer so important as a metric for effectiveness or performance.

 2. The total avoidance of process switching during the lifetime of a program
should result in a substantial speedup of that program.

Both [TUCK89] and [ZAHO90] report analyses that support statement 2.
Table 10.2 shows the results of one experiment [TUCK89]. The authors ran two
applications simultaneously (executing concurrently), a matrix multiplication and
a fast Fourier transform (FFT) calculation, on a system with 16 processors. Each
application breaks its problem into a number of tasks, which are mapped onto
the threads executing that application. The programs are written in such a way as
to allow the number of threads to be used to vary. In essence, a number of tasks
are defined and queued by an application. Tasks are taken from the queue and
mapped onto the available threads by the application. If there are fewer threads
than tasks, then leftover tasks remain queued and are picked up by threads as they
complete their assigned tasks. Clearly, not all applications can be structured in this
way, but many numerical problems and some other applications can be dealt with
in this fashion.

Table 10.2 shows the speedup for the applications as the number of threads
executing the tasks in each application is varied from 1 to 24. For example, we see
that when both applications are started simultaneously with 24 threads each, the
speedup obtained, compared to using a single thread for each application, is 2.8

1/21/2Time

Group 1 Group 2

Uniform division

PE1

PE2

PE3

PE4

15% Waste37.5% Waste

4/5

Group 1

Division by weights

PE1

PE2

PE3

PE4

Idle

Idle

Idle

1/5

Group 2

Idle

Idle

Idle

Figure 10.2 Example of Scheduling Groups with Four and One Threads [FEIT90b]

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING 443

for matrix multiplication and 2.4 for FFT. The Table shows that the performance
of both applications worsens considerably when the number of threads in each
application exceeds eight and thus the total number of processes in the system
exceeds the number of processors. Furthermore, the larger the number of threads,
the worse the performance gets, because there is a greater frequency of thread
preemption and rescheduling. This excessive preemption results in inefficiency
from many sources, including time spent waiting for a suspended thread to leave
a critical section, time wasted in process switching, and inefficient cache behavior.

The authors conclude that an effective strategy is to limit the number of active
threads to the number of processors in the system. If most of the applications are
either single thread or can use the task-queue structure, this will provide an effective
and reasonably efficient use of the processor resources.

Both dedicated processor assignment and gang scheduling attack the sched-
uling problem by addressing the issue of processor allocation. One can observe
that the processor allocation problem on a multiprocessor more closely resembles
the memory allocation problem on a uniprocessor than the scheduling problem
on a uniprocessor. The issue is how many processors to assign to a program at
any given time, which is analogous to how many page frames to assign to a given
process at any time. [GEHR87] proposes the term activity working set, analogous
to a virtual memory working set, as the minimum number of activities (threads)
that must be scheduled simultaneously on processors for the application to make
acceptable progress. As with memory management schemes, the failure to sched-
ule all of the elements of an activity working set can lead to processor thrashing.
This occurs when the scheduling of threads whose services are required induces
the descheduling of other threads whose services will soon be needed. Similarly,
processor fragmentation refers to a situation in which some processors are left
over when others are allocated, and the leftover processors are either insufficient
in number or unsuitably organized to support the requirements of waiting appli-
cations. Gang scheduling and dedicated processor allocation are meant to avoid
these problems.

Table 10.2 Application Speedup as a Function of Number of Threads

Number of Threads per
Application Matrix Multiplication FFT

1 1 1

2 1.8 1.8

4 3.8 3.8

8 6.5 6.1

12 5.2 5.1

16 3.9 3.8

20 3.3 3

24 2.8 2.4

444 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

DYNAMIC SCHEDULING For some applications, it is possible to provide language
and system tools that permit the number of threads in the process to be altered
dynamically. This would allow the operating system to adjust the load to improve
utilization.

[ZAHO90] proposes an approach in which both the operating system and
the application are involved in making scheduling decisions. The operating system
is responsible for partitioning the processors among the jobs. Each job uses the
processors currently in its partition to execute some subset of its runnable tasks
by mapping these tasks to threads. An appropriate decision about which subset
to run, as well as which thread to suspend when a process is preempted, is left to
the individual applications (perhaps through a set of run-time library routines).
This approach may not be suitable for all applications. However, some applica-
tions could default to a single thread while others could be programmed to take
advantage of this particular feature of the operating system.

In this approach, the scheduling responsibility of the operating system is pri-
marily limited to processor allocation and proceeds according to the following
policy. When a job requests one or more processors (either when the job arrives
for the first time or because its requirements change),

 1. If there are idle processors, use them to satisfy the request.
 2. Otherwise, if the job making the request is a new arrival, allocate it a single

processor by taking one away from any job currently allocated more than one
processor.

 3. If any portion of the request cannot be satisfied, it remains outstanding until
either a processor becomes available for it or the job rescinds the request (e.g.,
if there is no longer a need for the extra processors).

Upon release of one or more processors (including job departure),

 4. Scan the current queue of unsatisfied requests for processors. Assign a single
processor to each job in the list that currently has no processors (i.e., to all
waiting new arrivals). Then scan the list again, allocating the rest of the proces-
sors on an FCFS basis.

Analyses reported in [ZAHO90] and [MAJU88] suggest that for applica-
tions that can take advantage of dynamic scheduling, this approach is superior
to gang scheduling or dedicated processor assignment. However, the overhead of
this approach may negate this apparent performance advantage. Experience with
actual systems is needed to prove the worth of dynamic scheduling.

Multicore Thread Scheduling

The most widely used contemporary OSs, such as Windows and Linux, essentially
treat scheduling in multicore systems in the same fashion as a multiprocessor sys-
tem. Such schedulers tend to focus on keeping processors busy by load balancing so
that threads ready to run are evenly distributed among the processors. However, this
strategy is unlikely to produce the desired performance benefits of the multicore
architecture.

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING 445

Core 0

16 kB L1D
Cache

16 kB L1D
Cache

16 kB L1D
Cache

16 kB L1D
Cache

2 MB
L2 Cache

2 MB
L2 Cache

Core 1

2 8B @ 1.86 GT/s

Core 6 Core 7

8 MB
L3 Cache

DDR3 Memory
Controllers

Hypertransport 3.1

8 2B @ 6.4 GT/s

Figure 10.3 AMD Bulldozer Architecture

As the number of cores per chip increases, a need to minimize access to off-
chip memory takes precedence over a desire to maximize processor utilization. The
traditional, and still principal, means of minimizing off-chip memory access is the
use of caches to take advantage of locality. This approach is complicated by some of
the cache architectures used on multicore chips, specifically when a cache is shared
by some but not all of the cores. A good example is the AMD Bulldozer chip, used
in the Operton FX-8000 system, illustrated in Figure 10.3. In this architecture, each
core has a dedicated L1 cache; each pair of cores share an L2 cache; and all cores
share an L3 cache. Compare this with the Intel Core i7-990X (Figure 1.20), in which
both L1 and L2 caches are dedicated to a single core.

When some but not all cores share a cache, the way in which threads are allo-
cated to cores during scheduling has a significant effect on performance. Let us define
two cores that share the same L2 cache as adjacent, and otherwise nonadjacent. Thus,
cores 0 and 1 in Figure 10.3 are adjacent, but cores 1 and 2 are nonadjacent. Ideally, if
two threads are going to share memory resources, they should be assigned to adjacent
cores to improve the effects of locality, and if they do not share memory resources
they may be assigned to nonadjacent cores to achieve load balance.

There are in fact two different aspects of cache sharing to take into account:
cooperative resource sharing and resource contention. With cooperative resource
sharing, multiple threads access the same set of main memory locations. Examples
are applications that are multithreaded and producer–consumer thread interaction.
In both these cases, data brought into a cache by one thread need to be accessed by
a cooperating thread. For this case, it is desirable to schedule cooperating threads on
adjacent cores.

The other case is when threads, if operating on adjacent cores, compete for
cache memory locations. Whatever technique is used for cache replacement, such
as least-recently-used (LRU), if more of the cache is dynamically allocated to one

446 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

thread, the competing thread necessarily has less cache space available and thus suf-
fers performance degradation. The objective of contention-aware scheduling is to
allocate threads to cores in such a way as to maximize the effectiveness of the shared
cache memory and therefore to minimize the need for off-chip memory accesses.
The design of algorithms for this purpose is an area of ongoing research and a sub-
ject of some complexity. Accordingly, this area is beyond our scope; see [ZHUR12]
for a recent survey.

 10.2 REAL-TIME SCHEDULING

Background

Real-time computing is becoming an increasingly important discipline. The op-
erating system, and in particular the scheduler, is perhaps the most important
component of a real-time system. Examples of current applications of real-time
systems include control of laboratory experiments, process control in industrial
plants, robotics, air traffic control, telecommunications, and military command and
control systems. Next-generation systems will include the autonomous land rover,
controllers of robots with elastic joints, systems found in intelligent manufactur-
ing, the space station, and undersea exploration.

Real-time computing may be defined as that type of computing in which
the correctness of the system depends not only on the logical result of the com-
putation but also on the time at which the results are produced. We can define
a real-time system by defining what is meant by a real-time process, or task.3 In
general, in a real-time system, some of the tasks are real-time tasks, and these
have a certain degree of urgency to them. Such tasks are attempting to control or
react to events that take place in the outside world. Because these events occur in
“real time,” a real-time task must be able to keep up with the events with which it
is concerned. Thus, it is usually possible to associate a deadline with a particular
task, where the deadline specifies either a start time or a completion time. Such a
task may be classified as hard or soft. A hard real-time task is one that must meet
its deadline; otherwise it will cause unacceptable damage or a fatal error to the
system. A soft real-time task has an associated deadline that is desirable but not
mandatory; it still makes sense to schedule and complete the task even if it has
passed its deadline.

Another characteristic of real-time tasks is whether they are periodic or aperi-
odic. An aperiodic task has a deadline by which it must finish or start, or it may have
a constraint on both start and finish time. In the case of a periodic task, the require-
ment may be stated as “once per period T” or “exactly T units apart.”

3As usual, terminology poses a problem, because various words are used in the literature with varying
meanings. It is common for a particular process to operate under real-time constraints of a repetitive
nature. That is, the process lasts for a long time and, during that time, performs some repetitive function
in response to real-time events. Let us, for this section, refer to an individual function as a task. Thus,
the process can be viewed as progressing through a sequence of tasks. At any given time, the process is
engaged in a single task, and it is the process/task that must be scheduled.

10.2 / REAL-TIME SCHEDULING 447

Characteristics of Real-Time Operating Systems

Real-time operating systems can be characterized as having unique requirements in
five general areas [MORG92]:

Determinism
Responsiveness
User control
Reliability
Fail-soft operation

An operating system is deterministic to the extent that it performs operations
at fixed, predetermined times or within predetermined time intervals. When mul-
tiple processes are competing for resources and processor time, no system will be
fully deterministic. In a real-time operating system, process requests for service are
dictated by external events and timings. The extent to which an operating system
can deterministically satisfy requests depends first on the speed with which it can
respond to interrupts and, second, on whether the system has sufficient capacity to
handle all requests within the required time.

One useful measure of the ability of an operating system to function deterministi-
cally is the maximum delay from the arrival of a high-priority device interrupt to when
servicing begins. In non-real-time operating systems, this delay may be in the range of
tens to hundreds of milliseconds, while in real-time operating systems that delay may
have an upper bound of anywhere from a few microseconds to a millisecond.

A related but distinct characteristic is responsiveness. Determinism is con-
cerned with how long an operating system delays before acknowledging an inter-
rupt. Responsiveness is concerned with how long, after acknowledgment, it takes
an operating system to service the interrupt. Aspects of responsiveness include the
following:

 1. The amount of time required to initially handle the interrupt and begin execu-
tion of the interrupt service routine (ISR). If execution of the ISR requires a
process switch, then the delay will be longer than if the ISR can be executed
within the context of the current process.

 2. The amount of time required to perform the ISR. This generally is dependent
on the hardware platform.

 3. The effect of interrupt nesting. If an ISR can be interrupted by the arrival of
another interrupt, then the service will be delayed.

Determinism and responsiveness together make up the response time to external
events. Response time requirements are critical for real-time systems, because such
systems must meet timing requirements imposed by individuals, devices, and data
flows external to the system.

User control is generally much broader in a real-time operating system than
in ordinary operating systems. In a typical non-real-time operating system, the user
either has no control over the scheduling function of the operating system or can
only provide broad guidance, such as grouping users into more than one priority

448 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

class. In a real-time system, however, it is essential to allow the user fine-grained
control over task priority. The user should be able to distinguish between hard and
soft tasks and to specify relative priorities within each class. A real-time system
may also allow the user to specify such characteristics as the use of paging or pro-
cess swapping, what processes must always be resident in main memory, what disk
transfer algorithms are to be used, what rights the processes in various priority
bands have, and so on.

Reliability is typically far more important for real-time systems than non-
real-time systems. A transient failure in a non-real-time system may be solved by
simply rebooting the system. A processor failure in a multiprocessor non-real-time
system may result in a reduced level of service until the failed processor is repaired
or replaced. But a real-time system is responding to and controlling events in real
time. Loss or degradation of performance may have catastrophic consequences,
ranging from financial loss to major equipment damage and even loss of life.

As in other areas, the difference between a real-time and a non-real-time oper-
ating system is one of degree. Even a real-time system must be designed to respond
to various failure modes. Fail-soft operation is a characteristic that refers to the abil-
ity of a system to fail in such a way as to preserve as much capability and data as pos-
sible. For example, a typical traditional UNIX system, when it detects a corruption
of data within the kernel, issues a failure message on the system console, dumps the
memory contents to disk for later failure analysis, and terminates execution of the
system. In contrast, a real-time system will attempt either to correct the problem or
minimize its effects while continuing to run. Typically, the system notifies a user or
user process that it should attempt corrective action and then continues operation
perhaps at a reduced level of service. In the event a shutdown is necessary, an at-
tempt is made to maintain file and data consistency.

An important aspect of fail-soft operation is referred to as stability. A real-
time system is stable if, in cases where it is impossible to meet all task deadlines,
the system will meet the deadlines of its most critical, highest-priority tasks, even if
some less critical task deadlines are not always met.

Although there is a wide variety of real-time OS designs to meet the wide variety
of real-time applications, the following features are common to most real-time OSs:

A stricter use of priorities than in an ordinary OS, with preemptive scheduling
that is designed to meet real-time requirements
Interrupt latency (the amount of time between when a device generates an
interrupt and when that device is serviced) is bounded and relatively short
More precise and predictable timing characteristics than general purpose OSs

The heart of a real-time system is the short-term task scheduler. In designing
such a scheduler, fairness and minimizing average response time are not paramount.
What is important is that all hard real-time tasks complete (or start) by their dead-
line and that as many as possible soft real-time tasks also complete (or start) by
their deadline.

Most contemporary real-time operating systems are unable to deal directly with
deadlines. Instead, they are designed to be as responsive as possible to real-time tasks

10.2 / REAL-TIME SCHEDULING 449

so that, when a deadline approaches, a task can be quickly scheduled. From this point
of view, real-time applications typically require deterministic response times in the
several-millisecond to submillisecond span under a broad set of conditions; leading-
edge applications—in simulators for military aircraft, for example—often have con-
straints in the range of 10–100 μs [ATLA89].

Figure 10.4 illustrates a spectrum of possibilities. In a preemptive scheduler
that uses simple round-robin scheduling, a real-time task would be added to the
ready queue to await its next timeslice, as illustrated in Figure 10.4a. In this case,
the scheduling time will generally be unacceptable for real-time applications.
Alternatively, in a nonpreemptive scheduler, we could use a priority scheduling
mechanism, giving real-time tasks higher priority. In this case, a real-time task
that is ready would be scheduled as soon as the current process blocks or runs to
completion (Figure 10.4b). This could lead to a delay of several seconds if a slow,
low-priority task were executing at a critical time. Again, this approach is not ac-
ceptable. A more promising approach is to combine priorities with clock-based
interrupts. Preemption points occur at regular intervals. When a preemption point
occurs, the currently running task is preempted if a higher-priority task is waiting.
This would include the preemption of tasks that are part of the operating system
kernel. Such a delay may be on the order of several milliseconds (Figure 10.4c).
While this last approach may be adequate for some real-time applications, it will
not suffice for more demanding applications. In those cases, the approach that has
been taken is sometimes referred to as immediate preemption. In this case, the
operating system responds to an interrupt almost immediately, unless the system
is in a critical-code lockout section. Scheduling delays for a real-time task can then
be reduced to 100 μs or less.

Real-Time Scheduling

Real-time scheduling is one of the most active areas of research in computer science.
In this subsection, we provide an overview of the various approaches to real-time
scheduling and look at two popular classes of scheduling algorithms.

In a survey of real-time scheduling algorithms, [RAMA94] observes that the
various scheduling approaches depend on (1) whether a system performs schedulabil-
ity analysis, (2) if it does, whether it is done statically or dynamically, and (3) whether
the result of the analysis itself produces a schedule or plan according to which tasks
are dispatched at run time. Based on these considerations, the authors identify the fol-
lowing classes of algorithms:

Static table-driven approaches: These perform a static analysis of feasible
schedules of dispatching. The result of the analysis is a schedule that deter-
mines, at run time, when a task must begin execution.
Static priority-driven preemptive approaches: Again, a static analysis is per-
formed, but no schedule is drawn up. Rather, the analysis is used to assign
priorities to tasks, so that a traditional priority-driven preemptive scheduler
can be used.
Dynamic planning-based approaches: Feasibility is determined at run time
(dynamically) rather than offline prior to the start of execution (statically).

450 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

Process 1

Request from a
real-time process

(a) Round-robin preemptive scheduler

Clock
tick

Process 2 Process n Real-time
process

Scheduling time

Real-time process added to
run queue to await its next slice

Request from a
real-time process

Request from a
real-time process

Current process

Current process
blocked or completed

(b) Priority-driven nonpreemptive scheduler

Real-time
process

Scheduling time

Real-time process added
to head of run queue

Preemption
point

Request from a
real-time process

Current process

(c) Priority-driven preemptive scheduler on preemption points

Real-time
process

Scheduling time

Wait for next
preemption point

Current process

(d) Immediate preemptive scheduler

Real-time
process

Scheduling time

Real-time process preempts current
process and executes immediately

Figure 10.4 Scheduling of Real-Time Process

10.2 / REAL-TIME SCHEDULING 451

An arriving task is accepted for execution only if it is feasible to meet its time
constraints. One of the results of the feasibility analysis is a schedule or plan
that is used to decide when to dispatch this task.
Dynamic best effort approaches: No feasibility analysis is performed. The sys-
tem tries to meet all deadlines and aborts any started process whose deadline
is missed.

Static table-driven scheduling is applicable to tasks that are periodic. Input
to the analysis consists of the periodic arrival time, execution time, periodic end-
ing deadline, and relative priority of each task. The scheduler attempts to develop
a schedule that enables it to meet the requirements of all periodic tasks. This is a
predictable approach but one that is inflexible, because any change to any task
requirements requires that the schedule be redone. Earliest-deadline-first or other
periodic deadline techniques (discussed subsequently) are typical of this category
of scheduling algorithms.

Static priority-driven preemptive scheduling makes use of the priority-driven
preemptive scheduling mechanism common to most non-real-time multiprogram-
ming systems. In a non-real-time system, a variety of factors might be used to deter-
mine priority. For example, in a time-sharing system, the priority of a process changes
depending on whether it is processor bound or I/O bound. In a real-time system,
priority assignment is related to the time constraints associated with each task. One
example of this approach is the rate monotonic algorithm (discussed subsequently),
which assigns static priorities to tasks based on the length of their periods.

With dynamic planning-based scheduling, after a task arrives, but before its
execution begins, an attempt is made to create a schedule that contains the previ-
ously scheduled tasks as well as the new arrival. If the new arrival can be scheduled
in such a way that its deadlines are satisfied and that no currently scheduled task
misses a deadline, then the schedule is revised to accommodate the new task.

Dynamic best effort scheduling is the approach used by many real-time sys-
tems that are currently commercially available. When a task arrives, the system
assigns a priority based on the characteristics of the task. Some form of deadline
scheduling, such as earliest-deadline scheduling, is typically used. Typically, the tasks
are aperiodic and so no static scheduling analysis is possible. With this type of sched-
uling, until a deadline arrives or until the task completes, we do not know whether a
timing constraint will be met. This is the major disadvantage of this form of schedul-
ing. Its advantage is that it is easy to implement.

Deadline Scheduling

Most contemporary real-time operating systems are designed with the objective of
starting real-time tasks as rapidly as possible, and hence emphasize rapid interrupt
handling and task dispatching. In fact, this is not a particularly useful metric in eval-
uating real-time operating systems. Real-time applications are generally not con-
cerned with sheer speed but rather with completing (or starting) tasks at the most
valuable times, neither too early nor too late, despite dynamic resource demands
and conflicts, processing overloads, and hardware or software faults. It follows that

452 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

priorities provide a crude tool and do not capture the requirement of completion (or
initiation) at the most valuable time.

There have been a number of proposals for more powerful and appropriate
approaches to real-time task scheduling. All of these are based on having additional
information about each task. In its most general form, the following information
about each task might be used:

Ready time: Time at which task becomes ready for execution. In the case of a
repetitive or periodic task, this is actually a sequence of times that is known in
advance. In the case of an aperiodic task, this time may be known in advance,
or the operating system may only be aware when the task is actually ready.
Starting deadline: Time by which a task must begin
Completion deadline: Time by which a task must be completed. The typical
real-time application will either have starting deadlines or completion dead-
lines, but not both.
Processing time: Time required to execute the task to completion. In some
cases, this is supplied. In others, the operating system measures an exponential
average (as defined in Chapter 9). For still other scheduling systems, this infor-
mation is not used.
Resource requirements: Set of resources (other than the processor) required
by the task while it is executing
Priority: Measures relative importance of the task. Hard real-time tasks may
have an “absolute” priority, with the system failing if a deadline is missed. If
the system is to continue to run no matter what, then both hard and soft real-
time tasks may be assigned relative priorities as a guide to the scheduler.
Subtask structure: A task may be decomposed into a mandatory subtask and
an optional subtask. Only the mandatory subtask possesses a hard deadline.

There are several dimensions to the real-time scheduling function when dead-
lines are taken into account: which task to schedule next and what sort of preemption
is allowed. It can be shown, for a given preemption strategy and using either starting
or completion deadlines, that a policy of scheduling the task with the earliest dead-
line minimizes the fraction of tasks that miss their deadlines [BUTT99, HONG89,
PANW88]. This conclusion holds for both single-processor and multiprocessor
configurations.

The other critical design issue is that of preemption. When starting deadlines
are specified, then a nonpreemptive scheduler makes sense. In this case, it would be
the responsibility of the real-time task to block itself after completing the manda-
tory or critical portion of its execution, allowing other real-time starting deadlines to
be satisfied. This fits the pattern of Figure 10.4b. For a system with completion dead-
lines, a preemptive strategy (Figure 10.4c or 10.4d) is most appropriate. For example,
if task X is running and task Y is ready, there may be circumstances in which the
only way to allow both X and Y to meet their completion deadlines is to preempt X,
execute Y to completion, and then resume X to completion.

As an example of scheduling periodic tasks with completion deadlines, con-
sider a system that collects and processes data from two sensors, A and B. The

10.2 / REAL-TIME SCHEDULING 453

deadline for collecting data from sensor A must be met every 20 ms, and that for
B every 50 ms. It takes 10 ms, including operating system overhead, to process
each sample of data from A and 25 ms to process each sample of data from B.
Table 10.3 summarizes the execution profile of the two tasks. Figure 10.5 compares
three scheduling techniques using the execution profile of Table 10.3. The first
row of Figure 10.6 repeats the information in Table 10.3; the remaining three rows
 illustrate three scheduling techniques.

The computer is capable of making a scheduling decision every 10 ms.4
Suppose that, under these circumstances, we attempted to use a priority sched-
uling scheme. The first two timing diagrams in Figure 10.5 show the result. If A
has higher priority, the first instance of task B is given only 20 ms of processing
time, in two 10-ms chunks, by the time its deadline is reached, and thus fails. If B
is given higher priority, then A will miss its first deadline. The final timing dia-
gram shows the use of earliest-deadline scheduling. At time t = 0, both A1 and B1
 arrive. Because A1 has the earliest deadline, it is scheduled first. When A1 com-
pletes, B1 is given the processor. At t = 20, A2 arrives. Because A2 has an earlier
deadline than B1, B1 is interrupted so that A2 can execute to completion. Then
B1 is resumed at t = 30. At t = 40, A3 arrives. However, B1 has an earlier ending
deadline and is allowed to execute to completion at t = 45. A3 is then given the
processor and finishes at t = 55.

In this example, by scheduling to give priority at any preemption point to the
task with the nearest deadline, all system requirements can be met. Because the
tasks are periodic and predictable, a static table-driven scheduling approach is used.

Table 10.3 Execution Profile of Two Periodic Tasks

Process Arrival Time Execution Time Ending Deadline

A(1) 0 10 20

A(2) 20 10 40

A(3) 40 10 60

A(4) 60 10 80

A(5) 80 10 100

B(1) 0 25 50

B(2) 50 25 100

4This need not be on a 10-ms boundary if more than 10 ms has elapsed since the last scheduling decision.

454 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

Now consider a scheme for dealing with aperiodic tasks with starting dead-
lines. The top part of Figure 10.6 shows the arrival times and starting deadlines for
an example consisting of five tasks each of which has an execution time of 20 ms.
Table 10.4 summarizes the execution profile of the five tasks.

A straightforward scheme is to always schedule the ready task with the earliest
deadline and let that task run to completion. When this approach is used in the ex-
ample of Figure 10.6, note that although task B requires immediate service, the ser-
vice is denied. This is the risk in dealing with aperiodic tasks, especially with starting
deadlines. A refinement of the policy will improve performance if deadlines can be
known in advance of the time that a task is ready. This policy, referred to as earliest
deadline with unforced idle times, operates as follows: Always schedule the eligible
task with the earliest deadline and let that task run to completion. An eligible task
may not be ready, and this may result in the processor remaining idle even though
there are ready tasks. Note that in our example the system refrains from scheduling
task A even though that is the only ready task. The result is that, even though the
processor is not used to maximum efficiency, all scheduling requirements are met.
Finally, for comparison, the FCFS policy is shown. In this case, tasks B and E do not
meet their deadlines.

9070402010 30 50 60 80 1000 Time (ms)

B1 B2
A1 A2 A3 A4 A5Arrival times, execution

times, and deadlines

A1
deadline

A2
deadline

A3
deadline

A4
deadline

A5
deadline

B2
deadline

B1
deadline

A3 A4 A5A1 B1 A2 B1 B2 B2 B2

A1 A2 A3 A4 A5, B2B1
(missed)

A1

(missed)

A2 A3 A4

(missed)

A5, B2

B1 B2A2 A3 A5

A1 A2 A3 A4 A5, B2B1

A1 B1 A2 B1 A3 B2 A4 B2 A5

Fixed-priority scheduling;
A has priority

Fixed-priority scheduling;
B has priority

Earliest-deadline scheduling
using completion deadlines

B1

Figure 10.5 Scheduling of Periodic Real-Time Tasks with Completion Deadlines
(Based on Table 10.3)

10.2 / REAL-TIME SCHEDULING 455

Rate Monotonic Scheduling

One of the more promising methods of resolving multitask scheduling conflicts for
periodic tasks is rate monotonic scheduling (RMS) [LIU73, BRIA99, SHA94]. RMS
assigns priorities to tasks on the basis of their periods.

For RMS, the highest-priority task is the one with the shortest period, the second
highest-priority task is the one with the second shortest period, and so on. When more
than one task is available for execution, the one with the shortest period is serviced
first. If we plot the priority of tasks as a function of their rate, the result is a monotoni-
cally increasing function (Figure 10.7), hence the name “rate monotonic scheduling.”

9070402010 30 50 60 80 100 1100 120

B C ADE

B C ADE

B (missed) C ADE

B (missed) C ADE (missed)

A B C D E

A B C D E

A B C D E

A B C D E

A C E D

B C E D A

A C D

Requirements

Arrival times

Starting deadline

Earliest
deadline

Arrival times

Starting deadline

Service

Earliest
deadline

with unforced
idle times

Arrival times

Starting deadline

Service

First-come
first-served

(FCFS)

Arrival times

Starting deadline

Service

Figure 10.6 Scheduling of Aperiodic Real-Time Tasks with Starting Deadlines

Table 10.4 Execution Profile of Five Aperiodic Tasks

Process Arrival Time Execution Time Starting Deadline

A 10 20 110

B 20 20 20

C 40 20 50

D 50 20 90

E 60 20 70

456 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

Figure 10.8 illustrates the relevant parameters for periodic tasks. The task’s
period, T, is the amount of time between the arrival of one instance of the task
and the arrival of the next instance of the task. A task’s rate (in hertz) is simply
the inverse of its period (in seconds). For example, a task with a period of 50 ms
occurs at a rate of 20 Hz. Typically, the end of a task’s period is also the task’s hard
deadline, although some tasks may have earlier deadlines. The execution (or com-
putation) time, C, is the amount of processing time required for each occurrence of
the task. It should be clear that in a uniprocessor system, the execution time must
be no greater than the period (must have C ≤ T). If a periodic task is always run to
completion, that is, if no instance of the task is ever denied service because of insuf-
ficient resources, then the utilization of the processor by this task is U = C/T. For
example, if a task has a period of 80 ms and an execution time of 55 ms, its proces-
sor utilization is 55/80 = 0.6875.

One measure of the effectiveness of a periodic scheduling algorithm is whether
or not it guarantees that all hard deadlines are met. Suppose that we have n tasks,

P
ri

or
it

y

High

Low Rate (Hz)

Highest rate and
highest-priority task

Lowest rate and
lowest-priority task

Figure 10.7 A Task Set with RMS [WARR91]

Processing ProcessingIdleP

Task P execution time C

Cycle 1

Task P period T

Cycle 2

Time

Figure 10.8 Periodic Task Timing Diagram

10.2 / REAL-TIME SCHEDULING 457

each with a fixed period and execution time. Then for it to be possible to meet all
deadlines, the following inequality must hold:

C1

T1
 +

C2

T2
 + g+

Cn

Tn
 … 1 (10.1)

The sum of the processor utilizations of the individual tasks cannot exceed a value
of 1, which corresponds to total utilization of the processor. Equation (10.1) provides
a bound on the number of tasks that a perfect scheduling algorithm can successfully
schedule. For any particular algorithm, the bound may be lower. For RMS, it can be
shown that the following inequality holds:

C1

T1
 +

C2

T2
 + g+

Cn

Tn
 … n121>n - 12 (10.2)

Table 10.5 gives some values for this upper bound. As the number of tasks increases,
the scheduling bound converges to ln 2 ≈ 0.693.

As an example, consider the case of three periodic tasks, where Ui = Ci/Ti:

Task P1: C1 = 20; T1 = 100; U1 = 0.2
Task P2: C2 = 40; T2 = 150; U2 = 0.267
Task P3: C3 = 100; T3 = 350; U3 = 0.286

The total utilization of these three tasks is 0.2 + 0.267 + 0.286 = 0.753. The
upper bound for the schedulability of these three tasks using RMS is

C1

T1
 +

C2

T2
 +

C3

T3
 … n121>3 - 12 = 0.779

Because the total utilization required for the three tasks is less than the upper bound
for RMS (0.753 6 0.779), we know that if RMS is used, all tasks will be successfully
scheduled.

Table 10.5 Value of the RMS Upper Bound

n n121>n - 12
1 1.0

2 0.828

3 0.779

4 0.756

5 0.743

6 0.734

∞ ln 2 ≈ 0.693

458 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

It can also be shown that the upper bound of Equation (10.1) holds for earliest-
deadline scheduling. Thus, it is possible to achieve greater overall processor utilization
and therefore accommodate more periodic tasks with earliest-deadline scheduling.
Nevertheless, RMS has been widely adopted for use in industrial applications. [SHA91]
offers the following explanation:

 1. The performance difference is small in practice. The upper bound of
Equation (10.2) is a conservative one and, in practice, utilization as high as
90% is often achieved.

 2. Most hard real-time systems also have soft real-time components, such as cer-
tain noncritical displays and built-in self tests that can execute at lower priority
levels to absorb the processor time that is not used with RMS scheduling of
hard real-time tasks.

 3. Stability is easier to achieve with RMS. When a system cannot meet all dead-
lines because of overload or transient errors, the deadlines of essential tasks
need to be guaranteed provided that this subset of tasks is schedulable. In a
static priority assignment approach, one only needs to ensure that essential
tasks have relatively high priorities. This can be done in RMS by structuring
essential tasks to have short periods or by modifying the RMS priorities to
account for essential tasks. With earliest-deadline scheduling, a periodic task’s
priority changes from one period to another. This makes it more difficult to
ensure that essential tasks meet their deadlines.

Priority Inversion

Priority inversion is a phenomenon that can occur in any priority-based preemptive
scheduling scheme but is particularly relevant in the context of real-time scheduling.
The best-known instance of priority inversion involved the Mars Pathfinder mission.
This rover robot landed on Mars on July 4, 1997, and began gathering and transmitting
voluminous data back to Earth. But a few days into the mission, the lander software
began experiencing total system resets, each resulting in losses of data. After much
effort by the Jet Propulsion Laboratory (JPL) team that built the Pathfinder, the prob-
lem was traced to priority inversion [JONE97].

In any priority scheduling scheme, the system should always be executing the
task with the highest priority. Priority inversion occurs when circumstances within
the system force a higher-priority task to wait for a lower-priority task. A simple
example of priority inversion occurs if a lower-priority task has locked a resource
(such as a device or a binary semaphore) and a higher-priority task attempts to lock
that same resource. The higher-priority task will be put in a blocked state until the
resource is available. If the lower-priority task soon finishes with the resource and
releases it, the higher-priority task may quickly resume and it is possible that no
real-time constraints are violated.

A more serious condition is referred to as an unbounded priority inversion, in
which the duration of a priority inversion depends not only on the time required to
handle a shared resource but also on the unpredictable actions of other unrelated
tasks. The priority inversion experienced in the Pathfinder software was unbounded
and serves as a good example of the phenomenon. Our discussion follows that of

10.2 / REAL-TIME SCHEDULING 459

[TIME02]. The Pathfinder software included the following three tasks, in decreasing
order of priority:

T1: Periodically checks the health of the spacecraft systems and software
T2: Processes image data
T3: Performs an occasional test on equipment status

After T1 executes, it reinitializes a timer to its maximum value. If this timer
ever expires, it is assumed that the integrity of the lander software has somehow
been compromised. The processor is halted, all devices are reset, the software is com-
pletely reloaded, the spacecraft systems are tested, and the system starts over. This
recovery sequence does not complete until the next day. T1 and T3 share a common
data structure, protected by a binary semaphore s. Figure 10.9a shows the sequence
that caused the priority inversion:

t1: T3 begins executing.
t2: T3 locks semaphore s and enters its critical section.
t3: T1, which has a higher priority than T3, preempts T3 and begins executing.
t4: T1 attempts to enter its critical section but is blocked because the semaphore

is locked by T3; T3 resumes execution in its critical section.
t5: T2, which has a higher priority than T3, preempts T3 and begins executing.
t6: T2 is suspended for some reason unrelated to T1 and T3; T3 resumes.
t7: T3 leaves its critical section and unlocks the semaphore. T1 preempts T3,

locks the semaphore, and enters its critical section.

In this set of circumstances, T1 must wait for both T3 and T2 to complete and fails to
reset the timer before it expires.

In practical systems, two alternative approaches are used to avoid unbounded
priority inversion: priority inheritance protocol and priority ceiling protocol.

The basic idea of priority inheritance is that a lower-priority task inherits the
priority of any higher-priority task pending on a resource they share. This priority
change takes place as soon as the higher-priority task blocks on the resource; it
should end when the resource is released by the lower-priority task. Figure 10.9b
shows that priority inheritance resolves the problem of unbounded priority inver-
sion illustrated in Figure 10.9a. The relevant sequence of events is as follows:

t1: T3 begins executing.
t2: T3 locks semaphore s and enters its critical section.
t3: T1, which has a higher priority than T3, preempts T3 and begins executing.
t4: T1 attempts to enter its critical section but is blocked because the semaphore

is locked by T3. T3 is immediately and temporarily assigned the same priority
as T1. T3 resumes execution in its critical section.

t5: T2 is ready to execute, but because T3 now has a higher priority, T2 is unable
to preempt T3.

460 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

t6: T3 leaves its critical section and unlocks the semaphore: Its priority level is
downgraded to its previous default level. T1 preempts T3, locks the sema-
phore, and enters its critical section.

t7: T1 is suspended for some reason unrelated to T2, and T2 begins executing.

This was the approach taken to solving the Pathfinder problem.
In the priority ceiling approach, a priority is associated with each resource.

The priority assigned to a resource is one level higher than the priority of its

T1

T2

T3

s locked

(a) Unbounded priority inversion

Preempted
by T1

Preempted
by T2

s unlocked

Time

Normal execution Execution in critical section

s locked
Blocked by T3

(attempt to lock s)

t1 t2 t3 t4 t5 t6 t7 t8

T1

T2

T3

s locked
by T3

(b) Use of priority inheritance

Preempted
by T1

s unlocked

s unlocked

s locked
by T1

Blocked by T3
(attempt to lock s)

t1 t2 t3 t4 t5 t6 t7

Figure 10.9 Priority Inversion

10.3 / LINUX SCHEDULING 461

highest-priority user. The scheduler then dynamically assigns this priority to any
task that accesses the resource. Once the task finishes with the resource, its priority
returns to normal.

 10.3 LINUX SCHEDULING

For Linux 2.4 and earlier, Linux provided a real-time scheduling capability coupled
with a scheduler for non-real-time processes that made use of the traditional UNIX
scheduling algorithm described in Section 9.3. Linux 2.6 includes essentially the
same real-time scheduling capability as previous releases and a substantially revised
scheduler for non-real-time processes. We examine these two areas in turn.

Real-Time Scheduling

The three Linux scheduling classes are as follows:

SCHED_FIFO: First-in-first-out real-time threads
SCHED_RR: Round-robin real-time threads
SCHED_OTHER: Other, non-real-time threads

Within each class, multiple priorities may be used, with priorities in the real-
time classes higher than the priorities for the SCHED_OTHER class. The default values
are as follows: Real-time priority classes range from 0 to 99 inclusively, and SCHED_
OTHER classes range from 100 to 139. A lower number equals a higher priority.

For FIFO threads, the following rules apply:

 1. The system will not interrupt an executing FIFO thread except in the follow-
ing cases:

a. Another FIFO thread of higher priority becomes ready.
b. The executing FIFO thread becomes blocked waiting for an event, such as I/O.
c. The executing FIFO thread voluntarily gives up the processor following a

call to the primitive sched_yield.

 2. When an executing FIFO thread is interrupted, it is placed in the queue associ-
ated with its priority.

 3. When a FIFO thread becomes ready and if that thread has a higher prior-
ity than the currently executing thread, then the currently executing thread
is preempted and the highest-priority ready FIFO thread is executed. If more
than one thread has that highest priority, the thread that has been waiting the
longest is chosen.

The SCHED_RR policy is similar to the SCHED_FIFO policy, except for the
addition of a timeslice associated with each thread. When a SCHED_RR thread has
executed for its timeslice, it is suspended and a real-time thread of equal or higher
priority is selected for running.

Figure 10.10 is an example that illustrates the distinction between FIFO and RR
scheduling. Assume a process has four threads with three relative priorities assigned

462 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

as shown in Figure 10.10a. Assume that all waiting threads are ready to execute when
the current thread waits or terminates and that no higher-priority thread is awakened
while a thread is executing. Figure 10.10b shows a flow in which all of the threads
are in the SCHED_FIFO class. Thread D executes until it waits or terminates. Next,
although threads B and C have the same priority, thread B starts because it has been
waiting longer than thread C. Thread B executes until it waits or terminates, then
thread C executes until it waits or terminates. Finally, thread A executes.

Figure 10.10c shows a sample flow if all of the threads are in the SCHED_RR
class. Thread D executes until it waits or terminates. Next, threads B and C are time
sliced, because they both have the same priority. Finally, thread A executes.

The final scheduling class is SCHED_OTHER. A thread in this class can only
execute if there are no real-time threads ready to execute.

Non-Real-Time Scheduling

The Linux 2.4 scheduler for the SCHED_OTHER class did not scale well with increas-
ing number of processors and increasing number of processes. The drawbacks of this
scheduler include the following:

The Linux 2.4 scheduler uses a single runqueue for all processors in a symmet-
ric multiprocessing system (SMP). This means a task can be scheduled on any
processor which can be good for load balancing but bad for memory caches.
For example, suppose a task executed on CPU-1, and its data were in that pro-
cessor’s cache. If the task got rescheduled to CPU-2, its data would need to be
invalidated in CPU-1 and brought into CPU-2.
The Linux 2.4 scheduler uses a single runqueue lock. Thus, in an SMP system,
the act of choosing a task to execute locks out any other processor from ma-
nipulating the runqueues. The result is idle processors awaiting release of the
runqueue lock and decreased efficiency.
Preemption is not possible in the Linux 2.4 scheduler; this means that a
lower-priority task can execute while a higher-priority task waited for it to
complete.

Maximum

(a) Relative thread priorities (b) Flow with FIFO scheduling

D

D B C A
MiddleC

MiddleB

MinimumA

(c) Flow with RR scheduling

D B C B C A

Figure 10.10 Example of Linux Real-Time Scheduling

10.3 / LINUX SCHEDULING 463

To correct these problems, Linux 2.6 uses a completely new priority scheduler
known as the O(1) scheduler.5 The scheduler is designed so that the time to select
the appropriate process and assign it to a processor is constant, regardless of the
load on the system or the number of processors.

The kernel maintains two scheduling data structure for each processor in the
system, of the following form (Figure 10.11):

struct prio_array {
int nr_active; /* number of tasks in this array*/
unsigned long bitmap[BITMAP_SIZE]; /* priority bitmap */
struct list_head queue[MAX_PRIO]; /* priority queues */

A separate queue is maintained for each priority level. The total number of
queues in the structure is MAX_PRIO, which has a default value of 140. The structure
also includes a bitmap array of sufficient size to provide one bit per priority level.
Thus, with 140 priority levels and 32-bit words, BITMAP_SIZE has a value of 5. This
creates a bitmap of 160 bits, of which 20 bits are ignored. The bitmap indicates which

5The term O(1) is an example of the “big-O” notation, used for characterizing the time complexity of
algorithms. Appendix I explains this notation.

140-bit priority array for active queues

140-bit priority array for expired queues

Bit 0
(priority 0)

Highest-priority
nonempty

active queue

Bit 139
(priority 139)

Active queues:
140 queues by priority;
each queue contains ready
tasks for that priority

Expired queues:
140 queues by priority;
each queue contains ready
tasks with expired timeslices
for that priority

Figure 10.11 Linux Scheduling Data Structures for Each Processor

464 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

queues are not empty. Finally, nr_active indicates the total number of tasks pres-
ent on all queues. Two structures are maintained: an active queues structure and an
expired queues structure.

Initially, both bitmaps are set to all zeroes and all queues are empty. As a pro-
cess becomes ready, it is assigned to the appropriate priority queue in the active
queues structure and is assigned the appropriate timeslice. If a task is preempted
before it completes its timeslice, it is returned to an active queue. When a task com-
pletes its timeslice, it goes into the appropriate queue in the expired queues structure
and is assigned a new timeslice. All scheduling is done from among tasks in the active
queues structure. When the active queues structure is empty, a simple pointer assign-
ment results in a switch of the active and expired queues, and scheduling continues.

Scheduling is simple and efficient. On a given processor, the scheduler picks
the highest-priority nonempty queue. If multiple tasks are in that queue, the tasks
are scheduled in round-robin fashion.

Linux also includes a mechanism for moving tasks from the queue lists of one
processor to that of another. Periodically, the scheduler checks to see if there is a sub-
stantial imbalance among the number of tasks assigned to each processor. To balance
the load, the schedule can transfer some tasks. The highest-priority active tasks are se-
lected for transfer, because it is more important to distribute high-priority tasks fairly.

CALCULATING PRIORITIES AND TIMESLICES Each non-real-time task is assigned
an initial priority in the range of 100–139, with a default of 120. This is the task’s
static priority and is specified by the user. As the task executes, a dynamic priority is
calculated as a function of the task’s static priority and its execution behavior. The
Linux scheduler is designed to favor I/O-bound tasks over processor-bound tasks.
This preference tends to provide good interactive response. The technique used by
Linux to determine the dynamic priority is to keep a running tab on how much time
a process sleeps (waiting for an event) versus how much time the process runs. In
essence, a task that spends most of its time sleeping is given a higher priority.

Timeslices are assigned in the range of 10–200 ms. In general, higher-priority
tasks are assigned larger timeslices.

RELATIONSHIP TO REAL-TIME TASKS Real-time tasks are handled in a
different manner from non-real-time tasks in the priority queues. The following
considerations apply:

 1. All real-time tasks have only a static priority; no dynamic priority changes are
made.

 2. SCHED_FIFO tasks do not have assigned timeslices. Such tasks are scheduled in
FIFO discipline. If a SHED_FIFO task is blocked, it returns to the same priority
queue in the active queue list when it becomes unblocked.

 3. Although SCHED_RR tasks do have assigned timeslices, they also are never
moved to the expired queue list. When a SCHED_RR task exhausts its timeslice,
it is returned to its priority queue with the same timeslice value. Timeslice values
are never changed.

The effect of these rules is that the switch between the active queue list and
the expired queue list only happens when there are no ready real-time tasks waiting
to execute.

10.4 / UNIX SVR4 SCHEDULING 465

 10.4 UNIX SVR4 SCHEDULING

The scheduling algorithm used in UNIX SVR4 is a complete overhaul of the sched-
uling algorithm used in earlier UNIX systems (described in Section 9.3). The new
algorithm is designed to give highest preference to real-time processes, next-highest
preference to kernel-mode processes, and lowest preference to other user-mode
processes, referred to as time-shared processes.6

The two major modifications implemented in SVR4 are as follows:

 1. The addition of a preemptable static priority scheduler and the introduction of
a set of 160 priority levels divided into three priority classes.

 2. The insertion of preemption points. Because the basic kernel is not preemp-
tive, it can only be split into processing steps that must run to completion
without interruption. In between the processing steps, safe places known as
preemption points have been identified where the kernel can safely interrupt
processing and schedule a new process. A safe place is defined as a region
of code where all kernel data structures are either updated and consistent or
locked via a semaphore.

Figure 10.12 illustrates the 160 priority levels defined in SVR4. Each process
is defined to belong to one of three priority classes and is assigned a priority level
within that class. The classes are as follows:

Real time (159-100): Processes at these priority levels are guaranteed to be se-
lected to run before any kernel or time-sharing process. In addition, real-time
processes can make use of preemption points to preempt kernel processes and
user processes.

Priority
class

Real time

Kernel

Time shared

Global
value

Scheduling
sequence

159

100

First

Last

99

60
59

0

Figure 10.12 SVR4 Dispatch Queues

6Time-shared processes are the processes that correspond to users in a traditional time-sharing system.

466 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

Kernel (99-60): Processes at these priority levels are guaranteed to be selected
to run before any time-sharing process but must defer to real-time processes.
Time-shared (59-0): The lowest-priority processes, intended for user applica-
tions other than real-time applications.

Figure 10.13 indicates how scheduling is implemented in SVR4. A dispatch
queue is associated with each priority level, and processes at a given priority level are
executed in round-robin fashion. A bit-map vector, dqactmap, contains one bit for
each priority level; the bit is set to one for any priority level with a nonempty queue.
Whenever a running process leaves the Running state, due to a block, timeslice ex-
piration, or preemption, the dispatcher checks dqactmap and dispatches a ready
process from the highest-priority nonempty queue. In addition, whenever a defined
preemption point is reached, the kernel checks a flag called kprunrun. If set, this
indicates that at least one real-time process is in the Ready state, and the kernel pre-
empts the current process if it is of lower priority than the highest-priority real-time
ready process.

Within the time-sharing class, the priority of a process is variable. The sched-
uler reduces the priority of a process each time it uses up a time quantum, and it
raises its priority if it blocks on an event or resource. The time quantum allocated
to a time-sharing process depends on its priority, ranging from 100 ms for priority 0
to 10 ms for priority 59. Each real-time process has a fixed priority and a fixed-time
quantum.

 10.5 UNIX FREEBSD SCHEDULING

The UNIX FreeBSD scheduler is designed to provide a more efficient operation
than previous UNIX schedulers under heavy load and when used on a multiproces-
sor or multicore platform. The scheduler is quite complex and here we present an
overview of the most significant design features; for more detail, see [MCKU05] and
[ROBE03].

Priority Classes

The underlying priority mechanism in the FreeBSD 5.1 scheduler is similar to that
of UNIX SVR4. For FreeBSD, five priority classes are defined (Table 10.6); the first
two classes are for kernel-mode thread and the remaining classes for user-mode

0 0111

159 012n

dqactmap

dispq

PP
P
P

P
P
P
P

Figure 10.13 SVR4 Priority Classes

10.5 / UNIX FREEBSD SCHEDULING 467

threads. Kernel threads execute code that is compiled into the kernel’s load image
and operate with the kernel’s privileged execution code.

The highest-priority threads are referred to as bottom-half kernel. Threads in
this class run in the kernel are scheduled based on interrupt priorities. These pri-
orities are set when the corresponding devices are configured and do not change.
Top-half kernel threads also run in the kernel and execute various kernel functions.
These priorities are set based on predefined priorities and never change.

The next lower priority class is referred to as real-time user. A thread with a
real-time priority is not subject to priority degradation. That is, a real-time thread
maintains the priority it began with and does not drop to a lower priority as a result
of using resources. Next comes the time-sharing user priority class. For threads in this
class, priority is periodically recalculated based on a number of parameters, includ-
ing the amount of processor time used, the amount of memory resources held, and
other resource consumption parameters. The lowest range of priorities is referred to
as the idle user class. This class is intended for applications that will only consume
processor time when no other threads are ready to execute.

SMP and Multicore Support

The latest version of the FreeBSD scheduler, introduced with FreeBSD 5.0, was de-
signed to provide effective scheduling for an SMP or multicore system. The new
scheduler meets three design goals:

Address the need for processor affinity in SMP and multicore systems. The
term processor affinity refers to a scheduler that only migrates a thread (moves
thread from one processor to another) when necessary to avoid having an idle
processor.
Provide better support for multithreading on multicore systems.
Improve the performance of the scheduling algorithm, so that it is no longer a
function of the number of threads in the system.

In this subsection, we look at three key features of the new scheduler: queue
structure, interactivity scoring, and thread migration.

Table 10.6 FreeBSD Thread Scheduling Classes

Priority Class Thread Type Description

0–63 Bottom-half kernel Scheduled by interrupts. Can block to await a resource

64–127 Top-half kernel Runs until blocked or done. Can block to await a
resource

128–159 Real-time user Allowed to run until blocked or until a higher-priority
thread becomes available. Preemptive scheduling

160–223 Time-sharing user Adjusts priorities based on processor usage

224–255 Idle user Only run when there are no time sharing or real-time
threads to run

Note: Lower number corresponds to higher priority.

468 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

QUEUE STRUCTURE The previous version of the FreeBSD schedule used a single
global scheduling queue for all processors that it traverses once per second to
recalculate their priorities. The use of a single list for all threads means that the
performance of the scheduler is dependent on the number of tasks in the system, and
as the number of tasks grows, more processor time must be spent in the scheduler
maintaining the list.

The new scheduler performs scheduling independently for each processor. For
each processor, three queues are maintained. Each of the queues has the structure
shown in Figure 10.14 for SVR4. Two runqueues implement the kernel, real-time,
and time-sharing scheduling classes (priorities 0 through 223). The third queue is
only for the idle class (priorities 224 through 255).

The two runqueues are designated current and next. Every thread that is
granted a timeslice (place in the Ready state) is placed in either the current queue
or the next queue, as explained subsequently, at the appropriate priority for that

Highest (31)

Lowest (16)

Highest (15)

Lowest (0)

Real-time
priority
classes

Variable
priority
classes

Figure 10.14 Windows Thread Dispatching Priorities

10.5 / UNIX FREEBSD SCHEDULING 469

thread. The scheduler for a processor selects threads from the current queue in pri-
ority order until the current queue is empty. When the current queue is empty, the
scheduler swaps the current and next queue and begins to schedule threads from the
new current queue. The use of two runqueues guarantees that each thread will be
granted processor time at least once every two queue switches regardless of priority,
avoiding starvation.

Several rules determine the assignment of a thread to either the current queue
or the next queue:

 1. Kernel and real-time threads are always inserted onto the current queue.
 2. A time-sharing thread is assigned to the current queue if it is interactive (ex-

plained in the next subsection) or to the next queue otherwise. Inserting inter-
active threads onto the current queue results in a low interactive response time
for such threads, compared to other time-sharing threads that do not exhibit a
high degree of interactivity.

INTERACTIVITY SCORING A thread is considered to be interactive if the ratio of
its voluntary sleep time versus its run time is below a certain threshold. Interactive
threads typically have high sleep times as they wait for user input. These sleep
intervals are followed by bursts of processor activity as the thread processes the
user’s request.

The interactivity threshold is defined in the scheduler code and is not configu-
rable. The scheduler uses two equations to compute the interactivity score of a thread.
First, we define a scaling factor:

Scaling factor =
Maximum interactivity score

2

For threads whose sleep time exceeds their run time, the following equation
is used:

Interactivity score = Scaling factora
run

sleep
 b

When a thread’s run time exceeds its sleep time, the following equation is used
instead:

Interactivity score = Scaling factora1 +
sleep
run

 b
The result is that threads whose sleep time exceeds their run time score in the

lower half of the range of interactivity scores, and threads whose run time exceeds
their sleep time score in the upper half of the range.

THREAD MIGRATION In general, it is desirable to schedule a Ready thread onto the
last processor that it ran on; this is called processor affinity. The alternative is to allow
a thread to migrate to another processor for its next execution time slice. Processor
affinity is significant because of local caches dedicated to a single processor. When

470 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

a thread is run, it may still have data in the cache of its last processor. Changing to
another processor means that the necessary data must be loaded into caches in the
new processor and cache lines from the preceding processor must be invalidated.
On the other hand, processor migration may allow a better load balancing and may
prevent idle periods on some processors while other processors have more work
than they can handle in a timely fashion.

The FreeBSD scheduler supports two mechanisms for thread migration to
balance load: pull and push. With the pull mechanism, an idle processor steals a
thread from a nonidle processor. When a processor has no work to do, it sets a bit
in a global bit-mask indicating that it is idle. When an active processor is about to
add work to its own run queue, it first checks for such idle bits and if a set idle bit
is found, passes the thread to the idle processor. It is primarily useful when there
is a light or sporadic load, or in situations where processes are starting and exiting
very frequently.

The pull mechanism is effective in preventing the waste of a processor due
to idleness. But it is not effective, or indeed relevant, in a situation in which every
processor has work to do but the load has developed in an uneven fashion. With
the push mechanism, a periodic scheduler task evaluates the current load situation
and evens it out. Twice per second, this task picks the most-loaded and least-loaded
processors in the system and equalizes their run queues. Push migration ensures
fairness among the runnable threads.

 10.6 WINDOWS SCHEDULING

Windows is designed to be as responsive as possible to the needs of a single user in a
highly interactive environment or in the role of a server. Windows implements a pre-
emptive scheduler with a flexible system of priority levels that includes round-robin
scheduling within each level and, for some levels, dynamic priority variation on the
basis of their current thread activity. Threads are the unit of scheduling in Windows
rather than processes.

Process and Thread Priorities

Priorities in Windows are organized into two bands, or classes: real time and vari-
able. Each of these bands consists of 16 priority levels. Threads requiring immediate
attention are in the real-time class, which includes functions such as communications
and real-time tasks.

Overall, because Windows makes use of a priority-driven preemptive sched-
uler, threads with real-time priorities have precedence over other threads. When a
thread becomes ready whose priority is higher than the currently executing thread,
the lower-priority thread is preempted and the processor is given to the higher-
priority thread.

Priorities are handled somewhat differently in the two classes (Figure 10.14).
In the real-time priority class, all threads have a fixed priority that never changes.
All of the active threads at a given priority level are in a round-robin queue. In the
variable priority class, a thread’s priority begins an initial priority value and then

10.6 / WINDOWS SCHEDULING 471

may be temporarily boosted (raised) during the thread’s lifetime. There is a FIFO
queue at each priority level; a thread will change queues among the variable pri-
ority classes as its own priority changes. However, a thread at priority level 15 or
below is never boosted to level 16 or any other level in the real-time class.

The initial priority of a thread in the variable priority class is determined by
two quantities: process base priority and thread base priority. The process base
priority is an attribute of the process object and can take on any value from 1
through 15 (priority 0 is reserved for the Executive’s per-processor idle threads).
Each thread object associated with a process object has a thread base priority
attribute that indicates the thread’s base priority relative to that of the process.
The thread’s base priority can be equal to that of its process or within two levels
above or below that of the process. So, for example, if a process has a base prior-
ity of 4 and one of its threads has a base priority of −1, then the initial priority of
that thread is 3.

Once a thread in the variable priority class has been created, its actual priority,
referred to as the thread’s current priority, may fluctuate within given boundaries.
The current priority may never fall below the thread’s base priority and it may never
exceed 15. Figure 10.15 gives an example. The process object has a base priority at-
tribute of 4. Each thread object associated with this process object must have an
initial priority of between 2 and 6. Suppose the base priority for thread is 4. Then
the current priority for that thread may fluctuate in the range from 4 through 15
depending on what boosts it has been given. If a thread is interrupted to wait on an
I/O event, the kernel boosts its priority. If a boosted thread is interrupted because
it has used up its current time quantum, the kernel lowers its priority. Thus, proces-
sor-bound threads tend toward lower priorities and I/O-bound threads tend toward
higher priorities. In the case of I/O-bound threads, the kernel boosts the priority
more for interactive waits (e.g., wait on keyboard or mouse) than for other types

Base priority Normal
Below normal

Lowest

Above normal
Highest

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Process
priority

Thread’s base
priority

Thread’s dynamic
priority

Figure 10.15 Example of Windows Priority Relationship

472 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

of I/O (e.g., disk I/O). Thus, interactive threads tend to have the highest priorities
within the variable priority class.

Multiprocessor Scheduling

Windows supports multiprocessor and multicore hardware configurations. The
threads of any process, including those of the executive, can run on any processor.
In the absence of affinity restrictions, explained in the next paragraph, the kernel
dispatcher assigns a ready thread to the next available processor. This assures that
no processor is idle or is executing a lower-priority thread when a higher-priority
thread is ready. Multiple threads from the same process can be executing simultane-
ously on multiple processors.

As a default, the kernel dispatcher uses the policy of soft affinity in assign-
ing threads to processors: The dispatcher tries to assign a ready thread to the same
processor it last ran on. This helps reuse data still in that processor’s memory caches
from the previous execution of the thread. It is possible for an application to restrict
its thread execution only to certain processors (hard affinity).

When Windows is run on a single processor, the highest-priority thread is al-
ways active unless it is waiting on an event. If there is more than one thread that
has the same highest priority, then the processor is shared, round robin, among all
the threads at that priority level. In a multiprocessor system with N processors, the
kernel tries to give the N processors to the N highest-priority threads that are ready
to run. The remaining, lower priority, threads must wait until the other threads block
or have their priority decay. Lower-priority threads may also have their priority
boosted to 15 for a very short time if they are being starved, solely to correct in-
stances of priority inversion.

The foregoing scheduling discipline is affected by the processor affinity attri-
bute of a thread. If a thread is ready to execute but the only available processors
are not in its processor affinity set, then that thread is forced to wait, and the kernel
schedules the next available thread.

 10.7 SUMMARY

With a tightly coupled multiprocessor, multiple processors have access to the same
main memory. In this configuration, the scheduling structure is somewhat more
complex. For example, a given process may be assigned to the same processor for
its entire life or dispatched to any processor each time it enters the Running state.
Performance studies suggest that the differences among various scheduling algo-
rithms are less significant in a multiprocessor system.

A real-time process or task is one that is executed in connection with some
process or function or set of events external to the computer system and that must
meet one or more deadlines to interact effectively and correctly with the external en-
vironment. A real-time operating system is one that is capable of managing real-time
processes. In this context, the traditional criteria for a scheduling algorithm do not
apply. Rather, the key factor is the meeting of deadlines. Algorithms that rely heavily
on preemption and on reacting to relative deadlines are appropriate in this context.

10.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 473

KRIS94 Krishna, C., and Lee, Y., eds. “Special Issue on Real-Time Systems.”
Proceedings of the IEEE, January 1994.

LEE93 Lee, Y., and Krishna, C., eds. Readings in Real-Time Systems. Los Alamitos, CA:
IEEE Computer Society Press, 1993.

LIND04 Lindsley, R. “What’s New in the 2.6 Scheduler.” Linux Journal, March 2004.
LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-

Wesley, 2010.
SHA90 Sha, L.; Rajkumar, R.; and Lehoczky, J. “Priority Inheritance Protocols: An

Approach to Real-Time Synchronization.” IEEE Transactions on Computers,
September 1990.

STAN93 Stankovic, J., and Ramamritham, K., eds. Advances in Real-Time Systems. Los
Alamitos, CA: IEEE Computer Society Press, 1993.

TILB91 Tilborg, A., and Koob, G., eds. Foundations of Real-Time Computing: Scheduling
and Resource Management. Boston: Kluwer Academic Publishers, 1991.

WEND89 Wendorf, J.; Wendorf, R.; and Tokuda, H. “Scheduling Operating System
Processing on Small-Scale Microprocessors.” Proceedings, 22nd Annual Hawaii
International Conference on System Science, January 1989.

ZEAD97 Zeadally, S. “An Evaluation of the Real-Time Performance of SVR4.0 and
SVR4.2.” Operating Systems Review, January 1977.

ZHUR12 Zhuravlev, S., et al. “Survey of Scheduling Techniques for Addressing Shared
Resources in Multicore Processors.” ACM Computing Surveys, November 2012.

 10.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

aperiodic task
deadline scheduling
deterministic operating system
fail-soft operation
gang scheduling
granularity

hard real-time task
load sharing
periodic task
priority inversion
rate monotonic scheduling
real-time operating system

real-time scheduling
responsiveness
soft real-time task
thread scheduling
unbounded priority

inversion

 10.8 RECOMMENDED READING

[WEND89] is an interesting discussion of approaches to multiprocessor scheduling.
[ZHUR12] provides a comprehensive survey of issues related to multicore thread
scheduling. The following collections of papers all contain important articles on real-
time operating systems and scheduling: [KRIS94], [STAN93], [LEE93], and [TILB91].
[SHA90] provides a good explanation of priority inversion, priority inheritance, and
priority ceiling. [ZEAD97] analyzes the performance of the SVR4 real-time sched-
uler. [LIND04] provides an overview of the Linux 2.6 scheduler; [LOVE10] contains
a more detailed discussion.

474 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

Review Questions

 10.1. List and briefly define five different categories of synchronization granularity.
 10.2. List and briefly define four techniques for thread scheduling.
 10.3. List and briefly define three versions of load sharing.
 10.4. What is the difference between hard and soft real-time tasks?
 10.5. What is the difference between periodic and aperiodic real-time tasks?
 10.6. List and briefly define five general areas of requirements for a real-time operating

system.
 10.7. List and briefly define four classes of real-time scheduling algorithms.
 10.8. What items of information about a task might be useful in real-time scheduling?

Problems

 10.1. Consider a set of three periodic tasks with the execution profiles of Table 10.7.
Develop scheduling diagrams similar to those of Figure 10.5 for this set of tasks.

 10.2. Consider a set of five aperiodic tasks with the execution profiles of Table 10.8.
Develop scheduling diagrams similar to those of Figure 10.6 for this set of tasks.

 10.3. Least laxity first (LLF) is a real-time scheduling algorithm for periodic tasks. Slack
time, or laxity, is the amount of time between when a task would complete if it started
now and its next deadline. This is the size of the available scheduling window. Laxity
can be expressed as

Laxity = 1deadline time2 - 1current time2 - 1processor time needed2
LLF selects the task with the minimum laxity to execute next. If two or more tasks
have the same minimum laxity value, they are serviced on a FCFS basis.

Table 10.7 Execution Profile for Problem 10.1

Process Arrival Time Execution Time Ending Deadline

A(1) 0 10 20

A(2) 20 10 40

B(1) 0 10 50

B(2) 50 10 100

C(1) 0 15 50

C(2) 50 15 100

10.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 475

a. Suppose a task currently has a laxity of t. By how long may the scheduler delay
starting this task and still meet its deadline?

b. Suppose a task currently has a laxity of 0. What does this mean?
c. What does it mean if a task has negative laxity?
d. Consider a set of three periodic tasks with the execution profiles of Table 10.9a.

Develop scheduling diagrams similar to those of Figure 10.5 for this set of tasks
that compare rate monotonic, earliest-deadline first, and LLF. Assume preemption
may occur at 5-ms intervals. Comment on the results.

 10.4. Repeat Problem 10.3d for the execution profiles of Table 10.9b. Comment on the
results.

 10.5. Maximum urgency first (MUF) is a real-time scheduling algorithm for periodic tasks.
Each task is assigned an urgency that is defined as a combination of two fixed priori-
ties and one dynamic priority. One of the fixed priorities, the criticality, has precedence
over the dynamic priority. Meanwhile, the dynamic priority has precedence over the
other fixed priority, called the user priority. The dynamic priority is inversely propor-
tional to the laxity of a task. MUF can be explained as follows. First, tasks are ordered
from shortest to longest period. Define the critical task set as the first N tasks such that
worst-case processor utilization does not exceed 100%. Among critical set tasks that
are ready, the scheduler selects the task with the least laxity. If no critical set tasks are
ready, the schedule chooses among the noncritical tasks the one with the least laxity.
Ties are broken through an optional user priority and then by FCFS. Repeat Problem
10.3d, adding MUF to the diagrams. Assume that user-defined priorities are A highest,
B next, C lowest. Comment on the results.

 10.6. Repeat Problem 10.4, adding MUF to the diagrams. Comment on the results.

Table 10.8 Execution Profile for Problem 10.2

Process Arrival Time Execution Time Starting Deadline

A 10 20 100

B 20 20 30

C 40 20 60

D 50 20 80

E 60 20 70

Table 10.9 Execution Profiles for Problems 10.3 through 10.6

(a) Light load

Task Period Execution Time

A 6 2

B 8 2

C 12 3

(b) Heavy load

Task Period Execution Time

A 6 2

B 8 5

C 12 3

476 CHAPTER 10 / MULTIPROCESSOR, MULTICORE, AND REAL-TIME SCHEDULING

 10.7. This problem demonstrates that although Equation (10.2) for rate monotonic
scheduling is a sufficient condition for successful scheduling, it is not a necessary
condition (i.e., sometimes successful scheduling is possible even if Equation (10.2)
is not satisfied).
a. Consider a task set with the following independent periodic tasks:

Task P1:C1 = 20; T1 = 100
Task P2:C2 = 30; T2 = 145

Can these tasks be successfully scheduled using rate monotonic scheduling?
b. Now add the following task to the set:

Task P3:C3 = 68; T3 = 150
Is Equation (10.2) satisfied?

c. Suppose that the first instance of the preceding three tasks arrives at time .
Assume that the first deadline for each task is the following:

D1 = 100; D2 = 145; D3 = 150

Using rate monotonic scheduling, will all three deadlines be met? What about dead-
lines for future repetitions of each task?

 10.8. Draw a diagram similar to that of Figure 10.9b that shows the sequence events for this
same example using priority ceiling.

477

PART 5

CHAPTER

I/O MANAGEMENT AND DISK
SCHEDULING

 11.1 I/O Devices
 11.2 Organization of the I/O Function

The Evolution of the I/O Function
Direct Memory Access

 11.3 Operating System Design Issues
Design Objectives
Logical Structure of the I/O Function

 11.4 I/O Buffering
Single Buffer
Double Buffer
Circular Buffer
The Utility of Buffering

 11.5 Disk Scheduling
Disk Performance Parameters
Disk Scheduling Policies

 11.6 RAID
RAID Level 0
RAID Level 1
RAID Level 2
RAID Level 3
RAID Level 4
RAID Level 5
RAID Level 6

 11.7 Disk Cache
Design Considerations
Performance Considerations

 11.8 UNIX SVR4 I/O
Buffer Cache
Character Queue
Unbuffered I/O
UNIX Devices

 11.9 Linux I/O
Disk Scheduling
Linux Page Cache

 11.10 Windows I/O
Basic I/O Facilities
Asynchronous and Synchronous I/O
Software RAID
Volume Shadow Copies
Volume Encryption

 11.11 Summary
 11.12 Recommended Reading and Animations
 11.13 Key Terms, Review Questions, and Problems

Input/Output and Files

Animation

478 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

Perhaps the messiest aspect of operating system design is input/output. Because
there is such a wide variety of devices and applications of those devices, it is difficult
to develop a general, consistent solution.

We begin with a brief discussion of I/O devices and the organization of the I/O
function. These topics, which generally come within the scope of computer architec-
ture, set the stage for an examination of I/O from the point of view of the OS.

The next section examines operating system design issues, including design ob-
jectives, and the way in which the I/O function can be structured. Then I/O buffering
is examined; one of the basic I/O services provided by the operating system is a buff-
ering function, which improves overall performance.

The next sections of the chapter are devoted to magnetic disk I/O. In contempo-
rary systems, this form of I/O is the most important and is key to the performance as
perceived by the user. We begin by developing a model of disk I/O performance and
then examine several techniques that can be used to enhance performance.

Appendix J summarizes characteristics of secondary storage devices, including
magnetic disk and optical memory.

 11.1 I/O DEVICES

As was mentioned in Chapter 1, external devices that engage in I/O with computer
systems can be roughly grouped into three categories:

Human readable: Suitable for communicating with the computer user.
Examples include printers and terminals, the latter consisting of video display,
keyboard, and perhaps other devices such as a mouse.
Machine readable: Suitable for communicating with electronic equipment.
Examples are disk drives, USB keys, sensors, controllers, and actuators.
Communication: Suitable for communicating with remote devices. Examples
are digital line drivers and modems.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Summarize key categories of I/O devices on computers.
Discuss the organization of the I/O function.
Explain some of the key issues in the design of OS support for I/O.
Analyze the performance implications of various I/O buffering alternatives.
Understand the performance issues involved in magnetic disk access.
Explain the concept of RAID and describe the various levels.
Understand the performance implications of disk cache.
Describe the I/O mechanisms in UNIX, Linux, and Windows 7.

11.1 / I/O DEVICES 479

There are great differences across classes and even substantial differences
within each class. Among the key differences are the following:

Data rate: There may be differences of several orders of magnitude between
the data transfer rates. Figure 11.1 gives some examples.
Application: The use to which a device is put has an influence on the soft-
ware and policies in the OS and supporting utilities. For example, a disk used
for files requires the support of file management software. A disk used as a
backing store for pages in a virtual memory scheme depends on the use of
virtual memory hardware and software. Furthermore, these applications have
an impact on disk scheduling algorithms (discussed later in this chapter). As
another example, a terminal may be used by an ordinary user or a system ad-
ministrator. These uses imply different privilege levels and perhaps different
priorities in the OS.
Complexity of control: A printer requires a relatively simple control interface.
A disk is much more complex. The effect of these differences on the OS is
filtered to some extent by the complexity of the I/O module that controls the
device, as discussed in the next section.
Unit of transfer: Data may be transferred as a stream of bytes or characters
(e.g., terminal I/O) or in larger blocks (e.g., disk I/O).
Data representation: Different data encoding schemes are used by different
devices, including differences in character code and parity conventions.

Keyboard

101 102 103 104 105

Data Rate (bps)
106 107 108 109

Mouse

Modem

Ethernet

Hard disk

Graphics display

Gigabit ethernet

Floppy disk

Laser printer

Scanner

Optical disk

Figure 11.1 Typical I/O Device Data Rates

480 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

Error conditions: The nature of errors, the way in which they are reported,
their consequences, and the available range of responses differ widely from
one device to another.

This diversity makes a uniform and consistent approach to I/O, both from the
point of view of the operating system and from the point of view of user processes,
difficult to achieve.

 11.2 ORGANIZATION OF THE I/O FUNCTION

Appendix C summarizes three techniques for performing I/O:

Programmed I/O: The processor issues an I/O command, on behalf of a pro-
cess, to an I/O module; that process then busy waits for the operation to be
completed before proceeding.
Interrupt-driven I/O: The processor issues an I/O command on behalf of a pro-
cess. There are then two possibilities. If the I/O instruction from the process
is nonblocking, then the processor continues to execute instructions from the
process that issued the I/O command. If the I/O instruction is blocking, then
the next instruction that the processor executes is from the OS, which will put
the current process in a blocked state and schedule another process.
Direct memory access (DMA): A DMA module controls the exchange of data
between main memory and an I/O module. The processor sends a request for
the transfer of a block of data to the DMA module and is interrupted only
after the entire block has been transferred.

Table 11.1 indicates the relationship among these three techniques. In most
computer systems, DMA is the dominant form of transfer that must be supported by
the operating system.

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complex-
ity and sophistication of individual components. Nowhere is this more evident than
in the I/O function. The evolutionary steps can be summarized as follows:

 1. The processor directly controls a peripheral device. This is seen in simple micro-
processor-controlled devices.

 2. A controller or I/O module is added. The processor uses programmed I/O
without interrupts. With this step, the processor becomes somewhat divorced
from the specific details of external device interfaces.

Table 11.1 I/O Techniques

No Interrupts Use of Interrupts

I/O-to-Memory Transfer through
Processor

Programmed I/O Interrupt-driven I/O

Direct I/O-to-Memory Transfer Direct memory access (DMA)

11.2 / ORGANIZATION OF THE I/O FUNCTION 481

 3. The same configuration as step 2 is used, but now interrupts are employed. The
processor need not spend time waiting for an I/O operation to be performed,
thus increasing efficiency.

 4. The I/O module is given direct control of memory via DMA. It can now move
a block of data to or from memory without involving the processor, except at
the beginning and end of the transfer.

 5. The I/O module is enhanced to become a separate processor, with a specialized
instruction set tailored for I/O. The central processing unit (CPU) directs the
I/O processor to execute an I/O program in main memory. The I/O processor
fetches and executes these instructions without processor intervention. This al-
lows the processor to specify a sequence of I/O activities and to be interrupted
only when the entire sequence has been performed.

 6. The I/O module has a local memory of its own and is, in fact, a computer in its
own right. With this architecture, a large set of I/O devices can be controlled,
with minimal processor involvement. A common use for such an architecture
has been to control communications with interactive terminals. The I/O pro-
cessor takes care of most of the tasks involved in controlling the terminals.

As one proceeds along this evolutionary path, more and more of the I/O func-
tion is performed without processor involvement. The central processor is increas-
ingly relieved of I/O-related tasks, improving performance. With the last two steps (5
and 6), a major change occurs with the introduction of the concept of an I/O module
capable of executing a program.

A note about terminology: For all of the modules described in steps 4 through
6, the term direct memory access is appropriate, because all of these types involve
direct control of main memory by the I/O module. Also, the I/O module in step 5 is
often referred to as an I/O channel, and that in step 6 as an I/O processor; however,
each term is, on occasion, applied to both situations. In the latter part of this section,
we will use the term I/O channel to refer to both types of I/O modules.

Direct Memory Access

Figure 11.2 indicates, in general terms, the DMA logic. The DMA unit is capable of
mimicking the processor and, indeed, of taking over control of the system bus just
like a processor. It needs to do this to transfer data to and from memory over the
system bus.

The DMA technique works as follows. When the processor wishes to read or
write a block of data, it issues a command to the DMA module by sending to the
DMA module the following information:

Whether a read or write is requested, using the read or write control line be-
tween the processor and the DMA module
The address of the I/O device involved, communicated on the data lines
The starting location in memory to read from or write to, communicated on
the data lines and stored by the DMA module in its address register
The number of words to be read or written, again communicated via the data
lines and stored in the data count register

482 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module. The DMA module transfers the entire block of data, one
word at a time, directly to or from memory, without going through the processor.
When the transfer is complete, the DMA module sends an interrupt signal to the
processor. Thus, the processor is involved only at the beginning and end of the trans-
fer (Figure C.4c).

The DMA mechanism can be configured in a variety of ways. Some possibili-
ties are shown in Figure 11.3. In the first example, all modules share the same system
bus. The DMA module, acting as a surrogate processor, uses programmed I/O to
exchange data between memory and an I/O module through the DMA module. This
configuration, while it may be inexpensive, is clearly inefficient: As with processor-
controlled programmed I/O, each transfer of a word consumes two bus cycles (trans-
fer request followed by transfer).

The number of required bus cycles can be cut substantially by integrating the
DMA and I/O functions. As Figure 11.3b indicates, this means that there is a path
between the DMA module and one or more I/O modules that does not include
the system bus. The DMA logic may actually be a part of an I/O module, or it may
be a separate module that controls one or more I/O modules. This concept can be
taken one step further by connecting I/O modules to the DMA module using an I/O
bus (Figure 11.3c). This reduces the number of I/O interfaces in the DMA module
to one and provides for an easily expandable configuration. In all of these cases
(Figure 11.3b and 11.3c), the system bus that the DMA module shares with the pro-
cessor and main memory is used by the DMA module only to exchange data with
memory and to exchange control signals with the processor. The exchange of data
between the DMA and I/O modules takes place off the system bus.

Address
register

Control
logic

Data
register

Data
count

Data lines

Address lines

Request to DMA
Acknowledge from DMA

 Interrupt
Read
Write

Figure 11.2 Typical DMA Block Diagram

11.3 / OPERATING SYSTEM DESIGN ISSUES 483

 11.3 OPERATING SYSTEM DESIGN ISSUES

Design Objectives

Two objectives are paramount in designing the I/O facility: efficiency and generality.
Efficiency is important because I/O operations often form a bottleneck in a comput-
ing system. Looking again at Figure 11.1, we see that most I/O devices are extremely
slow compared with main memory and the processor. One way to tackle this problem
is multiprogramming, which, as we have seen, allows some processes to be waiting
on I/O operations while another process is executing. However, even with the vast
size of main memory in today’s machines, it will still often be the case that I/O is not
keeping up with the activities of the processor. Swapping is used to bring in addi-
tional ready processes to keep the processor busy, but this in itself is an I/O operation.
Thus, a major effort in I/O design has been schemes for improving the efficiency of
the I/O. The area that has received the most attention, because of its importance, is
disk I/O, and much of this chapter will be devoted to a study of disk I/O efficiency.

Processor DMA

(a) Single-bus, detached DMA

(b) Single-bus, integrated DMA-I/O

(c) I/O bus

I/O bus

System bus

I/O I/O Memory

Processor DMA Memory

I/O I/O I/O

Processor DMA DMA

I/O

I/O I/O

Memory

Figure 11.3 Alternative DMA Configurations

484 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

The other major objective is generality. In the interests of simplicity and free-
dom from error, it is desirable to handle all devices in a uniform manner. This applies
both to the way in which processes view I/O devices and to the way in which the OS
manages I/O devices and operations. Because of the diversity of device character-
istics, it is difficult in practice to achieve true generality. What can be done is to use
a hierarchical, modular approach to the design of the I/O function. This approach
hides most of the details of device I/O in lower-level routines so that user processes
and upper levels of the OS see devices in terms of general functions, such as read,
write, open, close, lock, and unlock. We turn now to a discussion of this approach.

Logical Structure of the I/O Function

In Chapter 2, in the discussion of system structure, we emphasized the hierarchical na-
ture of modern operating systems. The hierarchical philosophy is that the functions of
the OS should be separated according to their complexity, their characteristic time scale,
and their level of abstraction. Applying this philosophy specifically to the I/O facility
leads to the type of organization suggested by Figure 11.4. The details of the organiza-
tion will depend on the type of device and the application. The three most important
logical structures are presented in the figure. Of course, a particular operating system
may not conform exactly to these structures. However, the general principles are valid,
and most operating systems approach I/O in approximately this way.

Let us consider the simplest case first, that of a local peripheral device that
communicates in a simple fashion, such as a stream of bytes or records (Figure 11.4a).
The following layers are involved:

Logical I/O: The logical I/O module deals with the device as a logical resource
and is not concerned with the details of actually controlling the device. The logi-
cal I/O module is concerned with managing general I/O functions on behalf of
user processes, allowing them to deal with the device in terms of a device identi-
fier and simple commands such as open, close, read, and write.
Device I/O: The requested operations and data (buffered characters, records, etc.)
are converted into appropriate sequences of I/O instructions, channel commands,
and controller orders. Buffering techniques may be used to improve utilization.
Scheduling and control: The actual queueing and scheduling of I/O operations
 occurs at this layer, as well as the control of the operations. Thus, interrupts are
handled at this layer and I/O status is collected and reported. This is the layer
of software that actually interacts with the I/O module and hence the device
hardware.

For a communications device, the I/O structure (Figure 11.4b) looks much the
same as that just described. The principal difference is that the logical I/O module is
replaced by a communications architecture, which may itself consist of a number of
layers. An example is TCP/IP, which is discussed in Chapter 17.

Figure 11.4c shows a representative structure for managing I/O on a secondary
storage device that supports a file system. The three layers not previously discussed
are as follows:

Directory management: At this layer, symbolic file names are converted to
identifiers that either reference the file directly or indirectly through a file

11.3 / OPERATING SYSTEM DESIGN ISSUES 485

descriptor or index table. This layer is also concerned with user operations that
affect the directory of files, such as add, delete, and reorganize.
File system: This layer deals with the logical structure of files and with the
operations that can be specified by users, such as open, close, read, and write.
Access rights are also managed at this layer.
Physical organization: Just as virtual memory addresses must be converted
into physical main memory addresses, taking into account the segmentation
and paging structure, logical references to files and records must be converted
to physical secondary storage addresses, taking into account the physical track
and sector structure of the secondary storage device. Allocation of secondary
storage space and main storage buffers is generally treated at this layer as well.

Because of the importance of the file system, we will spend some time, in this
 chapter and the next, looking at its various components. The discussion in this chapter
focuses on the lower three layers, while the upper two layers are examined in Chapter 12.

User
processes

Device
I/O

Scheduling
& control

(b) Communications port

Hardware

User
processes

Logical
I/O

Device
I/O

Scheduling
& control

(a) Local peripheral device

Hardware

User
processes

Directory
management

File system

Physical
organization

Device
I/O

Scheduling
& control

(c) File system

Hardware

Communication
architecture

Figure 11.4 A Model of I/O Organization

486 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 11.4 I/O BUFFERING

Suppose that a user process wishes to read blocks of data from a disk one at a time,
with each block having a length of 512 bytes. The data are to be read into a data
area within the address space of the user process at virtual location 1000 to 1511.
The simplest way would be to execute an I/O command (something like Read_
Block[1000, disk]) to the disk unit and then wait for the data to become avail-
able. The waiting could either be busy waiting (continuously test the device status)
or, more practically, process suspension on an interrupt.

There are two problems with this approach. First, the program is hung up wait-
ing for the relatively slow I/O to complete. The second problem is that this approach
to I/O interferes with swapping decisions by the OS. Virtual locations 1000 to 1511
must remain in main memory during the course of the block transfer. Otherwise, some
of the data may be lost. If paging is being used, at least the page containing the target
locations must be locked into main memory. Thus, although portions of the process
may be paged out to disk, it is impossible to swap the process out completely, even if
this is desired by the operating system. Notice also that there is a risk of single-process
deadlock. If a process issues an I/O command, is suspended awaiting the result, and
then is swapped out prior to the beginning of the operation, the process is blocked
waiting on the I/O event, and the I/O operation is blocked waiting for the process to
be swapped in. To avoid this deadlock, the user memory involved in the I/O operation
must be locked in main memory immediately before the I/O request is issued, even
though the I/O operation is queued and may not be executed for some time.

The same considerations apply to an output operation. If a block is being
transferred from a user process area directly to an I/O module, then the process is
blocked during the transfer and the process may not be swapped out.

To avoid these overheads and inefficiencies, it is sometimes convenient to per-
form input transfers in advance of requests being made and to perform output trans-
fers some time after the request is made. This technique is known as buffering. In
this section, we look at some of the buffering schemes that are supported by operat-
ing systems to improve the performance of the system.

In discussing the various approaches to buffering, it is sometimes important
to make a distinction between two types of I/O devices: block oriented and stream
oriented. A block-oriented device stores information in blocks that are usually of
fixed size, and transfers are made one block at a time. Generally, it is possible to
reference data by its block number. Disks and USB keys are examples of block-
oriented devices. A stream-oriented device transfers data in and out as a stream of
bytes, with no block structure. Terminals, printers, communications ports, mouse and
other pointing devices, and most other devices that are not secondary storage are
stream oriented.

Single Buffer

The simplest type of support that the OS can provide is single buffering (Figure 11.5b).
When a user process issues an I/O request, the OS assigns a buffer in the system por-
tion of main memory to the operation.

11.4 / I/O BUFFERING 487

For block-oriented devices, the single buffering scheme can be described as fol-
lows: Input transfers are made to the system buffer. When the transfer is complete,
the process moves the block into user space and immediately requests another block.
This is called reading ahead, or anticipated input; it is done in the expectation that the
block will eventually be needed. For many types of computation, this is a reasonable
assumption most of the time because data are usually accessed sequentially. Only at
the end of a sequence of processing will a block be read in unnecessarily.

This approach will generally provide a speedup compared to the lack of sys-
tem buffering. The user process can be processing one block of data while the next
block is being read in. The OS is able to swap the process out because the input
operation is taking place in system memory rather than user process memory. This
technique does, however, complicate the logic in the operating system. The OS must
keep track of the assignment of system buffers to user processes. The swapping logic
is also affected: If the I/O operation involves the same disk that is used for swapping,
it hardly makes sense to queue disk writes to the same device for swapping the pro-
cess out. This attempt to swap the process and release main memory will itself not
begin until after the I/O operation finishes, at which time swapping the process to
disk may no longer be appropriate.

Operating system

I/O device
In

(a) No buffering

User process

Operating system

I/O device
In Move

(b) Single buffering

User process

Operating system

I/O device
In Move

(c) Double buffering

User process

Operating system

I/O device
In Move

(d) Circular buffering

User process

Figure 11.5 I/O Buffering Schemes (Input)

488 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

Similar considerations apply to block-oriented output. When data are being
transmitted to a device, they are first copied from the user space into the system buf-
fer, from which they will ultimately be written. The requesting process is now free to
continue or to be swapped as necessary.

[KNUT97] suggests a crude but informative performance comparison between
single buffering and no buffering. Suppose that T is the time required to input one
block and that C is the computation time that intervenes between input requests.
Without buffering, the execution time per block is essentially T + C. With a single
buffer, the time is max [C, T] + M, where M is the time required to move the data
from the system buffer to user memory. In most cases, execution time per block is
substantially less with a single buffer compared to no buffer.

For stream-oriented I/O, the single buffering scheme can be used in a line-
at-a-time fashion or a byte-at-a-time fashion. Line-at-a-time operation is appropri-
ate for scroll-mode terminals (sometimes called dumb terminals). With this form
of terminal, user input is one line at a time, with a carriage return signaling the end
of a line, and output to the terminal is similarly one line at a time. A line printer is
another example of such a device. Byte-at-a-time operation is used on forms-mode
terminals, when each keystroke is significant, and for many other peripherals, such
as sensors and controllers.

In the case of line-at-a-time I/O, the buffer can be used to hold a single line.
The user process is suspended during input, awaiting the arrival of the entire line.
For output, the user process can place a line of output in the buffer and continue
processing. It need not be suspended unless it has a second line of output to send
before the buffer is emptied from the first output operation. In the case of byte-at-a-
time I/O, the interaction between the OS and the user process follows the producer/
consumer model discussed in Chapter 5.

Double Buffer

An improvement over single buffering can be had by assigning two system buffers
to the operation (Figure 11.5c). A process now transfers data to (or from) one buffer
while the operating system empties (or fills) the other. This technique is known as
double buffering or buffer swapping.

For block-oriented transfer, we can roughly estimate the execution time as
max [C, T]. It is therefore possible to keep the block-oriented device going at full
speed if C ≤ T. On the other hand, if C > T, double buffering ensures that the pro-
cess will not have to wait on I/O. In either case, an improvement over single buffer-
ing is achieved. Again, this improvement comes at the cost of increased complexity.

For stream-oriented input, we again are faced with the two alternative modes
of operation. For line-at-a-time I/O, the user process need not be suspended for
input or output, unless the process runs ahead of the double buffers. For byte-at-a-
time operation, the double buffer offers no particular advantage over a single buffer
of twice the length. In both cases, the producer/consumer model is followed.

Circular Buffer

A double-buffer scheme should smooth out the flow of data between an I/O device
and a process. If the performance of a particular process is the focus of our concern,

11.5 / DISK SCHEDULING 489

then we would like for the I/O operation to be able to keep up with the process.
Double buffering may be inadequate if the process performs rapid bursts of I/O. In
this case, the problem can often be alleviated by using more than two buffers.

When more than two buffers are used, the collection of buffers is itself referred
to as a circular buffer (Figure 11.5d), with each individual buffer being one unit in the
circular buffer. This is simply the bounded-buffer producer/consumer model studied
in Chapter 5.

The Utility of Buffering

Buffering is a technique that smoothes out peaks in I/O demand. However, no
amount of buffering will allow an I/O device to keep pace with a process indefinitely
when the average demand of the process is greater than the I/O device can service.
Even with multiple buffers, all of the buffers will eventually fill up and the process
will have to wait after processing each chunk of data. However, in a multiprogram-
ming environment, when there is a variety of I/O activity and a variety of process
activity to service, buffering is one tool that can increase the efficiency of the OS and
the performance of individual processes.

 11.5 DISK SCHEDULING

Over the last 40 years, the increase in the speed of processors and main memory has
far outstripped that for disk access, with processor and main memory speeds increas-
ing by about two orders of magnitude compared to one order of magnitude for disk.
The result is that disks are currently at least four orders of magnitude slower than
main memory. This gap is expected to continue into the foreseeable future. Thus,
the performance of disk storage subsystem is of vital concern, and much research
has gone into schemes for improving that performance. In this section, we highlight
some of the key issues and look at the most important approaches. Because the per-
formance of the disk system is tied closely to file system design issues, the discussion
continues in Chapter 12.

Disk Performance Parameters

The actual details of disk I/O operation depend on the computer system, the op-
erating system, and the nature of the I/O channel and disk controller hardware. A
general timing diagram of disk I/O transfer is shown in Figure 11.6.

When the disk drive is operating, the disk is rotating at constant speed. To read
or write, the head must be positioned at the desired track and at the beginning of

Wait for
device

Wait for
channel

Seek Rotational
delay

Data
transfer

Device busy

Figure 11.6 Timing of a Disk I/O Transfer

490 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

the desired sector on that track.1 Track selection involves moving the head in a mov-
able-head system or electronically selecting one head on a fixed-head system. On a
movable-head system, the time it takes to position the head at the track is known
as seek time. In either case, once the track is selected, the disk controller waits until
the appropriate sector rotates to line up with the head. The time it takes for the
beginning of the sector to reach the head is known as rotational delay, or rotational
latency. The sum of the seek time, if any, and the rotational delay equals the access
time, which is the time it takes to get into position to read or write. Once the head is
in position, the read or write operation is then performed as the sector moves under
the head; this is the data transfer portion of the operation; the time required for the
transfer is the transfer time.

In addition to the access time and transfer time, there are several queueing
delays normally associated with a disk I/O operation. When a process issues an I/O
request, it must first wait in a queue for the device to be available. At that time, the
device is assigned to the process. If the device shares a single I/O channel or a set
of I/O channels with other disk drives, then there may be an additional wait for the
channel to be available. At that point, the seek is performed to begin disk access.

In some high-end systems for servers, a technique known as rotational posi-
tional sensing (RPS) is used. This works as follows: When the seek command has
been issued, the channel is released to handle other I/O operations. When the seek is
completed, the device determines when the data will rotate under the head. As that
sector approaches the head, the device tries to reestablish the communication path
back to the host. If either the control unit or the channel is busy with another I/O,
then the reconnection attempt fails and the device must rotate one whole revolution
before it can attempt to reconnect, which is called an RPS miss. This is an extra delay
element that must be added to the time line of Figure 11.6.

SEEK TIME Seek time is the time required to move the disk arm to the required
track. It turns out that this is a difficult quantity to pin down. The seek time consists
of two key components: the initial startup time and the time taken to traverse the
tracks that have to be crossed once the access arm is up to speed. Unfortunately, the
traversal time is not a linear function of the number of tracks but includes a settling
time (time after positioning the head over the target track until track identification
is confirmed).

Much improvement comes from smaller and lighter disk components. Some
years ago, a typical disk was 14 inches (36 cm) in diameter, whereas the most com-
mon size today is 3.5 inches (8.9 cm), reducing the distance that the arm has to
travel. A typical average seek time on contemporary hard disks is under 10 ms.

ROTATIONAL DELAY Rotational delay is the time required for the addressed
area of the disk to rotate into a position where it is accessible by the read/write
head. Disks rotate at speeds ranging from 3,600 rpm (for handheld devices such as
digital cameras) up to, as of this writing, 15,000 rpm; at this latter speed, there is one
revolution per 4 ms. Thus, on the average, the rotational delay will be 2 ms.

1See Appendix J for a discussion of disk organization and formatting.

11.5 / DISK SCHEDULING 491

TRANSFER TIME The transfer time to or from the disk depends on the rotation
speed of the disk in the following fashion:

T =
b

rN
where

T = transfer time
b = number of bytes to be transferred
N = number of bytes on a track
r = rotation speed, in revolutions per second

Thus, the total average access time can be expressed as

Ta = Ts +
1
2r

 +
b

rN

where Ts is the average seek time.

A TIMING COMPARISON With the foregoing parameters defined, let us look at
two different I/O operations that illustrate the danger of relying on average values.
Consider a disk with an advertised average seek time of 4 ms, rotation speed of
7,500 rpm, and 512-byte sectors with 500 sectors per track. Suppose that we wish to
read a file consisting of 2,500 sectors for a total of 1.28 Mbytes. We would like to
estimate the total time for the transfer.

First, let us assume that the file is stored as compactly as possible on the disk.
That is, the file occupies all of the sectors on 5 adjacent tracks (5 tracks * 500 sectors/
track = 2,500 sectors). This is known as sequential organization. The time to read the
first track is as follows:

Average seek 4 ms
Rotational delay 4 ms
Read 500 sectors 8 ms

16 ms

Suppose that the remaining tracks can now be read with essentially no seek
time. That is, the I/O operation can keep up with the flow from the disk. Then, at
most, we need to deal with rotational delay for each succeeding track. Thus, each
successive track is read in 4 + 8 = 12 12 ms. To read the entire file,

Total time = 16 + 14 * 122 = 64 ms = 0.064 seconds

Now let us calculate the time required to read the same data using random
access rather than sequential access; that is, accesses to the sectors are distributed
randomly over the disk. For each sector, we have:

Average seek 4 ms
Rotational delay 4 ms
Read 1 sector 0.016 ms

8.016 ms

Total time = 2,500 * 8.016 = 20,040 ms = 20.04 seconds

492 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

It is clear that the order in which sectors are read from the disk has a tremen-
dous effect on I/O performance. In the case of file access in which multiple sectors
are read or written, we have some control over the way in which sectors of data are
deployed, and we shall have something to say on this subject in the next chapter.
However, even in the case of a file access, in a multiprogramming environment, there
will be I/O requests competing for the same disk. Thus, it is worthwhile to examine
ways in which the performance of disk I/O can be improved over that achieved with
purely random access to the disk.

Disk Scheduling Policies

In the example just described, the reason for the difference in performance can be
traced to seek time. If sector access requests involve selection of tracks at random,
then the performance of the disk I/O system will be as poor as possible. To improve
matters, we need to reduce the average time spent on seeks.

Consider the typical situation in a multiprogramming environment, in which
the OS maintains a queue of requests for each I/O device. So, for a single disk, there
will be a number of I/O requests (reads and writes) from various processes in the
queue. If we selected items from the queue in random order, then we can expect that
the tracks to be visited will occur randomly, giving poor performance. This random
scheduling is useful as a benchmark against which to evaluate other techniques.

Figure 11.7 compares the performance of various scheduling algorithms for
an example sequence of I/O requests. The vertical axis corresponds to the tracks
on the disk. The horizontal axis corresponds to time or, equivalently, the number
of tracks traversed. For this figure, we assume that the disk head is initially lo-
cated at track 100. In this example, we assume a disk with 200 tracks and that the
disk request queue has random requests in it. The requested tracks, in the order
received by the disk scheduler, are 55, 58, 39, 18, 90, 160, 150, 38, 184. Table 11.2a
tabulates the results.

FIRST IN FIRST OUT The simplest form of scheduling is first-in-first-out (FIFO)
scheduling, which processes items from the queue in sequential order. This strategy
has the advantage of being fair, because every request is honored and the requests
are honored in the order received. Figure 11.7a illustrates the disk arm movement
with FIFO. This graph is generated directly from the data in Table 11.2a. As can be
seen, the disk accesses are in the same order as the requests were originally received.

With FIFO, if there are only a few processes that require access and if many
of the requests are to clustered file sectors, then we can hope for good performance.
However, this technique will often approximate random scheduling in performance,
if there are many processes competing for the disk. Thus, it may be profitable to
consider a more sophisticated scheduling policy. A number of these are listed in
Table 11.3 and will now be considered.

PRIORITY With a system based on priority (PRI), the control of the scheduling is
outside the control of disk management software. Such an approach is not intended
to optimize disk utilization but to meet other objectives within the OS. Often
short batch jobs and interactive jobs are given higher priority than longer jobs that

11.5 / DISK SCHEDULING 493

199

175

150

125

100

75

Tr
ac

k
nu

m
be

r
Tr

ac
k

nu
m

be
r

Tr
ac

k
nu

m
be

r
Tr

ac
k

nu
m

be
r

50

25
0

(a) FIFO
Time

Time

Time

Time

199

175

150

125

100

75
50

25

0

(b) SSTF

199

175

150
125

100

75

50

25

0

0

(c) SCAN

199
175

150

125

100

75

50

25

(d) C-SCAN

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.2)

494 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

require longer computation. This allows a lot of short jobs to be flushed through the
system quickly and may provide good interactive response time. However, longer
jobs may have to wait excessively long times. Furthermore, such a policy could lead
to countermeasures on the part of users, who split their jobs into smaller pieces to
beat the system. This type of policy tends to be poor for database systems.

Table 11.2 Comparison of Disk Scheduling Algorithms

(a) FIFO (starting
at track 100)

(b) SSTF (starting
at track 100)

(c) SCAN (starting
at track 100, in the

direction of increasing
track number)

(d) C-SCAN (starting
at track 100, in the

direction of increasing
track number)

Next track
accessed

Number
of tracks
traversed

Next track
accessed

Number
of tracks
traversed

Next track
accessed

Number
of tracks
traversed

Next track
accessed

Number
of tracks
traversed

 55 45 90 10 150 50 150 50

 58 3 58 32 160 10 160 10

 39 19 55 3 184 24 184 24

 18 21 39 16 90 94 18 166

 90 72 38 1 58 32 38 20

160 70 18 20 55 3 39 1

150 10 150 132 39 16 55 16

 38 112 160 10 38 1 58 3

184 146 184 24 18 20 90 32

Average
seek

length

55.3 Average
seek

length

27.5 Average
seek

length

27.8 Average
seek

length

35.8

Table 11.3 Disk Scheduling Algorithms

Name Description Remarks

Selection according to requestor

Random Random scheduling For analysis and simulation

FIFO First in first out Fairest of them all

PRI Priority by process Control outside of disk queue management

LIFO Last in first out Maximize locality and resource utilization

Selection according to requested item

SSTF Shortest-service-time first High utilization, small queues

SCAN Back and forth over disk Better service distribution

C-SCAN One way with fast return Lower service variability

N-step-SCAN SCAN of N records at a time Service guarantee

FSCAN N-step-SCAN with N = queue size
at beginning of SCAN cycle

Load sensitive

11.5 / DISK SCHEDULING 495

LAST IN FIRST OUT Surprisingly, a policy of always taking the most recent request
has some merit. In transaction-processing systems, giving the device to the most recent
user should result in little or no arm movement for moving through a sequential file.
Taking advantage of this locality improves throughput and reduces queue lengths.
As long as a job can actively use the file system, it is processed as fast as possible.
However, if the disk is kept busy because of a large workload, there is the distinct
possibility of starvation. Once a job has entered an I/O request in the queue and
fallen back from the head of the line, the job can never regain the head of the line
unless the queue in front of it empties.

FIFO, priority, and LIFO (last-in-first-out) scheduling are based solely on at-
tributes of the queue or the requester. If the current track position is known to the
scheduler, then scheduling based on the requested item can be employed. We examine
these policies next.

SHORTEST SERVICE TIME FIRST The shortest-service-time-first (SSTF) policy is
to select the disk I/O request that requires the least movement of the disk arm
from its current position. Thus, we always choose to incur the minimum seek time.
Of course, always choosing the minimum seek time does not guarantee that the
average seek time over a number of arm movements will be minimum. However,
this should provide better performance than FIFO. Because the arm can move in
two directions, a random tie-breaking algorithm may be used to resolve cases of
equal distances.

Figure 11.7b and Table 11.2b show the performance of SSTF on the same ex-
ample as was used for FIFO. The first track accessed is 90, because this is the closest
requested track to the starting position. The next track accessed is 58 because this is
the closest of the remaining requested tracks to the current position of 90. Subsequent
tracks are selected accordingly.

SCAN With the exception of FIFO, all of the policies described so far can leave
some request unfulfilled until the entire queue is emptied. That is, there may always
be new requests arriving that will be chosen before an existing request. A simple
alternative that prevents this sort of starvation is the SCAN algorithm, also known
as the elevator algorithm because it operates much the way an elevator does.

With SCAN, the arm is required to move in one direction only, satisfying all
outstanding requests en route, until it reaches the last track in that direction or until
there are no more requests in that direction. This latter refinement is sometimes
referred to as the LOOK policy. The service direction is then reversed and the scan
proceeds in the opposite direction, again picking up all requests in order.

Figure 11.7c and Table 11.2c illustrate the SCAN policy. Assuming that the initial
direction is of increasing track number, then the first track selected is 150, since this is
the closest track to the starting track of 100 in the increasing direction.

As can be seen, the SCAN policy behaves almost identically with the SSTF
policy. Indeed, if we had assumed that the arm was moving in the direction of lower
track numbers at the beginning of the example, then the scheduling pattern would
have been identical for SSTF and SCAN. However, this is a static example in which
no new items are added to the queue. Even when the queue is dynamically changing,
SCAN will be similar to SSTF unless the request pattern is unusual.

496 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

Note that the SCAN policy is biased against the area most recently traversed.
Thus it does not exploit locality as well as SSTF.

It is not difficult to see that the SCAN policy favors jobs whose requests are for
tracks nearest to both innermost and outermost tracks and favors the latest-arriving
jobs. The first problem can be avoided via the C-SCAN policy, while the second prob-
lem is addressed by the N-step-SCAN policy.

C-SCAN The C-SCAN (circular SCAN) policy restricts scanning to one direction
only. Thus, when the last track has been visited in one direction, the arm is returned
to the opposite end of the disk and the scan begins again. This reduces the maximum
delay experienced by new requests. With SCAN, if the expected time for a scan from
inner track to outer track is t, then the expected service interval for sectors at the
periphery is 2t. With C-SCAN, the interval is on the order of t + smax, where smax is
the maximum seek time.

Figure 11.7d and Table 11.2d illustrate C-SCAN behavior. In this case the first
three requested tracks encountered are 150, 160, and 184. Then the scan begins starting
at the lowest track number, and the next requested track encountered is 18.

N-STEP-SCAN AND FSCAN With SSTF, SCAN, and C-SCAN, it is possible that
the arm may not move for a considerable period of time. For example, if one or a few
processes have high access rates to one track, they can monopolize the entire device
by repeated requests to that track. High-density multisurface disks are more likely
to be affected by this characteristic than lower-density disks and/or disks with only
one or two surfaces. To avoid this “arm stickiness,” the disk request queue can be
segmented, with one segment at a time being processed completely. Two examples
of this approach are N-step-SCAN and FSCAN.

The N-step-SCAN policy segments the disk request queue into subqueues of
length N. Subqueues are processed one at a time, using SCAN. While a queue is
being processed, new requests must be added to some other queue. If fewer than N
requests are available at the end of a scan, then all of them are processed with the
next scan. With large values of N, the performance of N-step-SCAN approaches that
of SCAN; with a value of N = 1, the FIFO policy is adopted.

FSCAN is a policy that uses two subqueues. When a scan begins, all of the
requests are in one of the queues, with the other empty. During the scan, all new
requests are put into the other queue. Thus, service of new requests is deferred until
all of the old requests have been processed.

 11.6 RAID

As discussed earlier, the rate in improvement in secondary storage performance has
been considerably less than the rate for processors and main memory. This mismatch
has made the disk storage system perhaps the main focus of concern in improving
overall computer system performance.

As in other areas of computer performance, disk storage designers recognize
that if one component can only be pushed so far, additional gains in performance are
to be had by using multiple parallel components. In the case of disk storage, this leads

11.6 / RAID 497

to the development of arrays of disks that operate independently and in parallel.
With multiple disks, separate I/O requests can be handled in parallel, as long as the
data required reside on separate disks. Further, a single I/O request can be executed
in parallel if the block of data to be accessed is distributed across multiple disks.

With the use of multiple disks, there is a wide variety of ways in which the data
can be organized and in which redundancy can be added to improve reliability. This
could make it difficult to develop database schemes that are usable on a number of
platforms and operating systems. Fortunately, industry has agreed on a standard-
ized scheme for multiple-disk database design, known as RAID (redundant array
of independent disks). The RAID scheme consists of seven levels,2 zero through six.
These levels do not imply a hierarchical relationship but designate different design
architectures that share three common characteristics:

 1. RAID is a set of physical disk drives viewed by the OS as a single logical drive.
 2. Data are distributed across the physical drives of an array in a scheme known

as striping, described subsequently.
 3. Redundant disk capacity is used to store parity information, which guarantees

data recoverability in case of a disk failure.

The details of the second and third characteristics differ for the different RAID levels.
RAID 0 and RAID 1 do not support the third characteristic.

The term RAID was originally coined in a paper by a group of researchers
at the University of California at Berkeley [PATT88].3 The paper outlined various
RAID configurations and applications and introduced the definitions of the RAID
levels that are still used. The RAID strategy employs multiple disk drives and dis-
tributes data in such a way as to enable simultaneous access to data from multiple
drives, thereby improving I/O performance and allowing easier incremental increases
in capacity.

The unique contribution of the RAID proposal is to address effectively the
need for redundancy. Although allowing multiple heads and actuators to operate
simultaneously achieves higher I/O and transfer rates, the use of multiple devices in-
creases the probability of failure. To compensate for this decreased reliability, RAID
makes use of stored parity information that enables the recovery of data lost due to
a disk failure.

We now examine each of the RAID levels. Table 11.4 provides a rough guide
to the seven levels. In the table, I/O performance is shown both in terms of data
transfer capacity, or ability to move data, and I/O request rate, or ability to satisfy
I/O requests, since these RAID levels inherently perform differently relative to
these two metrics. Each RAID level’s strong point is highlighted in color. Figure 11.8
is an example that illustrates the use of the seven RAID schemes to support a data

2Additional levels have been defined by some researchers and some companies, but the seven levels de-
scribed in this section are the ones universally agreed on.
3In that paper, the acronym RAID stood for Redundant Array of Inexpensive Disks. The term inexpen-
sive was used to contrast the small relatively inexpensive disks in the RAID array to the alternative, a
single large expensive disk (SLED). The SLED is essentially a thing of the past, with similar disk technol-
ogy being used for both RAID and non-RAID configurations. Accordingly, the industry has adopted the
term independent to emphasize that the RAID array creates significant performance and reliability gains.

498

Table 11.4 RAID Levels

Category Level Description Disks
Required

Data Availability Large I/O Data Transfer
Capacity

Small I/O Request Rate

Striping 0 Nonredundant N Lower than single disk Very high Very high for both read and
write

Mirroring 1 Mirrored 2N Higher than RAID 2,
3, 4, or 5; lower than
RAID 6

Higher than single disk for
read; similar to single disk
for write

Up to twice that of a single
disk for read; similar to single
disk for write

Parallel access 2 Redundant via
Hamming code

N + m Much higher than single
disk; comparable to
RAID 3, 4, or 5

Highest of all listed
alternatives

Approximately twice that of
a single disk

3 Bit-interleaved
parity

N + 1 Much higher than single
disk; comparable to
RAID 2, 4, or 5

Highest of all listed
alternatives

Approximately twice that of
a single disk

Independent
access

4 Block-interleaved
parity

N + 1 Much higher than single
disk; comparable to
RAID 2, 3, or 5

Similar to RAID 0 for read;
significantly lower than
single disk for write

Similar to RAID 0 for read;
significantly lower than
single disk for write

5 Block-interleaved
distributed parity

N + 1 Much higher than single
disk; comparable to
RAID 2, 3, or 4

Similar to RAID 0 for read;
lower than single disk for
write

Similar to RAID 0 for read;
generally lower than single
disk for write

6 Block-interleaved
dual distributed
parity

N + 2 Highest of all listed
alternatives

Similar to RAID 0 for read;
lower than RAID 5 for write

Similar to RAID 0 for read;
significantly lower than
RAID 5 for write

Note: N, number of data disks; m, proportional to log N.

11.6 / RAID 499

strip 12

(a) RAID 0 (nonredundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 11.8 RAID Levels

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

500 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

capacity requiring four disks with no redundancy. The figure highlights the layout of
user data and redundant data and indicates the relative storage requirements of the
various levels. We refer to this figure throughout the following discussion.

Of the seven RAID levels described, only four are commonly used: RAID
levels 0, 1, 5, and 6.

RAID Level 0

RAID level 0 is not a true member of the RAID family, because it does not in-
clude redundancy to improve performance or provide data protection. However,
there are a few applications, such as some on supercomputers in which performance
and capacity are primary concerns and low cost is more important than improved
reliability.

For RAID 0, the user and system data are distributed across all of the disks in
the array. This has a notable advantage over the use of a single large disk: If two dif-
ferent I/O requests are pending for two different blocks of data, then there is a good
chance that the requested blocks are on different disks. Thus, the two requests can
be issued in parallel, reducing the I/O queueing time.

But RAID 0, as with all of the RAID levels, goes further than simply distribut-
ing the data across a disk array: The data are striped across the available disks. This is
best understood by considering Figure 11.8. All user and system data are viewed as
being stored on a logical disk. The logical disk is divided into strips; these strips may
be physical blocks, sectors, or some other unit. The strips are mapped round robin
to consecutive physical disks in the RAID array. A set of logically consecutive strips
that maps exactly one strip to each array member is referred to as a stripe. In an
n-disk array, the first n logical strips are physically stored as the first strip on each of

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

Figure 11.8 RAID Levels (Continued)

11.6 / RAID 501

the n disks, forming the first stripe; the second n strips are distributed as the second
strips on each disk; and so on. The advantage of this layout is that if a single I/O
request consists of multiple logically contiguous strips, then up to n strips for that
request can be handled in parallel, greatly reducing the I/O transfer time.

RAID 0 FOR HIGH DATA TRANSFER CAPACITY The performance of any of the
RAID levels depends critically on the request patterns of the host system and
on the layout of the data. These issues can be most clearly addressed in RAID 0,
where the impact of redundancy does not interfere with the analysis. First, let us
consider the use of RAID 0 to achieve a high data transfer rate. For applications
to experience a high transfer rate, two requirements must be met. First, a high
transfer capacity must exist along the entire path between host memory and the
individual disk drives. This includes internal controller buses, host system I/O buses,
I/O adapters, and host memory buses.

The second requirement is that the application must make I/O requests that
drive the disk array efficiently. This requirement is met if the typical request is for
large amounts of logically contiguous data, compared to the size of a strip. In this
case, a single I/O request involves the parallel transfer of data from multiple disks,
increasing the effective transfer rate compared to a single-disk transfer.

RAID 0 FOR HIGH I/O REQUEST RATE In a transaction-oriented environment, the
user is typically more concerned with response time than with transfer rate. For an
individual I/O request for a small amount of data, the I/O time is dominated by the
motion of the disk heads (seek time) and the movement of the disk (rotational latency).

In a transaction environment, there may be hundreds of I/O requests per sec-
ond. A disk array can provide high I/O execution rates by balancing the I/O load
across multiple disks. Effective load balancing is achieved only if there are typically
multiple I/O requests outstanding. This, in turn, implies that there are multiple inde-
pendent applications or a single transaction-oriented application that is capable of
multiple asynchronous I/O requests. The performance will also be influenced by the
strip size. If the strip size is relatively large, so that a single I/O request only involves
a single disk access, then multiple waiting I/O requests can be handled in parallel,
reducing the queueing time for each request.

RAID Level 1

RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is
achieved. In these other RAID schemes, some form of parity calculation is used to
introduce redundancy, whereas in RAID 1, redundancy is achieved by the simple
expedient of duplicating all the data. Figure 11.8b shows data striping being used,
as in RAID 0. But in this case, each logical strip is mapped to two separate physical
disks so that every disk in the array has a mirror disk that contains the same data.
RAID 1 can also be implemented without data striping, though this is less common.

There are a number of positive aspects to the RAID 1 organization:

 1. A read request can be serviced by either of the two disks that contains the
requested data, whichever one involves the minimum seek time plus rota-
tional latency.

502 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 2. A write request requires that both corresponding strips be updated, but this
can be done in parallel. Thus, the write performance is dictated by the slower
of the two writes (i.e., the one that involves the larger seek time plus rotational
latency). However, there is no “write penalty” with RAID 1. RAID levels 2
through 6 involve the use of parity bits. Therefore, when a single strip is updated,
the array management software must first compute and update the parity bits as
well as update the actual strip in question.

 3. Recovery from a failure is simple. When a drive fails, the data may still be
 accessed from the second drive.

The principal disadvantage of RAID 1 is the cost; it requires twice the disk
space of the logical disk that it supports. Because of that, a RAID 1 configura-
tion is likely to be limited to drives that store system software and data and
other highly critical files. In these cases, RAID 1 provides real-time backup of
all data so that in the event of a disk failure, all of the critical data is still imme-
diately available.

In a transaction-oriented environment, RAID 1 can achieve high I/O request
rates if the bulk of the requests are reads. In this situation, the performance of
RAID 1 can approach double of that of RAID 0. However, if a substantial fraction
of the I/O requests are write requests, then there may be no significant perfor-
mance gain over RAID 0. RAID 1 may also provide improved performance over
RAID 0 for data transfer-intensive applications with a high percentage of reads.
Improvement occurs if the application can split each read request so that both disk
members participate.

RAID Level 2

RAID levels 2 and 3 make use of a parallel access technique. In a parallel access
array, all member disks participate in the execution of every I/O request. Typically,
the spindles of the individual drives are synchronized so that each disk head is in the
same position on each disk at any given time.

As in the other RAID schemes, data striping is used. In the case of RAID 2
and 3, the strips are very small, often as small as a single byte or word. With
RAID 2, an error-correcting code is calculated across corresponding bits on each
data disk, and the bits of the code are stored in the corresponding bit positions on
multiple parity disks. Typically, a Hamming code is used, which is able to correct
single-bit errors and detect double-bit errors.

Although RAID 2 requires fewer disks than RAID 1, it is still rather costly.
The number of redundant disks is proportional to the log of the number of data
disks. On a single read, all disks are simultaneously accessed. The requested data
and the associated error-correcting code are delivered to the array controller. If
there is a single-bit error, the controller can recognize and correct the error instantly,
so that the read access time is not slowed. On a single write, all data disks and parity
disks must be accessed for the write operation.

RAID 2 would only be an effective choice in an environment in which many
disk errors occur. Given the high reliability of individual disks and disk drives,
RAID 2 is overkill and is not implemented.

11.6 / RAID 503

RAID Level 3

RAID 3 is organized in a similar fashion to RAID 2. The difference is that RAID 3
requires only a single redundant disk, no matter how large the disk array. RAID 3
employs parallel access, with data distributed in small strips. Instead of an error-
correcting code, a simple parity bit is computed for the set of individual bits in the
same position on all of the data disks.

REDUNDANCY In the event of a drive failure, the parity drive is accessed and data
is reconstructed from the remaining devices. Once the failed drive is replaced, the
missing data can be restored on the new drive and operation resumed.

Data reconstruction is simple. Consider an array of five drives in which X0
through X3 contain data and X4 is the parity disk. The parity for the ith bit is calcu-
lated as follows:

X41i2 = X31i2 ⊕ X21i2 ⊕ X11i2 ⊕ X01i2
where ⊕ is exclusive-OR function.

Suppose that drive X1 has failed. If we add X41i2 ⊕ X11i2 to both sides of
the preceding equation, we get

X11i2 = X41i2 ⊕ X31i2 ⊕ X21i2 ⊕ X01i2
Thus, the contents of each strip of data on X1 can be regenerated from the contents
of the corresponding strips on the remaining disks in the array. This principle is true
for RAID levels 3 through 6.

In the event of a disk failure, all of the data are still available in what is referred
to as reduced mode. In this mode, for reads, the missing data are regenerated on the
fly using the exclusive-OR calculation. When data are written to a reduced RAID 3
array, consistency of the parity must be maintained for later regeneration. Return to
full operation requires that the failed disk be replaced and the entire contents of the
failed disk be regenerated on the new disk.

PERFORMANCE Because data are striped in very small strips, RAID 3 can achieve
very high data transfer rates. Any I/O request will involve the parallel transfer of
data from all of the data disks. For large transfers, the performance improvement is
especially noticeable. On the other hand, only one I/O request can be executed at a
time. Thus, in a transaction-oriented environment, performance suffers.

RAID Level 4

RAID levels 4 through 6 make use of an independent access technique. In an inde-
pendent access array, each member disk operates independently, so that separate
I/O requests can be satisfied in parallel. Because of this, independent access arrays
are more suitable for applications that require high I/O request rates and are rela-
tively less suited for applications that require high data transfer rates.

As in the other RAID schemes, data striping is used. In the case of RAID 4
through 6, the strips are relatively large. With RAID 4, a bit-by-bit parity strip is cal-
culated across corresponding strips on each data disk, and the parity bits are stored
in the corresponding strip on the parity disk.

504 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

RAID 4 involves a write penalty when an I/O write request of small size is per-
formed. Each time that a write occurs, the array management software must update
not only the user data but also the corresponding parity bits. Consider an array of
five drives in which X0 through X3 contain data and X4 is the parity disk. Suppose
that a write is performed that only involves a strip on disk X1. Initially, for each bit i,
we have the following relationship:

 X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i) (11.1)

After the update, with potentially altered bits indicated by a prime symbol:

 X4=1i2 = X31i2 ⊕ X21i2 ⊕ X1=1i2 ⊕ X01i2
 = X31i2 ⊕ X21i2 ⊕ X1=1i2 ⊕ X01i2 ⊕ X11i2 ⊕ X11i2
 = X31i2 ⊕ X21i2 ⊕ X11i2 ⊕ X01i2 ⊕ X11i2 ⊕ X1=1i2
 = X41i2 ⊕ X11i2 ⊕ X1=1i2

The preceding set of equations is derived as follows. The first line shows that a
change in X1 will also affect the parity disk X4. In the second line, we add the terms 3 ⊕ X11i2 ⊕ X11i24. Because the exclusive-OR of any quantity with itself is 0,
this does not affect the equation. However, it is a convenience that is used to create
the third line, by reordering. Finally, Equation (11.1) is used to replace the first four
terms by X4(i).

To calculate the new parity, the array management software must read the old
user strip and the old parity strip. Then it can update these two strips with the new
data and the newly calculated parity. Thus, each strip write involves two reads and
two writes.

In the case of a larger size I/O write that involves strips on all disk drives, par-
ity is easily computed by calculation using only the new data bits. Thus, the parity
drive can be updated in parallel with the data drives and there are no extra reads
or writes.

In any case, every write operation must involve the parity disk, which therefore
can become a bottleneck.

RAID Level 5

RAID 5 is organized in a similar fashion to RAID 4. The difference is that RAID 5
 distributes the parity strips across all disks. A typical allocation is a round-robin scheme,
as illustrated in Figure 11.8f. For an n-disk array, the parity strip is on a different disk for
the first n stripes, and the pattern then repeats.

The distribution of parity strips across all drives avoids the potential I/O bottle-
neck of the single parity disk found in RAID 4. Further, RAID 5 has the characteristic
that the loss of any one disk does not result in data loss.

RAID Level 6

RAID 6 was introduced in a subsequent paper by the Berkeley researchers
[KATZ89]. In the RAID 6 scheme, two different parity calculations are carried out
and stored in separate blocks on different disks. Thus, a RAID 6 array whose user
data require N disks consists of N + 2 disks.

11.7 / DISK CACHE 505

Figure 11.8g illustrates the scheme. P and Q are two different data check algo-
rithms. One of the two is the exclusive-OR calculation used in RAID 4 and 5. But
the other is an independent data check algorithm. This makes it possible to regener-
ate data even if two disks containing user data fail.

The advantage of RAID 6 is that it provides extremely high data availability.
Three disks would have to fail within the MTTR (mean time to repair) interval to
cause data to be lost. On the other hand, RAID 6 incurs a substantial write penalty,
because each write affects two parity blocks. Performance benchmarks [EISC07]
show that a RAID 6 controller can suffer more than a 30% drop in overall write
performance compared with a RAID 5 implementation. RAID 5 and RAID 6 read
performance is comparable.

 11.7 DISK CACHE

In Section 1.6 and Appendix 1A, we summarized the principles of cache memory.
The term cache memory is usually used to apply to a memory that is smaller and
faster than main memory and that is interposed between main memory and the
processor. Such a cache memory reduces average memory access time by exploiting
the principle of locality.

The same principle can be applied to disk memory. Specifically, a disk cache is a
buffer in main memory for disk sectors. The cache contains a copy of some of the sec-
tors on the disk. When an I/O request is made for a particular sector, a check is made
to determine if the sector is in the disk cache. If so, the request is satisfied via the
cache. If not, the requested sector is read into the disk cache from the disk. Because
of the phenomenon of locality of reference, when a block of data is fetched into the
cache to satisfy a single I/O request, it is likely that there will be future references to
that same block.

Design Considerations

Several design issues are of interest. First, when an I/O request is satisfied from the
disk cache, the data in the disk cache must be delivered to the requesting process.
This can be done either by transferring the block of data within main memory
from the disk cache to memory assigned to the user process or simply by using
a shared memory capability and passing a pointer to the appropriate slot in the
disk cache. The latter approach saves the time of a memory-to-memory transfer
and also allows shared access by other processes using the readers/writers model
described in Chapter 5.

A second design issue has to do with the replacement strategy. When a new
sector is brought into the disk cache, one of the existing blocks must be replaced.
This is the identical problem presented in Chapter 8; there the requirement was for
a page replacement algorithm. A number of algorithms have been tried. The most
commonly used algorithm is least recently used (LRU): Replace that block that has
been in the cache longest with no reference to it. Logically, the cache consists of
a stack of blocks, with the most recently referenced block on the top of the stack.
When a block in the cache is referenced, it is moved from its existing position on the

506 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

stack to the top of the stack. When a block is brought in from secondary memory,
remove the block that is on the bottom of the stack and push the incoming block
onto the top of the stack. Naturally, it is not necessary actually to move these blocks
around in main memory; a stack of pointers can be associated with the cache.

Another possibility is least frequently used (LFU): Replace that block in the
set that has experienced the fewest references. LFU could be implemented by asso-
ciating a counter with each block. When a block is brought in, it is assigned a count
of 1; with each reference to the block, its count is incremented by 1. When replace-
ment is required, the block with the smallest count is selected. Intuitively, it might
seem that LFU is more appropriate than LRU because LFU makes use of more
pertinent information about each block in the selection process.

A simple LFU algorithm has the following problem. It may be that certain blocks
are referenced relatively infrequently overall, but when they are referenced, there are
short intervals of repeated references due to locality, thus building up high reference
counts. After such an interval is over, the reference count may be misleading and not
reflect the probability that the block will soon be referenced again. Thus, the effect
of locality may actually cause the LFU algorithm to make poor replacement choices.

To overcome this difficulty with LFU, a technique known as frequency-based
replacement is proposed in [ROBI90]. For clarity, let us first consider a simplified
version, illustrated in Figure 11.9a. The blocks are logically organized in a stack, as
with the LRU algorithm. A certain portion of the top part of the stack is designated
the new section. When there is a cache hit, the referenced block is moved to the top
of the stack. If the block was already in the new section, its reference count is not
incremented; otherwise it is incremented by 1. Given a sufficiently large new sec-
tion, this results in the reference counts for blocks that are repeatedly re-referenced
within a short interval remaining unchanged. On a miss, the block with the smallest

MRU

Re-reference;
count unchanged

(a) FIFO

New section Old section

Miss (new block brought in)
count :! 1

Re-reference;
count :! count "1

LRU

MRU

(b) Use of three sections

New section

LRU

Middle section Old section

Figure 11.9 Frequency-Based Replacement

11.7 / DISK CACHE 507

reference count that is not in the new section is chosen for replacement; the least
recently used such block is chosen in the event of a tie.

The authors report that this strategy achieved only slight improvement over
LRU. The problem is the following:

 1. On a cache miss, a new block is brought into the new section, with a count of 1.
 2. The count remains at 1 as long as the block remains in the new section.
 3. Eventually the block ages out of the new section, with its count still at 1.
 4. If the block is not now re-referenced fairly quickly, it is very likely to be replaced

because it necessarily has the smallest reference count of those blocks that are
not in the new section. In other words, there does not seem to be a sufficiently
long interval for blocks aging out of the new section to build up their reference
counts even if they were relatively frequently referenced.

A further refinement addresses this problem: Divide the stack into three sec-
tions: new, middle, and old (Figure 11.9b). As before, reference counts are not incre-
mented on blocks in the new section. However, only blocks in the old section are
eligible for replacement. Assuming a sufficiently large middle section, this allows
relatively frequently referenced blocks a chance to build up their reference counts
before becoming eligible for replacement. Simulation studies by the authors indi-
cate that this refined policy is significantly better than simple LRU or LFU.

Regardless of the particular replacement strategy, the replacement can take
place on demand or preplanned. In the former case, a sector is replaced only when
the slot is needed. In the latter case, a number of slots are released at a time. The
reason for this latter approach is related to the need to write back sectors. If a sector
is brought into the cache and only read, then when it is replaced, it is not necessary
to write it back out to the disk. However, if the sector has been updated, then it is
necessary to write it back out before replacing it. In this latter case, it makes sense to
cluster the writing and to order the writing to minimize seek time.

Performance Considerations

The same performance considerations discussed in Appendix 1A apply here. The
issue of cache performance reduces itself to a question of whether a given miss
ratio can be achieved. This will depend on the locality behavior of the disk refer-
ences, the replacement algorithm, and other design factors. Principally, however,
the miss ratio is a function of the size of the disk cache. Figure 11.10 summarizes
results from several studies using LRU, one for a UNIX system running on a VAX
[OUST85] and one for IBM mainframe operating systems [SMIT85]. Figure 11.11
shows results for simulation studies of the frequency-based replacement algorithm.
A comparison of the two figures points out one of the risks of this sort of perfor-
mance assessment.

The figures appear to show that LRU outperforms the frequency-based replace-
ment algorithm. However, when identical reference patterns using the same cache
structure are compared, the frequency-based replacement algorithm is superior. Thus,
the exact sequence of reference patterns, plus related design issues such as block size,
will have a profound influence on the performance achieved.

508

50
Cache size (megabytes)

IBM VM

IBM MVS

VAX UNIX

D
is

k
ca

ch
e

m
is

s
ra

te
 (%

)

0

10

20

30

40

50

60

70

10 15 20 25 30

Figure 11.11 Disk Cache Performance Using Frequency-Based Replacement

50
Cache size (megabytes)

IBM SVS

IBM MVS

VAX UNIX
D

is
k

ca
ch

e
m

is
s

ra
te

 (%
)

0

10

20

30

40

50

60

10 15 20 25 30

Figure 11.10 Some Disk Cache Performance Results Using LRU

11.8 / UNIX SVR4 I/O 509

 11.8 UNIX SVR4 I/O

In UNIX, each individual I/O device is associated with a special file. These are man-
aged by the file system and are read and written in the same manner as user data
files. This provides a clean, uniform interface to users and processes. To read from
or write to a device, read and write requests are made for the special file associated
with the device.

Figure 11.12 illustrates the logical structure of the I/O facility. The file subsys-
tem manages files on secondary storage devices. In addition, it serves as the process
interface to devices, because these are treated as files.

There are two types of I/O in UNIX: buffered and unbuffered. Buffered I/O
passes through system buffers, whereas unbuffered I/O typically involves the DMA
facility, with the transfer taking place directly between the I/O module and the pro-
cess I/O area. For buffered I/O, two types of buffers are used: system buffer caches
and character queues.

Buffer Cache

The buffer cache in UNIX is essentially a disk cache. I/O operations with disk are
handled through the buffer cache. The data transfer between the buffer cache and
the user process space always occurs using DMA. Because both the buffer cache
and the process I/O area are in main memory, the DMA facility is used in this case
to perform a memory-to-memory copy. This does not use up any processor cycles,
but it does consume bus cycles.

To manage the buffer cache, three lists are maintained:

Free list: List of all slots in the cache (a slot is referred to as a buffer in UNIX;
each slot holds one disk sector) that are available for allocation
Device list: List of all buffers currently associated with each disk
Driver I/O queue: List of buffers that are actually undergoing or waiting for
I/O on a particular device

All buffers should be on the free list or on the driver I/O queue list. A buffer,
once associated with a device, remains associated with the device even if it is on the free

Character Block

Buffer cache

File subsystem

Device drivers

Figure 11.12 UNIX I/O Structure

510 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

list, until is actually reused and becomes associated with another device. These lists are
maintained as pointers associated with each buffer rather than physically separate lists.

When a reference is made to a physical block number on a particular device,
the OS first checks to see if the block is in the buffer cache. To minimize the search
time, the device list is organized as a hash table, using a technique similar to the over-
flow with chaining technique discussed in Appendix F (Figure F.1b). Figure 11.13
depicts the general organization of the buffer cache. There is a hash table of fixed
length that contains pointers into the buffer cache. Each reference to a (device#,
block#) maps into a particular entry in the hash table. The pointer in that entry
points to the first buffer in the chain. A hash pointer associated with each buffer
points to the next buffer in the chain for that hash table entry. Thus, for all (device#,
block#) references that map into the same hash table entry, if the corresponding
block is in the buffer cache, then that buffer will be in the chain for that hash table
entry. Thus, the length of the search of the buffer cache is reduced by a factor on the
order of N, where N is the length of the hash table.

For block replacement, a least-recently-used algorithm is used: After a buffer has
been allocated to a disk block, it cannot be used for another block until all other buf-
fers have been used more recently. The free list preserves this least-recently-used order.

Character Queue

Block-oriented devices, such as disk and USB keys, can be effectively served by the
buffer cache. A different form of buffering is appropriate for character-oriented

Device#, Block#

Hash table Buffer cache

Free list
pointer

Fr
ee

 li
st

 p
oi

nt
er

s

H
as

h
po

in
te

rs

Figure 11.13 UNIX Buffer Cache Organization

11.8 / UNIX SVR4 I/O 511

devices, such as terminals and printers. A character queue is either written by the
I/O device and read by the process or written by the process and read by the device.
In both cases, the producer/consumer model introduced in Chapter 5 is used. Thus,
character queues may only be read once; as each character is read, it is effectively
destroyed. This is in contrast to the buffer cache, which may be read multiple times
and hence follows the readers/writers model (also discussed in Chapter 5).

Unbuffered I/O

Unbuffered I/O, which is simply DMA between device and process space, is always
the fastest method for a process to perform I/O. A process that is performing un-
buffered I/O is locked in main memory and cannot be swapped out. This reduces
the opportunities for swapping by tying up part of main memory, thus reducing the
overall system performance. Also, the I/O device is tied up with the process for the
duration of the transfer, making it unavailable for other processes.

UNIX Devices

Among the categories of devices recognized by UNIX are the following:

Disk drives
Tape drives
Terminals
Communication lines
Printers

Table 11.5 shows the types of I/O suited to each type of device. Disk drives
are heavily used in UNIX, are block oriented, and have the potential for reasonable
high throughput. Thus, I/O for these devices tends to be unbuffered or via buffer
cache. Tape drives are functionally similar to disk drives and use similar I/O schemes.

Because terminals involve relatively slow exchange of characters, terminal I/O
typically makes use of the character queue. Similarly, communication lines require se-
rial processing of bytes of data for input or output and are best handled by character
queues. Finally, the type of I/O used for a printer will generally depend on its speed.
Slow printers will normally use the character queue, while a fast printer might employ
unbuffered I/O. A buffer cache could be used for a fast printer. However, because data
going to a printer are never reused, the overhead of the buffer cache is unnecessary.

Table 11.5 Device I/O in UNIX

Unbuffered I/O Buffer Cache Character Queue

Disk Drive X X

Tape Drive X X

Terminals X

Communication Lines X

Printers X X

512 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 11.9 LINUX I/O

In general terms, the Linux I/O kernel facility is very similar to that of other UNIX
implementation, such as SVR4. The Linux kernel associates a special file with each
I/O device driver. Block, character, and network devices are recognized. In this sec-
tion, we look at several features of the Linux I/O facility.

Disk Scheduling

The default disk scheduler in Linux 2.4 is known as the Linux Elevator, which is
a variation on the LOOK algorithm discussed in Section 11.5. For Linux 2.6, the
Elevator algorithm has been augmented by two additional algorithms: the deadline
I/O scheduler and the anticipatory I/O scheduler [LOVE04]. We examine each of
these in turn.

THE ELEVATOR SCHEDULER The elevator scheduler maintains a single queue for
disk read and write requests and performs both sorting and merging functions on
the queue. In general terms, the elevator scheduler keeps the list of requests sorted
by block number. Thus, as the disk requests are handled, the drive moves in a single
direction, satisfying each request as it is encountered. This general strategy is refined
in the following manner. When a new request is added to the queue, four operations
are considered in order:

 1. If the request is to the same on-disk sector or an immediately adjacent sector to
a pending request in the queue, then the existing request and the new request
are merged into one request.

 2. If a request in the queue is sufficiently old, the new request is inserted at the
tail of the queue.

 3. If there is a suitable location, the new request is inserted in sorted order.
 4. If there is no suitable location, the new request is placed at the tail of the

queue.

DEADLINE SCHEDULER Operation 2 in the preceding list is intended to prevent
starvation of a request, but is not very effective [LOVE04]. It does not attempt to
service requests in a given time frame but merely stops insertion-sorting requests
after a suitable delay. Two problems manifest themselves with the elevator scheme.
The first problem is that a distant block request can be delayed for a substantial
time because the queue is dynamically updated. For example, consider the following
stream of requests for disk blocks: 20, 30, 700, 25. The elevator scheduler reorders
these so that the requests are placed in the queue as 20, 25, 30, 700, with 20 being the
head of the queue. If a continuous sequence of low-numbered block requests arrive,
then the request for 700 continues to be delayed.

An even more serious problem concerns the distinction between read and
write requests. Typically, a write request is issued asynchronously. That is, once
a process issues the write request, it need not wait for the request to actually be
satisfied. When an application issues a write, the kernel copies the data into an

11.9 / LINUX I/O 513

appropriate buffer, to be written out as time permits. Once the data are captured
in the kernel’s buffer, the application can proceed. However, for many read op-
erations, the process must wait until the requested data are delivered to the ap-
plication before proceeding. Thus, a stream of write requests (e.g., to place a large
file on the disk) can block a read request for a considerable time and thus block
a process.

To overcome these problems, the deadline I/O scheduler makes use of three
queues (Figure 11.14). Each incoming request is placed in the sorted elevator queue,
as before. In addition, the same request is placed at the tail of a read FIFO queue for
a read request or a write FIFO queue for a write request. Thus, the read and write
queues maintain a list of requests in the sequence in which the requests were made.
Associated with each request is an expiration time, with a default value of 0.5 sec-
onds for a read request and 5 seconds for a write request. Ordinarily, the scheduler
dispatches from the sorted queue. When a request is satisfied, it is removed from
the head of the sorted queue and also from the appropriate FIFO queue. However,
when the item at the head of one of the FIFO queues becomes older than its expi-
ration time, then the scheduler next dispatches from that FIFO queue, taking the
expired request, plus the next few requests from the queue. As each request is dis-
patched, it is also removed from the sorted queue.

The deadline I/O scheduler scheme overcomes the starvation problem and
also the read versus write problem.

ANTICIPATORY I/O SCHEDULER The original elevator scheduler and the deadline
scheduler both are designed to dispatch a new request as soon as the existing request
is satisfied, thus keeping the disk as busy as possible. This same policy applies to all
of the scheduling algorithms discussed in Section 11.5. However, such a policy can
be counterproductive if there are numerous synchronous read requests. Typically, an
application will wait until a read request is satisfied and the data available before
issuing the next request. The small delay between receiving the data for the last
read and issuing the next read enables the scheduler to turn elsewhere for a pending
request and dispatch that request.

Sorted (elevator) queue

Read FIFO queue

Write FIFO queue

Figure 11.14 The Linux Deadline I/O Scheduler

514 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

Because of the principle of locality, it is likely that successive reads from the
same process will be to disk blocks that are near one another. If the scheduler were
to delay a short period of time after satisfying a read request, to see if a new nearby
read request is made, the overall performance of the system could be enhanced.
This is the philosophy behind the anticipatory scheduler, proposed in [IYER01],
and implemented in Linux 2.6.

In Linux, the anticipatory scheduler is superimposed on the deadline sched-
uler. When a read request is dispatched, the anticipatory scheduler causes the sched-
uling system to delay for up to 6 ms, depending on the configuration. During this
small delay, there is a good chance that the application that issued the last read
request will issue another read request to the same region of the disk. If so, that
request will be serviced immediately. If no such read request occurs, the scheduler
resumes using the deadline scheduling algorithm.

[LOVE04] reports on two tests of the Linux scheduling algorithms. The first
test involved the reading of a 200-MB file while doing a long streaming write in the
background. The second test involved doing a read of a large file in the background
while reading every file in the kernel source tree. The results are listed in the follow-
ing table:

I/O Scheduler and Kernel Test 1 Test 2
Linux elevator on 2.4 45 seconds 30 minutes, 28 seconds
Deadline I/O scheduler on 2.6 40 seconds 3 minutes, 30 seconds
Anticipatory I/O scheduler on 2.6 4.6 seconds 15 seconds

As can be seen, the performance improvement depends on the nature of
the workload. But in both cases, the anticipatory scheduler provides a dramatic
improvement.

Linux Page Cache

In Linux 2.2 and earlier releases, the kernel maintained a page cache for reads and
writes from regular file system files and for virtual memory pages, and a separate
buffer cache for block I/O. For Linux 2.4 and later, there is a single unified page
cache that is involved in all traffic between disk and main memory.

The page cache confers two benefits. First, when it is time to write back dirty
pages to disk, a collection of them can be ordered properly and written out effi-
ciently. Second, because of the principle of temporal locality, pages in the page cache
are likely to be referenced again before they are flushed from the cache, thus saving
a disk I/O operation.

Dirty pages are written back to disk in two situations:

When free memory falls below a specified threshold, the kernel reduces the
size of the page cache to release memory to be added to the free memory pool.
When dirty pages grow older than a specified threshold, a number of dirty
pages are written back to disk.

11.10 / WINDOWS I/O 515

 11.10 WINDOWS I/O

Figure 11.15 shows the key kernel-mode components related to the Windows I/O
manager. The I/O manager is responsible for all I/O for the operating system and
provides a uniform interface that all types of drivers can call.

Basic I/O Facilities

The I/O manager works closely with four types of kernel components:

Cache manager: The cache manager handles file caching for all file systems. It can
dynamically increase and decrease the size of the cache devoted to a particular file
as the amount of available physical memory varies. The system records updates
in the cache only and not on disk. A kernel thread, the lazy writer, periodically
batches the updates together to write to disk. Writing the updates in batches al-
lows the I/O to be more efficient. The cache manager works by mapping regions of
files into kernel virtual memory and then relying on the virtual memory manager
to do most of the work to copy pages to and from the files on disk.
File system drivers: The I/O manager treats a file system driver as just another
device driver and routes I/O requests for file system volumes to the appropri-
ate software driver for that volume. The file system, in turn, sends I/O requests
to the software drivers that manage the hardware device adapter.
Network drivers: Windows includes integrated networking capabilities and
support for remote file systems. The facilities are implemented as software
drivers rather than part of the Windows Executive.
Hardware device drivers: These software drivers access the hardware regis-
ters of the peripheral devices using entry points in the Hardware Abstraction
Layer. A set of these routines exists for every platform that Windows supports;
because the routine names are the same for all platforms, the source code of
Windows device drivers is portable across different processor types.

Asynchronous and Synchronous I/O

Windows offers two modes of I/O operation: asynchronous and synchronous. The
asynchronous mode is used whenever possible to optimize application performance.

I/O manager
Cache

manager

File system
drivers

Network
drivers

Hardware
device drivers

Figure 11.15 Windows I/O Manager

516 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

With asynchronous I/O, an application initiates an I/O operation and then can con-
tinue processing while the I/O request is fulfilled. With synchronous I/O, the applica-
tion is blocked until the I/O operation completes.

Asynchronous I/O is more efficient, from the point of view of the calling thread,
because it allows the thread to continue execution while the I/O operation is queued by
the I/O manager and subsequently performed. However, the application that invoked
the asynchronous I/O operation needs some way to determine when the operation is
complete. Windows provides five different techniques for signaling I/O completion:

Signaling the file object: With this approach, the event associated with a file
object is set when an operation on that object is complete. The thread that in-
voked the I/O operation can continue to execute until it reaches a point where
it must stop until the I/O operation is complete. At that point, the thread can
wait until the operation is complete and then continue. This technique is sim-
ple and easy to use but is not appropriate for handling multiple I/O requests.
For example, if a thread needs to perform multiple simultaneous actions on
a single file, such as reading from one portion and writing to another portion
of the file, with this technique the thread could not distinguish between the
completion of the read and the completion of the write. It would simply know
that one of the requested I/O operations on this file had finished.
Signaling an event object: This technique allows multiple simultaneous I/O
requests against a single device or file. The thread creates an event for each
request. Later, the thread can wait on a single one of these requests or on an
entire collection of requests.
Asynchronous procedure call: This technique makes use of a queue associated
with a thread, known as the asynchronous procedure call (APC) queue. In this
case, the thread makes I/O requests, specifying a user-mode routine to call
when the I/O completes. The I/O manager places the results of each request in
the calling thread’s APC queue. The next time the thread blocks in the kernel,
the APCs will be delivered, each causing the thread to return to user mode and
execute the specified routine.
I/O completion ports: This technique is used on a Windows server to optimize
the use of threads. The application creates a pool of threads for handling the
completion of I/O requests. Each thread waits on the completion port, and
the Kernel wakes threads to handle each I/O completion. One of the advan-
tages of this approach is that the application can specify a limit for how many
of these threads will run at the same time.
Polling: Asynchronous I/O requests write a status and transfer count into the
process’s user virtual memory when the operation completes. A thread can
just check these values to see if the operation has completed.

Software RAID

Windows supports two sorts of RAID configurations, defined in [MS96] as follows:

Hardware RAID: Separate physical disks combined into one or more logical
disks by the disk controller or disk storage cabinet hardware

11.11 / SUMMARY 517

Software RAID: Noncontiguous disk space combined into one or more logical
partitions by the fault-tolerant software disk driver, FTDISK

In hardware RAID, the controller interface handles the creation and regener-
ation of redundant information. The software RAID, available on Windows Server,
implements the RAID functionality as part of the operating system and can be used
with any set of multiple disks. The software RAID facility implements RAID 1 and
RAID 5. In the case of RAID 1 (disk mirroring), the two disks containing the pri-
mary and mirrored partitions may be on the same disk controller or different disk
controllers. The latter configuration is referred to as disk duplexing.

Volume Shadow Copies

Shadow copies are an efficient way of making consistent snapshots of volumes so
that they can be backed up. They are also useful for archiving files on a per-volume
basis. If a user deletes a file he or she can retrieve an earlier copy from any available
shadow copy made by the system administrator. Shadow copies are implemented by
a software driver that makes copies of data on the volume before it is overwritten.

Volume Encryption

Windows supports the encryption of entire volumes, using a feature called BitLocker.
This is more secure than encrypting individual files, as the entire system works to be
sure that the data is safe. Up to three different methods of supplying the crypto-
graphic key can be provided, allowing multiple interlocking layers of security.

 11.11 SUMMARY

The computer system’s interface to the outside world is its I/O architecture. This ar-
chitecture is designed to provide a systematic means of controlling interaction with
the outside world and to provide the operating system with the information it needs
to manage I/O activity effectively.

The I/O function is generally broken up into a number of layers, with lower
layers dealing with details that are closer to the physical functions to be performed
and higher layers dealing with I/O in a logical and generic fashion. The result is that
changes in hardware parameters need not affect most of the I/O software.

A key aspect of I/O is the use of buffers that are controlled by I/O utilities
rather than by application processes. Buffering smoothes out the differences be-
tween the internal speeds of the computer system and the speeds of I/O devices. The
use of buffers also decouples the actual I/O transfer from the address space of the
application process. This allows the operating system more flexibility in performing
its memory-management function.

The aspect of I/O that has the greatest impact on overall system performance
is disk I/O. Accordingly, there has been greater research and design effort in this
area than in any other kind of I/O. Two of the most widely used approaches to im-
prove disk I/O performance are disk scheduling and the disk cache.

At any time, there may be a queue of requests for I/O on the same disk. It is
the object of disk scheduling to satisfy these requests in a way that minimizes the

518 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

mechanical seek time of the disk and hence improves performance. The physical
layout of pending requests plus considerations of locality come into play.

A disk cache is a buffer, usually kept in main memory, that functions as a cache
of disk blocks between disk memory and the rest of main memory. Because of the
principle of locality, the use of a disk cache should substantially reduce the number
of block I/O transfers between main memory and disk.

 11.12 RECOMMENDED READING AND ANIMATIONS

General discussions of computer I/O can be found in most books on computer ar-
chitecture, such as [STAL10]. [MEE96a] provides a good survey of the underlying
recording technology of disk and tape systems. [MEE96b] focuses on the data stor-
age techniques for disk and tape systems. [WIED87] contains an excellent discus-
sion of disk performance issues, including those relating to disk scheduling. [NG98]
looks at disk hardware performance issues. [CAO96] analyzes disk caching and disk
scheduling. Good surveys of disk scheduling algorithms, with a performance analy-
sis, are [WORT94] and [SELT90].

[PAI00] is an instructive description of an integrated operating-system scheme
for I/O buffering and caching.

[DELL00] provides a detailed discussion of Windows NT device drivers plus a
good overview of the entire Windows I/O architecture.

An excellent survey of RAID technology, written by the inventors of the RAID
concept, is [CHEN94]. [CHEN96] analyzes RAID performance. Another good paper
is [FRIE96]. [DALT96] describes the Windows NT software RAID facility in detail.
[LEVE10] examines the need to move beyond RAID 6 to a triple-parity configura-
tion. [STAI10] is a good survey of the standard RAID levels plus a number of common
RAID enhancements.

CAO96 Cao, P.; Felten, E.; Karlin, A.; and Li, K. “Implementation and Performance
of Integrated Application-Controlled File Caching, Prefetching, and Disk
Scheduling.” ACM Transactions on Computer Systems, November 1996.

CHEN94 Chen, P.; Lee, E.; Gibson, G.; Katz, R.; and Patterson, D. “RAID: High-
Performance, Reliable Secondary Storage.” ACM Computing Surveys, June 1994.

CHEN96 Chen, S., and Towsley, D. “A Performance Evaluation of RAID
Architectures.” IEEE Transactions on Computers, October 1996.

DALT96 Dalton, W., et al. Windows NT Server 4: Security, Troubleshooting, and
Optimization. Indianapolis, IN: New Riders Publishing, 1996.

DELL00 Dekker, E., and Newcomer, J. Developing Windows NT Device Drivers: A
Programmer’s Handbook. Reading, MA: Addison Wesley, 2000.

FRIE96 Friedman, M. “RAID Keeps Going and Going and…” IEEE Spectrum,
April 1996.

LEVE10 Leventhal, A. “Triple-Parity RAID and Beyond.” Communications of the
ACM, January 2010.

MEE96a Mee, C., and Daniel, E. eds. Magnetic Recording Technology. New York:
McGraw Hill, 1996.

11.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 519

MEE96b Mee, C., and Daniel, E. eds. Magnetic Storage Handbook. New York: McGraw
Hill, 1996.

NG98 Ng, S. “Advances in Disk Technology: Performance Issues.” Computer, May 1989.
PAI00 Pai, V.; Druschel, P.; and Zwaenepoel, W. “IO-Lite: A Unified I/O Buffering

and Caching System.” ACM Transactions on Computer Systems, February 2000.
SELT90 Seltzer, M.; Chen, P.; and Ousterhout, J. “Disk Scheduling Revisited.”

Proceedings, USENIX Winter Technical Conference, January 1990.
STAI10 Staimer, M. “Alternatives to RAID.” Storage Magazine, May 2010.
STAL10 Stallings, W. Computer Organization and Architecture, 8th ed. Upper Saddle

River, NJ: Prentice Hall, 2010.
WIED87 Wiederhold, G. File Organization for Database Design. New York: McGraw-

Hill, 1987.
WORT94 Worthington, B.; Ganger, G.; and Patt, Y. “Scheduling Algorithms for

Modern Disk Drives.” ACM SiGMETRICS, May 1994.

 11.13 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

block
block-oriented device
circular buffer
device I/O
direct memory access
disk access time
disk cache
gap
interrupt-driven I/O

input/output (I/O)
I/O buffer
I/O channel
I/O processor
logical I/O
magnetic disk
programmed I/O
read/write head

redundant array of
independent disks

rotational delay
sector
seek time
stream-oriented device
track
transfer time

Review Questions

 11.1. List and briefly define three techniques for performing I/O.
 11.2. What is the difference between logical I/O and device I/O?
 11.3. What is the difference between block-oriented devices and stream-oriented devices?

Give a few examples of each.
 11.4. Why would you expect improved performance using a double buffer rather than a

single buffer for I/O?

Animations

A set of animation that illustrates concepts from this chapter is available at the
Premium Web site. The reader is encouraged to view the animations to reinforce
concepts from this chapter.

Animation

520 CHAPTER 11 / I/O MANAGEMENT AND DISK SCHEDULING

 11.5. What delay elements are involved in a disk read or write?
 11.6. Briefly define the disk scheduling policies illustrated in Figure 11.7.
 11.7. Briefly define the seven RAID levels.
 11.8. What is the typical disk sector size?

Problems

 11.1. Consider a program that accesses a single I/O device and compare unbuffered I/O to
the use of a buffer. Show that the use of the buffer can reduce the running time by at
most a factor of two.

 11.2. Generalize the result of Problem 11.1 to the case in which a program refers to n
devices.

 11.3. a. Perform the same type of analysis as that of Table 11.2 for the following sequence
of disk track requests: 27, 129, 110, 186, 147, 41, 10, 64, 120. Assume that the disk head
is initially positioned over track 100 and is moving in the direction of decreasing
track number.

b. Do the same analysis, but now assume that the disk head is moving in the direction
of increasing track number.

 11.4. Consider a disk with N tracks numbered from 0 to 1N - 12 and assume that requested
sectors are distributed randomly and evenly over the disk. We want to calculate the
average number of tracks traversed by a seek.
a. Calculate the probability of a seek of length j when the head is currently posi-

tioned over track t. (Hint: This is a matter of determining the total number of
combinations, recognizing that all track positions for the destination of the seek
are equally likely.)

b. Calculate the probability of a seek of length K, for an arbitrary current position
of the head. (Hint: This involves the summing over all possible combinations of
movements of K tracks.)

c. Calculate the average number of tracks traversed by a seek, using the formula for
expected value

E3x4 = a
N - 1

i= 0
i * Pr 3x = i4

Hint: Use the equalitiesa
n

i= 1
=

n1n + 12
2

 ; a
n

i= 1
i2 =

n1n + 1212n + 12
6

.

d. Show that for large values of N, the average number of tracks traversed by a seek
approaches N>3.

 11.5. The following equation was suggested both for cache memory and disk cache memory:

TS = TC + M * TD

Generalize this equation to a memory hierarchy with N levels instead of just 2.
 11.6. For the frequency-based replacement algorithm (Figure 11.9), define Fnew, Fmiddle,

and Fold as the fraction of the cache that comprises the new, middle, and old sections,
respectively. Clearly, Fnew + Fmiddle + Fold = 1. Characterize the policy when
a. Fold = 1 - Fnew
b. Fold = 1> 1cache size2

 11.7. Calculate how much disk space (in sectors, tracks, and surfaces) will be required to
store 300,000 120-byte logical records if the disk is fixed sector with 512 bytes/sector,
with 96 sectors/track, 110 tracks per surface, and 8 usable surfaces. Ignore any file
header record(s) and track indexes, and assume that records cannot span two sectors.

11.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 521

 11.8. Consider the disk system described in Problem 11.7, and assume that the disk rotates
at 360 rpm. A processor reads one sector from the disk using interrupt-driven I/O,
with one interrupt per byte. If it takes 2.5 μs to process each interrupt, what percent-
age of the time will the processor spend handling I/O (disregard seek time)?

 11.9. Repeat the preceding problem using DMA, and assume one interrupt per sector.
 11.10. A 32-bit computer has two selector channels and one multiplexor channel. Each selec-

tor channel supports two magnetic disk and two magnetic tape units. The multiplexor
channel has two line printers, two card readers, and ten VDT terminals connected to it.
Assume the following transfer rates:

Disk drive 800 Kbytes/s
Magnetic tape drive 200 Kbytes/s
Line printer 6.6 Kbytes/s
Card reader 1.2 Kbytes/s
VDT 1 Kbyte/s

Estimate the maximum aggregate I/O transfer rate in this system.
 11.11. It should be clear that disk striping can improve the data transfer rate when the strip

size is small compared to the I/O request size. It should also be clear that RAID 0
provides improved performance relative to a single large disk, because multiple I/O
requests can be handled in parallel. However, in this latter case, is disk striping neces-
sary? That is, does disk striping improve I/O request rate performance compared to a
comparable disk array without striping?

 11.12. Consider a 4-drive, 200 GB-per-drive RAID array. What is the available data storage
capacity for each of the RAID levels, 0, 1, 3, 4, 5, and 6?

522

 12.1 Overview
Files and File Systems
File Structure
File Management Systems

 12.2 File Organization and Access
The Pile
The Sequential File
The Indexed Sequential File
The Indexed File
The Direct or Hashed File

 12.3 B-Trees
 12.4 File Directories

Contents
Structure
Naming

 12.5 File Sharing
Access Rights
Simultaneous Access

 12.6 Record Blocking
 12.7 Secondary Storage Management

File Allocation
Free Space Management
Volumes
Reliability

 12.8 UNIX File Management
Inodes
File Allocation
Directories
Volume Structure

 12.9 Linux Virtual File System
The Superblock Object
The Inode Object
The Dentry Object
The File Object
Caches

 12.10 Windows File System
Key Features of NTFS
NTFS Volume and File Structure
Recoverability

 12.11 Android File Management
File System
SQLite

 12.12 Summary
 12.13 Recommended Reading
 12.14 Key Terms, Review Questions, and Problems

FILE MANAGEMENT

CHAPTER

12.1 / OVERVIEW 523

In most applications, the file is the central element. With the exception of real-time
applications and some other specialized applications, the input to the application is
by means of a file; and in virtually all applications, output is saved in a file for long-
term storage and for later access by the user and by other programs.

Files have a life outside of any individual application that uses them for input
and/or output. Users wish to be able to access files, save them, and maintain the
integrity of their contents. To aid in these objectives, virtually all operating systems
provide file management systems. Typically, a file management system consists of
system utility programs that run as privileged applications. However, at the very
least, a file management system needs special services from the operating system;
at the most, the entire file management system is considered part of the operating
system. Thus, it is appropriate to consider the basic elements of file management in
this book.

We begin with an overview, followed by a look at various file organization
schemes. Although file organization is generally beyond the scope of the operating
system, it is essential to have a general understanding of the common alternatives to
appreciate some of the design trade-offs involved in file management. The remain-
der of this chapter looks at other topics in file management.

 12.1 OVERVIEW

Files and File Systems

From the user’s point of view, one of the most important parts of an operating sys-
tem is the file system. The file system permits users to create data collections, called
files, with desirable properties, such as:

Long-term existence: Files are stored on disk or other secondary storage and
do not disappear when a user logs off.
Sharable between processes: Files have names and can have associated access
permissions that permit controlled sharing.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Describe the basic concepts of files and file systems.
Understand the principal techniques for file organization and access.
Define B-trees.
Explain file directories.
Understand the requirements for file sharing.
Understand the concept of record blocking.
Describe the principal design issues for secondary storage management.
Understand the design issues for file system security.
Explain the OS file systems used in Linux, UNIX, and Windows 7.

524 CHAPTER 12 / FILE MANAGEMENT

Structure: Depending on the file system, a file can have an internal structure
that is convenient for particular applications. In addition, files can be orga-
nized into hierarchical or more complex structure to reflect the relationships
among files.

Any file system provides not only a means to store data organized as files, but
a collection of functions that can be performed on files. Typical operations include
the following:

Create: A new file is defined and positioned within the structure of files.
Delete: A file is removed from the file structure and destroyed.
Open: An existing file is declared to be “opened” by a process, allowing the
process to perform functions on the file.
Close: The file is closed with respect to a process, so that the process no longer
may perform functions on the file, until the process opens the file again.
Read: A process reads all or a portion of the data in a file.
Write: A process updates a file, either by adding new data that expands the
size of the file or by changing the values of existing data items in the file.

Typically, a file system maintains a set of attributes associated with the file.
These include owner, creation time, time last modified, and access privileges.

File Structure

Four terms are in common use when discussing files:

Field
Record
File
Database

A field is the basic element of data. An individual field contains a single value,
such as an employee’s last name, a date, or the value of a sensor reading. It is char-
acterized by its length and data type (e.g., ASCII string, decimal). Depending on the
file design, fields may be fixed length or variable length. In the latter case, the field
often consists of two or three subfields: the actual value to be stored, the name of
the field, and, in some cases, the length of the field. In other cases of variable-length
fields, the length of the field is indicated by the use of special demarcation symbols
between fields.

A record is a collection of related fields that can be treated as a unit by some
application program. For example, an employee record would contain such fields as
name, social security number, job classification, date of hire, and so on. Again, de-
pending on design, records may be of fixed length or variable length. A record will
be of variable length if some of its fields are of variable length or if the number of
fields may vary. In the latter case, each field is usually accompanied by a field name.
In either case, the entire record usually includes a length field.

A file is a collection of similar records. The file is treated as a single entity
by users and applications and may be referenced by name. Files have file names

12.1 / OVERVIEW 525

and may be created and deleted. Access control restrictions usually apply at the file
level. That is, in a shared system, users and programs are granted or denied access
to entire files. In some more sophisticated systems, such controls are enforced at the
record or even the field level.

Some file systems are structured only in terms of fields, not records. In that
case, a file is a collection of fields.

A database is a collection of related data. The essential aspects of a database are
that the relationships that exist among elements of data are explicit and that the da-
tabase is designed for use by a number of different applications. A database may con-
tain all of the information related to an organization or a project, such as a business
or a scientific study. The database itself consists of one or more types of files. Usually,
there is a separate database management system that is independent of the operating
system, although that system may make use of some file management programs.

Users and applications wish to make use of files. Typical operations that must
be supported include the following:

Retrieve_All: Retrieve all the records of a file. This will be required for an
application that must process all of the information in the file at one time. For
example, an application that produces a summary of the information in the
file would need to retrieve all records. This operation is often equated with the
term sequential processing, because all of the records are accessed in sequence.
Retrieve_One: This requires the retrieval of just a single record. Interactive,
transaction-oriented applications need this operation.
Retrieve_Next: This requires the retrieval of the record that is “next” in
some logical sequence to the most recently retrieved record. Some interactive
applications, such as filling in forms, may require such an operation. A program
that is performing a search may also use this operation.
Retrieve_Previous: Similar to Retrieve_Next, but in this case the re-
cord that is “previous” to the currently accessed record is retrieved.
Insert_One: Insert a new record into the file. It may be necessary that the
new record fit into a particular position to preserve a sequencing of the file.
Delete_One: Delete an existing record. Certain linkages or other data struc-
tures may need to be updated to preserve the sequencing of the file.
Update_One: Retrieve a record, update one or more of its fields, and rewrite
the updated record back into the file. Again, it may be necessary to preserve
sequencing with this operation. If the length of the record has changed, the
update operation is generally more difficult than if the length is preserved.
Retrieve_Few: Retrieve a number of records. For example, an application or
user may wish to retrieve all records that satisfy a certain set of criteria.

The nature of the operations that are most commonly performed on a file will
influence the way the file is organized, as discussed in Section 12.2.

It should be noted that not all file systems exhibit the sort of structure dis-
cussed in this subsection. On UNIX and UNIX-like systems, the basic file structure
is just a stream of bytes. For example, a C program is stored as a file but does not
have physical fields, records, and so on.

526 CHAPTER 12 / FILE MANAGEMENT

File Management Systems

A file management system is that set of system software that provides services to
users and applications in the use of files. Typically, the only way that a user or appli-
cation may access files is through the file management system. This relieves the user
or programmer of the necessity of developing special-purpose software for each ap-
plication and provides the system with a consistent, well-defined means of control-
ling its most important asset. [GROS86] suggests the following objectives for a file
management system:

To meet the data management needs and requirements of the user, which in-
clude storage of data and the ability to perform the aforementioned operations
To guarantee, to the extent possible, that the data in the file are valid
To optimize performance, both from the system point of view in terms of over-
all throughput and from the user’s point of view in terms of response time
To provide I/O support for a variety of storage device types
To minimize or eliminate the potential for lost or destroyed data
To provide a standardized set of I/O interface routines to user processes
To provide I/O support for multiple users, in the case of multiple-user systems

With respect to the first point, meeting user requirements, the extent of such
requirements depends on the variety of applications and the environment in which
the computer system will be used. For an interactive, general-purpose system, the
following constitute a minimal set of requirements:

 1. Each user should be able to create, delete, read, write, and modify files.
 2. Each user may have controlled access to other users’ files.
 3. Each user may control what types of accesses are allowed to the user’s files.
 4. Each user should be able to move data between files.
 5. Each user should be able to back up and recover the user’s files in case of

damage.
 6. Each user should be able to access his or her files by name rather than by nu-

meric identifier.

These objectives and requirements should be kept in mind throughout our discus-
sion of file management systems.

FILE SYSTEM ARCHITECTURE One way of getting a feel for the scope of file
management is to look at a depiction of a typical software organization, as suggested
in Figure 12.1. Of course, different systems will be organized differently, but this
organization is reasonably representative. At the lowest level, device drivers
communicate directly with peripheral devices or their controllers or channels. A
device driver is responsible for starting I/O operations on a device and processing
the completion of an I/O request. For file operations, the typical devices controlled
are disk and tape drives. Device drivers are usually considered to be part of the
operating system.

12.1 / OVERVIEW 527

The next level is referred to as the basic file system, or the physical I/O level.
This is the primary interface with the environment outside of the computer system.
It deals with blocks of data that are exchanged with disk or tape systems. Thus, it is
concerned with the placement of those blocks on the secondary storage device and
on the buffering of those blocks in main memory. It does not understand the content
of the data or the structure of the files involved. The basic file system is often consid-
ered part of the operating system.

The basic I/O supervisor is responsible for all file I/O initiation and termi-
nation. At this level, control structures are maintained that deal with device I/O,
scheduling, and file status. The basic I/O supervisor selects the device on which file
I/O is to be performed, based on the particular file selected. It is also concerned with
scheduling disk and tape accesses to optimize performance. I/O buffers are assigned
and secondary memory is allocated at this level. The basic I/O supervisor is part of
the operating system.

Logical I/O enables users and applications to access records. Thus, whereas
the basic file system deals with blocks of data, the logical I/O module deals with file
records. Logical I/O provides a general-purpose record I/O capability and maintains
basic data about files.

The level of the file system closest to the user is often termed the access
method. It provides a standard interface between applications and the file systems
and devices that hold the data. Different access methods reflect different file struc-
tures and different ways of accessing and processing the data. Some of the most
common access methods are shown in Figure 12.1, and these are briefly described
in Section 12.2.

FILE MANAGEMENT FUNCTIONS Another way of viewing the functions of a file
system is shown in Figure 12.2. Let us follow this diagram from left to right. Users and
application programs interact with the file system by means of commands for creating
and deleting files and for performing operations on files. Before performing any

Logical I/O

Basic I/O supervisor

Basic file system

Disk device driver Tape device driver

Indexed
sequentialPile Sequential Indexed Hashed

User program

Figure 12.1 File System Software Architecture

528 CHAPTER 12 / FILE MANAGEMENT

operation, the file system must identify and locate the selected file. This requires the
use of some sort of directory that serves to describe the location of all files, plus their
attributes. In addition, most shared systems enforce user access control: Only authorized
users are allowed to access particular files in particular ways. The basic operations that
a user or an application may perform on a file are performed at the record level. The
user or application views the file as having some structure that organizes the records,
such as a sequential structure (e.g., personnel records are stored alphabetically by last
name). Thus, to translate user commands into specific file manipulation commands, the
access method appropriate to this file structure must be employed.

Whereas users and applications are concerned with records or fields, I/O is
done on a block basis. Thus, the records or fields of a file must be organized as a se-
quence of blocks for output and unblocked after input. To support block I/O of files,
several functions are needed. The secondary storage must be managed. This involves
allocating files to free blocks on secondary storage and managing free storage so as
to know what blocks are available for new files and growth in existing files. In ad-
dition, individual block I/O requests must be scheduled; this issue was dealt with in
Chapter 11. Both disk scheduling and file allocation are concerned with optimizing
performance. As might be expected, these functions therefore need to be considered
together. Furthermore, the optimization will depend on the structure of the files and
the access patterns. Accordingly, developing an optimum file management system
from the point of view of performance is an exceedingly complicated task.

Figure 12.2 suggests a division between what might be considered the concerns
of the file management system as a separate system utility and the concerns of the
operating system, with the point of intersection being record processing. This divi-
sion is arbitrary; various approaches are taken in various systems.

Directory
management

Access
method

Blocking
Disk

scheduling

File
allocation

File
structure

Records

File management concerns

Operating system concerns

Physical blocks
in main memory

buffers

Physical blocks
in secondary
storage (disk)

User access
control

User & program
commands Operation,

file name
Free storage
management

File
manipulation

functions

I/O

Figure 12.2 Elements of File Management

12.2 / FILE ORGANIZATION AND ACCESS 529

In the remainder of this chapter, we look at some of the design issues sug-
gested in Figure 12.2. We begin with a discussion of file organizations and access
methods. Although this topic is beyond the scope of what is usually considered the
concerns of the operating system, it is impossible to assess the other file-related de-
sign issues without an appreciation of file organization and access. Next, we look at
the concept of file directories. These are often managed by the operating system on
behalf of the file management system. The remaining topics deal with the physical
I/O aspects of file management and are properly treated as aspects of OS design.
One such issue is the way in which logical records are organized into physical blocks.
Finally, there are the related issues of file allocation on secondary storage and the
management of free secondary storage.

 12.2 FILE ORGANIZATION AND ACCESS

In this section, we use the term file organization to refer to the logical structuring
of the records as determined by the way in which they are accessed. The physical
organization of the file on secondary storage depends on the blocking strategy and
the file allocation strategy, issues dealt with later in this chapter.

In choosing a file organization, several criteria are important:

Short access time
Ease of update
Economy of storage
Simple maintenance
Reliability

The relative priority of these criteria will depend on the applications that will
use the file. For example, if a file is only to be processed in batch mode, with all of
the records accessed every time, then rapid access for retrieval of a single record is
of minimal concern. A file stored on CD-ROM will never be updated, and so ease of
update is not an issue.

These criteria may conflict. For example, for economy of storage, there should be
minimum redundancy in the data. On the other hand, redundancy is a primary means
of increasing the speed of access to data. An example of this is the use of indexes.

The number of alternative file organizations that have been implemented or
just proposed is unmanageably large, even for a book devoted to file systems. In this
brief survey, we will outline five fundamental organizations. Most structures used in
actual systems either fall into one of these categories or can be implemented with
a combination of these organizations. The five organizations, the first four of which
are depicted in Figure 12.3, are as follows:

The pile
The sequential file
The indexed sequential file
The indexed file
The direct, or hashed, file

530 CHAPTER 12 / FILE MANAGEMENT

The Pile

The least complicated form of file organization may be termed the pile. Data are
collected in the order in which they arrive. Each record consists of one burst of data.
The purpose of the pile is simply to accumulate the mass of data and save it. Records
may have different fields, or similar fields in different orders. Thus, each field should
be self-describing, including a field name as well as a value. The length of each field
must be implicitly indicated by delimiters, explicitly included as a subfield, or known
as default for that field type.

Because there is no structure to the pile file, record access is by exhaustive
search. That is, if we wish to find a record that contains a particular field with a
particular value, it is necessary to examine each record in the pile until the desired

(a) Pile file

(c) Indexed sequential file

(d) Indexed file

Variable-length records
Variable set of fields
Chronological order

(b) Sequential file

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

Main file

Overflow
file

Index
levels

Exhaustive
index

Exhaustive
index

Partial
index

Primary file
(variable-length records)

Index

1
2

n

Figure 12.3 Common File Organizations

12.2 / FILE ORGANIZATION AND ACCESS 531

record is found or the entire file has been searched. If we wish to find all records that
contain a particular field or contain that field with a particular value, then the entire
file must be searched.

Pile files are encountered when data are collected and stored prior to process-
ing or when data are not easy to organize. This type of file uses space well when the
stored data vary in size and structure, is perfectly adequate for exhaustive searches,
and is easy to update. However, beyond these limited uses, this type of file is unsuit-
able for most applications.

The Sequential File

The most common form of file structure is the sequential file. In this type of file, a
fixed format is used for records. All records are of the same length, consisting of the
same number of fixed-length fields in a particular order. Because the length and
position of each field are known, only the values of fields need to be stored; the field
name and length for each field are attributes of the file structure.

One particular field, usually the first field in each record, is referred to as the
key field. The key field uniquely identifies the record; thus key values for different
records are always different. Further, the records are stored in key sequence: alpha-
betical order for a text key, and numerical order for a numerical key.

Sequential files are typically used in batch applications and are generally op-
timum for such applications if they involve the processing of all the records (e.g., a
billing or payroll application). The sequential file organization is the only one that is
easily stored on tape as well as disk.

For interactive applications that involve queries and/or updates of individual
records, the sequential file provides poor performance. Access requires the sequen-
tial search of the file for a key match. If the entire file, or a large portion of the file,
can be brought into main memory at one time, more efficient search techniques
are possible. Nevertheless, considerable processing and delay are encountered to
access a record in a large sequential file. Additions to the file also present prob-
lems. Typically, a sequential file is stored in simple sequential ordering of the re-
cords within blocks. That is, the physical organization of the file on tape or disk
directly matches the logical organization of the file. In this case, the usual procedure
is to place new records in a separate pile file, called a log file or transaction file.
Periodically, a batch update is performed that merges the log file with the master file
to produce a new file in correct key sequence.

An alternative is to organize the sequential file physically as a linked list. One
or more records are stored in each physical block. Each block on disk contains a
pointer to the next block. The insertion of new records involves pointer manipula-
tion but does not require that the new records occupy a particular physical block po-
sition. Thus, some added convenience is obtained at the cost of additional processing
and overhead.

The Indexed Sequential File

A popular approach to overcoming the disadvantages of the sequential file is the in-
dexed sequential file. The indexed sequential file maintains the key characteristic of the
sequential file: Records are organized in sequence based on a key field. Two features

532 CHAPTER 12 / FILE MANAGEMENT

are added: an index to the file to support random access, and an overflow file. The index
provides a lookup capability to reach quickly the vicinity of a desired record. The over-
flow file is similar to the log file used with a sequential file but is integrated so that a
record in the overflow file is located by following a pointer from its predecessor record.

In the simplest indexed sequential structure, a single level of indexing is used.
The index in this case is a simple sequential file. Each record in the index file con-
sists of two fields: a key field, which is the same as the key field in the main file, and
a pointer into the main file. To find a specific field, the index is searched to find the
highest key value that is equal to or precedes the desired key value. The search con-
tinues in the main file at the location indicated by the pointer.

To see the effectiveness of this approach, consider a sequential file with
1 million records. To search for a particular key value will require on average one-
half million record accesses. Now suppose that an index containing 1,000 entries
is constructed, with the keys in the index more or less evenly distributed over the
main file. Now it will take on average 500 accesses to the index file followed by 500
 accesses to the main file to find the record. The average search length is reduced
from 500,000 to 1,000.

Additions to the file are handled in the following manner: Each record in the
main file contains an additional field not visible to the application, which is a pointer
to the overflow file. When a new record is to be inserted into the file, it is added to
the overflow file. The record in the main file that immediately precedes the new
record in logical sequence is updated to contain a pointer to the new record in the
overflow file. If the immediately preceding record is itself in the overflow file, then
the pointer in that record is updated. As with the sequential file, the indexed sequen-
tial file is occasionally merged with the overflow file in batch mode.

The indexed sequential file greatly reduces the time required to access a single
record, without sacrificing the sequential nature of the file. To process the entire file se-
quentially, the records of the main file are processed in sequence until a pointer to the
overflow file is found, then accessing continues in the overflow file until a null pointer
is encountered, at which time accessing of the main file is resumed where it left off.

To provide even greater efficiency in access, multiple levels of indexing can be
used. Thus the lowest level of index file is treated as a sequential file and a higher-
level index file is created for that file. Consider again a file with 1 million records.
A lower-level index with 10,000 entries is constructed. A higher-level index into the
lower-level index of 100 entries can then be constructed. The search begins at the
higher-level index (average length = 50 accesses) to find an entry point into the
lower-level index. This index is then searched (average length = 50) to find an entry
point into the main file, which is then searched (average length = 50). Thus the
 average length of search has been reduced from 500,000 to 1,000 to 150.

The Indexed File

The indexed sequential file retains one limitation of the sequential file: Effective
processing is limited to that which is based on a single field of the file. For example,
when it is necessary to search for a record on the basis of some other attribute than
the key field, both forms of sequential file are inadequate. In some applications, the
flexibility of efficiently searching by various attributes is desirable.

12.3 / B-TREES 533

To achieve this flexibility, a structure is needed that employs multiple indexes,
one for each type of field that may be the subject of a search. In the general indexed
file, the concept of sequentiality and a single key are abandoned. Records are ac-
cessed only through their indexes. The result is that there is now no restriction on
the placement of records as long as a pointer in at least one index refers to that re-
cord. Furthermore, variable-length records can be employed.

Two types of indexes are used. An exhaustive index contains one entry for
every record in the main file. The index itself is organized as a sequential file
for ease of searching. A partial index contains entries to records where the field
of interest exists. With variable-length records, some records will not contain all
fields. When a new record is added to the main file, all of the index files must be
updated.

Indexed files are used mostly in applications where timeliness of information
is critical and where data are rarely processed exhaustively. Examples are airline
reservation systems and inventory control systems.

The Direct or Hashed File

The direct, or hashed, file exploits the capability found on disks to access directly
any block of a known address. As with sequential and indexed sequential files, a
key field is required in each record. However, there is no concept of sequential
 ordering here.

The direct file makes use of hashing on the key value. This function is explained
in Appendix F. Figure F.1b shows the type of hashing organization with an overflow
file that is typically used in a hash file.

Direct files are often used where very rapid access is required, where fixed-
length records are used, and where records are always accessed one at a time.
Examples are directories, pricing tables, schedules, and name lists.

 12.3 B-TREES

The preceding section referred to the use of an index file to access individual records
in a file or database. For a large file or database, a single sequential file of indexes on
the primary key does not provide for rapid access. To provide more efficient access,
a structured index file is typically used. The simplest such structure is a two-level
organization in which the original file is broken into sections and the upper level
consists of a sequenced set of pointers to the lower-level sections. This structure
can then be extended to more than two levels, resulting in a tree structure. Unless
some discipline is imposed on the construction of the tree index, it is likely to end
up with an uneven structure, with some short branches and some long branches, so
that the time to search the index is uneven. Therefore, a balanced tree structure, with
all branches of equal length, would appear to give the best average performance.
Such a structure is the B-tree, which has become the standard method of organizing
indexes for databases and is commonly used in OS file systems, including those sup-
ported by Mac OS X, Windows, and several Linux file systems. The B-tree structure
provides for efficient searching, adding, and deleting of items.

534 CHAPTER 12 / FILE MANAGEMENT

Before illustrating the concept of B-tree, let us define a B-tree and its charac-
teristics more precisely. A B-tree is a tree structure (no closed loops) with the fol-
lowing characteristics (Figure 12.4):

 1. The tree consists of a number of nodes and leaves.
 2. Each node contains at least one key which uniquely identifies a file record, and

more than one pointer to child nodes or leaves. The number of keys and point-
ers contained in a node may vary, within limits explained below.

 3. Each node is limited to the same number of maximum keys.
 4. The keys in a node are stored in nondecreasing order. Each key has an associ-

ated child that is the root of a subtree containing all nodes with keys less than
or equal to the key but greater than the preceding key. A node also has an ad-
ditional rightmost child that is the root for a subtree containing all keys greater
than any keys in the node. Thus, each node has one more pointer than keys.

A B-tree is characterized by its minimum degree d and satisfies the following
properties:

 1. Every node has at most 2d - 1 keys and 2d children or, equivalently, 2d
pointers.1

 2. Every node, except for the root, has at least d - 1 keys and d pointers. As a
result, each internal node, except the root, is at least half full and has at least d
children.

 3. The root has at least 1 key and 2 children.
 4. All leaves appear on the same level and contain no information. This is a

logical construct to terminate the tree; the actual implementation may differ.
For example, each bottom-level node may contain keys alternating with null
pointers.

 5. A nonleaf node with k pointers contains k - 1 keys.

Typically, a B-tree has a relatively large branching factor (large number of
 children) resulting in a tree of low height.

Figure 12.4 illustrates two levels of a B-tree. The upper level has (k - 1) keys
and k pointers and satisfies the following relationship:

Key1 6 Key3 6 c 6 Keyk - 1

Key1

Subtree1 Subtree2 Subtree3 Subtreek–1 Subtreek

Key2 Keyk–1

Figure 12.4 A B-tree Node with k Children

1Some treatments require, as stated here, that the maximum number of keys in a node is odd (e.g.,
[CORM09]); others specify even [COME79]; still others allow odd or even [KNUT98]. The choice does
not fundamentally affect the performance of B-trees.

12.3 / B-TREES 535

Each pointer points to a node that is the top level of a subtree of this upper-
level node. Each of these subtree nodes contains some number of keys and pointers,
unless it is a leaf node. The following relationships hold:

All the keys in Subtree1 are less than Key1
All the keys in Subtree2 are greater than Key1 and are less than Key2
All the keys in Subtree3 are greater than Key2 and are less than Key3

All the keys in Subtreek–1 are greater than Keyk–2 and are less than Keyk–1
All the keys in Subtreek are greater than Keyk–1

To search for a key, you start at the root node. If the key you want is in the
node, you’re done. If not, you go down one level. There are three cases:

 1. The key you want is less then the smallest key in this node. Take the leftmost
pointer down to the next level.

 2. The key you want is greater than the largest key in this node. Take the right-
most pointer down to the next level.

 3. The value of the key is between the values of two adjacent keys in this node.
Take the pointer between these keys down to the next level.

For example, consider the tree in Figure 12.5d and the desired key is 84. At
the root level, 84 7 51, so you take the rightmost branch down to the next level.
Here, we have 61 6 84 6 71, so you take the pointer between 61 and 71 down to
the next level, where the key 84 is found. Associated with this key is a pointer to the
desired record. An advantage of this tree structure over other tree structures is that
it is broad and shallow, so that the search terminates quickly. Furthermore, because
it is balanced (all branches from root to leaf are of equal length), there are no long
searches compared to other searches.

The rules for inserting a new key into the B-tree must maintain a balanced
tree. This is done as follows:

 1. Search the tree for the key. If the key is not in the tree, then you have reached
a node at the lowest level.

 2. If this node has fewer than 2d - 1 keys, then insert the key into this node in
the proper sequence.

 3. If the node is full (having 2d - 1 keys), then split this node around its median
key into two new nodes with d - 1 keys each and promote the median key to
the next higher level, as described in step 4. If the new key has a value less than
the median key, insert it into the left–hand new node; otherwise insert it into
the right–hand new node. The result is that the original node has been split
into two nodes, one with d - 1 keys and one with d keys.

 4. The promoted node is inserted into the parent node following the rules of
step 3. Therefore, if the parent node is already full, it must be split and its me-
dian key promoted to the next highest layer.

 5. If the process of promotion reaches the root node and the root node is already
full, then insertion again follows the rules of step 3. However, in this case the
median key becomes a new root node and the height of the tree increases by 1.

536 CHAPTER 12 / FILE MANAGEMENT

Figure 12.5 illustrates the insertion process on a B-tree of degree d = 3. In
each part of the figure, the nodes affected by the insertion process are unshaded.

 12.4 FILE DIRECTORIES

Contents

Associated with any file management system and collection of files is a file directory.
The directory contains information about the files, including attributes, location,
and ownership. Much of this information, especially that concerned with storage,

(b) Key = 90 inserted. This is a simple insertion into a node.

(c) Key = 45 inserted. This requires splitting a node into two parts and promoting one key to the root node.

(d) Key = 84 inserted. This requires splitting a node into two parts and promoting one key to the root node.
This then requires the root node to be split and a new root created.

(a) B-tree of minimum degree d = 3.

2 30 52 59 60

60

60

67 68 73 85 88 9632 39 43 44

23 51 61 71

10

2 30 52 59 67 68 73 85 88 90 9632 39 43 44

23 51 61 71

10

2 30 52 59 67 68 73 85 88 90 9632 43 44 45

23 39 51 61 71

10

2 30 52 59 60 67 68 73 84 85 90 9632 43 44 45

23 39

51

61 71 88

10

Figure 12.5 Inserting Nodes into a B-tree

12.4 / FILE DIRECTORIES 537

is managed by the operating system. The directory is itself a file, accessible by vari-
ous file management routines. Although some of the information in directories is
available to users and applications, this is generally provided indirectly by system
routines.

Table 12.1 suggests the information typically stored in the directory for each
file in the system. From the user’s point of view, the directory provides a mapping
between file names, known to users and applications, and the files themselves. Thus,
each file entry includes the name of the file. Virtually all systems deal with different
types of files and different file organizations, and this information is also provided.
An important category of information about each file concerns its storage, including
its location and size. In shared systems, it is also important to provide information
that is used to control access to the file. Typically, one user is the owner of the file
and may grant certain access privileges to other users. Finally, usage information is
needed to manage the current use of the file and to record the history of its usage.

Table 12.1 Information Elements of a File Directory

Basic Information

File Name Name as chosen by creator (user or program). Must be unique within a specific
directory

File Type For example: text, binary, load module, etc.
File Organization For systems that support different organizations

Address Information

Volume Indicates device on which file is stored
Starting Address Starting physical address on secondary storage (e.g., cylinder, track, and block

number on disk)
Size Used Current size of the file in bytes, words, or blocks
Size Allocated The maximum size of the file

Access Control Information

Owner User who is assigned control of this file. The owner may be able to grant/deny
 access to other users and to change these privileges.

Access Information A simple version of this element would include the user’s name and password for
each authorized user.

Permitted Actions Controls reading, writing, executing, and transmitting over a network

Usage Information

Date Created When file was first placed in directory
Identity of Creator Usually but not necessarily the current owner
Date Last Read Access Date of the last time a record was read
Identity of Last Reader User who did the reading
Date Last Modified Date of the last update, insertion, or deletion
Identity of Last Modifier User who did the modifying
Date of Last Backup Date of the last time the file was backed up on another storage medium
Current Usage Information about current activity on the file, such as process or processes that

have the file open, whether it is locked by a process, and whether the file has been
updated in main memory but not yet on disk

538 CHAPTER 12 / FILE MANAGEMENT

Structure

The way in which the information of Table 12.1 is stored differs widely among
various systems. Some of the information may be stored in a header record associ-
ated with the file; this reduces the amount of storage required for the directory,
making it easier to keep all or much of the directory in main memory to improve
speed.

The simplest form of structure for a directory is that of a list of entries, one for
each file. This structure could be represented by a simple sequential file, with the
name of the file serving as the key. In some earlier single-user systems, this tech-
nique has been used. However, it is inadequate when multiple users share a system
and even for single users with many files.

To understand the requirements for a file structure, it is helpful to consider the
types of operations that may be performed on the directory:

Search: When a user or application references a file, the directory must be
searched to find the entry corresponding to that file.
Create file: When a new file is created, an entry must be added to the directory.
Delete file: When a file is deleted, an entry must be removed from the directory.
List directory: All or a portion of the directory may be requested. Generally,
this request is made by a user and results in a listing of all files owned by that
user, plus some of the attributes of each file (e.g., type, access control informa-
tion, usage information).
Update directory: Because some file attributes are stored in the directory, a
change in one of these attributes requires a change in the corresponding direc-
tory entry.

The simple list is not suited to supporting these operations. Consider the needs
of a single user. The user may have many types of files, including word-processing
text files, graphic files, and spreadsheets. The user may like to have these organized
by project, by type, or in some other convenient way. If the directory is a simple se-
quential list, it provides no help in organizing the files and forces the user to be care-
ful not to use the same name for two different types of files. The problem is much
worse in a shared system. Unique naming becomes a serious problem. Furthermore,
it is difficult to conceal portions of the overall directory from users when there is no
inherent structure in the directory.

A start in solving these problems would be to go to a two-level scheme. In
this case, there is one directory for each user, and a master directory. The master
directory has an entry for each user directory, providing address and access con-
trol information. Each user directory is a simple list of the files of that user. This
arrangement means that names must be unique only within the collection of files
of a single user and that the file system can easily enforce access restriction on
directories. However, it still provides users with no help in structuring collections
of files.

A more powerful and flexible approach, and one that is almost universally ad-
opted, is the hierarchical, or tree-structure, approach (Figure 12.6). As before, there
is a master directory, which has under it a number of user directories. Each of these

12.4 / FILE DIRECTORIES 539

user directories, in turn, may have subdirectories and files as entries. This is true at
any level: That is, at any level, a directory may consist of entries for subdirectories
and/or entries for files.

It remains to say how each directory and subdirectory is organized. The sim-
plest approach, of course, is to store each directory as a sequential file. When di-
rectories may contain a very large number of entries, such an organization may
lead to unnecessarily long search times. In that case, a hashed structure is to be
preferred.

Naming

Users need to be able to refer to a file by a symbolic name. Clearly, each file in the
system must have a unique name in order that file references be unambiguous. On
the other hand, it is an unacceptable burden on users to require that they provide
unique names, especially in a shared system.

The use of a tree-structured directory minimizes the difficulty in assigning
unique names. Any file in the system can be located by following a path from the
root or master directory down various branches until the file is reached. The series
of directory names, culminating in the file name itself, constitutes a pathname for
the file. As an example, the file in the lower left-hand corner of Figure 12.7 has the
pathname User_B/Word/Unit_A/ABC. The slash is used to delimit names in the
sequence. The name of the master directory is implicit, because all paths start at that
directory. Note that it is perfectly acceptable to have several files with the same file
name, as long as they have unique pathnames, which is equivalent to saying that the
same file name may be used in different directories. In our example, there is another
file in the system with the file name ABC, but that has the pathname /User_B/
Draw/ABC.

Master directory

Subdirectory

Subdirectory

File

Subdirectory

Subdirectory

File

Subdirectory

File

File

Figure 12.6 Tree-Structured Directory

540 CHAPTER 12 / FILE MANAGEMENT

Although the pathname facilitates the selection of file names, it would be awk-
ward for a user to have to spell out the entire pathname every time a reference is
made to a file. Typically, an interactive user or a process has associated with it a cur-
rent directory, often referred to as the working directory. Files are then referenced
relative to the working directory. For example, if the working directory for user B
is “Word,” then the pathname Unit_A/ABC is sufficient to identify the file in the
lower left-hand corner of Figure 12.7. When an interactive user logs on, or when a
process is created, the default for the working directory is the user home directory.
During execution, the user can navigate up or down in the tree to change to a differ-
ent working directory.

System

Master directory

User_A
User_B
User_C

Directory
"User_C"

Directory
"User_A"Directory "User_B"

Draw
Word

Directory "Unit_A"

ABC

Directory "Word"

Unit_A

Directory "Draw"

ABC

File
"ABC"

Pathname: /User_B/Word/Unit_A/ABC

Pathname: /User_B/Draw/ABC

File
"ABC"

Figure 12.7 Example of Tree-Structured Directory

12.5 / FILE SHARING 541

 12.5 FILE SHARING

In a multiuser system, there is almost always a requirement for allowing files to be
shared among a number of users. Two issues arise: access rights and the management
of simultaneous access.

Access Rights

The file system should provide a flexible tool for allowing extensive file sharing
among users. The file system should provide a number of options so that the way
in which a particular file is accessed can be controlled. Typically, users or groups
of users are granted certain access rights to a file. A wide range of access rights has
been used. The following list is representative of access rights that can be assigned to
a particular user for a particular file:

None: The user may not even learn of the existence of the file, much less access
it. To enforce this restriction, the user would not be allowed to read the user
directory that includes this file.
Knowledge: The user can determine that the file exists and who its owner is.
The user is then able to petition the owner for additional access rights.
Execution: The user can load and execute a program but cannot copy it.
Proprietary programs are often made accessible with this restriction.
Reading: The user can read the file for any purpose, including copying and
execution. Some systems are able to enforce a distinction between viewing
and copying. In the former case, the contents of the file can be displayed to the
user, but the user has no means for making a copy.
Appending: The user can add data to the file, often only at the end, but cannot
modify or delete any of the file’s contents. This right is useful in collecting data
from a number of sources.
Updating: The user can modify, delete, and add to the file’s data. This normally
includes writing the file initially, rewriting it completely or in part, and remov-
ing all or a portion of the data. Some systems distinguish among different de-
grees of updating.
Changing protection: The user can change the access rights granted to other
users. Typically, this right is held only by the owner of the file. In some systems,
the owner can extend this right to others. To prevent abuse of this mechanism,
the file owner will typically be able to specify which rights can be changed by
the holder of this right.
Deletion: The user can delete the file from the file system.

These rights can be considered to constitute a hierarchy, with each right imply-
ing those that precede it. Thus, if a particular user is granted the updating right for a
particular file, then that user is also granted the following rights: knowledge, execu-
tion, reading, and appending.

542 CHAPTER 12 / FILE MANAGEMENT

One user is designated as owner of a given file, usually the person who initially
created the file. The owner has all of the access rights listed previously and may
grant rights to others. Access can be provided to different classes of users:

Specific user: Individual users who are designated by user ID
User groups: A set of users who are not individually defined. The system must
have some way of keeping track of the membership of user groups.
All: All users who have access to this system. These are public files.

Simultaneous Access

When access is granted to append or update a file to more than one user, the oper-
ating system or file management system must enforce discipline. A brute-force ap-
proach is to allow a user to lock the entire file when it is to be updated. A finer grain
of control is to lock individual records during update. Essentially, this is the readers/
writers problem discussed in Chapter 5. Issues of mutual exclusion and deadlock
must be addressed in designing the shared access capability.

 12.6 RECORD BLOCKING

As indicated in Figure 12.2, records are the logical unit of access of a structured file,2
whereas blocks are the unit of I/O with secondary storage. For I/O to be performed,
records must be organized as blocks.

There are several issues to consider. First, should blocks be of fixed or vari-
able length? On most systems, blocks are of fixed length. This simplifies I/O, buffer
allocation in main memory, and the organization of blocks on secondary storage.
Second, what should the relative size of a block be compared to the average record
size? The trade-off is this: The larger the block, the more records that are passed
in one I/O operation. If a file is being processed or searched sequentially, this is an
advantage, because the number of I/O operations is reduced by using larger blocks,
thus speeding up processing. On the other hand, if records are being accessed ran-
domly and no particular locality of reference is observed, then larger blocks result
in the unnecessary transfer of unused records. However, combining the frequency of
sequential operations with the potential for locality of reference, we can say that the
I/O transfer time is reduced by using larger blocks. The competing concern is that
larger blocks require larger I/O buffers, making buffer management more difficult.

Given the size of a block, there are three methods of blocking that can be used:

Fixed blocking: Fixed-length records are used, and an integral number of re-
cords are stored in a block. There may be unused space at the end of each
block. This is referred to as internal fragmentation.
Variable-length spanned blocking: Variable-length records are used and are
packed into blocks with no unused space. Thus, some records must span two
blocks, with the continuation indicated by a pointer to the successor block.

2As opposed to a file that is treated only as a stream of bytes, such as in the UNIX file system.

12.6 / RECORD BLOCKING 543

Variable-length unspanned blocking: Variable-length records are used, but
spanning is not employed. There is wasted space in most blocks because of the
inability to use the remainder of a block if the next record is larger than the
remaining unused space.

Figure 12.8 illustrates these methods assuming that a file is stored in sequential
blocks on a disk. The figure assumes that the file is large enough to span two tracks.3
The effect would not be changed if some other file allocation scheme were used (see
Section 12.6).

Fixed blocking is the common mode for sequential files with fixed-length re-
cords. Variable-length spanned blocking is efficient of storage and does not limit the

3The organization of data on a disk is in a concentric set of rings, called tracks. Each track is the same
width as the read/write head. See Appendix J.

Track 1

Track 2

R1 R2 R3 R4

R5 R6

Fixed blocking

Variable blocking: spanned

R7 R8

Track 1

Track 2

R1 R2 R3 R5 R6

R6

R4R4

R7 R8

R8

R9 R9

R9

R10

R10

R11 R12 R13

Variable blocking: unspanned

Track 1

Track 2

R1 R2 R3 R5

R6

Data

R4

R7

Gaps due to hardware design

Waste due to block fit to track size

Waste due to record fit to blocksize

Waste due to blocksize constraint
from fixed record size

Figure 12.8 Record Blocking Methods [WIED87]

544 CHAPTER 12 / FILE MANAGEMENT

size of records. However, this technique is difficult to implement. Records that span
two blocks require two I/O operations, and files are difficult to update, regardless of
the organization. Variable-length unspanned blocking results in wasted space and
limits record size to the size of a block.

The record-blocking technique may interact with the virtual memory hard-
ware, if such is employed. In a virtual memory environment, it is desirable to make
the page the basic unit of transfer. Pages are generally quite small, so that it is im-
practical to treat a page as a block for unspanned blocking. Accordingly, some sys-
tems combine multiple pages to create a larger block for file I/O purposes. This ap-
proach is used for VSAM files on IBM mainframes.

 12.7 SECONDARY STORAGE MANAGEMENT

On secondary storage, a file consists of a collection of blocks. The operating system
or file management system is responsible for allocating blocks to files. This raises
two management issues. First, space on secondary storage must be allocated to files,
and second, it is necessary to keep track of the space available for allocation. We will
see that these two tasks are related; that is, the approach taken for file allocation
may influence the approach taken for free space management. Further, we will see
that there is an interaction between file structure and allocation policy.

We begin this section by looking at alternatives for file allocation on a single
disk. Then we look at the issue of free space management, and finally we discuss
reliability.

File Allocation

Several issues are involved in file allocation:

 1. When a new file is created, is the maximum space required for the file allo-
cated at once?

 2. Space is allocated to a file as one or more contiguous units, which we shall
refer to as portions. That is, a portion is a contiguous set of allocated blocks.
The size of a portion can range from a single block to the entire file. What size
of portion should be used for file allocation?

 3. What sort of data structure or table is used to keep track of the portions as-
signed to a file? An example of such a structure is a file allocation table (FAT),
found on DOS and some other systems.

Let us examine these issues in turn.

PREALLOCATION VERSUS DYNAMIC ALLOCATION A preallocation policy requires
that the maximum size of a file be declared at the time of the file creation request. In
a number of cases, such as program compilations, the production of summary data
files, or the transfer of a file from another system over a communications network,
this value can be reliably estimated. However, for many applications, it is difficult if
not impossible to estimate reliably the maximum potential size of the file. In those
cases, users and application programmers would tend to overestimate file size so as

12.7 / SECONDARY STORAGE MANAGEMENT 545

not to run out of space. This clearly is wasteful from the point of view of secondary
storage allocation. Thus, there are advantages to the use of dynamic allocation,
which allocates space to a file in portions as needed.

PORTION SIZE The second issue listed is that of the size of the portion allocated to a
file. At one extreme, a portion large enough to hold the entire file is allocated. At the
other extreme, space on the disk is allocated one block at a time. In choosing a portion
size, there is a trade-off between efficiency from the point of view of a single file versus
overall system efficiency. [WIED87] lists four items to be considered in the trade-off:

 1. Contiguity of space increases performance, especially for Retrieve_Next
operations, and greatly for transactions running in a transaction-oriented oper-
ating system.

 2. Having a large number of small portions increases the size of tables needed to
manage the allocation information.

 3. Having fixed-size portions (e.g., blocks) simplifies the reallocation of space.
 4. Having variable-size or small fixed-size portions minimizes waste of unused

storage due to overallocation.

Of course, these items interact and must be considered together. The result is
that there are two major alternatives:

Variable, large contiguous portions: This will provide better performance. The
variable size avoids waste, and the file allocation tables are small. However,
space is hard to reuse.
Blocks: Small fixed portions provide greater flexibility. They may require large
tables or complex structures for their allocation. Contiguity has been aban-
doned as a primary goal; blocks are allocated as needed.

Either option is compatible with preallocation or dynamic allocation. In the
case of variable, large contiguous portions, a file is preallocated one contiguous
group of blocks. This eliminates the need for a file allocation table; all that is re-
quired is a pointer to the first block and the number of blocks allocated. In the case
of blocks, all of the portions required are allocated at one time. This means that
the file allocation table for the file will remain of fixed size, because the number of
blocks allocated is fixed.

With variable-size portions, we need to be concerned with the fragmentation
of free space. This issue was faced when we considered partitioned main memory in
Chapter 7. The following are possible alternative strategies:

First fit: Choose the first unused contiguous group of blocks of sufficient size
from a free block list.
Best fit: Choose the smallest unused group that is of sufficient size.
Nearest fit: Choose the unused group of sufficient size that is closest to the
previous allocation for the file to increase locality.

It is not clear which strategy is best. The difficulty in modeling alternative strat-
egies is that so many factors interact, including types of files, pattern of file access,

546 CHAPTER 12 / FILE MANAGEMENT

degree of multiprogramming, other performance factors in the system, disk caching,
and disk scheduling.

FILE ALLOCATION METHODS Having looked at the issues of preallocation versus
dynamic allocation and portion size, we are in a position to consider specific file
allocation methods. Three methods are in common use: contiguous, chained, and
indexed. Table 12.2 summarizes some of the characteristics of each method.

With contiguous allocation, a single contiguous set of blocks is allocated to a
file at the time of file creation (Figure 12.9). Thus, this is a preallocation strategy,
using variable-size portions. The file allocation table needs just a single entry for
each file, showing the starting block and the length of the file. Contiguous allocation
is the best from the point of view of the individual sequential file. Multiple blocks
can be read in at a time to improve I/O performance for sequential processing. It
is also easy to retrieve a single block. For example, if a file starts at block b, and the
ith block of the file is wanted, its location on secondary storage is simply b + i - 1.
However, contiguous allocation presents some problems. External fragmentation will
occur, making it difficult to find contiguous blocks of space of sufficient length. From

0 1 2 3 4

5 6 7

File A

File allocation table

File B

File C

File E

File D

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File name

File A
File B
File C
File D
File E

2
9
18
30
26

3
5
8
2
3

Start block Length

Figure 12.9 Contiguous File Allocation

Table 12.2 File Allocation Methods

Contiguous Chained Indexed

Preallocation? Necessary Possible Possible

Fixed or Variable Size Portions? Variable Fixed blocks Fixed blocks Variable

Portion Size Large Small Small Medium

Allocation Frequency Once Low to high High Low

Time to Allocate Medium Long Short Medium

File Allocation Table Size One entry One entry Large Medium

12.7 / SECONDARY STORAGE MANAGEMENT 547

time to time, it will be necessary to perform a compaction algorithm to free up addi-
tional space on the disk (Figure 12.10). Also, with preallocation, it is necessary to de-
clare the size of the file at the time of creation, with the problems mentioned earlier.

At the opposite extreme from contiguous allocation is chained allocation
(Figure 12.11). Typically, allocation is on an individual block basis. Each block con-
tains a pointer to the next block in the chain. Again, the file allocation table needs
just a single entry for each file, showing the starting block and the length of the
file. Although preallocation is possible, it is more common simply to allocate blocks
as needed. The selection of blocks is now a simple matter: Any free block can be
added to a chain. There is no external fragmentation to worry about because only

0 1 2 3 4

5 6 7

File A

File allocation table

File B

File C

File E File D

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File name

File A
File B
File C
File D
File E

0
3
8
19
16

3
5
8
2
3

Start block Length

Figure 12.10 Contiguous File Allocation (After Compaction)

0 1 2 3 4

5 6 7

File allocation table

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File B

File name Start block Length

1 5

Figure 12.11 Chained Allocation

548 CHAPTER 12 / FILE MANAGEMENT

one block at a time is needed. This type of physical organization is best suited to
sequential files that are to be processed sequentially. To select an individual block of
a file requires tracing through the chain to the desired block.

One consequence of chaining, as described so far, is that there is no accommo-
dation of the principle of locality. Thus, if it is necessary to bring in several blocks of
a file at a time, as in sequential processing, then a series of accesses to different parts
of the disk are required. This is perhaps a more significant effect on a single-user
system but may also be of concern on a shared system. To overcome this problem,
some systems periodically consolidate files (Figure 12.12).

Indexed allocation addresses many of the problems of contiguous and chained
allocation. In this case, the file allocation table contains a separate one-level index for
each file; the index has one entry for each portion allocated to the file. Typically, the
file indexes are not physically stored as part of the file allocation table. Rather, the
file index for a file is kept in a separate block, and the entry for the file in the file al-
location table points to that block. Allocation may be on the basis of either fixed-size
blocks (Figure 12.13) or variable-size portions (Figure 12.14). Allocation by blocks
eliminates external fragmentation, whereas allocation by variable-size portions im-
proves locality. In either case, file consolidation may be done from time to time. File
consolidation reduces the size of the index in the case of variable-size portions, but
not in the case of block allocation. Indexed allocation supports both sequential and
direct access to the file and thus is the most popular form of file allocation.

Free Space Management

Just as the space that is allocated to files must be managed, so the space that is not
currently allocated to any file must be managed. To perform any of the file alloca-
tion techniques described previously, it is necessary to know what blocks on the disk
are available. Thus we need a disk allocation table in addition to a file allocation
table. We discuss here a number of techniques that have been implemented.

0 1 2 3 4

5 6 7

File allocation table

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File B

File name Start block Length

0 5

Figure 12.12 Chained Allocation (After Consolidation)

12.7 / SECONDARY STORAGE MANAGEMENT 549

BIT TABLES This method uses a vector containing one bit for each block on the
disk. Each entry of a 0 corresponds to a free block, and each 1 corresponds to a
block in use. For example, for the disk layout of Figure 12.9, a vector of length 35 is
needed and would have the following value:

00111000011111000011111111111011000

A bit table has the advantage that it is relatively easy to find one or a contigu-
ous group of free blocks. Thus, a bit table works well with any of the file allocation
methods outlined. Another advantage is that it is as small as possible.

0 1 2 3 4

5 6 7

File allocation table

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File B

File name Index block

24

1
8
3
14
28

Figure 12.13 Indexed Allocation with Block Portions

0 1 2 3 4

5 6 7

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

Start block

1
28
14

3
4
1

Length

File allocation table

File B

File name Index block

24

Figure 12.14 Indexed Allocation with Variable-Length Portions

550 CHAPTER 12 / FILE MANAGEMENT

However, it can still be sizable. The amount of memory (in bytes) required for a
block bitmap is

disk size in bytes
8 * file system block size

Thus, for a 16-Gbyte disk with 512-byte blocks, the bit table occupies about 4 Mbytes.
Can we spare 4 Mbytes of main memory for the bit table? If so, then the bit table
can be searched without the need for disk access. But even with today’s memory
sizes, 4 Mbytes is a hefty chunk of main memory to devote to a single function. The
alternative is to put the bit table on disk. But a 4-Mbyte bit table would require
about 8,000 disk blocks. We can’t afford to search that amount of disk space every
time a block is needed, so a bit table resident in memory is indicated.

Even when the bit table is in main memory, an exhaustive search of the table
can slow file system performance to an unacceptable degree. This is especially true
when the disk is nearly full and there are few free blocks remaining. Accordingly,
most file systems that use bit tables maintain auxiliary data structures that sum-
marize the contents of subranges of the bit table. For example, the table could be
divided logically into a number of equal-size subranges. A summary table could in-
clude, for each subrange, the number of free blocks and the maximum-sized con-
tiguous number of free blocks. When the file system needs a number of contigu-
ous blocks, it can scan the summary table to find an appropriate subrange and then
search that subrange.

CHAINED FREE PORTIONS The free portions may be chained together by using
a pointer and length value in each free portion. This method has negligible space
overhead because there is no need for a disk allocation table, merely for a pointer to
the beginning of the chain and the length of the first portion. This method is suited
to all of the file allocation methods. If allocation is a block at a time, simply choose
the free block at the head of the chain and adjust the first pointer or length value.
If allocation is by variable-length portion, a first-fit algorithm may be used: The
headers from the portions are fetched one at a time to determine the next suitable
free portion in the chain. Again, pointer and length values are adjusted.

This method has its own problems. After some use, the disk will become quite
fragmented and many portions will be a single block long. Also note that every time
you allocate a block, you need to read the block first to recover the pointer to the
new first free block before writing data to that block. If many individual blocks
need to be allocated at one time for a file operation, this greatly slows file creation.
Similarly, deleting highly fragmented files is very time consuming.

INDEXING The indexing approach treats free space as a file and uses an index table
as described under file allocation. For efficiency, the index should be on the basis
of variable-size portions rather than blocks. Thus, there is one entry in the table for
every free portion on the disk. This approach provides efficient support for all of the
file allocation methods.

FREE BLOCK LIST In this method, each block is assigned a number sequentially
and the list of the numbers of all free blocks is maintained in a reserved portion of

12.7 / SECONDARY STORAGE MANAGEMENT 551

the disk. Depending on the size of the disk, either 24 or 32 bits will be needed to
store a single block number, so the size of the free block list is 24 or 32 times the size
of the corresponding bit table and thus must be stored on disk rather than in main
memory. However, this is a satisfactory method. Consider the following points:

 1. The space on disk devoted to the free block list is less than 1% of the total disk
space. If a 32-bit block number is used, then the space penalty is 4 bytes for
every 512-byte block.

 2. Although the free block list is too large to store in main memory, there are two
effective techniques for storing a small part of the list in main memory.

a. The list can be treated as a push-down stack (Appendix P) with the first few
thousand elements of the stack kept in main memory. When a new block is
allocated, it is popped from the top of the stack, which is in main memory.
Similarly, when a block is deallocated, it is pushed onto the stack. There
only has to be a transfer between disk and main memory when the in-mem-
ory portion of the stack becomes either full or empty. Thus, this technique
gives almost zero-time access most of the time.

b. The list can be treated as a FIFO queue, with a few thousand entries from
both the head and the tail of the queue in main memory. A block is allo-
cated by taking the first entry from the head of the queue and deallocated
by adding it to the end of the tail of the queue. There only has to be a trans-
fer between disk and main memory when either the in-memory portion of
the head of the queue becomes empty or the in-memory portion of the tail
of the queue becomes full.

In either of the strategies listed in the preceding point (stack or FIFO queue),
a background thread can slowly sort the in-memory list or lists to facilitate contigu-
ous allocation.

Volumes

The term volume is used somewhat differently by different operating systems and
file management systems, but in essence a volume is a logical disk. [CARR05]
 defines a volume as follows:

Volume: A collection of addressable sectors in secondary memory that an OS
or application can use for data storage. The sectors in a volume need not be con-
secutive on a physical storage device; instead, they need only appear that way to
the OS or application. A volume may be the result of assembling and merging
smaller volumes.

In the simplest case, a single disk equals one volume. Frequently, a disk is di-
vided into partitions, with each partition functioning as a separate volume. It is also
common to treat multiple disks as a single volume or partitions on multiple disks as
a single volume.

552 CHAPTER 12 / FILE MANAGEMENT

Reliability

Consider the following scenario:

 1. User A requests a file allocation to add to an existing file.
 2. The request is granted and the disk and file allocation tables are updated in

main memory but not yet on disk.
 3. The system crashes and subsequently restarts.
 4. User B requests a file allocation and is allocated space on disk that overlaps

the last allocation to user A.
 5. User A accesses the overlapped portion via a reference that is stored inside A’s

file.

This difficulty arose because the system maintained a copy of the disk al-
location table and file allocation table in main memory for efficiency. To prevent
this type of error, the following steps could be performed when a file allocation is
requested:

 1. Lock the disk allocation table on disk. This prevents another user from causing
alterations to the table until this allocation is completed.

 2. Search the disk allocation table for available space. This assumes that a copy of
the disk allocation table is always kept in main memory. If not, it must first be
read in.

 3. Allocate space, update the disk allocation table, and update the disk. Updating
the disk involves writing the disk allocation table back onto disk. For chained
disk allocation, it also involves updating some pointers on disk.

 4. Update the file allocation table and update the disk.
 5. Unlock the disk allocation table.

This technique will prevent errors. However, when small portions are allocated
frequently, the impact on performance will be substantial. To reduce this overhead,
a batch storage allocation scheme could be used. In this case, a batch of free por-
tions on the disk is obtained for allocation. The corresponding portions on disk are
marked “in use.” Allocation using this batch may proceed in main memory. When
the batch is exhausted, the disk allocation table is updated on disk and a new batch
may be acquired. If a system crash occurs, portions on the disk marked “in use” must
be cleaned up in some fashion before they can be reallocated. The technique for
cleanup will depend on the file system’s particular characteristics.

 12.8 UNIX FILE MANAGEMENT

In the UNIX file system, six types of files are distinguished:

Regular, or ordinary: Contains arbitrary data in zero or more data blocks.
Regular files contain information entered in them by a user, an application
program, or a system utility program. The file system does not impose any in-
ternal structure to a regular file but treats it as a stream of bytes.

12.8 / UNIX FILE MANAGEMENT 553

Directory: Contains a list of file names plus pointers to associated inodes (index
nodes), described later. Directories are hierarchically organized (Figure 12.6).
Directory files are actually ordinary files with special write protection privi-
leges so that only the file system can write into them, while read access is avail-
able to user programs.
Special: Contains no data but provides a mechanism to map physical devices
to file names. The file names are used to access peripheral devices, such as
terminals and printers. Each I/O device is associated with a special file, as dis-
cussed in Section 11.8.
Named pipes: As discussed in Section 6.7, a pipe is an interprocess communica-
tions facility. A pipe file buffers data received in its input so that a process that
reads from the pipe’s output receives the data on a first-in-first-out basis.
Links: In essence, a link is an alternative file name for an existing file.
Symbolic links: This is a data file that contains the name of the file it is linked to.

In this section, we are concerned with the handling of ordinary files, which cor-
respond to what most systems treat as files.

Inodes

Modern UNIX operating systems support multiple file systems but map all of these
into a uniform underlying system for supporting file systems and allocating disk
space to files. All types of UNIX files are administered by the OS by means of in-
odes. An inode (index node) is a control structure that contains the key information
needed by the operating system for a particular file. Several file names may be as-
sociated with a single inode, but an active inode is associated with exactly one file,
and each file is controlled by exactly one inode.

The attributes of the file as well as its permissions and other control informa-
tion are stored in the inode. The exact inode structure varies from one UNIX imple-
mentation to another. The FreeBSD inode structure, shown in Figure 12.15, includes
the following data elements:

The type and access mode of the file
The file’s owner and group-access identifiers
The time that the file was created, when it was most recently read and written,
and when its inode was most recently updated by the system
The size of the file in bytes
A sequence of block pointers, explained in the next subsection
The number of physical blocks used by the file, including blocks used to hold
indirect pointers and attributes
The number of directory entries that reference the file
The kernel and user-settable flags that describe the characteristics of the file
The generation number of the file (a randomly selected number assigned to
the inode each time that the latter is allocated to a new file; the generation
number is used to detect references to deleted files)

554 CHAPTER 12 / FILE MANAGEMENT

The blocksize of the data blocks referenced by the inode (typically the same
as, but sometimes larger than, the file system blocksize)
The size of the extended attribute information
Zero or more extended attribute entries

The blocksize value is typically the same as, but sometimes larger than, the file
system blocksize. On traditional UNIX systems, a fixed blocksize of 512 bytes was
used. FreeBSD has a minimum blocksize of 4,096 bytes (4 Kbytes); the blocksize can
be any power of 2 greater than or equal to 4,096. For typical file systems, the block-
size is 8 Kbytes or 16 Kbytes. The default FreeBSD blocksize is 16 Kbytes.

Inode

Mode

Owners (2)

Timestamps (4)

Size

Direct (0)

Direct (1)

Direct (12)

Single indirect

Double indirect

Triple indirect

Block count

Reference count

Flags (2)

Generation number

Blocksize

Extended attr size

Extended
attribute
blocks

Data

Data Data Data

Data Data Data

Data Data

Data Data

Data

Data

Data

Data

Data

Data

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Figure 12.15 Structure of FreeBSD Inode and File

12.8 / UNIX FILE MANAGEMENT 555

Extended attribute entries are variable-length entries used to store auxiliary
data that are separate from the contents of the file. The first two extended attributes
defined for FreeBSD deal with security. The first of these support access control
lists; this is described in Chapter 15. The second defined extended attribute supports
the use of security labels, which are part of what is known as a mandatory access
control scheme, also defined in Chapter 15.

On the disk, there is an inode table, or inode list, that contains the inodes of
all the files in the file system. When a file is opened, its inode is brought into main
memory and stored in a memory-resident inode table.

File Allocation

File allocation is done on a block basis. Allocation is dynamic, as needed, rather
than using preallocation. Hence, the blocks of a file on disk are not necessarily
contiguous. An indexed method is used to keep track of each file, with part of
the index stored in the inode for the file. In all UNIX implementations, the inode
includes a number of direct pointers and three indirect pointers (single, double,
triple).

The FreeBSD inode includes 120 bytes of address information that is orga-
nized as fifteen 64-bit addresses, or pointers. The first 12 addresses point to the first
12 data blocks of the file. If the file requires more than 12 data blocks, one or more
levels of indirection is used as follows:

The thirteenth address in the inode points to a block on disk that contains the
next portion of the index. This is referred to as the single indirect block. This
block contains the pointers to succeeding blocks in the file.
If the file contains more blocks, the fourteenth address in the inode points to
a double indirect block. This block contains a list of addresses of additional
single indirect blocks. Each of single indirect blocks, in turn, contains pointers
to file blocks.
If the file contains still more blocks, the fifteenth address in the inode points
to a triple indirect block that is a third level of indexing. This block points to
additional double indirect blocks.

All of this is illustrated in Figure 12.15. The total number of data blocks in a file
depends on the capacity of the fixed-size blocks in the system. In FreeBSD, the mini-
mum block size is 4 Kbytes, and each block can hold a total of 512 block addresses.
Thus, the maximum size of a file with this block size is over 500 GB (Table 12.3).

Table 12.3 Capacity of a FreeBSD File with 4-Kbyte Block Size

Level Number of Blocks Number of Bytes

Direct 12 48K

Single Indirect 512 2M

Double Indirect 512 * 512 = 256K 1G

Triple Indirect 512 * 256K = 128M 512G

556 CHAPTER 12 / FILE MANAGEMENT

This scheme has several advantages:

 1. The inode is of fixed size and relatively small and hence may be kept in main
memory for long periods.

 2. Smaller files may be accessed with little or no indirection, reducing processing
and disk access time.

 3. The theoretical maximum size of a file is large enough to satisfy virtually all
applications.

Directories

Directories are structured in a hierarchical tree. Each directory can contain files and/
or other directories. A directory that is inside another directory is referred to as a
subdirectory. As was mentioned, a directory is simply a file that contains a list of file
names plus pointers to associated inodes. Figure 12.16 shows the overall structure.
Each directory entry (dentry) contains a name for the associated file or subdirectory
plus an integer called the i-number (index number). When the file or directory is
 accessed, its i-number is used as an index into the inode table.

Volume Structure

A UNIX file system resides on a single logical disk or disk partition and is laid out
with the following elements:

Boot block: Contains code required to boot the operating system

Inode table Directory

Name1i1

Name2i2

Name3i3

Name4i4

Figure 12.16 UNIX Directories and Inodes

12.9 / LINUX VIRTUAL FILE SYSTEM 557

Superblock: Contains attributes and information about the file system, such as
partition size, and inode table size
Inode table: The collection of inodes for each file
Data blocks: Storage space available for data files and subdirectories

 12.9 LINUX VIRTUAL FILE SYSTEM

Linux includes a versatile and powerful file-handling facility, designed to support a
wide variety of file management systems and file structures. The approach taken in
Linux is to make use of a virtual file system (VFS), which presents a single, uniform
file system interface to user processes. The VFS defines a common file model that is
capable of representing any conceivable file system’s general feature and behavior.
The VFS assumes that files are objects in a computer’s mass storage memory that
share basic properties regardless of the target file system or the underlying proces-
sor hardware. Files have symbolic names that allow them to be uniquely identified
within a specific directory within the file system. A file has an owner, protection
against unauthorized access or modification, and a variety of other properties. A file
may be created, read from, written to, or deleted. For any specific file system, a map-
ping module is needed to transform the characteristics of the real file system to the
characteristics expected by the virtual file system.

Figure 12.17 indicates the key ingredients of the Linux file system strategy. A
user process issues a file system call (e.g., read) using the VFS file scheme. The VFS
converts this into an internal (to the kernel) file system call that is passed to a map-
ping function for a specific file system [e.g., ext2 FS (second extended filesystem)]. In
most cases, the mapping function is simply a mapping of file system functional calls
from one scheme to another. In some cases, the mapping function is more complex.

Virtual File
System (VFS)

Individual File
Systems

Device drivers

Buffer cache

System call interface

User applications

GNU C library

Inode
cache

User
space

Kernel
space

File
system

Directory
cache

Figure 12.17 Linux Virtual File System Context

558 CHAPTER 12 / FILE MANAGEMENT

For example, some file systems use a file allocation table (FAT), which stores the po-
sition of each file in the directory tree. In these file systems, directories are not files.
For such file systems, the mapping function must be able to construct dynamically,
and when needed, the files corresponding to the directories. In any case, the original
user file system call is translated into a call that is native to the target file system.
The target file system software is then invoked to perform the requested function on
a file or directory under its control and secondary storage. The results of the opera-
tion are then communicated back to the user in a similar fashion.

Figure 12.18 indicates the role that VFS plays within the Linux kernel. When
a process initiates a file-oriented system call (e.g., read), the kernel calls a function
in the VFS. This function handles the file-system-independent manipulations and
initiates a call to a function in the target file system code. This call passes through a
mapping function that converts the call from the VFS into a call to the target file sys-
tem. The VFS is independent of any file system, so the implementation of a mapping
function must be part of the implementation of a file system on Linux. The target
file system converts the file system request into device-oriented instructions that are
passed to a device driver by means of page cache functions.

VFS is an object-oriented scheme. Because it is written in C, rather than a
language that supports object programming (such as C++ or Java), VFS objects are
implemented simply as C data structures. Each object contains both data and point-
ers to file-system-implemented functions that operate on data. The four primary
object types in VFS are as follows:

Superblock object: Represents a specific mounted file system
Inode object: Represents a specific file
Dentry object: Represents a specific directory entry
File object: Represents an open file associated with a process

This scheme is based on the concepts used in UNIX file systems, as described in
Section 12.7. The key concepts of UNIX file system to remember are the following. A
file system consists of a hierarchal organization of directories. A directory is the same
as what is known as a folder on many non-UNIX platforms and may contain files
and/or other directories. Because a directory may contain other directories, a tree
structure is formed. A path through the tree structure from the root consists of a se-
quence of directory entries, ending in either a directory entry (dentry) or a file name.

User
process

Files on secondary
storage maintained

by file system X

Linux
virtual

file
system

Mapping
function
 to file

system X

File
system X

System calls
using VFS

user interface

System calls
using

filesystem X
interface

Disk I/O
calls

VFS
system
calls

Figure 12.18 Linux Virtual File System Concept

12.9 / LINUX VIRTUAL FILE SYSTEM 559

In UNIX, a directory is implemented as a file that lists the files and directories con-
tained within it. Thus, file operations can be performed on either files or directories.

The Superblock Object

The superblock object stores information describing a specific file system. Typically,
the superblock corresponds to the file system superblock or file system control
block, which is stored in a special sector on disk.

The superblock object consists of a number of data items. Examples include
the following:

The device that this file system is mounted on
The basic block size of the file system
Dirty flag, to indicate that the superblock has been changed but not written
back to disk
File system type
Flags, such as a read-only flag
Pointer to the root of the file system directory
List of open files
Semaphore for controlling access to the file system
List of superblock operations

The last item on the preceding list refers to an operations object contained
within the superblock object. The operations object defines the object methods
(functions) that the kernel can invoke against the superblock object. The methods
defined for the superblock object include the following:

read_inode: Read a specified inode from a mounted file system.
write_inode: Write given inode to disk.
put_inode: Release inode.
delete_inode: Delete inode from disk.
notify_change: Called when inode attributes are changed.
put_super: Called by the VFS on unmount to release the given superblock.
write_super: Called when the VFS decides that the superblock needs to be
written to disk.
statfs: Obtain file system statistics.
remount_fs: Called by the VFS when the file system is remounted with new
mount options.
clear_inode: Release inode and clear any pages containing related data.

The Inode Object

An inode is associated with each file. The inode object holds all the information
about a named file except its name and the actual data contents of the file. Items
contained in an inode object include owner, group, permissions, access times for a
file, size of data it holds, and number of links.

560 CHAPTER 12 / FILE MANAGEMENT

The inode object also includes an inode operations object that describes the
file system’s implemented functions that the VFS can invoke on an inode. The meth-
ods defined for the inode object include the following:

create: Creates a new inode for a regular file associated with a dentry object
in some directory
lookup: Searches a directory for an inode corresponding to a file name
mkdir: Creates a new inode for a directory associated with a dentry object in
some directory

The Dentry Object

A dentry (directory entry) is a specific component in a path. The component may
be either a directory name or a file name. Dentry objects facilitate quick lookups
to files and directories and are used in a dentry cache for that purpose. The dentry
object includes a pointer to the inode and superblock. It also includes a pointer to
the parent dentry and pointers to any subordinate dentrys.

The File Object

The file object is used to represent a file opened by a process. The object is created
in response to the open() system call and destroyed in response to the close() sys-
tem call. The file object consists of a number of items, including the following:

Dentry object associated with the file
File system containing the file
File objects usage counter
User’s user ID
User’s group ID
File pointer, which is the current position in the file from which the next opera-
tion will take place

The file object also includes an inode operations object that describes the file
system’s implemented functions that the VFS can invoke on a file object. The meth-
ods defined for the file object include read, write, open, release, and lock.

Caches

The VFS employs three caches to improve performance:

Inode cache: Because every file and directory is represented by a VFS inode, a
directory listing command or a file access command causes a number of inodes
to be accessed. The inode cache stores recently visited inodes to make access
quicker.
Directory cache: The directory cache stores the mapping between the full di-
rectory names and their inode numbers. This speeds up the process of listing a
directory.

12.10 / WINDOWS FILE SYSTEM 561

Buffer cache: The buffer cache is independent of the file systems and is inte-
grated into the mechanisms that the Linux kernel uses to allocate and read
and write data buffers. As the real file systems read data from the underly-
ing physical disks, this results in requests to the block device drivers to read
physical blocks from the device that they control. So, if the same data is
needed often, it will be retrieved from the buffer cache rather than read from
the disk.

 12.10 WINDOWS FILE SYSTEM

The developers of Windows NT designed a new file system, the New Technology
File System (NTFS), which is intended to meet high-end requirements for worksta-
tions and servers. Examples of high-end applications include the following:

Client/server applications such as file servers, compute servers, and database
servers
Resource-intensive engineering and scientific applications
Network applications for large corporate systems

This section provides an overview of NTFS.

Key Features of NTFS

NTFS is a flexible and powerful file system built, as we shall see, on an elegantly
simple file system model. The most noteworthy features of NTFS include the
following:

Recoverability: High on the list of requirements for the new Windows file sys-
tem was the ability to recover from system crashes and disk failures. In the
event of such failures, NTFS is able to reconstruct disk volumes and return
them to a consistent state. It does this by using a transaction-processing model
for changes to the file system; each significant change is treated as an atomic
action that is either entirely performed or not performed at all. Each transac-
tion that was in process at the time of a failure is subsequently backed out or
brought to completion. In addition, NTFS uses redundant storage for critical
file system data, so that failure of a disk sector does not cause the loss of data
describing the structure and status of the file system.
Security: NTFS uses the Windows object model to enforce security. An open file
is implemented as a file object with a security descriptor that defines its security
attributes. The security descriptor is persisted as an attribute of each file on disk.
Large disks and large files: NTFS supports very large disks and very large files
more efficiently than other file systems, such as FAT.
Multiple data streams: The actual contents of a file are treated as a stream
of bytes. In NTFS, it is possible to define multiple data streams for a single
file. An example of the utility of this feature is that it allows Windows to be
used by remote Macintosh systems to store and retrieve files. On Macintosh,
each file has two components: the file data and a resource fork that contains

562 CHAPTER 12 / FILE MANAGEMENT

information about the file. NTFS treats these two components as two data
streams within a single file.
Journaling: NTFS keeps a log of all changes made to files on the volumes.
Programs, such as desktop search, can read the journal to identify what files
have changed.
Compression and encryption: Entire directories and individual files can be
transparently compressed and/or encrypted.
Hard and symbolic links: In order to support POSIX, Windows has always sup-
ported “hard links,” which allow a single file to be accessible by multiple path
names on the same volume. Starting with Windows Vista, “symbolic links” are
supported which allow a file or directory to be accessible by multiple path
names, even if the names are on different volumes. Windows also supports
“mount points” which allow volumes to appear at junction points on other
volumes, rather than be named by driver letters, such as “D:”.

NTFS Volume and File Structure

NTFS makes use of the following disk storage concepts:

Sector: The smallest physical storage unit on the disk. The data size in bytes is
a power of 2 and is almost always 512 bytes.
Cluster: One or more contiguous (next to each other on the disk) sectors. The
cluster size in sectors is a power of 2.
Volume: A logical partition on a disk, consisting of one or more clusters and
used by a file system to allocate space. At any time, a volume consists of file
system information, a collection of files, and any additional unallocated space
remaining on the volume that can be allocated to files. A volume can be all or
a portion of a single disk or it can extend across multiple disks. If hardware or
software RAID 5 is employed, a volume consists of stripes spanning multiple
disks. The maximum volume size for NTFS is 264 clusters.

The cluster is the fundamental unit of allocation in NTFS, which does not
recognize sectors. For example, suppose each sector is 512 bytes and the sys-
tem is configured with two sectors per cluster (one cluster = 1K bytes). If a
user creates a file of 1,600 bytes, two clusters are allocated to the file. Later, if
the user updates the file to 3,200 bytes, another two clusters are allocated. The
clusters allocated to a file need not be contiguous; it is permissible to fragment
a file on the disk. Currently, the maximum file size supported by NTFS is 232
clusters, which is equivalent to a maximum of 248 bytes. A cluster can have at
most 216 bytes.

The use of clusters for allocation makes NTFS independent of physical sec-
tor size. This enables NTFS to support easily nonstandard disks that do not have a
512-byte sector size and to support efficiently very large disks and very large files
by using a larger cluster size. The efficiency comes from the fact that the file system
must keep track of each cluster allocated to each file; with larger clusters, there are
fewer items to manage.

12.10 / WINDOWS FILE SYSTEM 563

Table 12.4 shows the default cluster sizes for NTFS. The defaults depend on
the size of the volume. The cluster size that is used for a particular volume is estab-
lished by NTFS when the user requests that a volume be formatted.

NTFS VOLUME LAYOUT NTFS uses a remarkably simple but powerful approach
to organizing information on a disk volume. Every element on a volume is a file,
and every file consists of a collection of attributes. Even the data contents of a file is
treated as an attribute. With this simple structure, a few general-purpose functions
suffice to organize and manage a file system.

Figure 12.19 shows the layout of an NTFS volume, which consists of four re-
gions. The first few sectors on any volume are occupied by the partition boot sec-
tor (although it is called a sector, it can be up to 16 sectors long), which contains
information about the volume layout and the file system structures as well as boot
startup information and code. This is followed by the master file table (MFT), which
contains information about all of the files and folders (directories) on this NTFS
volume. In essence, the MFT is a list of all files and their attributes on this NTFS
volume, organized as a set of rows in a table structure.

Following the MFT is a region containing system files. Among the files in this
region are the following:

MFT2: A mirror of the first few rows of the MFT, used to guarantee access
to the volume in the case of a single-sector failure in the sectors storing the
MFT
Log file: A list of transaction steps used for NTFS recoverability
Cluster bit map: A representation of the space on the volume, showing which
clusters are in use

Table 12.4 Windows NTFS Partition and Cluster Sizes

Volume Size Sectors per Cluster Cluster Size

…512 Mbyte 1 512 bytes

512 Mbyte–1 Gbyte 2 1K

1 Gbyte–2 Gbyte 4 2K

2 Gbyte–4 Gbyte 8 4K

4 Gbyte–8 Gbyte 16 8K

8 Gbyte–16 Gbyte 32 16K

16 Gbyte–32 Gbyte 64 32K

732 Gbyte 128 64K

Partition
boot

sector
Master file table File areaSystem

files

Figure 12.19 NTFS Volume Layout

564 CHAPTER 12 / FILE MANAGEMENT

Attribute definition table: Defines the attribute types supported on this vol-
ume and indicates whether they can be indexed and whether they can be re-
covered during a system recovery operation

MASTER FILE TABLE The heart of the Windows file system is the MFT. The MFT is
organized as a table of 1,024-byte rows, called records. Each row describes a file on
this volume, including the MFT itself, which is treated as a file. If the contents of a
file are small enough, then the entire file is located in a row of the MFT. Otherwise,
the row for that file contains partial information and the remainder of the file spills
over into other available clusters on the volume, with pointers to those clusters in
the MFT row of that file.

Each record in the MFT consists of a set of attributes that serve to define the
file (or folder) characteristics and the file contents. Table 12.5 lists the attributes that
may be found in a row, with the required attributes indicated by shading.

Recoverability

NTFS makes it possible to recover the file system to a consistent state following a
system crash or disk failure. The key elements that support recoverability are as fol-
lows (Figure 12.20):

I/O manager: Includes the NTFS driver, which handles the basic open, close,
read, and write functions of NTFS. In addition, the software RAID module
FTDISK can be configured for use.
Log file service: Maintains a log of file system metadata changes on disk. The
log file is used to recover an NTFS-formatted volume in the case of a system
failure (i.e., without having to run the file system check utility).

Table 12.5 Windows NTFS File and Directory Attribute Types

Attribute Type Description

Standard information Includes access attributes (read-only, read/write, etc.); time stamps, including when
the file was created or last modified; and how many directories point to the file
(link count)

Attribute list A list of attributes that make up the file and the file reference of the MFT file
record in which each attribute is located. Used when all attributes do not fit into a
single MFT file record

File name A file or directory must have one or more names.

Security descriptor Specifies who owns the file and who can access it

Data The contents of the file. A file has one default unnamed data attribute and may
have one or more named data attributes.

Index root Used to implement folders

Index allocation Used to implement folders

Volume information Includes volume-related information, such as the version and name of the volume

Bitmap Provides a map representing records in use on the MFT or folder

Note: Green-colored rows refer to required file attributes; the other attributes are optional.

12.10 / WINDOWS FILE SYSTEM 565

Cache manager: Responsible for caching file reads and writes to enhance per-
formance. The cache manager optimizes disk I/O.
Virtual memory manager: The NTFS accesses cached files by mapping file
references to virtual memory references and reading and writing virtual
memory.

It is important to note that the recovery procedures used by NTFS are de-
signed to recover file system metadata, not file contents. Thus, the user should never
lose a volume or the directory/file structure of an application because of a crash.
However, user data are not guaranteed by the file system. Providing full recover-
ability, including user data, would make for a much more elaborate and resource-
consuming recovery facility.

The essence of the NTFS recovery capability is logging. Each operation that
alters a file system is treated as a transaction. Each suboperation of a transaction
that alters important file system data structures is recorded in a log file before being
recorded on the disk volume. Using the log, a partially completed transaction at the
time of a crash can later be redone or undone when the system recovers.

In general terms, these are the steps taken to ensure recoverability, as de-
scribed in [RUSS11]:

 1. NTFS first calls the log file system to record in the log file (in the cache) any
transactions that will modify the volume structure.

 2. NTFS modifies the volume (in the cache).
 3. The cache manager calls the log file system to prompt it to flush the log file to

disk.
 4. Once the log file updates are safely on disk, the cache manager flushes the

volume changes to disk.

Log file
service

NTFS driver

I/O manager

Fault-tolerant
driver

Disk driver

Cache
manager

Virtual memory
manager

Flush the
log file

Write the
cache

Log the transaction

Read/write a
mirrored or

striped volume

Read/write
the disk

Read/write
the file

Load data from
disk into
memory

Access the mapped
file or flush the cache

Figure 12.20 Windows NTFS Components

566 CHAPTER 12 / FILE MANAGEMENT

 12.11 ANDROID FILE MANAGEMENT

File System

Android makes use of the file management capabilities built into Linux. The
Android file system directory is similar to what is seen on a typical Linux installa-
tion, with some Android-specific features.

Figure 12.21 shows the top levels of a typical Android file system directory.
The system directory contains the core parts of the operating system, including
system binaries, system libraries, and configuration files. It also includes a basic set
of Android applications, such as Alarmclock, Calculator, and Camera. The system
image is locked, with only read-only access granted to file system users. The remain-
ing directories shown in Figure 12.21 are read-write.

The data directory provides the principal location used by applications to store
files. When a new application is installed in the system, the following actions, among
others, are taken with respect to the data directory:

The .apk (Android package) is placed into /data/app.
Application-centric libraries are installed into /data/data/<application name>.
This is an application-specific sandbox area, accessible by the application but
not accessible to other applications.
Application-relevant files databases are set up.

The cache directory is used for temporary storage by applications. This is
the partition where Android stores frequently accessed data and app components.
Wiping the cache doesn’t affect your personal data but simply gets rid of the existing
data there, which gets automatically rebuilt as you continue using the device.

The mnt/sdcard directory is not a partition on the internal memory of the
device but rather the SD card, which is a nonvolatile memory card that can be

/system

/(root)

(ro)

ro: mounted as read only
rw: mounted as read and write

(rw)

(rw)

removable storage (rw)

/data

/cache

/mnt/sdcard

bin

etc

lib

usr

Figure 12.21 Typical Directory Tree of Android

12.12 / SUMMARY 567

incorporated with the Android devices. The SD card is a removable memory card
that the user can remove and plug into his or her computer. In terms of usage, this
is user storage space for the user to read/write data of all sorts, such as data, audio
and video files. On devices with both an internal and external SD card, the /sdcard
partition is always used to refer to the internal SD card. For the external SD card, if
present, an alternative partition is used, which differs from device to device.

SQLite

SQLite, which is based on SQL, is worth special mention. The Structured Query
Language (SQL) provides as standardized means for definition of and access to a
relational database by either a local or remote user or application. Structured Query
Language (SQL), originally developed by IBM in the mid-1970s, is a standardized
language that can be used to define schema, manipulate, and query data in a rela-
tional database. There are several versions of the ANSI/ISO standard and a variety
of different implementations, but all follow the same basic syntax and semantics.

SQLite is the most widely deployed SQL database engine in the world. It is
designed to provide a streamlined SQL-based database management system suitable
for embedded systems and other limited-memory systems. The full SQLite library can
be implemented in under 400 kilobytes (KB). Unnecessary features can be disabled
at compile-time to further reduce the size of the library to under 190 KB if desired.

In contrast to other database management systems, SQLite is not a separate
process that is accessed from the client application. Instead, the SQLite library is
linked in and thus becomes an integral part of the application program.

 12.12 SUMMARY

A file management system is a set of system software that provides services to users
and applications in the use of files, including file access, directory maintenance, and
access control. The file management system is typically viewed as a system service
that itself is served by the operating system, rather than being part of the operating
system itself. However, in any system, at least part of the file management function
is performed by the operating system.

A file consists of a collection of records. The way in which these records may
be accessed determines its logical organization, and to some extent its physical or-
ganization on disk. If a file is primarily to be processed as a whole, then a sequential
file organization is the simplest and most appropriate. If sequential access is needed
but random access to individual file is also desired, then an indexed sequential file
may give the best performance. If access to the file is principally at random, then an
indexed file or hashed file may be the most appropriate.

Whatever file structure is chosen, a directory service is also needed. This al-
lows files to be organized in a hierarchical fashion. This organization is useful to the
user in keeping track of files and is useful to the file management system in provid-
ing access control and other services to users.

File records, even when of fixed size, generally do not conform to the size
of a physical disk block. Accordingly, some sort of blocking strategy is needed.

568 CHAPTER 12 / FILE MANAGEMENT

A trade-off among complexity, performance, and space utilization determines the
blocking strategy to be used.

A key function of any file management scheme is the management of disk
space. Part of this function is the strategy for allocating disk blocks to a file. A va-
riety of methods have been employed, and a variety of data structures have been
used to keep track of the allocation for each file. In addition, the space on disk that
has not been allocated must be managed. This latter function primarily consists of
maintaining a disk allocation table indicating which blocks are free.

 12.13 RECOMMENDED READING

[VENU09] presents an object-oriented design approach toward file structure imple-
mentation. [COME79] provides a thorough discussion of B-trees. [CORM09] and
[KNUT98] also include good treatments.

The Linux file system is examined in detail in [LOVE10] and [BOVE06].
A good overview is [RUBI97].

BOVE06 Bovet, D., and Cesati, M. Understanding the Linux Kernel. Sebastopol, CA:
O’Reilly, 2006.

COME79 Comer, D. “The Ubiquitous B-Tree.” Computing Surveys, June 1979.
CORM09 Cormen, T., et al. Introduction to Algorithms. Cambridge, MA: MIT Press,

2009.
KNUT98 Knuth, D. The Art of Computer Programming, Volume 3: Sorting and

Searching. Reading, MA: Addison-Wesley, 1998.
LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-

Wesley, 2010.
RUBI97 Rubini, A. “The Virtual File System in Linux.” Linux Journal, May 1997.
VENU09 Venugopal, K. File Structures Using C++. New York: McGraw-Hill, 2009.

 12.14 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access method
bit table
block
chained file allocation
contiguous file

allocation
database
device driver
disk allocation table
field

file
file allocation
file allocation table
file directory
file management

system
file name
hashed file
indexed file
indexed file allocation

indexed sequential file
inode
key field
logical I/O
pathname
physical I/O
pile
record
sequential file
working directory

12.14 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 569

Review Questions

 12.1. What is the difference between a field and a record?
 12.2. What is the difference between a file and a database?
 12.3. What is a file management system?
 12.4. What criteria are important in choosing a file organization?
 12.5. List and briefly define five file organizations.
 12.6. Why is the average search time to find a record in a file less for an indexed sequential

file than for a sequential file?
 12.7. What are typical operations that may be performed on a directory?
 12.8. What is the relationship between a pathname and a working directory?
 12.9. What are typical access rights that may be granted or denied to a particular user for a

particular file?
 12.10. List and briefly define three blocking methods.
 12.11. List and briefly define three file allocation methods.

Problems

 12.1. Define:
B = block size
R = record size
P = size of block pointer
F = blocking factor; expected number of records within a block

Give a formula for F for the three blocking methods depicted in Figure 12.8.
 12.2. One scheme to avoid the problem of preallocation versus waste or lack of contiguity

is to allocate portions of increasing size as the file grows. For example, begin with a
portion size of one block, and double the portion size for each allocation. Consider a
file of n records with a blocking factor of F, and suppose that a simple one-level index
is used as a file allocation table.
a. Give an upper limit on the number of entries in the file allocation table as a func-

tion of F and n.
b. What is the maximum amount of the allocated file space that is unused at any

time?
 12.3. What file organization would you choose to maximize efficiency in terms of speed of

access, use of storage space, and ease of updating (adding/deleting/modifying) when
the data are
a. updated infrequently and accessed frequently in random order?
b. updated frequently and accessed in its entirety relatively frequently?
c. updated frequently and accessed frequently in random order?

 12.4. For the B-tree in Figure 12.4c, show the result of inserting the key 97.
 12.5. An alternative algorithm for insertion into a B-tree is the following: As the insertion

algorithm travels down the tree, each full node that is encountered is immediately
split, even though it may turn out that the split was unnecessary.
a. What is the advantage of this technique?
b. What are the disadvantages?

 12.6. Both the search and the insertion time for a B-tree are a function of the height of the
tree. We would like to develop a measure of the worst-case search or insertion time.
Consider a B-tree of degree d that contains a total of n keys. Develop an inequality
that shows an upper bound on the height h of the tree as a function of d and n.

570 CHAPTER 12 / FILE MANAGEMENT

 12.7. Ignoring overhead for directories and file descriptors, consider a file system in which
files are stored in blocks of 16K bytes. For each of the following file sizes, calculate
the percentage of wasted file space due to incomplete filling of the last block: 41,600
bytes; 640,000 bytes; 4.064,000 bytes.

 12.8. What are the advantages of using directories?
 12.9. Directories can be implemented either as “special files” that can only be accessed in

limited ways or as ordinary data files. What are the advantages and disadvantages of
each approach?

 12.10. Some operating systems have a tree–structured file system but limit the depth of the
tree to some small number of levels. What effect does this limit have on users? How
does this simplify file system design (if it does)?

 12.11. Consider a hierarchical file system in which free disk space is kept in a free space list.
a. Suppose the pointer to free space is lost. Can the system reconstruct the free space

list?
b. Suggest a scheme to ensure that the pointer is never lost as a result of a single

memory failure.
 12.12. In UNIX System V, the length of a block is 1 Kbyte, and each block can hold a total of

256 block addresses. Using the inode scheme, what is the maximum size of a file?
 12.13. Consider the organization of a UNIX file as represented by the inode (Figure 12.15).

Assume that there are 12 direct block pointers, and a singly, doubly, and triply indirect
pointer in each inode. Further, assume that the system block size and the disk sector
size are both 8K. If the disk block pointer is 32 bits, with 8 bits to identify the physical
disk and 24 bits to identify the physical block, then
a. What is the maximum file size supported by this system?
b. What is the maximum file system partition supported by this system?
c. Assuming no information other than that the file inode is already in main mem-

ory, how many disk accesses are required to access the byte in position 13,423,956?

571

 13.1 Embedded Systems

 13.2 Characteristics of Embedded Operating Systems
Adapting an Existing Commercial Operating System
Purpose-Built Embedded Operating System

 13.3 Embedded Linux
Kernel Size
Compilation
Embedded Linux File Systems
Advantages of Embedded Linux
Android

 13.4 TinyOS
Wireless Sensor Networks
TinyOS Goals
TinyOS Components
TinyOS Scheduler
Example Configuration
TinyOS Resource Interface

 13.5 Recommended Reading

 13.6 Key Terms, Review Questions, and Problems

EMBEDDED OPERATING SYSTEMS

CHAPTER

Embedded SystemsPART 6

572 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

In this chapter, we examine one of the most important and widely used categories
of operating systems: embedded operating systems. The embedded system environ-
ment places unique and demanding requirements on the OS and calls for design
strategies quite different than that found in ordinary operating systems.

We begin with an overview of the concept of embedded systems and then turn
to an examination of the principles of embedded operating systems. Finally, this
chapter surveys two very different approaches to embedded OS design: embedded
Linux and TinyOS. Appendix Q discusses eCos, another important embedded OS.

 13.1 EMBEDDED SYSTEMS

The term embedded system refers to the use of electronics and software within a
product, as opposed to a general-purpose computer, such as a laptop or desktop
system. The following is a good general definition:1

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Explain the concept of embedded system.
Understand the characteristics of embedded operating systems.
Explain the distinction between Linux and embedded Linux.
Describe the architecture and key features of TinyOS.

1Michael Barr, Embedded Systems Glossary. Netrino Technical Library. http://www.netrino.com/
Embedded-Systems/Glossary

Embedded system: A combination of computer hardware and software, and per-
haps additional mechanical or other parts, designed to perform a dedicated func-
tion. In many cases, embedded systems are part of a larger system or product, as
in the case of an antilock braking system in a car.

Often, embedded systems are tightly coupled to their environment. This can
give rise to real-time constraints imposed by the need to interact with the environ-
ment. Constraints, such as required speeds of motion, required precision of mea-
surement, and required time durations, dictate the timing of software operations.
If multiple activities must be managed simultaneously, this imposes more complex
real-time constraints.

Figure 13.1, based on [KOOP96], shows in general terms an embedded system
organization. In addition to the processor and memory, there are a number of ele-
ments that differ from the typical desktop or laptop computer:

There may be a variety of interfaces that enable the system to measure, ma-
nipulate, and otherwise interact with the external environment.

http://www.netrino.com/Embedded-Systems/Glossary
http://www.netrino.com/Embedded-Systems/Glossary

13.2 / CHARACTERISTICS OF EMBEDDED OPERATING SYSTEMS 573

Auxiliary
systems
(power,
cooling)

MemoryFPGA/
ASIC

Human
interface

Diagnostic
port

D/A
conversion

A/D
conversion

Electromechanical
backup and safety

Sensors Actuators

Processor

Software

External
environment

Figure 13.1 Possible Organization of an Embedded System

The human interface may be as simple as a flashing light or as complicated as
real-time robotic vision.
The diagnostic port may be used for diagnosing the system that is being con-
trolled—not just for diagnosing the embedded computer.
Special-purpose field programmable (FPGA), application specific (ASIC), or
even nondigital hardware may be used to increase performance or safety.
Software often has a fixed function and is specific to the application.

 13.2 CHARACTERISTICS OF EMBEDDED OPERATING SYSTEMS

A simple embedded system, with simple functionality, may be controlled by a spe-
cial-purpose program or set of programs with no other software. Typically, more
complex embedded systems include an OS. Although it is possible in principle to
use a general-purpose OS, such as Linux, for an embedded system, constraints of
memory space, power consumption, and real-time requirements typically dictate the
use of a special-purpose OS designed for the embedded system environment.

The following are some of the unique characteristics and design requirements
for embedded operating systems:

Real-time operation: In many embedded systems, the correctness of a com-
putation depends, in part, on the time at which it is delivered. Often, real-time
constraints are dictated by external I/O and control stability requirements.
Reactive operation: Embedded software may execute in response to external
events. If these events do not occur periodically or at predictable intervals, the
embedded software may need to take into account worst-case conditions and
set priorities for execution of routines.

574 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

Configurability: Because of the large variety of embedded systems, there is a
large variation in the requirements, both qualitative and quantitative, for em-
bedded OS functionality. Thus, an embedded OS intended for use on a variety
of embedded systems must lend itself to flexible configuration so that only the
functionality needed for a specific application and hardware suite is provided.
[MARW06] gives the following examples. The linking and loading functions
can be used to select only the necessary OS modules to load. Conditional com-
pilation can be used. If an object-oriented structure is used, proper subclasses
can be defined. However, verification is a potential problem for designs with
a large number of derived tailored operating systems. Takada cites this as a
potential problem for eCos [TAKA01].
I/O device flexibility: There is virtually no device that needs to be supported
by all versions of the OS, and the range of I/O devices is large. [MARW06]
suggests that it makes sense to handle relatively slow devices such as disks and
network interfaces by using special tasks instead of integrating their drives
into the OS kernel.
Streamlined protection mechanisms: Embedded systems are typically de-
signed for a limited, well-defined functionality. Untested programs are rarely
added to the software. After the software has been configured and tested, it
can be assumed to be reliable. Thus, apart from security measures, embedded
systems have limited protection mechanisms. For example, I/O instructions
need not be privileged instructions that trap to the OS; tasks can directly per-
form their own I/O. Similarly, memory protection mechanisms can be mini-
mized. [MARW06] provides the following example. Let switch correspond
to the memory-mapped I/O address of a value that needs to be checked as part
of an I/O operation. We can allow the I/O program to use an instruction such
as load register, switch to determine the current value. This approach is
preferable to the use of an OS service call, which would generate overhead for
saving and restoring the task context.
Direct use of interrupts: General-purpose operating systems typically do not
permit any user process to use interrupts directly. [MARW06] lists three rea-
sons why it is possible to let interrupts directly start or stop tasks (e.g., by
storing the task’s start address in the interrupt vector address table) rather
than going through OS interrupt service routines: (1) Embedded systems can
be considered to be thoroughly tested, with infrequent modifications to the
OS or application code; (2) protection is not necessary, as discussed in the
preceding bullet item; and (3) efficient control over a variety of devices is
required.

There are two general approaches to developing an embedded OS. The first
approach is to take an existing OS and adapt it for the embedded application.
The other approach is to design and implement an OS intended solely for em-
bedded use.2

2Much of the discussion in the remainder of Section 13.2 is based on course notes on embedded systems
from Prof. Rajesh Gupta, University of California at San Diego.

13.2 / CHARACTERISTICS OF EMBEDDED OPERATING SYSTEMS 575

Adapting an Existing Commercial Operating System

An existing commercial OS can be used for an embedded system by adding real-time
capability, streamlining operation, and adding necessary functionality. This approach
typically makes use of Linux, but FreeBSD, Windows, and other general-purpose
operating systems have also been used. Such operating systems are typically slower
and less predictable than a special-purpose embedded OS. An advantage of this ap-
proach is that the embedded OS derived from a commercial general-purpose OS is
based on a set of familiar interfaces, which facilitates portability.

The disadvantage of using a general-purpose OS is that it is not optimized
for real-time and embedded applications. Thus, considerable modification may be
required to achieve adequate performance. In particular, a typical OS optimizes for
the average case rather than the worst case for scheduling, usually assigns resources
on demand, and ignores most if not all semantic information about an application.

Purpose-Built Embedded Operating System

A significant number of operating systems have been designed from the ground
up for embedded applications. Two prominent examples of this latter approach are
eCos and TinyOS, both of which are discussed in this chapter.

Typical characteristics of a specialized embedded OS include the following:

Has a fast and lightweight process or thread switch
Scheduling policy is real time and dispatcher module is part of scheduler in-
stead of separate component.
Has a small size
Responds to external interrupts quickly; typical requirement is response time
of less than 10 μs
Minimizes intervals during which interrupts are disabled
Provides fixed or variable-sized partitions for memory management as well as
the ability to lock code and data in memory
Provides special sequential files that can accumulate data at a fast rate

To deal with timing constraints, the kernel

Provides bounded execution time for most primitives
Maintains a real-time clock
Provides for special alarms and time-outs
Supports real-time queuing disciplines such as earliest deadline first and prim-
itives for jamming a message into the front of a queue
Provides primitives to delay processing by a fixed amount of time and to sus-
pend/resume execution

The characteristics just listed are common in embedded operating systems
with real-time requirements. However, for complex embedded systems, the require-
ment may emphasize predictable operation over fast operation, necessitating differ-
ent design decisions, particularly in the area of task scheduling.

576 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

 13.3 EMBEDDED LINUX

The term embedded Linux simply means a version of Linux running in an embed-
ded system. In this section, we highlight some of the key differences between em-
bedded Linux and a version of Linux running on a desktop or laptop computer.

Kernel Size

Desktop and server Linux systems need to support a large number of devices be-
cause of the wide variety of configurations that use Linux. Similarly, such systems
also need to support a range of communication and data exchange protocols so that
they can be used for a large number of different purposes. Embedded devices typi-
cally require support for a specific set of devices, peripherals, and protocols, depend-
ing on the hardware that is present in a given device and the intended purpose of
that device. Fortunately, the Linux kernel is highly configurable in terms of the ar-
chitecture that it is compiled for and the processors and devices that it supports.

An embedded Linux distribution is a version of Linux to be customized for
the size and hardware constraints of embedded devices, and includes software pack-
ages that support a variety of services and applications on those devices. Thus, an
embedded Linux kernel will be far smaller than an ordinary Linux kernel.

Compilation

A key differentiator between desktop/server and embedded Linux distributions is
that desktop and server software is typically compiled on the platform where it will
execute, while embedded Linux distributions are usually compiled on one platform
but are intended to be executed on another. The software used for this purpose is
referred to as a cross-compiler.

Embedded Linux File Systems

Some applications may create relatively small file systems to be used only for the du-
ration of the application and which can be stored in main memory. But in general, a
file system must be stored in persistent memory, such as flash memory or traditional
disk-based storage devices. For most embedded systems, an internal or external disk
is not an option, and persistent storage is generally provided by flash memory.

As with other aspects of an embedded Linux system, the file system must be as
small as possible. A number of such compact file systems have been designed for use
in embedded systems. The following are commonly used examples:

cramfs: The Compressed RAM file system is a simple read-only file system
that is designed to minimize size by maximizing the efficient use of underlying
storage. Files on cramfs file systems are compressed in units that match the
Linux page size (typically 4096 bytes or 4 MB, based on kernel version and
configuration) to provide efficient random access to file contents.
squashfs: Like cramfs, squashfs is a compressed, read-only file system that was
designed for use on low memory or limited storage size environments such as
embedded Linux systems.

13.4 / TINYOS 577

jffs2: The Journaling Flash File System, version 2, is a log-based file system
that, as the name suggests, is designed for use on NOR and NAND flash de-
vices with special attention to flash-oriented issues such as wear-leveling.
ubifs: The Unsorted Block Image File System generally provides better per-
formance than jffs2 on larger flash devices, and also supports write caching to
provide additional performance improvements.
yaffs2: Yet another Flash File System, version 2, provides a fast and robust file
system for large flash devices. Yaffs2 requires less RAM to hold file system
state information than file systems such as jffs2, and also generally provides
better performance if the file system is being written to frequently.

Advantages of Embedded Linux

Embedded versions of Linux began to appear as early as 1999. A number of compa-
nies have developed their own versions tailored to specific platforms. Advantages of
using Linux as the basis for an embedded OS include the following:

Vendor independence: The platform provider is not dependent on a particular
vendor to provide needed features and meet deadlines for deployment.
Varied hardware support: Linux support for a wide range of processor archi-
tectures and peripheral devices makes it suitable for virtually any embedded
system.
Low cost: The use of Linux minimizes cost for development and training.
Open source: The use of Linux provides all of the advantages of open source
software.

Android

As we have discussed throughout this book, Android is an embedded OS based on
a Linux kernel. Thus, it is reasonable to consider Android an example of embedded
Linux. However, many embedded Linux developers do not consider Android to be
an instance of embedded Linux [CLAR13]. From the point of view of these devel-
opers, a classic embedded device has a fixed function, frozen at the factory. Android
is more of a platform OS that can support a variety of applications that vary from
one platform to the next. Further, Android is a vertically integrated system, includ-
ing some Android-specific modifications to the Linux kernel. The focus of Android
lies in the vertical integration of the Linux kernel and the Android user-space com-
ponents. Ultimately, it is a matter of semantics, with no “official” definition of em-
bedded Linux on which to rely.

 13.4 TINYOS

The eCos system provides a more streamlined approach for an embedded OS than
one based on a commercial general-purpose OS, such as an embedded version of
Linux. Thus, eCos and similar systems are better suited for small embedded systems

578 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

with tight requirements on memory, processing time, real-time response, power con-
sumption, and so on. TinyOS takes the process of streamlining to a much further
point, resulting in a very minimal OS for embedded systems. The core OS requires
400 bytes of code and data memory, combined.

TinyOS represents a significant departure from other embedded operating
systems. One striking difference is that TinyOS is not a real-time OS. The reason for
this is the expected workload, which is in the context of a wireless sensor network,
as described in the next subsection. Because of power consumption, these devices
are off most of the time. Applications tend to be simple, with processor contention
not much of an issue.

Additionally, in TinyOS there is no kernel, as there is no memory protec-
tion and it is a component-based OS; there are no processes; the OS itself does
not have a memory allocation system (although some rarely used components
do introduce one); interrupt and exception handling is dependent on the periph-
eral; and it is completely nonblocking, so there are few explicit synchronization
primitives.

TinyOS has become a popular approach to implementing wireless sensor net-
work software. Currently, over 500 organizations are developing and contributing to
an open source standard for Tiny OS.

Wireless Sensor Networks

TinyOS was developed primarily for use with networks of small wireless sen-
sors. A number of trends have enabled the development of extremely compact,
low-power sensors. The well-known Moore’s law continues to drive down the
size of memory and processing logic elements. Smaller size in turn reduces power
 consumption. Low power and small size trends are also evident in wireless commu-
nications hardware, micro-electromechanical sensors (MEMS), and transducers. As
a result, it is possible to develop an entire sensor complete with logic in a cubic mil-
limeter. The application and system software must be compact enough that sensing,
communication, and computation capabilities can be incorporated into a complete,
but tiny, architecture.

Low–cost, small–size, low-power-consuming wireless sensors can be used in
a host of applications [ROME04]. Figure 13.2 shows a typical configuration. A
base station connects the sensor network to a host PC and passes on sensor data
from the network to the host PC, which can do data analysis and/or transmit the
data over a corporate network or Internet to an analysis server. Individual sensors
collect data and transmit these to the base station, either directly or through sen-
sors that act as data relays. Routing functionality is needed to determine how to
relay the data through the sensor network to the base station. [BUON01] points
out that, in many applications, the user will want to be able to quickly deploy a
large number of low-cost devices without having to configure or manage them.
This means that they must be capable of assembling themselves into an ad hoc
network. The mobility of individual sensors and the presence of RF interference
means that the network will have to be capable of reconfiguring itself in a matter
of seconds.

13.4 / TINYOS 579

TinyOS Goals

With the tiny, distributed sensor application in mind, a group of researchers from
UC Berkeley [HILL00] set the following goals for TinyOS:

Allow high concurrency: In a typical wireless sensor network application, the
devices are concurrency intensive. Several different flows of data must be kept
moving simultaneously. While sensor data are input in a steady stream, pro-
cessed results must be transmitted in a steady stream. In addition, external
controls from remote sensors or base stations must be managed.
Operate with limited resources: The target platform for TinyOS will have lim-
ited memory and computational resources and run on batteries or solar power.

 A single platform may offer only kilobytes of program memory and hundreds
of bytes of RAM. The software must make efficient use of the available pro-
cessor and memory resources while enabling low-power communication.
Adapt to hardware evolution: Most hardware is in constant evolution; applica-
tions and most system services must be portable across hardware generations.
Thus, it should be possible to upgrade the hardware with little or no software
change, if the functionality is the same.
Support a wide range of applications: Applications exhibit a wide range of
requirements in terms of lifetime, communication, sensing, and so on. A modu-
lar, general-purpose embedded OS is desired so that a standardized approach
leads to economies of scale in developing applications and support software.
Support a diverse set of platforms: As with the preceding point, a general-
purpose embedded OS is desirable.
Be robust: Once deployed, a sensor network must run unattended for months
or years. Ideally, there should be redundancy both within a single system and

Internet

Host PC
Base

station

Sensor
and relay

Sensor
and relay

Sensor
and relay

Sensor
and relay

Sensor

Sensor

Wired link

Wireless link

Sensor

Figure 13.2 Typical Wireless Sensor Network Topology

580 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

across the network of sensors. However, both types of redundancy require ad-
ditional resources. One software characteristic that can improve robustness is
to use highly modular, standardized software components.

It is worth elaborating on the concurrency requirement. In a typical applica-
tion, there will be dozens, hundreds, or even thousands of sensors networked to-
gether. Usually, little buffering is done, because of latency issues. For example, if
you are sampling every 5 minutes and want to buffer four samples before sending,
the average latency is 10 minutes. Thus, information is typically captured, processed,
and streamed onto the network in a continuous flow. Further, if the sensor sampling
produces a significant amount of data, the limited memory space available limits the
number of samples that could be buffered. Even so, in some applications, each of
the flows may involve a large number of low-level events interleaved with higher-
level processing. Some of the high-level processing will extend over multiple real-
time events. Further, sensors in a network, because of the low power of transmission
available, typically operate over a short physical range. Thus data from outlying sen-
sors must be relayed to one or more base stations by intermediate nodes.

TinyOS Components

An embedded software system built using TinyOS consists of a set of small mod-
ules, called components, each of which performs a simple task or set of tasks and
which interface with each other and with hardware in limited and well-defined ways.
The only other software module is the scheduler, discussed subsequently. In fact, be-
cause there is no kernel, there is no actual OS. But we can take the following view.
The application area of interest is the wireless sensor network (WSN). To meet the
 demanding software requirements of this application, a rigid, simplified software ar-
chitecture is dictated, consisting of components. The TinyOS development commu-
nity has implemented a number of open-source components that provide the basic
functions needed for the WSN application. Examples of such standardized compo-
nents include single-hop networking, ad-hoc routing, power management, timers, and
nonvolatile storage control. For specific configurations and applications, users build
additional special-purpose components and link and load all of the components
needed for the user’s application. TinyOS, then, consists of a suite of standardized
components. Some but not all of these components are used, together with applica-
tion-specific user-written components, for any given implementation. The OS for that
implementation is simply the set of standardized components from the TinyOS suite.

All components in a TinyOS configuration have the same structure, an ex-
ample of which is shown in Figure 13.3a. The shaded box in the diagram indicates
the component, which is treated as an object that can only be accessed by defined
interfaces, indicated by white boxes. A component may be hardware or software.
Software components are implemented in nesC, which is an extension of C with
two distinguishing features: a programming model where components interact via
interfaces, and an event-based concurrency model with run-to-completion task and
interrupt handlers, explained subsequently.

The architecture consists of a layered arrangement of components. Each com-
ponent can link to only two other components, one below it in the hierarchy and one
above it. A component issues commands to its lower-level component and receives

13.4 / TINYOS 581

event signals from it. Similarly, the component accepts commands from its upper-
level component and issues event signals to it. At the bottom of the hierarchy are
hardware components and at the top of the hierarchy are application components,
which may not be part of the standardized TinyOS suite but which must conform to
the TinyOS component structure.

A software component implements one or more tasks. Each task in a compo-
nent is similar to a thread in an ordinary OS, with certain limitations. Within a com-
ponent, tasks are atomic: Once a task has started, it runs to completion. It cannot
be preempted by another task in the same component, and there is no time slicing.
However, a task can be preempted by an event. A task cannot block or spin wait.
These limitations greatly simplify the scheduling and management of tasks within
a component. There is only a single stack, assigned to the currently running task.
Tasks can perform computations, call lower-level components (commands) and sig-
nal higher-level events, and schedule other tasks.

Commands are nonblocking requests. That is, a task that issues a command
does not block or spin wait for a reply from the lower-level component. A com-
mand is typically a request for the lower-level component to perform some service,

(a) TimerM component

(b) TimerC configuration

TimerM

StdControl

Clock

Timer

TimerM

StdControl

Clock

Clock

HWClock

Timer

StdControl Timer

module TimerM {
 provides {
 interface StdControl;
 interface Timer;
 }
 uses interface Clock as Clk;
} ...

configuration TimerC {
 provides {
 interface StdControl;
 interface Timer;
 }
}

implementation {
 components TimerM, HWClock;
 StdControl = TimerM.StdControl;
 Timer = TimerM.Timer;
 TimerM.Clk -> HWClock.Clock;
}

Figure 13.3 Example of Component and Configuration

582 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

such as initiating a sensor reading. The effect on the component that receives the
command is specific to the command given and the task required to satisfy the com-
mand. Generally, when a command is received, a task is scheduled for later execu-
tion, because a command cannot preempt the currently running task. The command
returns immediately to the calling component; at a later time, an event will signal
completion to the calling component. Thus, a command does not cause a preemp-
tion in the called component and does not cause blocking in the calling component.

Events in TinyOS may be tied either directly or indirectly to hardware events.
The lowest-level software components interface directly to hardware interrupts,
which may be external interrupts, timer events, or counter events. An event han-
dler in a lowest-level component may handle the interrupt itself or may propagate
event messages up through the component hierarchy. A command can post a task
that will signal an event in the future. In this case, there is no tie of any kind to a
hardware event.

A task can be viewed as having three phases. A caller posts a command to a
module. The module then runs the requested task. The module then notifies the
caller, via an event, that the task is complete.

The component depicted in Figure 13.3a, TimerM, is part of the TinyOS timer
service. This component provides the StdControl and Timer interface and uses a
Clock interface. Providers implement commands (i.e., the logic in this component).
Users implement events (i.e., external to the component). Many TinyOS compo-
nents use the StdControl interface to be initialized, started, or stopped. TimerM pro-
vides the logic that maps from a hardware clock into TinyOS’s timer abstraction. The
timer abstraction can be used for counting down a given time interval. Figure 13.3a
also shows the formal specification of the TimerM interfaces.

The interfaces associated with TimerM are specified as follows:

interface StdControl {
 command result_t init();
 command result_t start();
 command result_t stop();
}
interface Timer {
 command result_t start(char type, uint32_t interval);
 command result_t stop();
 event result_t fired();
}
interface Clock {
 command result_t setRate(char interval, char scale);
 event result_t fire();
}

Components are organized into configurations by “wiring” them together at
their interfaces and equating the interfaces of the configuration with some of the in-
terfaces of the components. A simple example is shown in Figure 13.3b. The uppercase
C stands for Component. It is used to distinguish between an interface (e.g., Timer)
and a component that provides the interface (e.g., TimerC).The uppercase M stands

13.4 / TINYOS 583

for Module. This naming convention is used when a single logical component has both
a configuration and a module. The TimerC component, providing the Timer interface,
is a configuration that links its implementation (TimerM) to Clock and LED provid-
ers. Otherwise, any user of TimerC would have to explicitly wire its subcomponents.

TinyOS Scheduler

The TinyOS scheduler operates across all components. Virtually all embedded sys-
tems using TinyOS will be uniprocessor systems, so that only one task among all the
tasks in all the components may execute at a time. The scheduler is a separate com-
ponent. It is the one portion of TinyOS that must be present in any system.

The default scheduler in TinyOS is a simple FIFO (first-in-first-out) queue.
A task is posted to the scheduler (place in the queue) either as a result of an event,
which triggers the posting, or as a result of a specific request by a running task to
schedule another task. The scheduler is power aware. This means that the scheduler
puts the processor to sleep when there are no tasks in the queue. The peripherals re-
main operating, so that one of them can wake up the system by means of a hardware
event signaled to a lowest-level component. Once the queue is empty, another task
can be scheduled only as a result of a direct hardware event. This behavior enables
efficient battery usage.

The scheduler has gone through two generations. In TinyOS 1.x, there is a
shared task queue for all tasks, and a component can post a task to the scheduler
multiple times. If the task queue is full, the post operation fails. Experience with net-
working stacks showed this to be problematic, as the task might signal completion of
a split-phase operation: If the post fails, the component above might block forever,
waiting for the completion event. In TinyOS 2.x, every task has its own reserved slot
in the task queue, and a task can only be posted once. A post fails if and only if the
task has already been posted. If a component needs to post a task multiple times, it
can set an internal state variable so that when the task executes, it reposts itself. This
slight change in semantics greatly simplifies a lot of component code. Rather than
test to see if a task is posted already before posting it, a component can just post the
task. Components do not have to try to recover from failed posts and retry. The cost
is one byte of state per task.

A user can replace the default scheduler with one that uses a different dis-
patching scheme, such as a priority-based scheme or a deadline scheme. However,
preemption and time slicing should not be used because of the overhead such sys-
tems generate. More importantly, they violate the TinyOS concurrency model, which
assumes tasks do not preempt each other.

Example of Configuration

Figure 13.4 shows a configuration assembled from software and hardware compo-
nents. This simplified example, called Surge and described in [GAY03], performs
periodic sensor sampling and uses ad-hoc multihop routing over the wireless net-
work to deliver samples to the base station. The upper part of the figure shows the
components of Surge (represented by boxes) and the interfaces by which they are
wired (represented by arrowed lines). The SurgeM component is the application-
level component that orchestrates the operation of the configuration.

584 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

Figure 13.4b shows a portion of the configuration for the Surge application.
The following is a simplified excerpt from the SurgeM specification.

module SurgeM {
 provides interface StdControl;
 uses interface ADC;
 uses interface Timer;
 uses interface SendMsg;
 uses interface LEDs;
}

(a) Simplified view of the Surge Application

(b) Top-level surge configuration

LED ! light-emitting diode
ADC ! analog-to-digital converter

Photo

HWclock

Queuedsend

Generic
Comm

Timer
Multihop

LEDs

SurgeM

Timer SendMsg

SendMsgClock

ReceiveMsg

LEDs ADC

Main

Photo TimerC Multihop LEDsC

SurgeM

StdControl

StdControl StdControl StdControlADC Timer SndMsg LEDs

ADC Timer SndMsg LEDs

StdControl

Figure 13.4 Examples of TinyOS Application

13.4 / TINYOS 585

implementation {
 uint16_t sensorReading;
 command result_t StdControl.init() {
 return call Timer.start(TIMER_REPEAT, 1000);
 }
 event result_t Timer.fired() {
 call ADC.getData();
 return SUCCESS;
 }
 event result_t ADC.dataReady(uint16_t data) {
 sensorReading = data;
 ...send message with data in it...
 return SUCCESS;
 }
 ...
}

This example illustrates the strength of the TinyOS approach. The software is
organized as an interconnected set of simple modules, each of which defines one or
a few tasks. Components have simple, standardized interfaces to other components,
be they hardware or software. Thus, components can easily be replaced. Components
can be hardware or software, with a boundary change not visible to the application
programmer.

TinyOS Resource Interface

TinyOS provides a simple but powerful set of conventions for dealing with resources.
Three abstractions for resources are used in TinyOS:

Dedicated: A resource that a subsystem needs exclusive access to at all times.
In this class of resources, no sharing policy is needed since only a single com-
ponent ever requires use of the resource. Examples of dedicated abstractions
include interrupts and counters.
Virtualized: Every client of a virtualized resource interacts with it as if it were
a dedicated resource, with all virtualized instances being multiplexed on top of
a single underlying resource. The virtualized abstraction may be used when the
underlying resource need not be protected by mutual exclusion. An example is
a clock or timer.
Shared: The shared resource abstraction provides access to a dedicated re-
source through an arbiter component. The arbiter enforces mutual exclusion,
allowing only one user (called a client) at a time to have access to a resource
and enabling the client to lock the resource.

In the remainder of this subsection, we briefly define the shared resource fa-
cility of TinyOS. The arbiter determines which client has access to the resource at
which time. While a client holds a resource, it has complete and unfettered con-
trol. Arbiters assume that clients are cooperative, only acquiring the resource when

586 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

needed and holding on to it no longer than necessary. Clients explicitly release re-
sources: There is no way for an arbiter to forcibly reclaim it.

Figure 13.5 shows a simplified view of the shared resource configuration used
to provide access to an underlying resource. Associated with each resource to be
shared is an arbiter component. The arbiter enforces a policy that enables a client to
lock the resource, use it, and then release the resource. The shared resource configu-
ration provides the following interfaces to a client:

Resource: The client issues a request at this interface, requesting access to the
resource. If the resource is currently locked, the arbiter places the request in a
queue. When a client is finished with the resource, it issues a release command
at this interface.
Resource requested: This is similar to the Resource interface. In this case, the
client is able to hold on to a resource until the client is notified that someone
else needs the resource.
Resource configure: This interface allows a resource to be automatically con-
figured just before a client is granted access to it. Components providing the
ResourceConfigure interface use the interfaces provided by an underlying
dedicated resource to configure it into one of its desired modes of operation.
Resource-specific interfaces: Once a client has access to a resource, it uses re-
source-specific interfaces to exchange data and control information with the
resource.

Arbiter

Resource
Resource
requested

Resource
Resource
requested

Resource-specific
interfaces

Resource-specific
interfaces

Resource-specific
interfaces

Resource
configure

Resource
configure

Arbiter
info

Arbiter
Info

Shared resource

Resource-specific
interfaces

Dedicated resource

Figure 13.5 Shared Resource Configuration

13.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 587

In addition to the dedicated resource, the shared resource configuration con-
sists of two components. The Arbiter accepts requests for access and configuration
from a client and enforces the lock on the underlying resource. The shared resource
component mediates data exchange between the client and the underlying resource.
Arbiter information passed from the arbiter to the shared resource component con-
trols the access of the client to the underlying resource.

 13.5 RECOMMENDED READING

[KOOP96] provides a systematic discussion of the requirements for embedded sys-
tems. [STAN96] is a useful overview of real-time and embedded systems.

[HILL00] gives an overview and design rationale for TinyOS. [GAY05] is an
interesting discussion of software design strategies using TinyOS. [BUON01] pro-
vides a good example of the use of TinyOS in building a network or wireless sen-
sors. Two excellent references for the current version of TinyOS are [GAY03] and
[LEVI05].

BUON01 Buonadonna, P.; Hill, J.; and Culler, D. “Active Message Communication for
Tiny Networked Sensors.” Proceedings, IEEE INFOCOM 2001, April 2001

GAY03 Gay, D., et al. “The nesC Language: A Holistic Approach to Networked
Embedded Systems.” Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, 2003.

GAY05 Gay, D.; Levis, P.; and Culler, D. “Software Design Patterns for TinyOS.”
Proceedings, Conference on Languages, Compilers, and Tools for Embedded
Systems, 2005.

HILL00 Hill, J., et al. “System Architecture Directions for Networked Sensors.”
Proceedings, Architectural Support for Programming Languages and Operating
Systems, 2000.

KOOP96 Koopman, P. “Embedded System Design Issues (the Rest of the Story).”
Proceedings, 1996 International Conference on Computer Design, 1996.

LEVI05 Levis, P., et al. “T2: A Second Generation OS for Embedded Sensor
Networks.” Technical Report TKN-05-007, Telecommunication Networks Group,
Technische Universitat Berlin, 2005. http://csl.stanford.edu/~pal/pubs.html

STAN96 Stankovic, J., et al. “Strategic Directions in Real-Time and Embedded
Systems.” ACM Computing Surveys, December 1996.

 13.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

eCos
embedded operating system

embedded system
TinyOS

http://csl.stanford.edu/~pal/pubs.html

588 CHAPTER 13 / EMBEDDED OPERATING SYSTEMS

Review Questions

 13.1. What is an embedded system?
 13.2. What are some typical requirements or constraints on embedded systems?
 13.3. What is an embedded OS?
 13.4. What are some of the key characteristics of an embedded OS?
 13.5. Explain the relative advantages and disadvantages of an embedded OS based on an

existing commercial OS compared to a purpose-built embedded OS.
 13.6. What is the target application for TinyOS?
 13.7. What are the design goals for TinyOS?
 13.8. What is a TinyOS component?
 13.9. What software comprises the TinyOS operating system?
 13.10. What is the default scheduling discipline for TinyOS?

Problems

 13.1. TinyOS’s scheduler serves tasks in FIFO order. Many other schedulers for TinyOS
have been proposed, but none have caught on. What characteristics of the sensornet
domain might cause a lack of need for more complex scheduling?

 13.2. a. The TinyOS Resource interface does not allow a component that already has a
request in the queue for a resource to make a second request. Suggest a reason.

 b. However, the TinyOS Resource interface allows a component holding the re-
source lock to re-request the lock. This request is enqueued for a later grant.
Suggest a reason for this policy. Hint: What might cause there to be latency be-
tween one component releasing a lock and the next requester being granted it?

Note: The remaining problems concern eCos, discussed in Appendix Q.

 13.3. With reference to the device driver interface to the eCos kernel (Table Q.1), it is
recommended that device drivers should use the _intsave() variants to claim and
release spinlocks rather than the non-_intsave() variants. Explain why.

 13.4. Also in Table Q.1, it is recommended that cyg_drv_spinlock_spin should be used
sparingly, and in situations where deadlocks/livelocks cannot occur. Explain why.

 13.5. In Table Q.1, what should be the limitations on the use of cyg_drv_spinlock_
destroy? Explain.

 13.6. In Table Q.1, what limitations should be placed in the use of cyg_drv_mutex_
destroy?

 13.7. Why does the eCos bitmap scheduler not support time slicing?
 13.8. The implementation of mutexes within the eCos kernel does not support recursive

locks. If a thread has locked a mutex and then attempts to lock the mutex again, typi-
cally as a result of some recursive call in a complicated call graph, then either an as-
sertion failure will be reported or the thread will deadlock. Suggest a reason for this
policy.

 13.9. Figure 13.6 is a listing of code intended for use on the eCos kernel.
a. Explain the operation of the code. Assume thread B begins execution first and

thread A begins to execute after some event occurs.
b. What would happen if the mutex unlock and wait code execution in the call to

cyg_cond_wait, on line 30, were not atomic?
c. Why is the while loop on line 26 needed?

 13.10. The discussion of eCos spinlocks included an example showing why spinlocks should
not be used on a uniprocessor system if two threads of different priorities can com-
pete for the same spinlock. Explain why the problem still exists even if only threads
of the same priority can claim the same spinlock.

13.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 589

Figure 13.6 Condition Variable Example Code

1 unsigned char buffer_empty = true;
2 cyg_mutex_t mut_cond_var;
3 cyg_cond-t cond_var;
4
5 void thread_a(cyg_addrword_t index)
6 {
7 while (1) // run this thread forever
8 {
9 // acquire data into the buffer…
10
11 // there is data in the buffer now
12 buffer_empty = false;
13
14 cyg_mutex_lock(&mut_cond_var);
15
16 cyg_cond_signal(&cond_var);
17
18 cyg_mutex_unlock(&mut_cond_var);
19 }
20 }
21
22 void thread_b(cyg_addrword_t index)
23 {
24 while (1) // run this thread forever
25 {
26 cyg_mutex_lock(&mut_cond_var);
27
28 while (buffer_empty == true)
29 {
30 cyg_cond_wait(&cond_var);
31 }
32
33
34 // get the buffer data…
35
36 // set flag to indicate the data in the buffer has been processed
37 buffer_empty = true;
38
39 cyg_mutex_unlock(&mut_cond_var);
40
41 // process the data in the buffer
42 }
43 {

VideoNote

590

CHAPTER

 14.1 Approaches to Virtualization

 14.2 Processor Issues

 14.3 Memory Management

 14.4 I/O Management

 14.5 VMware ESXi

 14.6 Microsoft Hyper-V and Xen Variants

 14.7 Java VM

 14.8 Linux Vserver Virtual Machine Architecture
Architecture
Process Scheduling

 14.9 Android Virtual Machine
The Dex File Format
Zygote

14.10 Summary

14.11 Recommended Reading

14.12 Key Terms, Review Questions, and Problems

VIRTUAL MACHINES

VIRTUAL MACHINES 591

Traditionally, applications have run directly on an operating system (OS) on a per-
sonal computer (PC) or on a server. Each PC or server would run only one OS at
a time. Thus, the application vendor had to rewrite parts of its applications for each
OS/platform they would run on and support. To support multiple operating systems,
application vendors needed to create, manage, and support multiple hardware and op-
erating system infrastructures, a costly and resource-intensive process. One effective
strategy for dealing with this problem is known as virtualization. Virtualization tech-
nology enables a single PC or server to simultaneously run multiple operating systems
or multiple sessions of a single OS. A machine with virtualization software can host
numerous applications, including those that run on different operating systems, on a
single platform. In essence, the host operating system can support a number of virtual
machines (VM), each of which has the characteristics of a particular OS and, in some
versions of virtualization, the characteristics of a particular hardware platform.

Virtualization is not a new technology. During the 1970s IBM mainframe sys-
tems offered the first capabilities that would allow programs to use only a portion of
a system’s resources. Various forms of that ability have been available on platforms
since that time. Virtualization came into mainstream computing in the early 2000s
when the technology was commercially available on x86 servers. Organizations were
suffering from a surfeit of servers due to a Microsoft Windows–driven “one applica-
tion, one server” strategy. Moore’s Law drove rapid hardware improvements out-
pacing software’s ability, and most of these servers were vastly underutilized, often
consuming less than 5% of the available resources in each server. In addition, this
overabundance of servers filled datacenters and consumed vast amounts of power
and cooling, straining a corporation’s ability to manage and maintain their infra-
structure. Virtualization helped relieve this stress.

The solution that enables virtualization is a virtual machine monitor (VMM),
or commonly known today as a hypervisor. This software sits between the hardware
and the VMs, acting as a resource broker (Figure 14.1). Simply put, it allows multiple
VMs to safely coexist on a single physical server host and share that host’s resources.
The number of guests that can exist on a single host is measured a consolidation
ratio. For example, a host that is supporting 6 VMs is said to have a consolidation

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Describe the various approaches to virtualization.
Understand the processor issues involved in implementing a virtual machine.
Understand the memory management issues involved in implementing a vir-
tual machine.
Understand the I/O management issues involved in implementing a virtual
machine.
Compare and contrast VMware ESXi, Hyper-V, Xen, and Java VM.
Explain the operation of the Linux virtual machine.
Present an overview of the functionality of Zygote.

592 CHAPTER 14 / VIRTUAL MACHINES

ration of 6 to 1, also written as 6:1 (Figure 14.2). The initial hypervisors in the com-
mercial space could provide consolidation ratios of between 4:1 and 12:1, but even
at the low end, if a company virtualized all of their servers, they could remove 75%
of the servers from their datacenters. More importantly, they could remove the cost
as well, which often ran into the millions or tens of millions of dollars annually. With
less physical servers, less power was required, less cooling was needed, and fewer
cables, fewer network switches, less floor space, and so on were required. Server
consolidation became, and continues to be, a tremendously valuable way to solve a
costly and wasteful problem. As of 2009, more virtual servers were deployed in the
world than physical servers, and virtual server deployment continues to accelerate.

The VM approach is becoming a common way for businesses and individuals
to deal with legacy applications and to optimize their hardware usage by maximizing
the number of kinds of applications that a single computer can handle. Commercial
VM offerings by companies such as VMware and Microsoft are widely used, with
millions of copies having been sold. A key aspect of server virtualization is that, in
addition to the capability of running multiple VMs on one machine, VMs can be
viewed as network resources. Server virtualization masks server resources, including
the number and identity of individual physical servers, processors, and operating
systems, from server users. This makes it possible to partition a single host into mul-
tiple independent servers, conserving hardware resources. It also makes it possible
to quickly migrate a server from one machine to another for load balancing or for

Shared hardware

Virtual machine manager

Virtual
machine 1

Virtual
machine 2

Virtual
machine n

Applications
and

processes

Applications
and

processes

Applications
and

processes

Figure 14.1 Virtual Machine Concept

Physical
servers

Virtualization
host

6:1 consolidation ratio

V
M

Figure 14.2 Virtual Machine Consolidation

14.1 / APPROACHES TO VIRTUALIZATION 593

dynamic switchover in the case of machine failure. Server virtualization has become
a central element in dealing with "big data" applications and in implementing cloud
computing infrastructures.

In addition to their use in server environments, these VM technologies also are
used in desktop environments to run multiple operating systems, typically Windows
and Linux.

 14.1 APPROACHES TO VIRTUALIZATION

Virtualization is all about abstraction. Much like an operating system abstracts the
disk I/O commands from a user through the use of program layers and interfaces,
virtualization abstracts the physical hardware from the virtual machines it sup-
ports. The virtual machine monitor, or hypervisor, is the software that provides this
 abstraction. It acts as a broker, or traffic cop, acting as a proxy for the guests (VMs)
as they request and consume resources of the physical host.

A Virtual Machine is a software construct that mimics the characteristics of a
physical server. It is configured with some number of processors, some amount of
RAM, storage resources, and connectivity through the network ports. Once that VM
is created, it can be powered on like a physical server, loaded with an operating sys-
tem and software solutions, and utilized in the manner of a physical server. Unlike
a physical server, this virtual server only sees the resources it has been configured
with, not all of the resources of the physical host itself. This isolation allows a host
machine to run many virtual machines, each of them running the same or different
copies of an operating system, sharing RAM, storage, and network bandwidth, with-
out problems. An operating system in a virtual machine accesses the resource that
is presented to it by the hypervisor. The hypervisor facilitates the translation and
I/O from the virtual machine to the physical server devices, and back again to the
correct virtual machine. In this way, certain privileged instructions that a “native”
operating system would be executing on its hosts hardware are trapped and run by
the hypervisor as a proxy for the virtual machine. This creates some performance
degradation in the virtualization process, though over time both hardware and soft-
ware improvements have minimalized this overhead.

Virtual machines are made up of files. A typical virtual machine can consist of
just a few files. There is a configuration file that describes the attributes of the virtual
machine. It contains the server definition, how many virtual processors (vCPUs)
are allocated to this virtual machine, how much RAM is allocated, which I/O de-
vices the VM has access to, how many network interface cards (NICs) are in the
virtual server, and more. It also describes the storage that the VM can access. Often
that storage is presented as virtual disks that exist as additional files in the physical
file system. When a virtual machine is powered on, or instantiated, additional files
are created for logging, for memory paging, and other functions. That a VM consists
of files makes certain functions in a virtual environment much simpler and quicker
than in a physical environment. Since the earliest days of computers, backing up
data has been a critical function. Since VMs are already files, copying them produces
not only a backup of the data but also a copy of the entire server, including the
 operating system, applications, and the hardware configuration itself.

594 CHAPTER 14 / VIRTUAL MACHINES

To create a copy of a physical server, additional hardware needs to be acquired,
installed, configured, loaded with an operating system, applications, and data, and
then patched to the latest revisions, before being turned over to the users. This pro-
visioning can take weeks or even months depending on the processes in places.
Since a VM consists of files, by duplicating those files, in a virtual environment there
is a perfect copy of the server available in a matter of minutes. There are a few con-
figuration changes to make, server name and IP address to name two, but adminis-
trators routinely stand up new virtual machines in minutes or hours, as opposed to
months. Another method to rapidly provision new virtual machines is through the
use of templates. Templates are virtual machines that cannot be powered on, define
the virtual server’s configuration, and has all of the operating system and possibly
even the application software installed. What hasn’t been done are the configuration
steps that uniquely identify that virtual server. Creating a new virtual machine from
a template consists of providing those unique identifiers and having the provision-
ing software build a VM from the template and adding in the configuration changes
as part of the deployment.

In addition to consolidation and rapid provisioning, there are many other rea-
sons that virtual environments have become the new model for data center infra-
structures. One of these is increased availability. Virtual machine hosts are clustered
together to form pools of compute resources. Multiple VMs are hosted on each of
these servers, and in the case of a physical server failure, the VMs on the failed host
can be quickly and automatically restarted on another host in the cluster. Compared
with providing this type of availability for a physical server, virtual environments
can provide higher availability at significantly less cost and with less complexity. For
servers that require greater availability, fault tolerance is available in some solutions
through the use of shadowed VMs in running lockstep to insure that no transactions
are lost in the event of a physical server failure, again without increased complex-
ity. One of the most compelling features of virtual environments is the capability to
move a running virtual machine from one physical host to another, without interrup-
tion, degradation, or impacting the users of that virtual machine. VMotion, as it is
known in a VMware environment, or Live Migration, as it is known in others, is used
for a number of crucial tasks. From an availability standpoint, moving VMs from one
host to another without incurring downtime allows administrators to perform work
on the physical hosts without impacting operations. Maintenance can be performed
on a weekday morning instead of during scheduled downtime on a weekend. New
servers can be added to the environment and older servers removed without im-
pacting the applications. In addition to these manually initiated migrations, migra-
tions can be automated depending on resource usage. If a virtual machine starts to
consume more resources than normal, other virtual machines can be automatically
relocated to hosts in the cluster where resources are available, insuring adequate
performance for all the virtual machines and better overall performance. These are
simple examples that only scratch the surface of what virtual environments offer.

As mentioned earlier, the hypervisor sits between the hardware and the vir-
tual machines. There are two types of hypervisors, distinguished by whether there is
another operating system between the hypervisor and the host. A Type-1 hypervi-
sor (Figure 14.3a) is loaded as a thin software layer directly into a physical server,
much like an operating system is loaded. Once it is installed and configured, usually

14.1 / APPROACHES TO VIRTUALIZATION 595

just a matter of minutes, the server is then capable of supporting virtual machines
as guests. In mature environments, where virtualization hosts are clustered together
for increased availability and load balancing, a hypervisor can be staged on a new
host, that new host joined to an existing cluster, and VMs can be moved to the new
host without any interruption of service. Some examples of Type-1 hypervisors are
VMware ESXi, Microsoft Hyper-V, and the various Xen variants. This idea that the
hypervisor is loaded onto the “bare metal” of a server is usually a difficult concept
for people to understand. They are more comfortable with a solution that works as a
traditional application, program code that is loaded on top of a Microsoft Windows
or UNIX/Linux operating system environment. This is exactly how a Type-2 hyper-
visor (Figure 14.3b) is deployed. Some examples of Type-2 hypervisors are VMware
Workstation and Oracle VM Virtual Box.

There are some important differences between the Type-1 and the Type-2
 hypervisors. A Type-1 hypervisor is deployed on a physical host and can directly
control the physical resources of that host, whereas a Type-2 hypervisor has an op-
erating system between itself and those resources and relies on the operating system
to handle all of the hardware interactions on the hypervisor’s behalf. Because of
that extra layer, a Type-1 hypervisor has much better performance characteristics
than the Type-2 hypervisor. Because a Type-1 hypervisor doesn’t compete for re-
sources with an operating system, there are more resources available on the host,

Shared hardware

(a) Type 1 VMM

Virtual machine monitor

Virtual machine 1

Applications

OS 1

Virtual machine 2

Applications

OS 2

Shared hardware

(b) Type 2 VMM

Virtual machine monitor

Virtual machine 1

Applications

OS 1

Host operating system

Virtual machine 2

Applications

OS 2

Figure 14.3 Type 1 and Type 2 Virtual Machine Monitors

596 CHAPTER 14 / VIRTUAL MACHINES

and by extension, more virtual machines can be hosted on a virtualization server
using a Type-1 hypervisor. Type-1 hypervisors are also considered to be more secure
than the Type-2 hypervisors. Virtual machines on a Type-1 hypervisor make resource
 requests that are handled external to that guest, and they cannot affect other VMs
or the hypervisor they are supported by. This is not necessarily true for VMs on a
Type-2 hypervisor and a malicious guest could potentially affect more than itself. A
Type-1 hypervisor implementation would not require the cost of a host operating
system, though a true cost comparison would be a more complicated discussion.
Type-2 hypervisors allow a user to take advantage of virtualization without need-
ing to dedicate a server to only that function. Developers who need to run multiple
environments as part of their process, in addition to taking advantage of the per-
sonal productive workspace that a PC operating system provides, can do both with a
Type-2 hypervisor installed as an application on their LINUX or Windows desktop.
The virtual machines that are created and used can be migrated or copied from one
hypervisor environment to another, reducing deployment time and increasing the
accuracy of what is deployed, reducing the time to market of a project.

As virtualization became more prevalent in corporations, both hardware and
software vendors looked for ways to provide even more efficiencies. Unsurprisingly,
these paths led to both software-assisted virtualization and hardware-assisted virtu-
alization. Paravirtualization is a software-assisted virtualization technique that uses
specialized APIs to link virtual machines with the hypervisor to optimize their per-
formance. The operating system in the virtual machine, Linux or Microsoft Windows,
has specialized paravirtualization support as part of the kernel, as well as specific
paravirtualization drivers that allow the OS and hypervisor to work together more
efficiently with the overhead of the hypervisor translations. This software-assisted
virtualization offers optimized virtualization support on servers with or without pro-
cessors that provide virtualization extensions. Paravirtualization support has been
offered as part of many of the general Linux distributions since 2008.

Similarly, processor manufacturers AMD and Intel added functionality to
their processors to enhance performance with hypervisors. AMD-V and Intel’s VT-x
designate the hardware-assisted virtualization extensions that the hypervisors can
take advantage of during processing. Intel processors offer an extra instruction set
called Virtual Machine Extensions (VMX). By having some of these instructions as
part of the processor, the hypervisors no longer need to maintain these functions
as part of their codebase, the code itself can be smaller and more efficient, and the
operations they support are much faster as they occur entirely on the processor. This
hardware-assisted support does not require a modified operating system in contrast
with paravirtualization.

 14.2 PROCESSOR ISSUES

In a virtual environment, there are two main strategies for providing processor re-
sources. The first is to emulate a chip as software and provide access to that resource.
Examples of this method are QEMU and the Android Emulator in the Android
SDK. They have the benefit of being easily transportable since they are not platform
dependent, but they are not very efficient from a performance standpoint as the

14.2 / PROCESSOR ISSUES 597

emulation process is resource intensive. The second model doesn’t actually virtual-
ize processors but provides segments of processing time on the physical processors
(pCPUs) of the virtualization host to the virtual processors of the virtual machines
hosted on the physical server. This is how most of the virtualization hypervisors
offer processor resources to their guests. When the operating system in a virtual
machine passes instructions to the processor, the hypervisor intercepts the request.
It then schedules time on the host’s physical processors, sends the request for execu-
tion, and returns the results to the VM’s operating system. This insures the most ef-
ficient use of the available processor resources on the physical server. To add some
complexity, when multiple VMs are contending for processor, the hypervisor acts
as the traffic controller, scheduling processor time for each VM’s request as well as
directing the requests and data to and from the virtual machines.

Along with memory, the number of processors a server has is one of the more
important metrics when sizing a server. This is especially true, and in some way more
critical, in a virtual environment than a physical one. In a physical server, typically
the application has exclusive use of all the compute resources configured in the sys-
tem. For example, in a server with four quad-core processors, the application can
utilize sixteen cores of processor. Usually, the application’s requirements are far less
than that. This is because the physical server has been sized for some possible future
state of the application that includes growth over three to five years and also incor-
porates some degree of high-water performance spikes. In reality, from a processor
standpoint, most servers are vastly underutilized, which is a strong driver for con-
solidation through virtualization as was discussed earlier.

When applications are migrated to virtual environments, one of the larger top-
ics of discussion is how many virtual processors should be allocated to their virtual
machines. Since the physical server they are vacating had sixteen cores, often the
request from the application team is to duplicate that in the virtual environment,
regardless of what their actual usage was. In addition to ignoring the usage on the
physical server, another overlooked item is the improved capabilities of the proces-
sors on the newer virtualization server. If the application was migrated at the low
end of when its server’s life/lease ended, it would be three to five years, and even at
three years, Moore’s law provides processors that would be four times faster than
those on the original physical server. In order to help “right-size” the virtual ma-
chine configurations, there are tools available that will monitor resource (processor,
memory, network, and storage I/O) usage on the physical servers and then make
recommendations for the optimum VM sizing. If that consolidation estimate utility
cannot be run, there are a number of good practices in place. One basic rule during
VM creation is to begin with one vCPU and monitor the application’s performance.
Adding additional vCPUs in a VM is simple, requiring an adjustment in the VM
settings. Most modern operating systems do not even require a reboot before being
able to recognize and utilize the additional vCPU. Another good practice is not to
overallocate the number of vCPUs in a VM. A matching number of pCPUs need
to be scheduled for the vCPUs in a VM. If you have four vCPUs in your VM, the
hypervisor needs to simultaneously schedule four pCPUs on the virtualization host
on behalf of the VM. On a very busy virtualization host, having too many vCPUs
configured for a VM can actually negatively impact the performance of the VM’s
application since it is faster to schedule a single pCPU. This doesn’t mean there are

598 CHAPTER 14 / VIRTUAL MACHINES

not applications that require multiple vCPUs, there are, and they should be config-
ured appropriately, but most do not.

Native operating systems manage hardware by acting as the intermediary
between application code requests and the hardware. As requests for data or pro-
cessing are made, the operating system passes these to the correct device drivers,
through the physical controllers, to the storage or I/O devices, and back again. The
operating system is the central router of information and controls access to all of the
physical resources of the hardware. One key function of the operating system is to
help prevent malicious or accidental system calls from disrupting the applications or
the operating system itself. Protection rings describe level of access or privilege in-
side of a computer system and many operating systems and processor architectures
take advantage of this security model. The most trusted layer is often called Ring
0 (zero) and is where the operating system kernel works and can interact directly
with hardware. Rings 1 and 2 are where device drivers execute while user applica-
tions run in the least trusted area, Ring 3. In practice, though, Rings 1 and 2 are
not often used, simplifying the model to trusted and untrusted execution spaces.
Application code cannot directly interact with hardware since it runs in Ring 3 and
needs the operating system to execute the code on its behalf in Ring 0. This separa-
tion prevents unprivileged code from causing untrusted actions like a system shut-
down or an unauthorized access of data from a disk or network connection.

Hypervisors run in Ring 0 controlling hardware access for the virtual machines
they host. The operating systems in those virtual machines also believe that they
run in Ring 0, and in a way they do, but only on the virtual hardware that is cre-
ated as part of the virtual machine. In the case of a system shutdown, the operating
system on the guest would request a shutdown command in Ring 0. The hypervisor
intercepts the request; otherwise the physical server would be shutdown, causing
havoc for the hypervisor and any other virtual machines being hosted. Instead, the
hypervisor replies to the guest operating system that the shutdown is proceeding as
requested, which allows the guest operating system to complete and necessary soft-
ware shutdown processes.

 14.3 MEMORY MANAGEMENT

Like the number of vCPUs, the amount of memory allocated to a virtual machine
is one of the more crucial configuration choices; in fact, memory resources are
usually the first bottleneck that virtual infrastructures reach as they grow. Also,
like the virtualization of processors, memory usage in virtual environments is
more about the management of the physical resource rather than the creation of
a virtual entity. As with a physical server, a virtual machine needs to be config-
ured with enough memory to function efficiently by providing space for the oper-
ating system and applications. Again, the virtual machine is configured with less
resource than the virtual host contains. A simple example would be a physical
server with 8GB of RAM. A virtual machine provisioned with 1GB of memory
would only see 1GB of memory, even though the physical server it is hosted on has
more. When the virtual machine uses memory resources, the hypervisor manages
the memory requests through the use of translation tables so that the guest (VM)

14.3 / MEMORY MANAGEMENT 599

operating system addresses the memory space at the addresses that they expect.
This is a good first step, but problems remain. Similar to processor, application
owners ask for memory allocations that mirror the physical infrastructures they
migrated from, regardless of whether the size of the allocation is warranted or not.
This leads to overprovisioned virtual machines and wasted memory resources. In
the case of our 8GB server, only seven 1GB VMs could be hosted, with the part
of the remaining 1GB needed for the hypervisor itself. Aside from “right-sizing”
the virtual machines based on their actual performance characteristics, there are
features built into hypervisors that help optimize memory usage. One of these is
page sharing (Figure 14.4). Page sharing is similar to data de-duplication, a stor-
age technique that reduces the number of storage blocks being used. When a VM
is instantiated, operating system and application pages are loaded into memory.
If multiple VMs are loading the same version of the OS, or running the same ap-
plications, many of these memory blocks are duplicates. The hypervisor is already
managing the virtual to physical memory transfers and can determine if a page is
already loaded into memory. Rather than loading a duplicate page into physical
memory, the hypervisor provides a link to the shared page in the virtual machine’s
translation table. On hosts where the guests are running the same operating sys-
tem and the same applications, between ten and forty percent of the actual physi-
cal memory can be reclaimed. At twenty-five percent on our 8GB server, we could
host an additional two more 1GB virtual machines.

Since the hypervisor manages page sharing, the virtual machine operating sys-
tems are unaware of what is happening in the physical system. Another strategy
for efficient memory use is akin to thin provisioning in storage management. This
allows an administrator to allocate more storage to a user than is actually present
in the system. The reason is to provide a high water mark that often is never ap-
proached. The same can be done with virtual machine memory. We allocate 1GB of
memory but that is what is seen by the VM operating system. The hypervisor can use
some portion of that allocated memory for another VM by reclaiming older pages
that are not being used. The reclamation process is done through ballooning. The
hypervisor activates a balloon driver that (virtually) inflates and presses the guest
operating system to flush pages to disk. Once the pages are cleared, the balloon
driver deflates and the hypervisor can use the physical memory for other VMs. This

Virtual memory Virtual memory Virtual memory

Physical memory

Figure 14.4 Page Sharing

600 CHAPTER 14 / VIRTUAL MACHINES

process happens during times of memory contention. If our 1GB VMs used half of
their memory on average, nine VMs would require only 4.5GB with the remainder
as a shared pool managed by the hypervisor and some for the hypervisor overhead.
Even if we host an additional three 1GB VMs, there is still a shared reserve. This
capability to allocate more memory than physical exists on a host is called memory
overcommit. It is not uncommon for virtualized environments to have between 1.2
and 1.5 times the memory allocated, and in extreme cases, many times more.

There are additional memory management techniques that provide better
resource utilization. In all cases, the operating systems in the virtual machines see
and have access to the amount of memory that has been allocated to them. The
hypervisor manages that access to the physical memory to insure that all requests
are serviced in a timely manner without impacting the virtual machines. In cases
where more physical memory is required than is available, the hypervisor will be
forced to resort to paging to disk. In multiple host cluster environments, virtual
machines can be automatically live migrated to other hosts when certain resources
become scarce.

 14.4 I/O MANAGEMENT

Application performance is often directly linked to the bandwidth that a server
has been allocated. Whether it is storage access that has been bottlenecked or con-
strained traffic to the network, either case will cause an application to be perceived
as underperforming. In this way, during the virtualization of workloads, I/O virtual-
ization is a critical item. The architecture of how I/O is managed in a virtual environ-
ment is straightforward (Figure 14.5). In the virtual machine, the operating system
makes a call to the device driver as it would in a physical server. The device driver

Applications

NIC driver

NIC

Hypervisor

V
ir

tu
al

 m
ac

hi
ne

Ph
ys

ic
al

 s
er

ve
r

Network

Operating system

NIC driver

Emulated device

Figure 14.5 I/O in a Virtual Environment

14.4 / I/O MANAGEMENT 601

then connects with the device; though in the case of the virtual server, the device is
an emulated device that is staged and managed by the hypervisor. These emulated
devices are usually a common actual device, such as an Intel e1000 network inter-
face card or simple generic SGVA or IDE controllers. This virtual device plugs into
the hypervisor’s I/O stack that communicates with the device driver that is mapped
to a physical device in the host server, translating guest I/O addresses to the physi-
cal host I/O addresses. The hypervisor controls and monitors the requests between
the virtual machine’s device driver, through the I/O stack, out the physical device,
and back again, routing the I/O calls to the correct devices on the correct virtual
machines. There are some architectural differences between vendors, but the basic
model is similar.

The advantages of virtualizing the workload’s I/O path are many. It enables
hardware independence by abstracting vendor-specific drivers to more general-
ized versions that run on the hypervisor. A virtual machine that is running on
an IBM server as a host can be live migrated to an HP blade server host, with-
out worrying about hardware incompatibilities or versioning mismatches. This
abstraction enables of one of virtualization’s greatest availability strengths, live
migration. Sharing of aggregate resources, network paths, for example, is also due
to this abstraction. In more mature solutions, capabilities exist to granularly con-
trol the types of network traffic and the bandwidth afforded to individual VMs or
groups of virtual machines to insure adequate performance in a shared environ-
ment to guarantee a chosen Quality of Service level. The memory overcommit
capability is another benefit of virtualizing the I/O of a VM. In addition to these,
there are other features that enhance security and availability. The trade-off is that
the hypervisor is managing all the traffic, which it is designed for, but it requires
processor overhead. In the early days of virtualization this was an issue that could
be a limiting factor, but faster multicore processors and sophisticated hypervisors
have all but removed this concern.

Ever faster processors allow the hypervisor to perform its I/O management
functions quicker, but also speeds the rate that the guest processor processing is
done. Explicit hardware changes for virtualization support also improve perfor-
mance. Intel offers I/O Acceleration Technology (I/OAT), a physical subsystem that
moves memory copies via direct memory access (DMA) from the main processor
to this specialized portion of the motherboard. Though designed for improving net-
work performance, remote DMA also improves live migration speeds. Offloading
work from the processor to intelligent devices is another path to improved perfor-
mance. Intelligent network interface cards support a number of technologies in this
space. TCP Offload Engine (TOE) removes the TCP/IP processing from the server
processor entirely to the NIC. Other variations on this theme are Large Receive
Offload (LRO), which aggregates incoming packets into bundles for more efficient
processing, and its inverse Large Segment Offload (LSO), which allows the hypervi-
sor to aggregate multiple outgoing TCP/IP packets and has the NIC hardware seg-
ment them into separate packets.

In addition to the model described earlier, some applications or users will de-
mand a dedicated path. In this case, there are options to bypass the hypervisor’s I/O
stack and oversight and directly connect from the virtual machine’s device driver
to physical device on the virtualization host. This provides the virtue of having a

602 CHAPTER 14 / VIRTUAL MACHINES

dedicated resource without any overhead delivering the greatest throughput pos-
sible. In addition to better throughput, since the hypervisor is minimally involved,
there is less impact on the host server’s processor. The disadvantage to a directly
connected I/O device is that the virtual machine is tied to the physical server it is
running on. Without the device abstraction, live migration is not easily possible,
which can potentially reduce availability. Features that are provided by the hypervi-
sor, like memory overcommit or I/O control, are not available, which could waste
underutilized resources and mitigate the need for virtualization. Though a dedicated
device model provides better performance, today it is rarely used, as datacenters opt
for the flexibility that virtualized I/O provides.

 14.5 VMWARE ESXI

ESXi is a commercially available hypervisor from VMware that provides users a
Type-1, or bare-metal, hypervisor to host virtual machines on their servers. VMware
developed their initial x86-based solutions in the late 1990s and were the first to de-
liver a commercial product to the marketplace. This first-to-market timing, coupled
with continuous innovations, has kept VMware firmly on top of the heap in market
share, but more importantly in the lead from a breadth of feature and maturity of
solution standpoint. The growth of the virtualization market and the changes in the
VMware solutions have been outlined elsewhere, but there are certain fundamental
differences in the ESXi architecture than in the other available solutions.

The virtualization kernel (VMkernel) is the core of the hypervisor and per-
forms all of the virtualization functions. In earlier releases of ESX (Figure 14.6), the
hypervisor was deployed alongside a Linux installation that served as a manage-
ment layer. Certain management functions like logging, name services, and often
third-party agents for backup or hardware monitoring were installed on this ser-
vice console. It also made a great place for administrators to run other scripts and
programs. The service console had two issues. The first was that it was considerably
larger than the hypervisor; a typical install required about 32MB for the hypervi-
sor and about 900MB for the service console. The second was that the Linux-based

Hardware
monitoring

agents

VMware
management

agents

Infrastructure
agents

(NTP, Syslog)

CLI commands
for configuration

and support

VM support and
resource

management

VM VM

VMkernel

System
management

agents

Figure 14.6 ESX

14.5 / VMWARE ESXI 603

service console was a well-understood interface and system and was vulnerable to
attack by malware or people. VMware then re-architected ESX to be installed and
managed without the service console.

This new architecture, dubbed ESXi, the “i” for integrated, has all of the man-
agement services as part of the VMkernel (Figure 14.7). This provides a smaller and
much more secure package than before. Current versions are in the neighborhood of
about 100MB. This small size allows server vendors to deliver hardware with ESXi
already available on flash memory in the server. Configuration management, moni-
toring, and scripting are now all available through command line interface utilities.
Third-party agents are also run in the VMkernel after being certified and digitally
signed. This allows, for example, a server vendor who provides hardware monitoring,
to include an agent in the VMkernel that can seamlessly return hardware metrics
like internal temperature or component statuses to either VMware management
tools or other management tools.

Virtual machines are hosted via the infrastructure services in the VMkernel.
When resources are requested by the virtual machines, the hypervisor fulfills those
requests, working through the appropriate device drivers. As described earlier, the
hypervisor coordinates all of the transactions between the multiple virtual machines
and the hardware resources on the physical server.

Though the examples discussed so far are very basic, VMware ESXi provides
advanced and sophisticated features for availability, scalability, security, manage-
ability, and performance. Additional capabilities are introduced with each release,
improving the capabilities of the platform. Some examples are as follows:

Storage VMotion, which permits the relocation of the data files that compose
a virtual machine, while that virtual machine is in use.
Fault Tolerance, which creates a lockstep copy of a virtual machine on a differ-
ent host. If the original host suffers a failure, the virtual machine’s connections
get shifted to the copy, without interrupting users or the application they are
using. This differs from High Availability, which would require a virtual ma-
chine restart on another server.

CLI commands
for configuration

and support

Agentless
systems

management

Agentless
hardware

monitoring

VMware
management
framework

Common
information

model

Infrastructure
agents

(NTP, Syslog)

VM support and
resource

management

Local support consoles

VM VM

VMkernel

Figure 14.7 ESXi

604 CHAPTER 14 / VIRTUAL MACHINES

Site Recovery Manager, which uses various replication technologies to copy
selected virtual machines to a secondary site in the case of a data center disas-
ter. The secondary site can be stood up in a matter of minutes; virtual machines
power-on in a selected and tiered manner automatically to insure a smooth
and accurate transition.
Storage and Network I/O Control allow an administrator to allocate network
bandwidth in a virtual network in a very granular manner. These policies are
activated when there is contention on the network and can guarantee that spe-
cific virtual machines, groups of virtual machines that comprise a particular
application, or classes of data or storage traffic have the required priority and
bandwidth to operate as desired.
Distributed Resource Scheduler (DRS), which intelligently places virtual ma-
chines on hosts for startup and can automatically balance the workloads via
VMotion based on business policies and resource usage. An aspect of this,
Distributed Power Management (DPM), can power-off (and on) physical
hosts as they are needed. Storage DRS can actively migrate virtual machine
files based on storage capacity and I/O latency, again based on the business
rules and resource utilization.

These are just a few of the features that extend VMware’s ESXi solution past
being merely a hypervisor that can support virtual machines into a platform for the
new data center and the foundation for cloud computing.

 14.6 MICROSOFT HYPER-V AND XEN VARIANTS

In the early 2000s an effort based in Cambridge University led to the development
of the Xen, an open-source hypervisor. Over time, and as the need for virtualiza-
tion increased, many hypervisor variants have come out of the main Xen branch.
Today, in addition to the open-source hypervisor, there are a number of Xen-
based commercial hypervisor offering from Citrix, Oracle, and others. Architected
differently than the VMware model, Xen requires a dedicated operating system
or domain to work with the hypervisor, similar to the VMware service console
(Figure 14.8). This initial domain is known as domain zero (Dom0), runs the Xen
tool stack, and as the privileged area, has direct access to the hardware. Many

Dom0

drivers

DomU

KernelU

Xen Hypervisor

Hardware

Kernel0

DomU

KernelU

Figure 14.8 Xen

14.6 / MICROSOFT HYPER-V AND XEN VARIANTS 605

versions of Linux contain a Xen hypervisor that is capable of creating a virtual en-
vironment. Some of these are CentOS, Debian, Fedora, Ubuntu, OracleVM, Red
Hat (RHEL), SUSE, and XenServer. Companies that used Xen-based virtualiza-
tion solutions do so due to the lower (or no) cost of the software or due to their
own in-house Linux expertise.

Guests on Xen are unprivileged domains, or sometimes user domains, referred
to as DomU. Dom0 provides access to network and storage resources to the guests
via BackEnd drivers that communicate with the FrontEnd drivers in DomU. Unless
there are pass-through devices configured (usually USB), all of the network and
storage I/O is handled through Dom0. Since Dom0 is itself an instance of Linux, if
something unexpected happens to it, all of the virtual machines it supports will be
affected. Standard operating system maintenance like patching also can potentially
affect the overall availability.

Like most open-source offerings, Xen does not contain many of the advanced
capabilities offered by VMware ESXi, though with each release, additional features
appear and existing features are enhanced.

Microsoft has had a number of virtualization technologies, including Virtual
Server, a Type-2 hypervisor offering that was acquired in 2005 and is still available
today at no cost. Microsoft Hyper-V, a Type-1 hypervisor, was first released in 2008
as part of the Windows Server 2008 Operating System release. Similar to the Xen
architecture, Hyper-V has a parent partition that serves as an administrative adjunct
to the Type-1 hypervisor (Figure 14.9). Guest virtual machines are designated as
child partitions. The parent partition runs the Windows Server operating system in
addition to its functions, such as managing the hypervisor, the guest partitions, and
the devices drivers. Similar to the FrontEnd and BackEnd drivers in Xen, the parent
partition in Hyper-V uses a Virtualization Service Provider (VSP) to provide de-
vice services to the child partitions. The child partitions communicate with the VSPs
using a Virtualization Service Client (or Consumer) (VSC) for their I/O needs.

Microsoft Hyper-V has similar availability challenges to Xen due to the oper-
ating system needs in the parent partition, the resource contention an extra copy of
Windows requires on the server, and the single I/O conduit. From a feature stand-
point, Hyper-V is very robust, though not as widely used as ESXi since it is still
relatively new to the marketplace. As time passes and new functionality appears,
adoption will probably increase.

Parent partition

drivers

Child partition

Kernel

Microsoft Hyper-V

Hardware

Kernel

Child partition

Kernel

WMI

VSP VSC VSC

VM
workers

VMBus

Figure 14.9 Hyper-V

606 CHAPTER 14 / VIRTUAL MACHINES

 14.7 JAVA VM

Though the Java Virtual Machine (JVM) has the term virtual machine as part
of its name, its implementation and uses are different from the models we have
covered. Hypervisors support one or more virtual machines on a host. These
virtual machines are self-contained workloads, supporting an operating system
and applications, and from their perspective, have access to a set of hardware de-
vices that provide compute, storage, and I/O resources. The goal of a Java Virtual
Machine is to provide a runtime space for a set of Java code to run on any op-
erating system staged on any hardware platform, without needing to make code
changes to accommodate the different operating systems or hardware. Both
models are aimed at being platform independent through the use of some degree
of abstraction.

The JVM is described as being an abstract computing machine, consisting of
an instruction set, a pc (program counter) register, a stack to hold variables and
results, a heap for runtime data and garbage collection, and a method area for code
and constants. The JVM can support multiple threads and each thread has its own
register and stack areas, though the heap and method areas are shared among all of
the threads. When the JVM is instantiated, the runtime environment is started, the
memory structures are allocated and populated with the selected method (code)
and variables, and the program begins. The code that is run in the JVM is inter-
preted in real time from the Java language into the appropriate binary code. If that
code is valid, and adheres to the expected standards, it will begin processing. If it is
invalid, and the process fails, an error condition is raised and returned to the JVM
and the user.

Java and JVMs are used in a very wide variety of areas including Web appli-
cations, mobile devices, and smart devices from television set-top boxes to gaming
devices to Blue-Ray players and other items that use smart cards. Java’s promise
of “Write Once, Run Anywhere” provides an agile and simple deployment model,
 allowing applications to be developed independent of the execution platform.

 14.8 LINUX VSERVER VIRTUAL MACHINE ARCHITECTURE

Linux VServer is an open-source, fast, lightweight approach to implementing virtual
machines on a Linux server [SOLT07, LIGN05]. Only a single copy of the Linux
kernel is involved. VServer consists of a relatively modest modification to the kernel
plus a small set of OS userland1 tools. The VServer Linux kernel supports a number
of separate virtual servers. The kernel manages all system resources and tasks, in-
cluding process scheduling, memory, disk space, and processor time.

1The term userland refers to all application software that runs in user space rather than kernel space. OS
userland usually refers to the various programs and libraries that the operating system uses to interact
with the kernel: software that performs input/output, manipulates file system objects, etc.

14.8 / LINUX VSERVER VIRTUAL MACHINE ARCHITECTURE 607

Architecture

Each virtual server is isolated from the others using Linux kernel capabilities. This
provides security and makes it easy to set up multiple virtual machines on a sin-
gle platform. The isolation involves four elements: chroot, chcontext, chbind, and
capabilities.

The chroot command is a UNIX or Linux command to make the root direc-
tory (/) become something other than its default for the lifetime of the current
process. It can only be run by privileged users and is used to give a process (com-
monly a network server such as FTP or HTTP) access to a restricted portion
of the file system. This command provides file system isolation. All commands
executed by the virtual server can only affect files that start with the defined root
for that server.

The chcontext Linux utility allocates a new security context and executes com-
mands in that context. The usual or hosted security context is the context 0. This con-
text has the same privileges as the root user (UID 0): This context can see and kill
other tasks in the other contexts. Context number 1 is used to view other contexts
but cannot affect them. All other contexts provide complete isolation: Processes
from one context can neither see nor interact with processes from another context.
This provides the ability to run similar contexts on the same computer without any
interaction possible at the application level. Thus, each virtual server has its own
execution context that provides process isolation.

The chbind utility executes a command and locks the resulting process and its
children into using a specific IP address. Once called, all packets sent out by this vir-
tual server through the system’s network interface are assigned the sending IP ad-
dress derived from the argument given to chbind. This system call provides network
isolation: Each virtual server uses a separate and distinct IP address. Incoming traf-
fic intended for one virtual server cannot be accessed by other virtual servers.

Finally, each virtual server is assigned a set of capabilities. The concept of ca-
pabilities, as used in Linux, refers to a partitioning of the privileges available to a
root user, such as the ability to read files or to trace processes owned by another
user. Thus, each virtual server can be assigned a limited subset of the root user’s
privileges. This provides root isolation. VServer can also set resource limits, such as
limits to the amount of virtual memory a process may use.

Figure 14.10 shows the general architecture of Linux VServer. VServer pro-
vides a shared, virtualized OS image, consisting of a root file system, and a shared
set of system libraries and kernel services. Each VM can be booted, shut down, and
rebooted independently. Figure 14.10 shows three groupings of software running
on the computer system. The hosting platform includes the shared OS image and a
privileged host VM, whose function is to monitor and manage the other VMs. The
virtual platform creates virtual machines and is the view of the system seen by the
applications running on the individual VMs.

Process Scheduling

The Linux VServer virtual machine facility provides a way of controlling VM use of
processor time. VServer overlays a token bucket filter (TBF) on top of the standard
Linux schedule. The purpose of the TBF is to determine how much of the processor

608 CHAPTER 14 / VIRTUAL MACHINES

execution time (single processor, multiprocessor, or multicore) is allocated to each
VM. If only the underlying Linux scheduler is used to globally schedule processes
across all VMs, then resource hunger processes in one VM crowd out processes in
other VMs.

Figure 14.11 illustrates the TBF concept. For each VM, a bucket is defined
with a capacity of S tokens. Tokens are added to the bucket at a rate of R tokens
during every time interval of length T. When the bucket is full, additional incoming
tokens are simply discarded. When a process is executing on this VM, it consumes
one token for each timer clock tick. If the bucket empties, the process is put in a hold
and cannot be restarted until the bucket is refilled to a minimum threshold value of
M tokens. At that point, the process is rescheduled. A significant consequence of the
TBF approach is that a VM may accumulate tokens during a period of quiescence,
and then later use the tokens in a burst when required.

Bucket size=
S tokens

Minimum
threshold =

S tokens

Token input rate =
 R /T tokens per second Tokens can accumulate

up to bucket size; excess
tokens discarded

Running process consumes
1 token/timer tick

Current bucket
occupancy

Figure 14.11 Linux VServer Token Bucket Scheme

VM admin.
Remote admin.
Core services

Server
applications

Standard OS image

Server
applications

/proc

/hom
e

/usr

/dev

/proc

/hom
e

/usr

/dev

/proc

/hom
e

/usr

/dev

VMhost VM1 VMn

H
osting platform

V
irtual platform

Figure 14.10 Linux VServer Architecture

14.9 / ANDROID VIRTUAL MACHINE 609

Adjusting the values of R and T allows for regulating the percentage of capac-
ity that a VM can claim. For a single processor, we can define capacity allocation as
follows:

R
T

= fraction of processor allocation

This equation denotes the fraction of a single processor in a system. Thus, for exam-
ple, if a system is multicore with four cores and we wish to provide one VM an aver-
age of one dedicated processor, then we set R = 1 and T = 4. The overall system is
limited as follows. If there are N VMs, then:

a
N

i= 1

Ri

Ti
… 1

The parameters S and M are set so as to penalize a VM after a certain amount
of burst time. The following parameters must be configured or allocated for a VM:
Following a burst time of B, the VM suffers a hold time of H. With these parameters,
it is possible to calculate the desired values of S and M as follows:

 M = W * H * R
T

 S = W * B * a1 - R
T
b

where W is the rate at which the schedule runs (makes decisions). For example, con-
sider a VM with a limit of 1/2 of processor time, and we wish to say that after using
the processor for 30 seconds, there will be a hold time of five seconds. The scheduler
runs at 1000 Hz. This requirement is met with the following values: M = 1,000 *
5 * 0.5 = 2500 tokens; S = 1000 * 30 * 11 - 0.52 = 15,000 tokens.

 14.9 ANDROID VIRTUAL MACHINE

The Android platform’s virtual machine is referred to as Dalvik. The Dalvik VM
(DVM) executes files in the Dalvik Executable (.dex) format, a format that is
optimized for efficient storage and memory-mappable execution. The virtual
machine can run classes compiled by a Java language compiler that have been
transformed into its native format using the included “dx” tool. The VM runs
on top of Linux kernel, which it relies on for underlying functionality (such as
threading and low-level memory management). The Dalvik core class library
is intended to provide a familiar development base for those used to program-
ming with Java Standard Edition, but it is geared specifically to the needs of a
small mobile device.

Each Android application runs in its own process, with its own instance of
the Dalvik VM. Dalvik has been written so that a device can run multiple VMs
efficiently.

610 CHAPTER 14 / VIRTUAL MACHINES

The Dex File Format

The DVM runs applications and code written in Java. A standard Java compiler turns
source code (written as text files) into bytecode. The bytecode is then compiled into
a .dex file that the Dalvik VM can read and use. In essence, class files are converted
into .dex files (much like a jar file if one were using the standard Java VM) and then
read and executed by the DVM. Duplicate data used in class files is included only
once in the .dex file, which saves space and uses less overhead. The executable files
can be modified again when you install an application to make things even more
optimized for mobile.

Figure 14.12 shows the general layout of a .jar Java file, which contains one or
more class files. The class files are assembled into a single .dex file, which is stored

Header

.dex

.apk

.class

.jar

Class

Field

Method

Attributes

Heterogeneous
constant pool

Header

.class

Class

Field

Method

Attributes

Heterogeneous
constant pool

Header

Field list

Method list

Code header

Local variables

Strings
constant pool

Type/class
constant pool

Field
constant pool

Method
constant pool

Class
definition

Figure 14.12 Java and Dalvik Formats

14.10 / SUMMARY 611

as one type of Android package file (.apk). The data in the heterogeneous constant
pools of all of the class files are collected into a single block of pools, which are
organized by type of constant in the .dex file. By allowing for classes to share con-
stants pools, repetition of constant values is kept to a minimum. Similarly, the class,
field, method, and attributes fields in the class files are collected into one place in
the .dex file.

Zygote

The Zygote is a process running on a DVM that is launched at boot time. The
Zygote generates a new DVM every time there is a request for a new process.
The use of the Zygote is intended to minimize the amount of time it takes to gen-
erate a new DVM by sharing items in memory to the maximum extent possible.
Typically, there are a significant number of core library classes and correspond-
ing heap structures that are used by multiple applications, and typically these
items are read-only. That is, there are shared data and classes that most applica-
tions use but don’t modify. Thus, when the Zygote is first launched, it preloads
and preinitializes all Java core library classes and resources that an application
may potentially need at runtime. Additional memory need not be allocated for
copies of these classes when a new DVM is forked from the Zygote DVM. The
Zygote simply maps the memory pages of the new process over to those of the
parent process.

In practice, there is rarely a need to do more than this page mapping. If a class
is written to by a child process in its own DVM, the Zygote copies the affected mem-
ory to the child process. This copy-on-write behavior allows for maximum sharing
of memory while still prohibiting applications from interfering with each other and
providing security across application and process boundaries.

 14.10 SUMMARY

Virtualization technology enables a single PC or server to simultaneously run mul-
tiple operating systems or multiple sessions of a single OS. In essence, the host op-
erating system can support a number of virtual machines (VM), each of which has
the characteristics of a particular OS and, in some versions of virtualization, the
characteristics of a particular hardware platform.

A common virtual machine technology makes use of a virtual machine moni-
tor (VMM), or hypervisor, which is at a lower level than the VM and supports VMs.
There are two types of hypervisors, distinguished by whether there is another op-
erating system between the hypervisor and the host. A Type-1 hypervisor executes
directly on the machine hardware, and a Type-2 hypervisor operates on top of the
host operating system.

A very different approach to implementing a VM environment is exemplified
by the Java VM. The goal of a Java VM is to provide a runtime space for a set of
Java code to run on any operating system staged on any hardware platform, without
needing to make code changes to accommodate the different operating systems or
hardware.

612 CHAPTER 14 / VIRTUAL MACHINES

 14.11 RECOMMENDED READING

[BUZE73] and [GOLD74]are classic accounts of virtual machines worth reading.
[ROSE04] discusses the motivation of contemporary virtualization approaches.

[ROSE05] is a useful survey of virtual machine monitors. [WHIT05] discusses
one approach to paravirtualization. [NAND05] provides an interesting survey of
various implementations of the virtual machine concept. Another worthwhile sur-
vey is [LI10]. [SMIT05] contains a useful taxonomy of virtual machine architectures
that differs somewhat from the approach of this chapter. [PEAR13] is an excellent
survey of virtualization, with an emphasis on security issues.

[UHLI05] describes the hardware support now provided in the x86 architec-
ture, while [ADAM06] examines some of the problems in using hardware-assisted
virtualizing techniques on the x86.

[SUGE01] describes the VMware Workstation approach to virtualizing I/O
devices. [OH12] provides an overview of Dalvik and a discussion of its performance.

ADAM06 Adams, K., and Agesen, O. “A Comparison of Software and Hardware
Techniques for x86 Virtualization.” ACM ASPLOS’06, 2006.

BUZE73 Buzen, J., and Gagliardi, U. “The Evolution of Virtual Machine Architecture.”
AFIPS National Computer Conference, 1973.

GOLD74 Goldberg, R. “Survey of Virtual Machine Research.” Computer, June 1974.
LI10 Li, Y., et al. “A Survey of Virtual Machine Systems: Current Technology and

Future Trends.” Third International Symposium on Electronic Commerce and
Security, 2010.

NAND05 Nanda, S., and Chiueh, T. “A Survey on Virtualization Technologies.”
SUNY RPE Report TR-179, Experimental Computer Systems Lab, SUNY Stony
Brook, 2005.

OH12 Oh, H. “Evaluation of Android Dalvik Virtual Machine.” 10th International
Workshop on Java Technologies for Real-time and Embedded Systems, October
2012.

PEAR13 Pearce, M. et al. “Virtualization: Issues, Security Threats, and Solutions.”
ACM Computing Surveys, February 2013.

ROSE04 Rosenblum, M. “The Reincarnation of Virtual Machines.” ACM Queue, July/
August 2004.

ROSE05 Rosenblum, R., and Garfinkel, T. “Virtual Machine Monitors: Current
Technology and Future Trends.” Computer, May 2005.

SMIT05 Smith, J., and Nair, R. “The Architecture of Virtual Machines.” Computer,
May 2005.

SUGE01 Sugerman, J., et al. “Virtualizing I/O Devices on VMware Workstation’s Hosted
Virtual Machine Monitor.” 2001 USENIX Annual Technical Conference, 2001.

UHLI05 Uhlig, R., et al. “Intel Virtualization Technology.” Computer, May 2005.
WHIT05 Whitaker, A., et al. “Rethinking the Design of Virtual Machine Monitors.”

Computer, May 2005.

14.12 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 613

 14.12 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Dalvi006B
consolidation ratio
hypervisor
Java Virtual Machine (JVM)
memory ballooning

memory overcommit
page sharing
paravirtualization
type-1 hypervisor
type-2 hypervisor

virtualization
virtual machine (VM)
virtual machine monitor

(VMM)
Zygote

Review Questions

 14.1. Briefly describe different approaches to virtualization.
 14.2. Explain the concept of ballooning.
 14.3. Give a brief description of Java VM.
 14.4. Describe the key elements of the Android virtual machine.

Problems

 14.1. Techniques like memory overcommit and page sharing permits virtual machines to be
allocated more resources than are physically in a single virtualization host. Does this
allow the aggregate of the virtual machines to perform more real work than a physical
workload would be capable of on the same hardware?

 14.2. Type-1 hypervisors operate directly on physical hardware without any intervening
operating system. Type-2 hypervisors run as an application installed on an existing
operating system. Type-1 hypervisors perform much better than Type-2 hypervisors
since there is no intervening layer to negotiate between themselves and the system
hardware, nor do they need to contend for resources with another controlling layer
of software. Why then are Type-2 hypervisors widely used? What are some of the use
cases?

 14.3. When virtualization first appeared in the x86 marketplace, many server vendors were
skeptical of the technology and were concerned that consolidation would impact the
sales of servers. Instead, server vendors found that they were selling larger, costlier
servers. Why did this happen?

 14.4. Providing additional bandwidth for virtualization servers initially involved additional
network interface cards (NICs) for more network connections. With the advent of in-
creasingly greater network backbone bandwidths (10Gbit/s, 40Gbit/s, and 100Gbit/s),
fewer NICs are necessary. What issues might result from these converged network
connections and how might they be resolved?

 14.5. Virtual Machines are presented with storage in manners similar to physical machines
via TCP/IP, Fibre-Channel, or iSCSI connections. There are features in virtualization
that optimize memory and processor usage, and advanced features that can provide
more efficient use of I/O resources. What do you think might be available to provide
better use of storage resources in a virtualized environment?

614

 15.1 Intruders and Malicious Software
System Access Threats
Countermeasures

 15.2 Buffer Overflow
Buffer Overflow Attacks
Compile-Time Defenses
Runtime Defenses

 15.3 Access Control
File System Access Control
Access Control Policies

 15.4 Unix Access Control
Traditional UNIX File Access Control
Access Control Lists in UNIX

 15.5 Operating Systems Hardening
Operating System Installation: Initial Setup and Patching
Remove Unnecessary Services, Application, and Protocols
Configure Users, Groups, and Authentication
Configure Resource Controls
Install Additional Security Controls
Test the System Security

 15.6 Security Maintenance
Logging
Data Backup and Archive

 15.7 Windows Security
Access Control Scheme
Access Token
Security Descriptors

 15.8 Summary

 15.9 Recommended Reading and Web Sites

15.10 Key Terms, Review Questions, and Problems

OPERATING SYSTEM SECURITY

CHAPTER

15.1 / INTRUDERS AND MALICIOUS SOFTWARE 615

 15.1 INTRUDERS AND MALICIOUS SOFTWARE

An OS associates a set of privileges with each process. These privileges dictate what
resources the process may access, including regions of memory, files, and privileged
system instructions. Typically, a process that executes on behalf of a user has the
privileges that the OS recognizes for that user. A system or utility process may have
privileges assigned at configuration time.

On a typical system, the highest level of privilege is referred to as administra-
tor, supervisor, or root access.1 Root access provides access to all the functions and
services of the operating system. With root access, a process has complete control of
the system and can add or change programs and files, monitor other processes, send
and receive network traffic, and alter privileges.

A key security issue in the design of any OS is to prevent, or at least detect,
attempts by a user or a piece of malicious software (malware) from gaining unau-
thorized privileges on the system and, in particular, from gaining root access. In this
section, we briefly summarize the threats and countermeasures related to this secu-
rity issue. Subsequent sections examine some of the issues raised in this section in
more detail.

System Access Threats

System access threats fall into two general categories: intruders and malicious
software.

INTRUDERS One of the most common threats to security is the intruder (the other
is viruses), often referred to as a hacker or cracker. In an important early study of
intrusion, Anderson [ANDE80] identifies three classes of intruders:

Masquerader: An individual who is not authorized to use the computer
and who penetrates a system’s access controls to exploit a legitimate user’s
account

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Assess the key security issues that relate to operating systems.
Understand the design issues for file system security.
Distinguish among various types of intruder behavior patterns and under-
stand the types of intrusion techniques used to breach computer security.
Compare and contrast two methods of access control.
Understand how to defend against buffer overflow attacks.

1On UNIX systems, the administrator, or superuser, account is called root; hence the term root access.

616 CHAPTER 15 / OPERATING SYSTEM SECURITY

Misfeasor: A legitimate user who accesses data, programs, or resources for
which such access is not authorized, or who is authorized for such access but
misuses his or her privileges
Clandestine user: An individual who seizes supervisory control of the system
and uses this control to evade auditing and access controls or to suppress audit
collection

The masquerader is likely to be an outsider; the misfeasor generally is an in-
sider; and the clandestine user can be either an outsider or an insider.

Intruder attacks range from the benign to the serious. At the benign end of the
scale, there are many people who simply wish to explore internets and see what is
out there. At the serious end are individuals who are attempting to read privileged
data, perform unauthorized modifications to data, or disrupt the system.

The objective of the intruder is to gain access to a system or to increase the
range of privileges accessible on a system. Most initial attacks use system or soft-
ware vulnerabilities that allow a user to execute code that opens a backdoor into
the system. Intruders can get access to a system by exploiting attacks such as buffer
overflows on a program that runs with certain privileges. We introduce buffer over-
flow attacks in Section 15.2.

Alternatively, the intruder attempts to acquire information that should have
been protected. In some cases, this information is in the form of a user password.
With knowledge of some other user’s password, an intruder can log in to a system
and exercise all the privileges accorded to the legitimate user.

MALICIOUS SOFTWARE Perhaps the most sophisticated types of threats to computer
systems are presented by programs that exploit vulnerabilities in computing systems.
Such threats are referred to as malicious software, or malware. In this context, we
are concerned with threats to application programs as well as utility programs, such
as editors and compilers, and kernel-level programs.

Malicious software can be divided into two categories: those that need a host
program and those that are independent. The former, referred to as parasitic, are
essentially fragments of programs that cannot exist independently of some actual
application program, utility, or system program. Viruses, logic bombs, and backdoors
are examples. The latter are self-contained programs that can be scheduled and run
by the operating system. Worms and bot programs are examples.

We can also differentiate between those software threats that do not rep-
licate and those that do. The former are programs or fragments of programs
that are activated by a trigger. Examples are logic bombs, backdoors, and bot
programs. The latter consists of either a program fragment or an independent
program that, when executed, may produce one or more copies of itself to be
activated later on the same system or some other system. Viruses and worms are
examples.

Malicious software can be relatively harmless or may perform one or more of
a number of harmful actions, including destroying files and data in main memory,
bypassing controls to gain privileged access, and providing a means for intruders to
bypass access controls.

15.1 / INTRUDERS AND MALICIOUS SOFTWARE 617

Countermeasures

INTRUSION DETECTION RFC 4949 (Internet Security Glossary) defines intrusion
detection as follows: A security service that monitors and analyzes system events
for the purpose of finding, and providing real-time or near real-time warning of,
attempts to access system resources in an unauthorized manner.

Intrusion detection systems (IDSs) can be classified as follows:

Host-based IDS: Monitors the characteristics of a single host and the events
occurring within that host for suspicious activity
Network-based IDS: Monitors network traffic for particular network seg-
ments or devices and analyzes network, transport, and application protocols to
identify suspicious activity

An IDS comprises three logical components:

Sensors: Sensors are responsible for collecting data. The input for a sensor
may be any part of a system that could contain evidence of an intrusion. Types
of input to a sensor include network packets, log files, and system call traces.
Sensors collect and forward this information to the analyzer.
Analyzers: Analyzers receive input from one or more sensors or from other
analyzers. The analyzer is responsible for determining if an intrusion has oc-
curred. The output of this component is an indication that an intrusion has
occurred. The output may include evidence supporting the conclusion that an
intrusion occurred. The analyzer may provide guidance about what actions to
take as a result of the intrusion.
User interface: The user interface to an IDS enables a user to view output
from the system or control the behavior of the system. In some systems, the
user interface may equate to a manager, director, or console component.

Intrusion detection systems are typically designed to detect human intruder
behavior as well as malicious software behavior.

AUTHENTICATION In most computer security contexts, user authentication is the
fundamental building block and the primary line of defense. User authentication
is the basis for most types of access control and for user accountability. RFC 4949
defines user authentication as follows:

The process of verifying an identity claimed by or for a system entity. An au-
thentication process consists of two steps:

Identification step: Presenting an identifier to the security system (Identifiers
should be assigned carefully, because authenticated identities are the basis for
other security services, such as access control service.)
Verification step: Presenting or generating authentication information that
corroborates the binding between the entity and the identifier

For example, user Alice Toklas could have the user identifier ABTOKLAS.
This information needs to be stored on any server or computer system that Alice
wishes to use and could be known to system administrators and other users. A typical

618 CHAPTER 15 / OPERATING SYSTEM SECURITY

item of authentication information associated with this user ID is a password, which
is kept secret (known only to Alice and to the system). If no one is able to obtain
or guess Alice’s password, then the combination of Alice’s user ID and password
enables administrators to set up Alice’s access permissions and audit her activity.
Because Alice’s ID is not secret, system users can send her e-mail, but because her
password is secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed
identity to the system; user authentication is the means of establishing the validity
of the claim.

There are four general means of authenticating a user’s identity, which can be
used alone or in combination:

Something the individual knows: Examples include a password, a personal
identification number (PIN), or answers to a prearranged set of questions.
Something the individual possesses: Examples include electronic keycards,
smart cards, and physical keys. This type of authenticator is referred to as a
token.
Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.
Something the individual does (dynamic biometrics): Examples include recog-
nition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a
token. A user may forget a password or lose a token. Further, there is a significant
administrative overhead for managing password and token information on systems
and securing such information on systems. With respect to biometric authenticators,
there are a variety of problems, including dealing with false positives and false nega-
tives, user acceptance, cost, and convenience.

ACCESS CONTROL Access control implements a security policy that specifies who
or what (e.g., in the case of a process) may have access to each specific system
resource and the type of access that is permitted in each instance.

An access control mechanism mediates between a user (or a process execut-
ing on behalf of a user) and system resources, such as applications, operating sys-
tems, firewalls, routers, files, and databases. The system must first authenticate a user
seeking access. Typically, the authentication function determines whether the user
is permitted to access the system at all. Then the access control function determines
if the specific requested access by this user is permitted. A security administrator
maintains an authorization database that specifies what type of access to which re-
sources is allowed for this user. The access control function consults this database
to determine whether to grant access. An auditing function monitors and keeps a
record of user accesses to system resources.

FIREWALLS Firewalls can be an effective means of protecting a local system or
network of systems from network-based security threats while affording access

15.2 / BUFFER OVERFLOW 619

to the outside world via wide area networks and the Internet. Traditionally, a
firewall is a dedicated computer that interfaces with computers outside a network
and has special security precautions built into it in order to protect sensitive files
on computers within the network. It is used to service outside network, especially
Internet connections and dial-in lines. Personal firewalls that are implemented
in hardware or software, and associated with a single workstation or PC, are also
common.

[BELL94] lists the following design goals for a firewall:

 1. The firewall acts as a choke point, so that all incoming traffic and all outgoing
traffic must pass through the firewall. This is achieved by physically blocking
all access to the local network except via the firewall.

 2. The firewall enforces the local security policy, which defines the traffic that is
authorized to pass. Various types of firewalls are used, which implement vari-
ous types of security policies, as explained later in this chapter.

 3. The firewall is secure against attacks. This implies the use of a hardened system
with a secured operating system. Trusted computer systems are suitable for
hosting a firewall and often required in government applications.

 15.2 BUFFER OVERFLOW

Main memory and virtual memory are system resources subject to security threats
and for which security countermeasures need to be taken. The most obvious secu-
rity requirement is the prevention of unauthorized access to the memory contents
of processes. If a process has not declared a portion of its memory to be sharable,
then no other process should have access to the contents of that portion of memory.
If a process declares that a portion of memory may be shared by other designated
processes, then the security service of the OS must ensure that only the designated
processes have access. The security threats and countermeasures discussed in the
preceding section are relevant to this type of memory protection.

In this section, we summarize another threat, which involves memory protection.

Buffer Overflow Attacks

Buffer overflow, also known as a buffer overrun, is defined in the NIST (National
Institute of Standards and Technology) Glossary of Key Information Security Terms
as follows:

Buffer overflow: A condition at an interface under which more input can be
placed into a buffer or data-holding area than the capacity allocated, overwrit-
ing other information. Attackers exploit such a condition to crash a system or to
insert specially crafted code that allows them to gain control of the system.

A buffer overflow can occur as a result of a programming error when a process
attempts to store data beyond the limits of a fixed-sized buffer and consequently

620 CHAPTER 15 / OPERATING SYSTEM SECURITY

overwrites adjacent memory locations. These locations could hold other program
variables or parameters or program control flow data such as return addresses and
pointers to previous stack frames. The buffer could be located on the stack, in the
heap, or in the data section of the process. The consequences of this error include
corruption of data used by the program, unexpected transfer of control in the pro-
gram, possibly memory access violations, and very likely eventual program termina-
tion. When done deliberately as part of an attack on a system, the transfer of control
could be to code of the attacker’s choosing, resulting in the ability to execute arbi-
trary code with the privileges of the attacked process. Buffer overflow attacks are
one of the most prevalent and dangerous types of security attacks.

To illustrate the basic operation of a common type of buffer overflow, known
as stack overflow, consider the C main function given in Figure 15.1a. This con-
tains three variables (valid, str1, and str2),2 whose values will typically be
saved in adjacent memory locations. Their order and location depends on the type
of variable (local or global), the language and compiler used, and the target ma-
chine architecture. For this example, we assume that they are saved in consecutive
memory locations, from highest to lowest, as shown in Figure 15.2.3 This is typically
the case for local variables in a C function on common processor architectures such
as the Intel Pentium family. The purpose of the code fragment is to call the function

2In this example, the flag variable is saved as an integer rather than a Boolean. This is done both because
it is the classic C style and to avoid issues of word alignment in its storage. The buffers are deliberately
small to accentuate the buffer overflow issue being illustrated.
3Address and data values are specified in hexadecimal in this and related figures. Data values are also
shown in ASCII where appropriate.

Figure 15.1 Basic Buffer Overflow Example

int main(int argc, char *argv[]) {
 int valid = FALSE;
 char str1[8];
 char str2[8];

 next_tag(str1);
 gets(str2);
 if (strncmp(str1, str2, 8) == 0)
 valid = TRUE;
 printf("buffer1: str1(%s), str2(%s), valid(%d)\n", str1, str2, valid);
}

(a) Basic buffer overflow C code

$ cc -g -o buffer1 buffer1.c
$./buffer1
START
buffer1: str1(START), str2(START), valid(1)
$./buffer1
EVILINPUTVALUE
buffer1: str1(TVALUE), str2(EVILINPUTVALUE), valid(0)
$./buffer1
BADINPUTBADINPUT
buffer1: str1(BADINPUT), str2(BADINPUTBADINPUT), valid(1)

(b) Basic buffer overflow example runs

15.2 / BUFFER OVERFLOW 621

next_tag(str1) to copy into str1 some expected tag value. Let’s assume this
will be the string START. It then reads the next line from the standard input for the
program using the C library gets() function, and then compares the string read
with the expected tag. If the next line did indeed contain just the string START, this
comparison would succeed and the variable valid would be set to TRUE.4 This case
is shown in the first of the three example program runs in Figure 15.1b. Any other
input tag would leave it with the value FALSE. Such a code fragment might be used
to parse some structured network protocol interaction or formatted text file.

The problem with this code exists because the traditional C library gets()
function does not include any checking on the amount of data copied. It reads the next
line of text from the program’s standard input up until the first newline5 character

4In C the logical values FALSE and TRUE are simply integers with the values 0 and 1 (or indeed any
nonzero value), respectively. Symbolic defines are often used to map these symbolic names to their un-
derlying value, as was done in this program.

Figure 15.2 Basic Buffer Overflow Stack Values

Memory
Address

Before
gets(str2)

After
gets(str2)

Contains
Value of

.
bffffbf4 34fcffbf

4 . . .
34fcffbf
3 . . .

argv

bffffbf0 01000000
. . . .

01000000
. . . .

argc

bffffbec c6bd0340
. . . @

c6bd0340
. . . @

return addr

bffffbe8 08fcffbf
. . . .

08fcffbf
. . . .

old base ptr

bffffbe4 00000000
. . . .

01000000
. . . .

valid

bffffbe0 80640140
. d . @

00640140
. d . @

bffffbdc 54001540
T . . @

4e505554
N P U T

str1[4-7]

bffffbd8 53544152
S T A R

42414449
B A D I

str1[0-3]

bffffbd4 00850408
. . . .

4e505554
N P U T

str2[4-7]

bffffbd0 30561540
0 V . @

42414449
B A D I

str2[0-3]

.

5The newline (NL) or linefeed (LF) character is the standard end of line terminator for UNIX systems,
and hence for C, and is the character with the ASCII value 0x0a.

622 CHAPTER 15 / OPERATING SYSTEM SECURITY

occurs and copies it into the supplied buffer followed by the NULL terminator used
with C strings.6 If more than seven characters are present on the input line, when
read in they will (along with the terminating NULL character) require more room
than is available in the str2 buffer. Consequently, the extra characters will overwrite
the values of the adjacent variable, str1 in this case. For example, if the input line
contained EVILINPUTVALUE, the result will be that str1 will be overwritten with
the characters TVALUE, and str2 will use not only the eight characters allocated to
it but seven more from str1 as well. This can be seen in the second example run in
Figure 15.1b. The overflow has resulted in corruption of a variable not directly used
to save the input. Because these strings are not equal, valid also retains the value
FALSE. Further, if 16 or more characters were input, additional memory locations
would be overwritten.

The preceding example illustrates the basic behavior of a buffer overflow.
At its simplest, any unchecked copying of data into a buffer could result in cor-
ruption of adjacent memory locations, which may be other variables, or possibly
program control addresses and data. Even this simple example could be taken fur-
ther. Knowing the structure of the code processing it, an attacker could arrange for
the overwritten value to set the value in str1 equal to the value placed in str2,
 resulting in the subsequent comparison succeeding. For example, the input line
could be the string BADINPUTBADINPUT. This results in the comparison succeed-
ing, as shown in the third of the three example program runs in Figure 15.1b and
illustrated in Figure 15.2, with the values of the local variables before and after the
call to gets(). Note also that the terminating NULL for the input string was writ-
ten to the memory location following str1. This means the flow of control in the
program will continue as if the expected tag was found, when in fact the tag read
was something completely different. This will almost certainly result in program be-
havior that was not intended. How serious this is depends very much on the logic in
the attacked program. One dangerous possibility occurs if instead of being a tag, the
values in these buffers were an expected and supplied password needed to access
privileged features. If so, the buffer overflow provides the attacker with a means of
accessing these features without actually knowing the correct password.

To exploit any type of buffer overflow, such as those we have illustrated here,
the attacker needs:

 1. To identify a buffer overflow vulnerability in some program that can be trig-
gered using externally sourced data under the attackers control

 2. To understand how that buffer will be stored in the processes memory, and
hence the potential for corrupting adjacent memory locations and potentially
altering the flow of execution of the program

Identifying vulnerable programs may be done by inspection of program source,
tracing the execution of programs as they process oversized input, or using tools
such as fuzzing, which we discuss in Part Seven, to automatically identify potentially

6Strings in C are stored in an array of characters and terminated with the NULL character, which has the
ASCII value 0x00. Any remaining locations in the array are undefined, and typically contain whatever
value was previously saved in that area of memory. This can be clearly seen in the value in the variable
str2 in the “Before” column of Figure 15.2.

15.2 / BUFFER OVERFLOW 623

vulnerable programs. What the attacker does with the resulting corruption of mem-
ory varies considerably, depending on what values are being overwritten.

Compile-Time Defenses

Finding and exploiting a stack buffer overflow is not that difficult. The large number
of exploits over the previous couple of decades clearly illustrates this. There is con-
sequently a need to defend systems against such attacks by either preventing them
or at least detecting and aborting such attacks. Countermeasures can be broadly
classified into two categories:

Compile-time defenses, which aim to harden programs to resist attacks
Runtime defenses, which aim to detect and abort attacks in executing pro-
grams programs

While suitable defenses have been known for a couple of decades, the very
large existing base of vulnerable software and systems hinders their deployment.
Hence the interest in runtime defenses, which can be deployed in operating systems
and updates and can provide some protection for existing vulnerable programs.

In this subsection, we look at compile-time defenses, and then subsequently
look at runtime defenses. Compile-time defenses aim to prevent or detect buffer
overflows by instrumenting programs when they are compiled. The possibilities for
doing this range from choosing a high-level language that does not permit buffer
overflows to encouraging safe coding standards, using safe standard libraries, or in-
cluding additional code to detect corruption of the stack frame.

CHOICE OF PROGRAMMING LANGUAGE One possibility is to write the program using
a modern high-level programming language, one that has a strong notion of variable
type and what constitutes permissible operations on them. Such languages are not
vulnerable to buffer overflow attacks, because their compilers include additional
code to enforce range checks automatically, removing the need for the programmer
to explicitly code them. The flexibility and safety provided by these languages
does come at a cost in resource use, both at compile time and also in additional
code that must execute at runtime to impose checks such as that on buffer limits.
These disadvantages are much less significant than they used to be, due to the rapid
increase in processor performance. Increasingly programs are being written in these
languages and hence should be immune to buffer overflows in their code (though
if they use existing system libraries or runtime execution environments written in
less safe languages, they may still be vulnerable). The distance from the underlying
machine language and architecture also means that access to some instructions and
hardware resources is lost. This limits their usefulness in writing code, such as device
drivers, that must interact with such resources. For these reasons, there is still likely
to be at least some code written in less safe languages such as C.

SAFE CODING TECHNIQUES If languages such as C are being used, programmers
need to be aware that their ability to manipulate pointer addresses and access
memory directly comes at a cost. C was designed as a systems programming
language, running on systems that were vastly smaller and more constrained than

624 CHAPTER 15 / OPERATING SYSTEM SECURITY

we now use. This meant that C’s designers placed much more emphasis on space
efficiency and performance considerations than on type safety. They assumed that
programmers would exercise due care in writing code using these languages and
take responsibility for ensuring the safe use of all data structures and variables.

Unfortunately, as several decades of experience have shown, this has not been
the case. This may be seen in large legacy body of potentially unsafe code in the
UNIX and Linux operating systems and applications, some of which are potentially
vulnerable to buffer overflows.

In order to harden these systems, the programmer needs to inspect the code
and rewrite any unsafe coding constructs in a safe manner. Given the rapid uptake
of buffer overflow exploits, this process has begun in some cases. A good example is
the OpenBSD project, which produces a free, multiplatform 4.4BSD-based UNIX-
like operating system. Among other technology changes, programmers have under-
taken an extensive audit of the existing code base, including the operating system,
standard libraries, and common utilities. This has resulted in what is widely regarded
as one of the safest operating systems in widespread use. The OpenBSD project
claims as of mid-2006 that there has only been one remote hole discovered in the
default install in more than eight years. This is a clearly enviable record. Microsoft
has also undertaken a major project in reviewing its code base, partly in response to
continuing bad publicity over the number of vulnerabilities, including many buffer
overflow issues, that have been found in their operating systems and applications
code. This has clearly been a difficult process, though they claim that their new Vista
operating system will benefit greatly from this process.

LANGUAGE EXTENSIONS AND USE OF SAFE LIBRARIES Given the problems
that can occur in C with unsafe array and pointer references, there have been a
number of proposals to augment compilers to automatically insert range checks
on such references. While this is fairly easy for statically allocated arrays, handling
dynamically allocated memory is more problematic, because the size information is
not available at compile-time. Handling this requires an extension to the semantics
of a pointer to include bounds information and the use of library routines to
ensure that these values are set correctly. Several such approaches are listed in
[LHEE03]. However, there is generally a performance penalty with the use of
such techniques that may or may not be acceptable. These techniques also require
all programs and libraries that require these safety features to be recompiled with
the modified compiler. While this can be feasible for a new release of an operating
system and its associated utilities, there will still likely be problems with third-
party applications.

A common concern with C comes from the use of unsafe standard library
routines, especially some of the string manipulation routines. One approach to im-
proving the safety of systems has been to replace these with safer variants. This can
include the provision of new functions, such as strlcpy(), in the BSD family of
systems, including OpenBSD. Using these requires rewriting the source to conform
to the new safer semantics. Alternatively, it involves replacement of the standard
string library with a safer variant. Libsafe is a well-known example of this. It imple-
ments the standard semantics but includes additional checks to ensure that the copy
operations do not extend beyond the local variable space in the stack frame. So,

15.2 / BUFFER OVERFLOW 625

while it cannot prevent corruption of adjacent local variables, it can prevent any
modification of the old stack frame and return address values, and thus prevent the
classic stack buffer overflow types of attack we examined previously. This library
is implemented as a dynamic library, arranged to load before the existing standard
libraries, and can thus provide protection for existing programs without requiring
them to be recompiled, provided they dynamically access the standard library rou-
tines (as most programs do). The modified library code has been found to typically
be at least as efficient as the standard libraries, and thus its use is an easy way of
protecting existing programs against some forms of buffer overflow attacks.

STACK PROTECTION MECHANISMS An effective method for protecting programs
against classic stack overflow attacks is to instrument the function entry and exit
code to set up and then check its stack frame for any evidence of corruption. If
any modification is found, the program is aborted rather than allowing the attack
to proceed. There are several approaches to providing this protection, which we
discuss next.

Stackguard is one of the best-known protection mechanisms. It is a GCC
(GNU Compiler Collection) compiler extension that inserts additional function
entry and exit code. The added function entry code writes a canary7 value below
the old frame pointer address, before the allocation of space for local variables. The
added function exit code checks that the canary value has not changed before con-
tinuing with the usual function exit operations of restoring the old frame pointer
and transferring control back to the return address. Any attempt at a classic stack
buffer overflow would have to alter this value in order to change the old frame
pointer and return addresses and would thus be detected, resulting in the program
being aborted. For this defense to function successfully, it is critical that the canary
value be unpredictable and should be different on different systems. If this were not
the case, the attacker would simply ensure the shellcode included the correct canary
value in the required location. Typically, a random value is chosen as the canary
value on process creation and saved as part of the processes state. The code added to
the function entry and exit then uses this value.

There are some issues with using this approach. First, it requires that all pro-
grams needing protection be recompiled. Second, because the structure of the stack
frame has changed, it can cause problems with programs, such as debuggers, which
analyze stack frames. However, the canary technique has been used to recompile an
entire Linux distribution and provide it with a high level of resistance to stack over-
flow attacks. Similar functionality is available for Windows programs by compiling
them using Microsoft’s /GS Visual C++ compiler option.

Runtime Defenses

As has been noted, most of the compile-time approaches require recompilation of
existing programs. Hence there is interest in runtime defenses that can be deployed
as operating systems updates to provide some protection for existing vulnerable

7Named after the miner’s canary used to detect poisonous air in a mine and thus warn the miners in time
for them to escape.

626 CHAPTER 15 / OPERATING SYSTEM SECURITY

programs. These defenses involve changes to the memory management of the vir-
tual address space of processes. These changes act either to alter the properties of
regions of memory or to make predicting the location of targeted buffers sufficiently
difficult to thwart many types of attacks.

EXECUTABLE ADDRESS SPACE PROTECTION Many of the buffer overflow attacks
involve copying machine code into the targeted buffer and then transferring
execution to it. A possible defense is to block the execution of code on the stack,
on the assumption that executable code should only be found elsewhere in the
processes address space.

To support this feature efficiently requires support from the processor’s mem-
ory management unit (MMU) to tag pages of virtual memory as being nonexecut-
able. Some processors, such as the SPARC used by Solaris, have had support for this
for some time. Enabling its use in Solaris requires a simple kernel parameter change.
Other processors, such as the x86 family, have not had this support until recently,
with the relatively recent addition of the no-execute bit in its MMU. Extensions
have been made available to Linux, BSD, and other UNIX-style systems to support
the use of this feature. Some indeed are also capable of protecting the heap as well
as the stack, which also is the target of attacks. Support for enabling no-execute pro-
tection is also included in recent Windows systems.

Making the stack (and heap) nonexecutable provides a high degree of pro-
tection against many types of buffer overflow attacks for existing programs; hence
the inclusion of this practice is standard in a number of recent operating systems
releases. However, one issue is support for programs that do need to place execut-
able code on the stack. This can occur, for example, in just-in-time compilers, such
as is used in the Java runtime system. Executable code on the stack is also used to
implement nested functions in C (a GCC extension) and also Linux signal handlers.
Special provisions are needed to support these requirements. Nonetheless, this is
regarded as one of the best methods for protecting existing programs and hardening
systems against some attacks.

ADDRESS SPACE RANDOMIZATION Another runtime technique that can be used
to thwart attacks involves manipulation of the location of key data structures in the
address space of a process. In particular, recall that in order to implement the classic
stack overflow attack, the attacker needs to be able to predict the approximate
location of the targeted buffer. The attacker uses this predicted address to determine
a suitable return address to use in the attack to transfer control to the shellcode. One
technique to greatly increase the difficulty of this prediction is to change the address
at which the stack is located in a random manner for each process. The range of
addresses available on modern processors is large (32 bits), and most programs only
need a small fraction of that. Therefore, moving the stack memory region around by
a megabyte or so has minimal impact on most programs but makes predicting the
targeted buffer’s address almost impossible.

Another target of attack is the location of standard library routines. In an at-
tempt to bypass protections such as nonexecutable stacks, some buffer overflow
variants exploit existing code in standard libraries. These are typically loaded at the
same address by the same program. To counter this form of attack, we can use a

15.3 / ACCESS CONTROL 627

security extension that randomizes the order of loading standard libraries by a pro-
gram and their virtual memory address locations. This makes the address of any
specific function sufficiently unpredictable as to render the chance of a given attack
correctly predicting its address very low.

The OpenBSD system includes versions of these extensions in its technologi-
cal support for a secure system.

GUARD PAGES A final runtime technique that can be used places guard pages
between critical regions of memory in a processes address space. Again, this exploits
the fact that a process has much more virtual memory available than it typically
needs. Gaps are placed between the ranges of addresses used for each of the
components of the address space. These gaps, or guard pages, are flagged in the
MMU as illegal addresses, and any attempt to access them results in the process
being aborted. This can prevent buffer overflow attacks, typically of global data,
which attempt to overwrite adjacent regions in the processes address space.

A further extension places guard pages between stack frames or between dif-
ferent allocations on the heap. This can provide further protection against stack and
heap overflow attacks, but at cost in execution time supporting the large number of
page mappings necessary.

 15.3 ACCESS CONTROL

Access control is a function exercised by the OS, by the file system, or at both levels.
The principles that have been typically applied are the same at both levels. In this
section, we begin by looking at access control specifically from the point of view of
file access control and then generalize the discussion to access control policies that
apply to a variety of system resources.

File System Access Control

Following successful logon, the user has been granted access to one or a set of hosts
and applications. This is generally not sufficient for a system that includes sensi-
tive data in its database. Through the user-access control procedure, a user can be
identified to the system. Associated with each user, there can be a profile that speci-
fies permissible operations and file accesses. The operating system can then enforce
rules based on the user profile. The database management system, however, must
control access to specific records or even portions of records. For example, it may
be permissible for anyone in administration to obtain a list of company personnel,
but only selected individuals may have access to salary information. The issue is
more than just a matter of level of detail. Whereas the operating system may grant
a user permission to access a file or use an application, following which there are
no further security checks, the database management system must make a decision
on each individual access attempt. That decision will depend not only on the user’s
identity but also on the specific parts of the data being accessed and even on the
information already divulged to the user.

628 CHAPTER 15 / OPERATING SYSTEM SECURITY

A general model of access control as exercised by a file or database manage-
ment system is that of an access matrix (Figure 15.3a). The basic elements of the
model are as follows:

Subject: An entity capable of accessing objects. Generally, the concept of sub-
ject equates with that of process. Any user or application actually gains access
to an object by means of a process that represents that user or application.
Object: Anything to which access is controlled. Examples include files, por-
tions of files, programs, segments of memory, and software objects (e.g., Java
objects).
Access right: The way in which an object is accessed by a subject. Examples are
read, write, execute, and functions in software objects.

Own
R
W

R
W

Own
R
W

Own
R
W

AFile 1

R

R

W R

Own
R
W

Own
R
W

Inquiry
credit

Inquiry
credit

Inquiry
debit

Inquiry
debit

User A

User B

User C

File 2File 1

(a) Access matrix

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

File 3 File 4 Account 1 Account 2

R

B

R
W

C

File 1User C

R

File 2

R
W

File 4

File 1User B

R W

File 2 File 3 File 4Own
R
W

BFile 2

R

C

Own
R
W

Own
R
W

Own
R
W

Own
R
W

File 1User A File 3

Own
R
W

AFile 3

W

B

Own
R
W

B

R

File 4 C

R

Figure 15.3 Example of Access Control Structures

15.3 / ACCESS CONTROL 629

One dimension of the matrix consists of identified subjects that may attempt
data access. Typically, this list will consist of individual users or user groups, although
access could be controlled for terminals, hosts, or applications instead of or in addi-
tion to users. The other dimension lists the objects that may be accessed. At the great-
est level of detail, objects may be individual data fields. More aggregate groupings,
such as records, files, or even the entire database, may also be objects in the matrix.
Each entry in the matrix indicates the access rights of that subject for that object.

In practice, an access matrix is usually sparse and is implemented by decom-
position in one of two ways. The matrix may be decomposed by columns, yielding
access control lists (Figure 15.3b). Thus for each object, an access control list lists
users and their permitted access rights. The access control list may contain a default,
or public, entry. This allows users that are not explicitly listed as having special rights
to have a default set of rights. Elements of the list may include individual users as
well as groups of users.

Decomposition by rows yields capability tickets (Figure 15.3c). A capability
ticket specifies authorized objects and operations for a user. Each user has a number
of tickets and may be authorized to loan or give them to others. Because tickets may
be dispersed around the system, they present a greater security problem than access
control lists. In particular, the ticket must be unforgeable. One way to accomplish
this is to have the operating system hold all tickets on behalf of users. These tickets
would have to be held in a region of memory inaccessible to users.

Network considerations for data-oriented access control parallel those for
user-oriented access control. If only certain users are permitted to access certain
items of data, then encryption may be needed to protect those items during trans-
mission to authorized users. Typically, data access control is decentralized, that is,
controlled by host-based database management systems. If a network database
server exists on a network, then data access control becomes a network function.

Access Control Policies

An access control policy dictates what types of access are permitted, under what
circumstances, and by whom. Access control policies are generally grouped into the
following categories:

Discretionary access control (DAC): Controls access based on the identity of
the requestor and on access rules (authorizations) stating what requestors are
(or are not) allowed to do. This policy is termed discretionary because an entity
might have access rights that permit the entity, by its own volition, to enable
another entity to access some resource.
Mandatory access control (MAC): Controls access based on comparing secu-
rity labels (which indicate how sensitive or critical system resources are) with
security clearances (which indicate system entities are eligible to access certain
resources). This policy is termed mandatory because an entity that has clear-
ance to access a resource may not, just by its own volition, enable another
entity to access that resource.
Role-based access control (RBAC): Controls access based on the roles that
users have within the system and on rules stating what accesses are allowed to
users in given roles.

630 CHAPTER 15 / OPERATING SYSTEM SECURITY

DAC is the traditional method of implementing access control. This method
was introduced in the preceding discussion of file access control; we provide more
detail in this section. MAC is a concept that evolved out of requirements for mili-
tary information security and is beyond the scope of this book. RBAC has become
increasingly popular and is introduced later in this section.

These three policies are not mutually exclusive (Figure 15.4). An access con-
trol mechanism can employ two or even all three of these policies to cover different
classes of system resources.

DISCRETIONARY ACCESS CONTROL This section introduces a general model
for DAC developed by Lampson, Graham, and Denning [LAMP71, GRAH72,
DENN71]. The model assumes a set of subjects, a set of objects, and a set of rules
that govern the access of subjects to objects. Let us define the protection state of
a system to be the set of information, at a given point in time, that specifies the
access rights for each subject with respect to each object. We can identify three
requirements: representing the protection state, enforcing access rights, and allowing
subjects to alter the protection state in certain ways. The model addresses all three
requirements, giving a general, logical description of a DAC system.

To represent the protection state, we extend the universe of objects in the ac-
cess control matrix to include the following:

Processes: Access rights include the ability to delete a process, stop (block),
and wake up a process.
Devices: Access rights include the ability to read/write the device, to control its
operation (e.g., a disk seek), and to block/unblock the device for use.
Memory locations or regions: Access rights include the ability to read/write
certain locations of regions of memory that are protected so that the default is
that access is not allowed.
Subjects: Access rights with respect to a subject have to do with the ability
to grant or delete access rights of that subject to other objects, as explained
subsequently.

Figure 15.5 is an example (compare Figure 15.3a). For an access control ma-
trix A, each entry A[S, X] contains strings, called access attributes, that specify the

Discretionary
access control

policy

Mandatory
access control

policy

Role-based
access control

policy

Figure 15.4 Access Control Policies

15.3 / ACCESS CONTROL 631

access rights of subject S to object X. For example, in Figure 15.4, S1 may read file F2,
 because read appears in A[S1, F1].

From a logical or functional point of view, a separate access control module is
associated with each type of object (Figure 15.5). The module evaluates each request
by a subject to access an object to determine if the access right exists. An access at-
tempt triggers the following steps:

 1. A subject S0 issues a request of type a for object X.
 2. The request causes the system (the operating system or an access control inter-

face module of some sort) to generate a message of the form (S0, a, X) to the
controller for X.

 3. The controller interrogates the access matrix A to determine if a is in A[S0, X].
If so, the access is allowed; if not, the access is denied and a protection viola-
tion occurs. The violation should trigger a warning and an appropriate action.

Figure 15.6 suggests that every access by a subject to an object is mediated
by the controller for that object, and that the controller’s decision is based on the
current contents of the matrix. In addition, certain subjects have the authority to
make specific changes to the access matrix. A request to modify the access matrix is
treated as an access to the matrix, with the individual entries in the matrix treated
as objects. Such accesses are mediated by an access matrix controller, which controls
updates to the matrix.

The model also includes a set of rules that govern modifications to the access
matrix, shown in Table 15.1. For this purpose, we introduce the access rights owner
and control and the concept of a copy flag, explained in the subsequent paragraphs.

The first three rules deal with transferring, granting, and deleting access rights.
Suppose that the entry a* exists in A[S0, X]. This means that S0 has access right a to
subject X and, because of the presence of the copy flag, can transfer this right, with
or without copy flag, to another subject. Rule R1 expresses this capability. A subject
would transfer the access right without the copy flag if there were a concern that
the new subject would maliciously transfer the right to another subject that should
not have that access right. For example, S1 may place read or read* in any matrix
entry in the F1 column. Rule R2 states that if S0 is designated as the owner of ob-
ject X, then S0 can grant an access right to that object for any other subject. Rule 2

Control Wakeup Seek

Owner

OwnerWakeupRead
owner

Owner
control

Execute

Write Stop

Owner

Control

Control

Read *

Write *

* — Copy flag set

Seek *

S1

S2

Su
bj

ec
ts

Objects

Subjects Files Processes Disk drives

S3

S2S1 S3 F1 F2 P1 P2 D1 D2

Figure 15.5 Extended Access Control Matrix

632 CHAPTER 15 / OPERATING SYSTEM SECURITY

states that S0 can add any access right to A[S, X] for any S, if S0 has owner access
to X. Rule R3 permits S0 to delete any access right from any matrix entry in a row
for which S0 controls the subject and for any matrix entry in a column for which S0
owns the object. Rule R4 permits a subject to read that portion of the matrix that it
owns or controls.

The remaining rules in Table 15.1 govern the creation and deletion of subjects
and objects. Rule R5 states that any subject can create a new object, which it owns,
and can then grant and delete access to the object. Under rule R6, the owner of an
object can destroy the object, resulting in the deletion of the corresponding column
of the access matrix. Rule R7 enables any subject to create a new subject; the cre-
ator owns the new subject and the new subject has control access to itself. Rule R8
permits the owner of a subject to delete the row and column (if there are subject
columns) of the access matrix designated by that subject.

File
system

Memory
addressing
hardware

Process
manager

Terminal
& device
manager

Instruction
decoding
hardware

Access
matrix

monitor

Access
matrixWrite Read

Files

Segments
& pages

Processes

Terminal
& devices

Instructions

Delete β from Sp, Y (Sm, delete, β, Sp, Y)

(Sk, grant, α, Sn, X)Grant α to Sn, X

Wakeup P (Sj, wakeup, P)

Read F

Subjects Access control mechanisms Objects

(Si, read, F)

Sm

Sj

Si

Sk

System intervention

Figure 15.6 An Organization of the Access Control Function

15.3 / ACCESS CONTROL 633

The set of rules in Table 15.1 is an example of the rule set that could be defined
for an access control system. The following are examples of additional or alternative
rules that could be included. A transfer-only right could be defined, which results in
the transferred right being added to the target subject and deleted from the transfer-
ring subject. The number of owners of an object or a subject could be limited to one
by not allowing the copy flag to accompany the owner right.

The ability of one subject to create another subject and to have owner ac-
cess right to that subject can be used to define a hierarchy of subjects. For example,
in Figure 15.5, S1 owns S2 and S3, so that S2 and S3 are subordinate to S1. By the
rules of Table 15.1, S1 can grant and delete to S2 access rights that S1 already has.
Thus, a subject can create another subject with a subset of its own access rights. This
might be useful, for example, if a subject is invoking an application that is not fully
trusted, and does not want that application to be able to transfer access rights to
other subjects.

ROLE-BASED ACCESS CONTROL Traditional DAC systems define the access rights
of individual users and groups of users. In contrast, RBAC is based on the roles that
users assume in a system rather than the user’s identity. Typically, RBAC models
define a role as a job function within an organization. RBAC systems assign access
rights to roles instead of individual users. In turn, users are assigned to different
roles, either statically or dynamically, according to their responsibilities.

RBAC now enjoys widespread commercial use and remains an area of active
research. The National Institute of Standards and Technology (NIST) has issued a
standard, Security Requirements for Cryptographic Modules (FIPS PUB 140-2, May
25, 2001), that requires support for access control and administration through roles.

Table 15.1 Access Control System Commands

Rule Command (by S0) Authorization Operation

R1
transfer ea*

a
f to S, X

‘a*’ in A[S0, X]
store ea*

a
f in A[S, X]

R2
grant ea*

a
f to S, X

‘owner’ in A[S0, X]
store ea*

a
f in A[S, X]

R3 delete a from S, X ‘control’ in A[S0, S]
 or
‘owner’ in A[S0, X]

delete a from A[S, X]

R4 w d read S, X ‘control’ in A[S0, S]
 or
‘owner’ in A[S0, X]

copy A[S, X] into w

R5 create object X None add column for X to A; store
‘owner’ in A[S0, X]

R6 destroy object X ‘owner’ in A[S0, X] delete column for X from A

R7 create subject S None add row for S to A; execute
create object S; store ‘control’
in A[S, S]

R8 destroy subject S ‘owner’ in A[S0, S] delete row for S from A;
 execute destroy object S

634 CHAPTER 15 / OPERATING SYSTEM SECURITY

The relationship of users to roles is many to many, as is the relationship of
roles to resources, or system objects (Figure 15.7). The set of users changes, in some
environments frequently, and the assignment of a user to one or more roles may also
be dynamic. The set of roles in the system in most environments is likely to be static,
with only occasional additions or deletions. Each role will have specific access rights
to one or more resources. The set of resources and the specific access rights associ-
ated with a particular role are also likely to change infrequently.

We can use the access matrix representation to depict the key elements of an
RBAC system in simple terms, as shown in Figure 15.8. The upper matrix relates in-
dividual users to roles. Typically there are many more users than roles. Each matrix
entry is either blank or marked, the latter indicating that this user is assigned to this
role. Note that a single user may be assigned multiple roles (more than one mark
in a row) and that multiple users may be assigned to a single role (more than one
mark in a column). The lower matrix has the same structure as the DAC matrix, with
roles as subjects. Typically, there are few roles and many objects, or resources. In this
matrix the entries are the specific access rights enjoyed by the roles. Note that a role
can be treated as an object, allowing the definition of role hierarchies.

RBAC lends itself to an effective implementation of the principle of least priv-
ilege. That is, each role should contain the minimum set of access rights needed for
that role. A user is assigned to a role that enables him or her to perform only what
is required for that role. Multiple users assigned to the same role enjoy the same
minimal set of access rights.

Role 1

Users Roles Resources

Role 2

Role 3

Figure 15.7 Users, Roles, and Resources

15.4 / UNIX ACCESS CONTROL 635

 15.4 UNIX ACCESS CONTROL

Traditional UNIX File Access Control

Most UNIX systems depend on, or at least are based on, the file access control
scheme introduced with the early versions of UNIX. Each UNIX user is assigned a
unique user identification number (user ID). A user is also a member of a primary
group, and possibly a number of other groups, each identified by a group ID. When
a file is created, it is designated as owned by a particular user and marked with that
user’s ID. It also belongs to a specific group, which initially is either its creator’s pri-
mary group or the group of its parent directory if that directory has SetGID permis-
sion set. Associated with each file is a set of 12 protection bits. The owner ID, group
ID, and protection bits are part of the file’s inode.

Nine of the protection bits specify read, write, and execute permission for the
owner of the file, other members of the group to which this file belongs, and all
other users. These form a hierarchy of owner, group, and all others, with the highest
relevant set of permissions being used. Figure 15.9a shows an example in which the

Control Wakeup Seek

Owner

OwnerWakeupRead
owner

Owner
control

Execute

Write Stop

Owner

Control

Control

Read *

Write * Seek *

R1

R2

R
ol

es

Objects

Rn

R2R1 Rn

R2R1 Rn

F1 F1 P1 P2 D1 D2

U1

U2

U3

U4

U5

U6

Um

Figure 15.8 Access Control Matrix Representation of RBAC

636 CHAPTER 15 / OPERATING SYSTEM SECURITY

file owner has read and write access; all other members of the file’s group have read
access, and users outside the group have no access rights to the file. When applied to
a directory, the read and write bits grant the right to list and to create/rename/delete
files in the directory.8 The execute bit grants the right to search the directory for a
component of a filename.

The remaining three bits define special additional behavior for files or directo-
ries. Two of these are the “set user ID” (SetUID) and “set group ID” (SetGID) per-
missions. If these are set on an executable file, the operating system functions as fol-
lows. When a user (with execute privileges for this file) executes the file, the system
temporarily allocates the rights of the user’s ID of the file creator or the file’s group,
respectively, to those of the user executing the file. These are known as the “effec-
tive user ID” and “effective group ID” and are used in addition to the “real user ID”
and “real group ID” of the executing user when making access control decisions
for this program. This change is only effective while the program is being executed.
This feature enables the creation and use of privileged programs that may use files
normally inaccessible to other users. It enables users to access certain files in a con-
trolled fashion. Alternatively, when applied to a directory, the SetGID permission

(a) Traditional UNIX approach (minimal access control list)

rw- r-- ---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

user::rw-

group::r--

other::---

(b) Extended access control list

Masked
entries

rw- rw- ---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

user: :rw-

user:joe:rw-

group::r--
mask::rw-

other::---

Figure 15.9 UNIX File Access Control

8Note that the permissions that apply to a directory are distinct from those that apply to any file or direc-
tory it contains. The fact that a user has the right to write to the directory does not give the user the right
to write to a file in that directory. That is governed by the permissions of the specific file. The user would,
however, have the right to rename the file.

15.4 / UNIX ACCESS CONTROL 637

indicates that newly created files will inherit the group of this directory. The SetUID
permission is ignored.

The final permission bit is the “Sticky” bit. When set on a file, this originally
indicated that the system should retain the file contents in memory following execu-
tion. This is no longer used. When applied to a directory, though, it specifies that only
the owner of any file in the directory can rename, move, or delete that file. This is
useful for managing files in shared temporary directories.

One particular user ID is designated as superuser. The superuser is exempt
from the usual file access control constraints and has systemwide access. Any pro-
gram that is owned by, and SetUID to, the “superuser” potentially grants unre-
stricted access to the system to any user executing that program. Hence, great care is
needed when writing such programs.

This access scheme is adequate when file access requirements align with users
and a modest number of groups of users. For example, suppose a user wants to give
read access for file X to users A and B and read access for file Y to users B and C. We
would need at least two user groups, and user B would need to belong to both groups
in order to access the two files. However, if there are a large number of different
groupings of users requiring a range of access rights to different files, then a very large
number of groups may be needed to provide this. This rapidly becomes unwieldy and
difficult to manage, even if possible at all.9 One way to overcome this problem is to
use access control lists, which are provided in most modern UNIX systems.

A final point to note is that the traditional UNIX file access control scheme
implements a simple protection domain structure. A domain is associated with the
user, and switching the domain corresponds to changing the user ID temporarily.

Access Control Lists in UNIX

Many modern UNIX and UNIX-based operating systems support access control
lists, including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we describe
the FreeBSD approach, but other implementations have essentially the same fea-
tures and interface. The feature is referred to as extended access control list, while
the traditional UNIX approach is referred to as minimal access control list.

FreeBSD allows the administrator to assign a list of UNIX user IDs and
groups to a file by using the setfacl command. Any number of users and groups
can be associated with a file, each with three protection bits (read, write, execute),
offering a flexible mechanism for assigning access rights. A file need not have an
ACL but may be protected solely by the traditional UNIX file access mechanism.
FreeBSD files include an additional protection bit that indicates whether the file has
an extended ACL.

FreeBSD and most UNIX implementations that support extended ACLs use
the following strategy (e.g., Figure 15.9b):

 1. The owner class and other class entries in the 9-bit permission field have the
same meaning as in the minimal ACL case.

9Most UNIX systems impose a limit on the maximum number of groups any user may belong to, as well
as to the total number of groups possible on the system.

638 CHAPTER 15 / OPERATING SYSTEM SECURITY

 2. The group class entry specifies the permissions for the owner group for this
file. These permissions represent the maximum permissions that can be as-
signed to named users or named groups, other than the owning user. In this
latter role, the group class entry functions as a mask.

 3. Additional named users and named groups may be associated with the file,
each with a three-bit permission field. The permissions listed for a named
user or named group are compared to the mask field. Any permission for the
named user or named group that is not present in the mask field is disallowed.

When a process requests access to a file system object, two steps are performed.
Step 1 selects the ACL entry that most closely matches the requesting process. The
ACL entries are looked at in the following order: owner, named users, owning or
named groups, and others. Only a single entry determines access. Step 2 checks if the
matching entry contains sufficient permissions. A process can be a member in more
than one group; so more than one group entry can match. If any of these matching
group entries contain the requested permissions, one that contains the requested
permissions is picked (the result is the same no matter which entry is picked). If
none of the matching group entries contains the requested permissions, access will
be denied no matter which entry is picked.

 15.5 OPERATING SYSTEMS HARDENING

The first critical step in securing a system is to secure the base operating system upon
which all other applications and services rely. A good security foundation needs a
properly installed, patched, and configured operating system. Unfortunately, the de-
fault configuration for many operating systems often maximizes ease of use and
functionality, rather than security. Further, since every organization has its own secu-
rity needs, the appropriate security profile, and hence configuration, will also differ.
What is required for a particular system should be identified during the planning
phase, as we have just discussed.

While the details of how to secure each specific operating system differ, the
broad approach is similar. Appropriate security configuration guides and checklists
exist for most common operating systems, and these should be consulted, though
always informed by the specific needs of each organization and their systems. In
some cases, automated tools may be available to further assist in securing the system
configuration.

[NIST08] suggests the following basic steps should be used to secure an oper-
ating system:

Install and patch the operating system
Harden and configure the operating system to adequately address the identi-
fied security needs of the system by:

Removing unnecessary services, applications, and protocols
Configuring users, groups and permissions

 Configuring resource controls

15.5 / OPERATING SYSTEMS HARDENING 639

Install and configure additional security controls, such as antivirus, host-based
firewalls, and intrusion detection systems (IDS), if needed
Test the security of the basic operating system to ensure that the steps taken
adequately address its security needs

Operating System Installation: Initial Setup and Patching

System security begins with the installation of the operating system. As we have
already noted, a network-connected, unpatched system is vulnerable to exploit
during its installation or continued use. Hence it is important that the system not
be exposed while it is in this vulnerable state. Ideally new systems should be con-
structed on a protected network. This may be a completely isolated network, with
the operating system image and all available patches transferred to it using remov-
able media such as DVDs or USB drives. Given the existence of malware that can
propagate using removable media, care is needed to ensure the media used here
is not so infected. Alternatively, a network with severely restricted access to the
wider internet may be used. Ideally it should have no inbound access, and have
outbound access only to the key sites needed for the system installation and patch-
ing process. In either case, the full installation and hardening process should occur
before the system is deployed to its intended, more accessible, and hence vulner-
able, location.

The initial installation should comprise the minimum necessary for the desired
system, with additional software packages included only if they are required for the
function of the system. We explore the rationale for minimizing the number of pack-
ages on the system shortly.

The overall boot process must also be secured. This may require adjusting
 options on, or specifying a password required for changes to, the BIOS code used
when the system initially boots. It may also require limiting which media the system
is normally permitted to boot from. This is necessary to prevent an attacker from
changing the boot process to install a covert hypervisor or to just boot a system of
their choice from external media in order to bypass the normal system access con-
trols on locally stored data. The use of a cryptographic file system may also be used
to address this threat, as we note later.

Care is also required with the selection and installation of any additional de-
vice driver code, since this executes with full kernel level privileges, but is often
supplied by a third party. The integrity and source of such driver code must be care-
fully validated given the high level of trust it has. A malicious driver can potentially
bypass many security controls to install malware. Given the continuing discovery of
software and other vulnerabilities for commonly used operating systems and appli-
cations, it is critical that the system be kept as up-to-date as possible, with all critical
security-related patches installed. Nearly all commonly used systems now provide
utilities that can automatically download and install security updates. These tools
should be configured and used to minimize the amount of time a system is vulner-
able to weaknesses for which patches are available.

Note that on change-controlled systems, you should not run automatic up-
dates, because security patches can, on rare but significant occasions, introduce in-
stability. For systems on which availability and uptime are of paramount importance,

640 CHAPTER 15 / OPERATING SYSTEM SECURITY

therefore, you should stage and validate all patches on test systems before deploying
them in production.

Remove Unnecessary Services, Application, and Protocols

Because any of the software running on a system may contain software vulnerabili-
ties, clearly if fewer software packages are available to run, then the risk is reduced.
There is clearly a balance between usability, providing all software that may be re-
quired at some time, and security and a desire to limit the amount of software in-
stalled. The range of services, applications, and protocols required will vary widely
between organizations, and indeed between systems within an organization. The sys-
tem planning process should identify what is actually required for a given system, so
that a suitable level of functionality is provided, while eliminating software that is
not required to improve security.

The default configuration for most distributed systems is set to maximize ease
of use and functionality, rather than security. When performing the initial installa-
tion, the supplied defaults should not be used, but rather the installation should be
customized so that only the required packages are installed. If additional packages
are needed later, they can be installed when they are required. [NIST08] and many
of the security-hardening guides provide lists of services, applications, and protocols
that should not be installed if not required.

[NIST08] also states a strong preference for not installing unwanted software,
rather than installing and then later removing or disabling it. They argue this pref-
erence because they note that many uninstall scripts fail to completely remove all
components of a package. They also note that disabling a service means that while
it is not available as an initial point of attack, should an attacker succeed in gaining
some access to a system, then disabled software could be reenabled and used to
further compromise a system. It is better for security if unwanted software is not
installed, and thus not available for use at all.

Configure Users, Groups, and Authentication

Not all users with access to a system will have the same access to all data and re-
sources on that system. All modern operating systems implement access controls
to data and resources. Nearly all provide some form of discretionary access con-
trols. Some systems may provide role-based or mandatory access control mecha-
nisms as well.

The system planning process should consider the categories of users on the
system, the privileges they have, the types of information they can access, and how
and where they are defined and authenticated. Some users will have elevated privi-
leges to administer the system; others will be normal users, sharing appropriate ac-
cess to files and other data as required; and there may even be guest accounts with
very limited access. The third of the four key DSD mitigation strategies is to restrict
elevated privileges to only those users that require them. Further, it is highly desir-
able that such users only access elevated privileges when needed to perform some
task that requires them, and to otherwise access the system as a normal user. This
improves security by providing a smaller window of opportunity for an attacker to
exploit the actions of such privileged users. Some operating systems provide special

15.5 / OPERATING SYSTEMS HARDENING 641

tools or access mechanisms to assist administrative users to elevate their privileges
only when necessary, and to appropriately log these actions.

One key decision is whether the users, the groups they belong to, and their
authentication methods are specified locally on the system, or will use a centralized
authentication server. Whichever is chosen, the appropriate details are now config-
ured on the system.

Also at this stage, any default accounts included as part of the system installa-
tion should be secured. Those which are not required should be either removed or
at least disabled. System accounts that manage services on the system should be set
so they cannot be used for interactive logins. And any passwords installed by default
should be changed to new values with appropriate security.

Any policy that applies to authentication credentials, and especially to pass-
word security, is also configured. This includes details of which authentication meth-
ods are accepted for different methods of account access. And it includes details of
the required length, complexity, and age allowed for passwords.

Configure Resource Controls

Once the users and their associated groups are defined, appropriate permissions can
be set on data and resources to match the specified policy. This may be to limit which
users can execute some programs, especially those that modify the system state, or
to limit which users can read or write data in certain directory trees. Many of the
security-hardening guides provide lists of recommended changes to the default ac-
cess configuration to improve security.

Install Additional Security Controls

Further security improvement may be possible by installing and configuring ad-
ditional security tools such as antivirus software, host-based firewalls, IDS or IPS
software, or application white-listing. Some of these may be supplied as part of the
operating systems installation, but not configured and enabled by default. Others
are third-party products that are acquired and used.

Given the wide-spread prevalence of malware, appropriate antivirus (which, as
noted, addresses a wide range of malware types) is a critical security component on
many systems. Antivirus products have traditionally been used on Windows systems,
since their high use made them a preferred target for attackers. However, the growth
in other platforms, particularly smart-phones, has led to more malware being devel-
oped for them. Hence appropriate antivirus products should be considered for any
system as part of its security profile.

Host-based firewalls, IDS, and IPS software also may improve security by limit-
ing remote network access to services on the system. If remote access to a service is not
required, though some local access is, then such restrictions help secure such services
from remote exploit by an attacker. Firewalls are traditionally configured to limit ac-
cess by port or protocol, from some or all external systems. Some may also be config-
ured to allow access from or to specific programs on the systems, to further restrict the
points of attack, and to prevent an attacker installing and accessing their own malware.
IDS and IPS software may include additional mechanisms such as traffic monitoring
or file integrity checking to identify and even respond to some types of attack.

642 CHAPTER 15 / OPERATING SYSTEM SECURITY

Another additional control is to white-list applications. This limits the pro-
grams that can execute on the system to just those in an explicit list. Such a tool can
prevent an attacker installing and running their own malware, and was the last of
the four key DSD mitigation strategies. While this will improve security, it functions
best in an environment with a predictable set of applications that users require. Any
change in software usage would require a change in the configuration, which may
result in increased IT support demands. Not all organizations or all systems will be
sufficiently predictable to suit this type of control.

Test the System Security

The final step in the process of initially securing the base operating system is secu-
rity testing. The goal is to ensure that the previous security configuration steps are
correctly implemented and to identify any possible vulnerabilities that must be cor-
rected or managed.

Suitable checklists are included in many security-hardening guides. There are
also programs specifically designed to review a system to ensure that a system meets
the basic security requirements, and to scan for known vulnerabilities and poor
configuration practices. This should be done following the initial hardening of the
 system, and then repeated periodically as part of the security maintenance process.

 15.6 SECURITY MAINTENANCE

Once the system is appropriately built, secured, and deployed, the process of main-
taining security is continuous. This results from the constantly changing environment,
the discovery of new vulnerabilities, and hence exposure to new threats. [NIST08] sug-
gests that this process of security maintenance includes the following additional steps:

Monitoring and analyzing logging information
Performing regular backups
Recovering from security compromises
Regularly testing system security
Using appropriate software maintenance processes to patch and update all
critical software, and to monitor and revise configuration as needed

We have already noted the need to configure automatic patching and update where
possible or to have a process to manually test and install patches on configuration-
controlled systems, and that the system should be regularly tested using checklist or
automated tools where possible.

Logging

[NIST08] notes that “logging is a cornerstone of a sound security posture.” Logging
is a reactive control that can only inform you about bad things that have already
happened. But effective logging helps ensure that in the event of a system breach or
failure, system administrators can more quickly and accurately identify what hap-
pened and thus most effectively focus their remediation and recovery efforts. The
key is to ensure you capture the correct data in the logs and then appropriately

15.7 / WINDOWS SECURITY 643

monitor and analyze this data. Logging information can be generated by the system,
network, and applications. The range of logging data acquired should be determined
during the system planning stage, as it depends on the security requirements and
information sensitivity of the server.

Logging can generate significant volumes of information. It is important that
sufficient space is allocated for them. A suitable automatic log rotation and archive
system should also be configured to assist in managing the overall size of the logging
information.

Manual analysis of logs is tedious and is not a reliable means of detecting ad-
verse events. Rather, some form of automated analysis is preferred, as it is more
likely to identify abnormal activity.

Data Backup and Archive

Performing regular backups of data on a system is another critical control that as-
sists with maintaining the integrity of the system and user data. There are many
reasons why data can be lost from a system, including hardware or software failures,
or accidental or deliberate corruption. There may also be legal or operational re-
quirements for the retention of data. Backup is the process of making copies of data
at regular intervals, allowing the recovery of lost or corrupted data over relatively
short time periods of a few hours to some weeks. Archive is the process of retain-
ing copies of data over extended periods of time, being months or years, in order to
meet legal and operational requirements to access past data. These processes are
often linked and managed together, although they do address distinct needs.

The needs and policy relating to backup and archive should be determined
during the system planning stage. Key decisions include whether the backup cop-
ies should be kept online or offline, and whether copies should be stored locally or
transported to a remote site. The trade-offs include ease of implementation and cost
verses greater security and robustness against different threats.

A good example of the consequences of poor choices here was seen in the
attack on an Australian hosting provider in early 2011. The attackers destroyed not
only the live copies of thousands of customer’s sites but also all of the online backup
copies. As a result, many customers who had not kept their own backup copies lost
all of their site content and data, with serious consequences for many of them, and
for the hosting provider as well. In other examples, many organizations who only
retained onsite backups have lost all their data as a result of fire or flooding in their
IT center. These risks must be appropriately evaluated.

 15.7 WINDOWS SECURITY

A good example of the access control concepts we have been discussing is the
Windows access control facility, which uses object-oriented concepts to provide a
powerful and flexible access control capability.

Windows provides a uniform access control facility that applies to processes,
threads, files, semaphores, windows, and other objects. Access control is governed by
two entities: an access token associated with each process and a security descriptor
associated with each object for which interprocess access is possible.

644 CHAPTER 15 / OPERATING SYSTEM SECURITY

Access Control Scheme

When a user logs on to a Windows system, Windows uses a name/password scheme
to authenticate the user. If the logon is accepted, a process is created for the user
and an access token is associated with that process object. The access token, whose
details are described later, include a security ID (SID), which is the identifier by
which this user is known to the system for purposes of security. The token also con-
tains SIDs for the security groups to which the user belongs. If the initial user pro-
cess spawns a new process, the new process object inherits the same access token.

The access token serves two purposes:

 1. It keeps all necessary security information together to speed access validation.
When any process associated with a user attempts access, the security subsys-
tem can make use of the token associated with that process to determine the
user’s access privileges.

 2. It allows each process to modify its security characteristics in limited ways
without affecting other processes running on behalf of the user.

The chief significance of the second point has to do with privileges that may be
associated with a user. The access token indicates which privileges a user may have.
Generally, the token is initialized with each of these privileges in a disabled state.
Subsequently, if one of the user’s processes needs to perform a privileged operation,
the process may enable the appropriate privilege and attempt access. It would be
undesirable to share the same token among all of the user’s processes, because in
that case enabling a privilege for one process enables it for all of them.

Associated with each object for which interprocess access is possible is a security
descriptor. The chief component of the security descriptor is an access control list that
specifies access rights for various users and user groups for this object. When a process
attempts to access this object, the SIDs in the process token are matched against the
access control list of the object to determine if access will be allowed or denied.

When an application opens a reference to a securable object, Windows verifies
that the object’s security descriptor grants the process the requested access. If the
check succeeds, Windows caches the resulting granted access rights.

An important aspect of Windows security is the concept of impersonation,
which simplifies the use of security in a client/server environment. If client and
server talk through an RPC connection, the server can temporarily assume the iden-
tity of the client so that it can evaluate a request for access relative to that client’s
rights. After the access, the server reverts to its own identity.

Access Token

Figure 15.10a shows the general structure of an access token, which includes the fol-
lowing parameters:

Security ID: Identifies a user uniquely across all of the machines on the net-
work. This generally corresponds to a user’s logon name. Special user SIDs
were added in Windows 7 for use by processes and services. These specially
managed SIDs are designed for secure management; they do not use the ordi-
nary password polices human accounts do.

15.7 / WINDOWS SECURITY 645

Group SIDs: A list of the groups to which this user belongs. A group is simply
a set of user IDs that are identified as a group for purposes of access control.
Each group has a unique group SID. Access to an object can be defined on the
basis of group SIDs, individual SIDs, or a combination. There is also an SID
which reflects the process integrity level (low, medium, high, or system).
Privileges: A list of security-sensitive system services that this user may call,
for example, CreateToken. Another example is the SetBackupPrivilege; users
with this privilege are allowed to use a backup tool to back up files that they
normally would not be able to read.
Default owner: If this process creates another object, this field specifies the
owner of the new object. Generally, the owner of a new object is the same as
the owner of the spawning process. However, a user may specify that the de-
fault owner of any processes spawned by this process is a group SID to which
this user belongs.
Default ACL: This is an initial list of protections applied to the objects that the
user creates. The user may subsequently alter the ACL for any object that it
owns or that one of its groups owns.

Security Descriptors

Figure 15.10b shows the general structure of a security descriptor, which includes
the following parameters:

Flags: Define the type and contents of a security descriptor. They indicate
whether or not the SACL and DACL are present, whether or not they were
placed on the object by a defaulting mechanism, and whether the pointers in
the descriptor use absolute or relative addressing. Relative descriptors are re-
quired for objects that are transmitted over a network, such as information
transmitted in an RPC.

ACL headerSecurity ID (SID)

Group SIDs

Privileges

Default owner

Default ACL

ACE header

Flags

Owner

System access
control list

Discretionary
access

control list

Access mask

SID

ACE header

Access mask

SID

(c) Access control list(b) Security descriptor(a) Access token

Figure 15.10 Windows Security Structures

646 CHAPTER 15 / OPERATING SYSTEM SECURITY

Owner: The owner of the object can generally perform any action on the secu-
rity descriptor. The owner can be an individual or a group SID. The owner has
the authority to change the contents of the DACL.
System access control list (SACL): Specifies what kinds of operations on the
object should generate audit messages. An application must have the corre-
sponding privilege in its access token to read or write the SACL of any object.
This is to prevent unauthorized applications from reading SACLs (thereby
learning what not to do to avoid generating audits) or writing them (to gener-
ate many audits to cause an illicit operation to go unnoticed). The SACL also
specifies the object integrity level. Processes cannot modify an object unless
the process integrity level meets or exceeds the level on the object.
Discretionary access control list (DACL): Determines which users and groups
can access this object for which operations. It consists of a list of access control
entries (ACEs).

When an object is created, the creating process can assign as owner its own
SID or any group SID in its access token. The creating process cannot assign an
owner that is not in the current access token. Subsequently, any process that has
been granted the right to change the owner of an object may do so, but again with
the same restriction. The reason for the restriction is to prevent a user from covering
his or her tracks after attempting some unauthorized action.

Let us look in more detail at the structure of access control lists, because
these are at the heart of the Windows access control facility (Figure 15.10c). Each
list consists of an overall header and a variable number of access control entries.
Each entry specifies an individual or a group SID and an access mask that defines
the rights to be granted to this SID. When a process attempts to access an object,
the object manager in the Windows Executive reads the SID and group SIDs
from the access token along with the integrity level SID. If the access requested
includes modifying the object, the integrity level is checked against the object integ-
rity level in the SACL. If that test passes, the object manager then scans down the
object’s DACL. If a match is found—that is, if an ACE is found with an SID that
matches one of the SIDs from the access token—then the process can have the ac-
cess rights specified by the access mask in that ACE. This also may include denying
access, in which case the access request fails. The first matching ACE determines the
result of the access check.

Figure 15.11 shows the contents of the access mask. The least significant 16 bits
specify access rights that apply to a particular type of object. For example, bit 0 for a
file object is FILE_READ_DATA access and bit 0 for an event object is EVENT_
QUERY_STATE access.

The most significant 16 bits of the mask contain bits that apply to all types of
objects. Five of these are referred to as standard access types:

Synchronize: Gives permission to synchronize execution with some event asso-
ciated with this object. In particular, this object can be used in a wait function.
Write_owner: Allows a program to modify the owner of the object. This is use-
ful because the owner of an object can always change the protection on the
object. (The owner may not be denied Write DAC access.)

15.7 / WINDOWS SECURITY 647

Write_DAC: Allows the application to modify the DACL and hence the pro-
tection on this object
Read_control: Allows the application to query the owner and DACL fields of
the security descriptor of this object
Delete: Allows the application to delete this object

The high-order half of the access mask also contains the four generic access
types. These bits provide a convenient way to set specific access types in a number of
different object types. For example, suppose an application wishes to create several
types of objects and ensure that users have read access to the objects, even though
read has a somewhat different meaning for each object type. To protect each object
of each type without the generic access bits, the application would have to construct
a different ACE for each type of object and be careful to pass the correct ACE when
creating each object. It is more convenient to create a single ACE that expresses the
generic concept “allow read,” and simply apply this ACE to each object that is cre-
ated, and have the right thing happen. That is the purpose of the generic access bits,
which are as follows:

Generic_all: Allows all access
Generic_execute: Allows execution if executable
Generic_write: Allows write access
Generic_read: Allows read-only access

The generic bits also affect the standard access types. For example, for a
file object, the Generic_Read bit maps to the standard bits Read_Control and
Synchronize and to the object-specific bits File_Read_Data, File_Read_Attributes,
and File_Read_EA. Placing an ACE on a file object that grants some SID Generic_
Read grants those five access rights as if they had been specified individually in the
access mask.

Delete
Read control

Write DAC
Write owner
Synchronize

Generic
access types

Standard
access types

Access system security
Maximum allowed

Generic all
Generic execute
Generic write
Generic read

Specific access types

Figure 15.11 Access Mask

648 CHAPTER 15 / OPERATING SYSTEM SECURITY

The remaining two bits in the access mask have special meanings. The Access_
System_Security bit allows modifying audit and alarm control for this object.
However, not only must this bit be set in the ACE for an SID but the access token
for the process with that SID must have the corresponding privilege enabled.

Finally, the Maximum_Allowed bit is not really an access bit, but a bit that
modifies the algorithm for scanning the DACL for this SID. Normally, Windows will
scan through the DACL until it reaches an ACE that specifically grants (bit set) or
denies (bit not set) the access requested by the requesting process or until it reaches
the end of the DACL; in the latter case access is denied. The Maximum_Allowed bit
allows the object’s owner to define a set of access rights that is the maximum that
will be allowed to a given user. With this in mind, suppose that an application does
not know all of the operations that it is going to be asked to perform on an object
during a session. There are three options for requesting access:

 1. Attempt to open the object for all possible accesses. The disadvantage of this
approach is that access may be denied even though the application may have
all of the access rights actually required for this session.

 2. Only open the object when a specific access is requested, and open a new han-
dle to the object for each different type of request. This is generally the pre-
ferred method because it will not unnecessarily deny access, nor will it allow
more access than necessary. In many cases the object itself does not need to
be referenced a second time, but the DuplicateHandle function can be used to
make a copy of the handle with a lower level of access.

 3. Attempt to open the object for as much access as the object will allow this
SID. The advantage is that the client application will not be artificially denied
access, but the application may have more access than it needs. This latter situ-
ation may mask bugs in the application.

An important feature of Windows security is that applications can make use
of the Windows security framework for user-defined objects. For example, a data-
base server might create its own security descriptors and attach them to portions
of a database. In addition to normal read/write access constraints, the server could
secure database-specific operations, such as scrolling within a result set or perform-
ing a join. It would be the server’s responsibility to define the meaning of special
rights and perform access checks. But the checks would occur in a standard con-
text, using system-wide user/group accounts and audit logs. The extensible security
model should also prove useful to implementers of non-Microsoft file systems.

 15.8 SUMMARY

The scope of operating system security is broad. This chapter focuses on some of
the most important topics. The most prominent issue for OS security is countering
thread from intruders and malicious software. Intruders attempt to gain unauthor-
ized access to system resources, while malicious software is designed to penetrate
system defenses and become executable on target systems. Countermeasures to
both types of threat include intrusion detection systems, authentication protocols,
access control mechanisms, and firewalls.

15.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 649

One of the most common techniques for compromising OS security is the
buffer overflow attack. A condition at an interface under which more input can be
placed into a buffer or data-holding area than the capacity allocated, overwriting
other information. Attackers exploit such a condition to crash a system or to insert
specially crafted code that allows them to gain control of the system. System design-
ers use a variety of compile-time and runtime defenses to counter this type of attack.

Another important area of security defense is access control. Access control
measures include those that secure access to file system and to the OS user interface.
Traditional techniques for access control are referred to as discretionary access con-
trol. A more flexible approach that has gained considerable support is role-based
access control, in which access depends not only on the identity of the user but on
the specific role that user can assume for a specific task or set of tasks.

 15.9 RECOMMENDED READING

The topics in this chapter are covered in more detail in [STAL12].

STAL12 Stallings, W., and Brown L. Computer Security: Principles and Practice. Upper
Saddle River, NJ: Pearson, 2012.

 15.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access control
access control list (ACL)
access control policy
access matrix
address space

randomization
authentication
buffer overrun

buffer overflow
capability tickets
discretionary access control

(DAC)
file system access

control
firewall
guard page

intruder
intrusion detection
logging
malicious software
malware
role-based access control

(RBAC)
stack overflow

Review Questions

 15.1. What are typical access rights that may be granted or denied to a particular user for a
particular file?

 15.2. List and briefly define three classes of intruders.
 15.3. In general terms, what are four means of authenticating a user’s identity?
 15.4. Briefly describe the difference between DAC and RBAC.
 15.5. What types of programming languages are vulnerable to buffer overflows?
 15.6. What are the two broad categories of defenses against buffer overflows?

650 CHAPTER 15 / OPERATING SYSTEM SECURITY

 15.7. List and briefly describe some of the defenses against buffer overflows that can be
used when compiling new programs.

 15.8. List and briefly describe some of the defenses against buffer overflows that can be
implemented when running existing, vulnerable programs.

Problems

 15.1. State some threats that result from a process running with administrator or root privi-
leges on a system.

 15.2. In the context of an IDS, we define a false positive to be an alarm generated by an
IDS in which the IDS alerts to a condition that is actually benign. A false negative
occurs when an IDS fails to generate an alarm when an alert-worthy condition is in
effect. Using the following diagram, depict two curves that roughly indicate false posi-
tives and false negatives, respectively.

Frequency
of alerts

Less specific
or looser

Conservativeness
of signatures

More specific
or stricter

 15.3. Rewrite the function shown in Figure 15.2a so that it is no longer vulnerable to a stack
buffer overflow.

 15.4. For the DAC model discussed in Section 15.3, an alternative representation of the
protection state is a directed graph. Each subject and each object in the protection
state is represented by a node (a single node is used for an entity that is both subject
and object). A directed line from a subject to an object indicates an access right, and
the label on the link defines the access right.
a. Draw a directed graph that corresponds to the access matrix of Figure 15.3a.
b. Draw a directed graph that corresponds to the access matrix of Figure 15.5.
c. Is there a one-to-one correspondence between the directed graph representation

and the access matrix representation? Explain.
 15.5. Set user (SetUID) and set group (SetGID) programs and scripts are a powerful

mechanism provided by Unix to support “controlled invocation” to manage access to
sensitive resources. However, precisely because of this it is a potential security hole,
and bugs in such programs have led to many compromises on Unix systems. Detail a
command you could use to locate all set user or group scripts and programs on a Unix
system, and how you might use this information.

 15.6. User “ahmed” owns a directory, “stuff,” containing a text file called “ourstuff.txt” that
he shares with users belonging to the group “staff.” Those users may read and change
this file, but not delete it. They may not add other files to the directory. Others may
neither read nor write or execute anything in “stuff.” What would appropriate owner-
ships and permissions for both the directory “stuff” and the file “ourstuff.txt” look
like? (Write your answers in the form of “long listing” output.)

15.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 651

 15.7. UNIX treats file directories in the same fashion as files; that is, both are defined by
the same type of data structure, called an inode. As with files, directories include a
9-bit protection string. If care is not taken, this can create access control problems.
For example, consider a file with protection mode 644 (octal) contained in a directory
with protection mode 730. How might the file be compromised in this case?

 15.8. In the traditional UNIX file access model, UNIX systems provide a default setting
for newly created files and directories, which the owner may later change. The default
is typically full access for the owner combined with one of the following: no access for
group and other, read/execute access for group and none for other, or read/execute
access for both group and other. Briefly discuss the advantages and disadvantages of
each of these cases, including an example of a type of organization where each would
be appropriate.

 15.9. Consider user accounts on a system with a Web server configured to provide access
to user Web areas. In general, this scheme uses a standard directory name, such as
public_html, in a user’s home directory. This acts as the user’s Web area if it exists.
However, to allow the Web server to access the pages in this directory, it must have
at least search (execute) access to the user’s home directory, read/execute access to
the Web directory, and read access to any Web pages in it. Consider the interaction
of this requirement with the cases you discussed for the preceding problem. What
consequences does this requirement have? Note that a Web server typically executes
as a special user and in a group that is not shared with most users on the system. Are
there some circumstances when running such a Web service is simply not appropri-
ate? Explain.

 15.10. Assume a system with N job positions. For job position i, the number of individual
users in that position is Ui and the number of permissions required for the job posi-
tion is Pi.
a. For a traditional DAC scheme, how many relationships between users and permis-

sions must be defined?
b. For an RBAC scheme, how many relationships between users and permissions

must be defined?
 15.11. Why is logging important? What are its limitations as a security control? What are

pros and cons of remote logging?
 15.12. Consider an automated audit log analysis tool (e.g., swatch). Can you propose some

rules which could be used to distinguish “suspicious activities” from normal user
 behavior on a system for some organization?

 15.13. What are the advantages and disadvantages of using a file integrity checking tool
(e.g., tripwire). This is a program which notifies the administrator of any changes
to files on a regular basis? Consider issues such as which files you really only want
to change rarely, which files may change more often, and which may change often.
Discuss how this influences the configuration of the tool, especially as to which parts
of the file system are scanned, and how much work monitoring its responses imposes
on the administrator.

 15.14. Some have argued that Unix/Linux systems reuse a small number of security features
in many contexts across the system; while Windows systems provide a much larger
number of more specifically targeted security features used in the appropriate con-
texts. This may be seen as a trade-off between simplicity verses lack of flexibility in
the Unix/Linux approach against a better targeted but more complex and harder to
correctly configure approach in Windows. Discuss this trade-off as it impacts on the
security of these respective systems, and the load placed on administrators in manag-
ing their security.

652

CHAPTER

 16.1 Client/Server Computing
What Is Client/Server Computing?
Client/Server Applications
Middleware

 16.2 Distributed Message Passing
Reliability versus Unreliability
Blocking versus Nonblocking

 16.3 Remote Procedure Calls
Parameter Passing
Parameter Representation
Client/Server Binding
Synchronous versus Asynchronous
Object-Oriented Mechanisms

 16.4 Clusters
Cluster Configurations
Operating System Design Issues
Cluster Computer Architecture
Clusters Compared to SMP

 16.5 Windows Cluster Server

 16.6 Beowulf and Linux Clusters
Beowulf Features
Beowulf Software

 16.7 Summary

 16.8 Recommended Reading

 16.9 Key Terms, Review Questions, and Problems

DISTRIBUTED PROCESSING,
CLIENT/SERVER, AND CLUSTERS

16.1 / CLIENT/SERVER COMPUTING 653

In this chapter, we begin with an examination of some of the key concepts in dis-
tributed software, including client/server architecture, message passing, and remote
procedure calls. Then we examine the increasingly important cluster architecture.

Chapters 17 and 18 complete our discussion of distributed systems.

 16.1 CLIENT/SERVER COMPUTING

The concept of client/server computing, and related concepts, has become increas-
ingly important in information technology systems. This section begins with a
 description of the general nature of client/server computing. This is followed by a
discussion of alternative ways of organizing the client/server functions. The issue of
file cache consistency, raised by the use of file servers, is then examined. Finally, this
section introduces the concept of middleware.

What Is Client/Server Computing?

As with other new waves in the computer field, client/server computing comes with
its own set of jargon words. Table 16.1 lists some of the terms that are commonly
found in descriptions of client/server products and applications.

Figure 16.1 attempts to capture the essence of the client/server concept. As the
term suggests, a client/server environment is populated by clients and servers. The
client machines are generally single-user PCs or workstations that provide a highly
user-friendly interface to the end user. The client-based station generally presents
the type of graphical interface that is most comfortable to users, including the use
of windows and a mouse. Microsoft Windows and Macintosh OS provide examples
of such interfaces. Client-based applications are tailored for ease of use and include
such familiar tools as the spreadsheet.

Each server in the client/server environment provides a set of shared services
to the clients. The most common type of server currently is the database server, usu-
ally controlling a relational database. The server enables many clients to share ac-
cess to the same database and enables the use of a high-performance computer sys-
tem to manage the database.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Present a summary of the key aspects of client/server computing.
Understand the principle design issues for distributed message passing.
Understand the principle design issues for remote procedure calls.
Understand the principle design issues for clusters.
Describe the cluster mechanisms in Windows 7 and Beowulf.

654 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

In addition to clients and servers, the third essential ingredient of the client/
server environment is the network. Client/server computing is typically distrib-
uted computing. Users, applications, and resources are distributed in response to
business requirements and linked by a single LAN or WAN or by an internet of
networks.

LAN or WAN
or Internet

Workstation
(client)

Server

Figure 16.1 Generic Client/Server Environment

Table 16.1 Client/Server Terminology

Applications Programming Interface (API)

 A set of function and call programs that allow clients and servers to intercommunicate.

Client

 A networked information requester, usually a PC or workstation, that can query database and/or other
information from a server.

Middleware

 A set of drivers, APIs, or other software that improves connectivity between a client application and a server.

Relational Database

 A database in which information access is limited to the selection of rows that satisfy all search criteria.

Server

 A computer, usually a high-powered workstation, a minicomputer, or a mainframe, that houses information
for manipulation by networked clients.

Structured Query Language (SQL)

 A language developed by IBM and standardized by ANSI for addressing, creating, updating, or querying
relational databases.

16.1 / CLIENT/SERVER COMPUTING 655

How does a client/server configuration differ from any other distributed pro-
cessing solution? There are a number of characteristics that stand out and that, to-
gether, make client/server distinct from other types of distributed processing:

There is a heavy reliance on bringing user-friendly applications to the user on
his or her system. This gives the user a great deal of control over the timing and
style of computer usage and gives department-level managers the ability to be
responsive to their local needs.
Although applications are dispersed, there is an emphasis on centralizing cor-
porate databases and many network management and utility functions. This
enables corporate management to maintain overall control of the total capital
investment in computing and information systems and to provide interoper-
ability so that systems are tied together. At the same time it relieves individual
departments and divisions of much of the overhead of maintaining sophisti-
cated computer-based facilities but enables them to choose just about any type
of machine and interface they need to access data and information.
There is a commitment, both by user organizations and vendors, to open and
modular systems. This means that the user has more choice in selecting prod-
ucts and in mixing equipment from a number of vendors.
Networking is fundamental to the operation. Thus, network management and
network security have a high priority in organizing and operating information
systems.

Client/Server Applications

The key feature of a client/server architecture is the allocation of application-level
tasks between clients and servers. Figure 16.2 illustrates the general case. In both client
and server, of course, the basic software is an operating system running on the hard-
ware platform. The platforms and the operating systems of client and server may dif-
fer. Indeed, there may be a number of different types of client platforms and operating

Communications
software

Server
operating system

Hardware platform

Presentation services

Application logic
(client portion)

Communications
software

Client
operating system

Hardware platform

Client workstation

Application logic
(server portion)

Server

Request

Response

Protocol
interaction

Figure 16.2 Generic Client/Server Architecture

656 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

systems and a number of different types of server platforms in a single environment.
As long as a particular client and server share the same communications protocols
and support the same applications, these lower-level differences are irrelevant.

It is the communications software that enables client and server to interoper-
ate. The principal example of such software is TCP/IP. Of course, the point of all of
this support software (communications and operating system) is to provide a base
for distributed applications. Ideally, the actual functions performed by the applica-
tion can be split up between client and server in a way that optimizes the use of
resources. In some cases, depending on the application needs, the bulk of the appli-
cations software executes at the server, while in other cases, most of the application
logic is located at the client.

An essential factor in the success of a client/server environment is the way in
which the user interacts with the system as a whole. Thus, the design of the user in-
terface on the client machine is critical. In most client/server systems, there is heavy
emphasis on providing a graphical user interface (GUI) that is easy to use, easy to
learn, yet powerful and flexible. Thus, we can think of a presentation services mod-
ule in the client workstation that is responsible for providing a user-friendly inter-
face to the distributed applications available in the environment.

DATABASE APPLICATIONS As an example that illustrates the concept of splitting
application logic between client and server, let us consider one of the most common
families of client/server applications: those that use relational databases. In this
environment, the server is essentially a database server. Interaction between client
and server is in the form of transactions in which the client makes a database request
and receives a database response.

Figure 16.3 illustrates, in general terms, the architecture of such a system. The
server is responsible for maintaining the database, for which purpose a complex

Communications
software

Database management
system

Server operating system

Hardware platform

Database logic

Server

Presentation services

Application logic

Communications
software

Client
operating system

Hardware platform

Client workstation

Database logic

Request

Response

Protocol
interaction

Figure 16.3 Client/Server Architecture for Database Applications

16.1 / CLIENT/SERVER COMPUTING 657

database management system software module is required. A variety of different
applications that make use of the database can be housed on client machines. The
“glue” that ties client and server together is software that enables the client to make
requests for access to the server’s database. A popular example of such logic is the
structured query language (SQL).

Figure 16.3 suggests that all of the application logic—the software for “number
crunching” or other types of data analysis—is on the client side, while the server is
only concerned with managing the database. Whether such a configuration is ap-
propriate depends on the style and intent of the application. For example, suppose
that the primary purpose is to provide online access for record lookup. Figure 16.4a
suggests how this might work. Suppose that the server is maintaining a database of 1
million records (called rows in relational database terminology), and the user wants
to perform a lookup that should result in zero, one, or at most a few records. The
user could search for these records using a number of search criteria (e.g., records
older than 1992, records referring to individuals in Ohio, records referring to a spe-
cific event or characteristic, etc.). An initial client query may yield a server response
that there are 100,000 records that satisfy the search criteria. The user then adds
additional qualifiers and issues a new query. This time, a response indicating that
there are 1,000 possible records is returned. Finally, the client issues a third request
with additional qualifiers. The resulting search criteria yield a single match, and the
record is returned to the client.

Initial query

100,000 possible records

Next query

1,000 possible records

Final query

One record returned 1,000,000
record

database

ServerClient

(a) Desirable client/server use

Query

300,000 records returned

1,000,000
record

database

Server

Client

(b) Misused client/server

Figure 16.4 Client/Server Database Usage

658 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

The preceding application is well suited to a client/server architecture for two
reasons:

 1. There is a massive job of sorting and searching the database. This requires a
large disk or bank of disks, a high-speed CPU, and a high-speed I/O architec-
ture. Such capacity and power is not needed and is too expensive for a single-
user workstation or PC.

 2. It would place too great a traffic burden on the network to move the entire
1-million record file to the client for searching. Therefore, it is not enough for
the server just to be able to retrieve records on behalf of a client; the server
needs to have database logic that enables it to perform searches on behalf of a
client.

Now consider the scenario of Figure 16.4b, which has the same 1-million-re-
cord database. In this case, a single query results in the transmission of 300,000 re-
cords over the network. This might happen if, for example, the user wishes to find
the grand total or mean value of some field across many records or even the entire
database.

Clearly, this latter scenario is unacceptable. One solution to this problem, which
maintains the client/server architecture with all of its benefits, is to move part of the
application logic over to the server. That is, the server can be equipped with applica-
tion logic for performing data analysis as well as data retrieval and data searching.

CLASSES OF CLIENT/SERVER APPLICATIONS Within the general framework of
client/server, there is a spectrum of implementations that divide the work between
client and server differently. Figure 16.5 illustrates in general terms some of the
major options for database applications. Other splits are possible, and the options
may have a different characterization for other types of applications. In any case, it is
useful to examine this figure to get a feel for the kind of trade-offs possible.

Figure 16.5 depicts four classes:

Host-based processing: Host-based processing is not true client/server comput-
ing as the term is generally used. Rather, host-based processing refers to the
traditional mainframe environment in which all or virtually all of the process-
ing is done on a central host. Often the user interface is via a dumb terminal.
Even if the user is employing a microcomputer, the user’s station is generally
limited to the role of a terminal emulator.
Server-based processing: The most basic class of client/server configuration
is one in which the client is principally responsible for providing a graphi-
cal user interface, while virtually all of the processing is done on the server.
This configuration is typical of early client/server efforts, especially depart-
mental-level systems. The rationale behind such configurations is that the
user workstation is best suited to providing a user-friendly interface and
that databases and applications can easily be maintained on central systems.
Although the user gains the advantage of a better interface, this type of con-
figuration does not generally lend itself to any significant gains in produc-
tivity or to any fundamental changes in the actual business functions that
the system supports.

16.1 / CLIENT/SERVER COMPUTING 659

Client-based processing: At the other extreme, virtually all application pro-
cessing may be done at the client, with the exception of data validation rou-
tines and other database logic functions that are best performed at the server.
Generally, some of the more sophisticated database logic functions are housed
on the client side. This architecture is perhaps the most common client/server
approach in current use. It enables the user to employ applications tailored to
local needs.
Cooperative processing: In a cooperative processing configuration, the ap-
plication processing is performed in an optimized fashion, taking advantage
of the strengths of both client and server machines and of the distribution of
data. Such a configuration is more complex to set up and maintain but, in the
long run, this type of configuration may offer greater user productivity gains
and greater network efficiency than other client/server approaches.

Figures 16.5c and 16.5d correspond to configurations in which a considerable
fraction of the load is on the client. This so-called fat client model has been popular-
ized by application development tools such as Sybase Inc.’s PowerBuilder and Gupta
Corp.’s SQL Windows. Applications developed with these tools are typically depart-
mental in scope. The main benefit of the fat client model is that it takes advantage

DBMS

Database logic

Application logic

DBMS

Database logic

Application logic

DBMS

Database logic

DBMS

Database logicDatabase logic

Application logicApplication logic

Presentation logic

Presentation logic

Presentation logic

Application logic

Presentation logic

(a) Host-based processing

(b) Server-based processing

(c) Cooperative processing

(d) Client-based processing

Client Server

Figure 16.5 Classes of Client/Server Applications

660 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

of desktop power, offloading application processing from servers and making them
more efficient and less likely to be bottlenecks.

There are, however, several disadvantages to the fat client strategy. The
 addition of more functions rapidly overloads the capacity of desktop machines, forc-
ing companies to upgrade. If the model extends beyond the department to incor-
porate many users, the company must install high-capacity LANs to support the
large volumes of transmission between the thin servers and the fat clients. Finally,
it is difficult to maintain, upgrade, or replace applications distributed across tens or
hundreds of desktops.

Figure 16.5b is representative of a thin client approach. This approach more
nearly mimics the traditional host-centered approach and is often the migration
path for evolving corporate-wide applications from the mainframe to a distributed
environment.

THREE-TIER CLIENT/SERVER ARCHITECTURE The traditional client/server
architecture involves two levels, or tiers: a client tier and a server tier. A three-
tier architecture is also common (Figure 16.6). In this architecture, the application
software is distributed among three types of machines: a user machine, a middle-
tier server, and a backend server. The user machine is the client machine we have
been discussing and, in the three-tier model, is typically a thin client. The middle-tier
machines are essentially gateways between the thin user clients and a variety of
backend database servers. The middle-tier machines can convert protocols and map

Client

Middle-tier server
(application server)

Back-end servers
(data servers)

Figure 16.6 Three-Tier Client/Server Architecture

16.1 / CLIENT/SERVER COMPUTING 661

from one type of database query to another. In addition, the middle-tier machine
can merge/integrate results from different data sources. Finally, the middle-tier
machine can serve as a gateway between the desktop applications and the backend
legacy applications by mediating between the two worlds.

The interaction between the middle-tier server and the backend server also
follows the client/server model. Thus, the middle-tier system acts as both a client and
a server.

FILE CACHE CONSISTENCY When a file server is used, performance of file I/O can
be noticeably degraded relative to local file access because of the delays imposed
by the network. To reduce this performance penalty, individual systems can use file
caches to hold recently accessed file records. Because of the principle of locality, use
of a local file cache should reduce the number of remote server accesses that must
be made.

Figure 16.7 illustrates a typical distributed mechanism for caching files among
a networked collection of workstations. When a process makes a file access, the re-
quest is presented first to the cache of the process’s workstation (“file traffic”). If
not satisfied there, the request is passed either to the local disk, if the file is stored
there (“disk traffic”), or to a file server, where the file is stored (“server traffic”).
At the server, the server’s cache is first interrogated and, if there is a miss, then the
server’s disk is accessed. The dual caching approach is used to reduce communica-
tions traffic (client cache) and disk I/O (server cache).

When caches always contain exact copies of remote data, we say that the caches
are consistent. It is possible for caches to become inconsistent when the remote data
are changed and the corresponding obsolete local cache copies are not discarded.
This can happen if one client modifies a file that is also cached by other clients. The
difficulty is actually at two levels. If a client adopts a policy of immediately writing

Server
traffic

File
traffic

Server
traffic

Disk
traffic

Network

Server
disk

Disk
traffic

File
traffic

Client
disk

Client
cache

Server
cache

Client
cache

Figure 16.7 Distributed File Cacheing in Sprite

662 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

any changes to a file back to the server, then any other client that has a cache copy
of the relevant portion of the file will have obsolete data. The problem is made even
worse if the client delays writing back changes to the server. In that case, the server
itself has an obsolete version of the file, and new file read requests to the server
might obtain obsolete data. The problem of keeping local cache copies up to date to
changes in remote data is known as the cache consistency problem.

The simplest approach to cache consistency is to use file-locking techniques to
prevent simultaneous access to a file by more than one client. This guarantees con-
sistency at the expense of performance and flexibility. A more powerful approach is
provided with the facility in Sprite [NELS88, OUST88]. Any number of remote pro-
cesses may open a file for read and create their own client cache. But when an open
file request to a server requests write access and other processes have the file open
for read access, the server takes two actions. First, it notifies the writing process that,
although it may maintain a cache, it must write back all altered blocks immediately
upon update. There can be at most one such client. Second, the server notifies all
reading processes that have the file open that the file is no longer cacheable.

Middleware

The development and deployment of client/server products has far outstripped ef-
forts to standardize all aspects of distributed computing, from the physical layer up
to the application layer. This lack of standards makes it difficult to implement an
integrated, multivendor, enterprise-wide client/server configuration. Because much
of the benefit of the client/server approach is tied up with its modularity and the
ability to mix and match platforms and applications to provide a business solution,
this interoperability problem must be solved.

To achieve the true benefits of the client/server approach, developers must
have a set of tools that provide a uniform means and style of access to system re-
sources across all platforms. This will enable programmers to build applications that
not only look and feel the same on various PCs and workstations but that use the
same method to access data regardless of the location of that data.

The most common way to meet this requirement is by the use of standard pro-
gramming interfaces and protocols that sit between the application above and com-
munications software and operating system below. Such standardized interfaces and
protocols have come to be referred to as middleware. With standard programming
interfaces, it is easy to implement the same application on a variety of server types
and workstation types. This obviously benefits the customer, but vendors are also
motivated to provide such interfaces. The reason is that customers buy applications,
not servers; customers will only choose among those server products that run the
applications they want. The standardized protocols are needed to link these various
server interfaces back to the clients that need access to them.

There is a variety of middleware packages ranging from the very simple to the
very complex. What they all have in common is the capability to hide the complexi-
ties and disparities of different network protocols and operating systems. Client and
server vendors generally provide a number of the more popular middleware pack-
ages as options. Thus, a user can settle on a particular middleware strategy and then
assemble equipment from various vendors that support that strategy.

16.1 / CLIENT/SERVER COMPUTING 663

MIDDLEWARE ARCHITECTURE Figure 16.8 suggests the role of middleware in a
client/server architecture. The exact role of the middleware component will depend
on the style of client/server computing being used. Referring back to Figure 16.5,
recall that there are a number of different client/server approaches, depending on
the way in which application functions are split up. In any case, Figure 16.8 gives a
good general idea of the architecture involved.

Note that there is both a client and server component of middleware. The basic
purpose of middleware is to enable an application or a user at a client to access a va-
riety of services on servers without being concerned about differences among serv-
ers. To look at one specific application area, the structured query language (SQL)
is supposed to provide a standardized means for access to a relational database by
either a local or remote user or application. However, many relational database ven-
dors, although they support SQL, have added their own proprietary extensions to
SQL. This enables vendors to differentiate their products but also creates potential
incompatibilities.

As an example, consider a distributed system used to support, among other
things, the personnel department. The basic employee data, such as employee name
and address, might be stored on a Gupta database, whereas salary information might
be contained on an Oracle database. When a user in the personnel department re-
quires access to particular records, that user does not want to be concerned with
which vendor’s database contains the records needed. Middleware provides a layer
of software that enables uniform access to these differing systems.

It is instructive to look at the role of middleware from a logical, rather than
an implementation, point of view. This viewpoint is illustrated in Figure 16.9.
Middleware enables the realization of the promise of distributed client/server
computing. The entire distributed system can be viewed as a set of applications
and resources available to users. Users need not be concerned with the location

Communications
software

Application
services

Server operating system

Hardware platform

Middleware

Server

Presentation services

Application logic

Communications
software

Client
operating system

Hardware platform

Client workstation

Middleware
Middleware
interaction

Protocol
interaction

Figure 16.8 The Role of Middleware in Client/Server Architecture

664 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

of data or indeed the location of applications. All applications operate over a
uniform applications programming interface (API). The middleware, which cuts
across all client and server platforms, is responsible for routing client requests to
the appropriate server.

Although there is a wide variety of middleware products, these products are
typically based on one of two underlying mechanisms: message passing or remote
procedure calls. These two methods are examined in the next two sections.

 16.2 DISTRIBUTED MESSAGE PASSING

It is usually the case in a distributed processing systems that the computers do not
share main memory; each is an isolated computer system. Thus, interprocessor com-
munication techniques that rely on shared memory, such as semaphores, cannot be
used. Instead, techniques that rely on message passing are used. In this section and
the next, we look at the two most common approaches. The first is the straightfor-
ward application of messages as they are used in a single system. The second is a
separate technique that relies on message passing as a basic function: the remote
procedure call.

Figure 16.10a shows the use of message passing to implement client/server
functionality. A client process requires some service (e.g., read a file, print) and
sends a message containing a request for service to a server process. The server
process honors the request and sends a message containing a reply. In its simplest
form, only two functions are needed: Send and Receive. The Send function specifies

Application

APIs

Middleware
(distributed system services)

Platform interfaces

Application

Platform:
OS
Hardware

Platform:
OS
Hardware

Figure 16.9 Logical View of Middleware

16.2 / DISTRIBUTED MESSAGE PASSING 665

a destination and includes the message content. The Receive function tells from
whom a message is desired (including “all”) and provides a buffer where the incom-
ing message is to be stored.

Figure 16.11 suggests an implementation for message passing. Processes make
use of the services of a message-passing module. Service requests can be expressed
in terms of primitives and parameters. A primitive specifies the function to be
 performed, and the parameters are used to pass data and control information. The
actual form of a primitive depends on the message-passing software. It may be a
procedure call, or it may itself be a message to a process that is part of the operating
system.

The Send primitive is used by the process that desires to send the message.
Its parameters are the identifier of the destination process and the contents of the
message. The message-passing module constructs a data unit that includes these two

Application RPC
stub

program

Transport

Network

Application
RPC
stub

program

Transport

Network

(b) Remote procedure calls

Application-specific
procedure invocations

and returns

Application

Message-oriented
middleware

(with message queue)

Transport

Network

(a) Message-oriented middleware

Application-specific
messages

(c) Object request broker

Network

Transport

Object
request
broker

Network

Transport

Object
server

Object requests
and responses

Object requests
and responses

Client

Client Server

Application

Message-oriented
middleware

(with message queue)

Transport

Network

ApplicationRPC
stub

program

Transport

Network

Server

Client Server

Figure 16.10 Middleware Mechanisms

666 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

elements. This data unit is sent to the machine that hosts the destination process,
using some sort of communications facility, such as TCP/IP. When the data unit is
received in the target system, it is routed by the communications facility to the mes-
sage-passing module. This module examines the process ID field and stores the mes-
sage in the buffer for that process.

In this scenario, the receiving process must announce its willingness to receive
messages by designating a buffer area and informing the message-passing module
by a Receive primitive. An alternative approach does not require such an announce-
ment. Instead, when the message-passing module receives a message, it signals the
destination process with some sort of Receive signal and then makes the received
message available in a shared buffer.

Several design issues are associated with distributed message passing, and
these are addressed in the remainder of this section.

Reliability versus Unreliability

A reliable message-passing facility is one that guarantees delivery if possible. Such
a facility makes use of a reliable transport protocol or similar logic and performs
error checking, acknowledgment, retransmission, and reordering of misordered
messages. Because delivery is guaranteed, it is not necessary to let the sending pro-
cess know that the message was delivered. However, it might be useful to provide
an acknowledgment back to the sending process so that it knows that delivery has
already taken place. In either case, if the facility fails to achieve delivery (e.g., per-
sistent network failure, crash of destination system), the sending process is notified
of the failure.

At the other extreme, the message-passing facility may simply send the mes-
sage out into the communications network but will report neither success nor fail-
ure. This alternative greatly reduces the complexity and processing and communica-
tions overhead of the message-passing facility. For those applications that require
confirmation that a message has been delivered, the applications themselves may
use request and reply messages to satisfy the requirement.

Sending
process

Receiving
process

Message-passing
module

Message-passing
module

ProcessId Message

Figure 16.11 Basic Message-Passing Primitives

16.3 / REMOTE PROCEDURE CALLS 667

Blocking versus Nonblocking

With nonblocking, or asynchronous, primitives, a process is not suspended as a
result of issuing a Send or Receive. Thus, when a process issues a Send primi-
tive, the operating system returns control to the process as soon as the message
has been queued for transmission or a copy has been made. If no copy is made,
any changes made to the message by the sending process before or even while it
is being transmitted are made at the risk of the process. When the message has
been transmitted or copied to a safe place for subsequent transmission, the send-
ing process is interrupted to be informed that the message buffer may be reused.
Similarly, a nonblocking Receive is issued by a process that then proceeds to run.
When a message arrives, the process is informed by interrupt, or it can poll for
status periodically.

Nonblocking primitives provide for efficient, flexible use of the message-pass-
ing facility by processes. The disadvantage of this approach is that it is difficult to
test and debug programs that use these primitives. Irreproducible, timing-dependent
sequences can create subtle and difficult problems.

The alternative is to use blocking, or synchronous, primitives. A blocking Send
does not return control to the sending process until the message has been transmit-
ted (unreliable service) or until the message has been sent and an acknowledgment
received (reliable service). A blocking Receive does not return control until a mes-
sage has been placed in the allocated buffer.

 16.3 REMOTE PROCEDURE CALLS

A variation on the basic message-passing model is the remote procedure call. This
is now a widely accepted and common method for encapsulating communication
in a distributed system. The essence of the technique is to allow programs on dif-
ferent machines to interact using simple procedure call/return semantics, just as if
the two programs were on the same machine. That is, the procedure call is used for
access to remote services. The popularity of this approach is due to the following
advantages.

 1. The procedure call is a widely accepted, used, and understood abstraction.
 2. The use of remote procedure calls enables remote interfaces to be specified

as a set of named operations with designated types. Thus, the interface can
be clearly documented and distributed programs can be statically checked for
type errors.

 3. Because a standardized and precisely defined interface is specified, the com-
munication code for an application can be generated automatically.

 4. Because a standardized and precisely defined interface is specified, developers
can write client and server modules that can be moved among computers and
operating systems with little modification and recoding.

The remote procedure call mechanism can be viewed as a refinement of re-
liable, blocking message passing. Figure 16.10b illustrates the general architecture,

668 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

and Figure 16.12 provides a more detailed look. The calling program makes a nor-
mal procedure call with parameters on its machine. For example,

CALL P1X, Y2
where
P = procedure name
X = passed arguments
Y = returned values

It may or may not be transparent to the user that the intention is to invoke a re-
mote procedure on some other machine. A dummy or stub procedure P must be
included in the caller’s address space or be dynamically linked to it at call time. This
procedure creates a message that identifies the procedure being called and includes
the parameters. It then sends this message to a remote system and waits for a reply.
When a reply is received, the stub procedure returns to the calling program, provid-
ing the returned values.

At the remote machine, another stub program is associated with the called
procedure. When a message comes in, it is examined and a local CALL P(X, Y) is
generated. This remote procedure is thus called locally, so its normal assumptions
about where to find parameters, the state of the stack, and so on are identical to the
case of a purely local procedure call.

Several design issues are associated with remote procedure calls, and these are
addressed in the remainder of this section.

Local stub

RPC
mechanism

Local stub

RPC
mechanism

Local application
or

operating system

Client
application

Remote server
application

Local
procedure

calls

Local
procedure

call

Local
response

Local
response

Local
response

Remote procedure call

Remote procedure call

Figure 16.12 Remote Procedure Call Mechanism

16.3 / REMOTE PROCEDURE CALLS 669

Parameter Passing

Most programming languages allow parameters to be passed as values (call by value)
or as pointers to a location that contains the value (call by reference). Call by value is
simple for a remote procedure call: The parameters are simply copied into the mes-
sage and sent to the remote system. It is more difficult to implement call by reference.
A unique, systemwide pointer is needed for each object. The overhead for this capa-
bility may not be worth the effort.

Parameter Representation

Another issue is how to represent parameters and results in messages. If the called
and calling programs are in identical programming languages on the same type
of machines with the same operating system, then the representation requirement
may present no problems. If there are differences in these areas, then there will
probably be differences in the ways in which numbers and even text are repre-
sented. If a full-blown communications architecture is used, then this issue is han-
dled by the presentation layer. However, the overhead of such an architecture has
led to the design of remote procedure call facilities that bypass most of the com-
munications architecture and provide their own basic communications facility. In
that case, the conversion responsibility falls on the remote procedure call facility
(e.g., see [GIBB87]).

The best approach to this problem is to provide a standardized format for
common objects, such as integers, floating-point numbers, characters, and character
strings. Then the native parameters on any machine can be converted to and from
the standardized representation.

Client/Server Binding

Binding specifies how the relationship between a remote procedure and the calling
program will be established. A binding is formed when two applications have made
a logical connection and are prepared to exchange commands and data.

Nonpersistent binding means that a logical connection is established be-
tween the two processes at the time of the remote procedure call and that as
soon as the values are returned, the connection is dismantled. Because a con-
nection requires the maintenance of state information on both ends, it consumes
resources. The nonpersistent style is used to conserve those resources. On the
other hand, the overhead involved in establishing connections makes nonpersis-
tent binding inappropriate for remote procedures that are called frequently by
the same caller.

With persistent binding, a connection that is set up for a remote procedure
call is sustained after the procedure return. The connection can then be used for
future remote procedure calls. If a specified period of time passes with no activ-
ity on the connection, then the connection is terminated. For applications that
make many repeated calls to remote procedures, persistent binding maintains the
logical connection and allows a sequence of calls and returns to use the same
connection.

670 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

Synchronous versus Asynchronous

The concepts of synchronous and asynchronous remote procedure calls are analogous
to the concepts of blocking and nonblocking messages. The traditional remote proce-
dure call is synchronous, which requires that the calling process wait until the called
process returns a value. Thus, the synchronous RPC behaves much like a subroutine call.

The synchronous RPC is easy to understand and program because its behavior
is predictable. However, it fails to exploit fully the parallelism inherent in distrib-
uted applications. This limits the kind of interaction the distributed application can
have, resulting in lower performance.

To provide greater flexibility, various asynchronous RPC facilities have been
implemented to achieve a greater degree of parallelism while retaining the familiar-
ity and simplicity of the RPC [ANAN92]. Asynchronous RPCs do not block the
caller; the replies can be received as and when they are needed, thus allowing client
execution to proceed locally in parallel with the server invocation.

A typical asynchronous RPC use is to enable a client to invoke a server repeatedly
so that the client has a number of requests in the pipeline at one time, each with its own
set of data. Synchronization of client and server can be achieved in one of two ways:

 1. A higher-layer application in the client and server can initiate the exchange
and then check at the end that all requested actions have been performed.

 2. A client can issue a string of asynchronous RPCs followed by a final synchro-
nous RPC. The server will respond to the synchronous RPC only after com-
pleting all of the work requested in the preceding asynchronous RPCs.

In some schemes, asynchronous RPCs require no reply from the server and the
server cannot send a reply message. Other schemes either require or allow a reply,
but the caller does not wait for the reply.

Object-Oriented Mechanisms

As object-oriented technology becomes more prevalent in operating system design,
client/server designers have begun to embrace this approach. In this approach, cli-
ents and servers ship messages back and forth between objects. Object communica-
tions may rely on an underlying message or RPC structure or be developed directly
on top of object-oriented capabilities in the operating system.

A client that needs a service sends a request to an object request broker, which
acts as a directory of all the remote service available on the network (Figure 16.10c).
The broker calls the appropriate object and passes along any relevant data. Then
the remote object services the request and replies to the broker, which returns the
response to the client.

The success of the object-oriented approach depends on standardization of
the object mechanism. Unfortunately, there are several competing designs in this
area. One is Microsoft’s Component Object Model (COM), the basis for Object
Linking and Embedding (OLE). A competing approach, developed by the Object
Management Group, is the Common Object Request Broker Architecture (CORBA),
which has wide industry support. IBM, Apple, Sun, and many other vendors support
the CORBA approach.

16.4 / CLUSTERS 671

 16.4 CLUSTERS

Clustering is an alternative to symmetric multiprocessing (SMP) as an approach
to providing high performance and high availability and is particularly attractive
for server applications. We can define a cluster as a group of interconnected, whole
computers working together as a unified computing resource that can create the
illusion of being one machine. The term whole computer means a system that can
run on its own, apart from the cluster; in the literature, each computer in a cluster is
typically referred to as a node.

[BREW97] lists four benefits that can be achieved with clustering. These can
also be thought of as objectives or design requirements:

Absolute scalability: It is possible to create large clusters that far surpass the
power of even the largest stand-alone machines. A cluster can have dozens or
even hundreds of machines, each of which is a multiprocessor.
Incremental scalability: A cluster is configured in such a way that it is possible
to add new systems to the cluster in small increments. Thus, a user can start
out with a modest system and expand it as needs grow, without having to go
through a major upgrade in which an existing small system is replaced with a
larger system.
High availability: Because each node in a cluster is a stand-alone computer,
the failure of one node does not mean loss of service. In many products, fault
tolerance is handled automatically in software.
Superior price/performance: By using commodity building blocks, it is possible
to put together a cluster with equal or greater computing power than a single
large machine, at much lower cost.

Cluster Configurations

In the literature, clusters are classified in a number of different ways. Perhaps the sim-
plest classification is based on whether the computers in a cluster share access to the
same disks. Figure 16.13a shows a two-node cluster in which the only interconnection
is by means of a high-speed link that can be used for message exchange to coordinate
cluster activity. The link can be a LAN that is shared with other computers that are not
part of the cluster, or the link can be a dedicated interconnection facility. In the latter
case, one or more of the computers in the cluster will have a link to a LAN or WAN so
that there is a connection between the server cluster and remote client systems. Note
that in the figure, each computer is depicted as being a multiprocessor. This is not nec-
essary but does enhance both performance and availability.

In the simple classification depicted in Figure 16.13, the other alternative is a
shared-disk cluster. In this case, there generally is still a message link between nodes.
In addition, there is a disk subsystem that is directly linked to multiple computers
within the cluster. In Figure 16.13b, the common disk subsystem is a RAID system.
The use of RAID or some similar redundant disk technology is common in clusters
so that the high availability achieved by the presence of multiple computers is not
compromised by a shared disk that is a single point of failure.

672 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

A clearer picture of the range of clustering approaches can be gained by look-
ing at functional alternatives. A white paper from Hewlett Packard [HP96] provides
a useful classification along functional lines (Table 16.2), which we now discuss.

A common, older method, known as passive standby, is simply to have one com-
puter handle all of the processing load while the other computer remains inactive,
standing by to take over in the event of a failure of the primary. To coordinate the
machines, the active, or primary, system periodically sends a “heartbeat” message to
the standby machine. Should these messages stop arriving, the standby assumes that
the primary server has failed and puts itself into operation. This approach increases
availability but does not improve performance. Further, if the only information that
is exchanged between the two systems is a heartbeat message, and if the two systems
do not share common disks, then the standby provides a functional backup but has
no access to the databases managed by the primary.

The passive standby is generally not referred to as a cluster. The term cluster is
reserved for multiple interconnected computers that are all actively doing process-
ing while maintaining the image of a single system to the outside world. The term
active secondary is often used in referring to this configuration. Three classifications
of clustering can be identified: separate servers, shared nothing, and shared memory.

P P

High-speed message link

High-speed message link

M I/O I/O

P P

I/OI/O M

(a) Standby server with no shared disk

(b) Shared disk

P P

RAID

M I/O I/O

P P

I/OI/O M

I/O I/O

Figure 16.13 Cluster Configurations

16.4 / CLUSTERS 673

In one approach to clustering, each computer is a separate server with its
own disks and there are no disks shared between systems (Figure 16.13a). This
arrangement provides high performance as well as high availability. In this case,
some type of management or scheduling software is needed to assign incoming cli-
ent requests to servers so that the load is balanced and high utilization is achieved.
It is desirable to have a failover capability, which means that if a computer fails
while executing an application, another computer in the cluster can pick up and
complete the application. For this to happen, data must constantly be copied
among systems so that each system has access to the current data of the other sys-
tems. The overhead of this data exchange ensures high availability at the cost of a
performance penalty.

To reduce the communications overhead, most clusters now consist of serv-
ers connected to common disks (Figure 16.13b). In one variation of this approach,
called shared nothing, the common disks are partitioned into volumes, and each
volume is owned by a single computer. If that computer fails, the cluster must be
reconfigured so that some other computer has ownership of the volumes of the
failed computer.

It is also possible to have multiple computers share the same disks at the same
time (called the shared disk approach), so that each computer has access to all of the
volumes on all of the disks. This approach requires the use of some type of locking
facility to ensure that data can only be accessed by one computer at a time.

Table 16.2 Clustering Methods: Benefits and Limitations

Clustering Method Description Benefits Limitations

Passive Standby A secondary server
takes over in case of
primary server failure.

Easy to implement. High cost because the
secondary server is
unavailable for other
processing tasks.

Active Secondary The secondary server is
also used for processing
tasks.

Reduced cost because
secondary servers can be
used for processing.

Increased complexity.

Separate Servers Separate servers have
their own disks. Data
are continuously copied
from primary to
secondary server.

High availability. High network and server
overhead due to copying
operations.

Servers Connected to
Disks

Servers are cabled to
the same disks, but each
server owns its disks. If
one server fails, its disks
are taken over by the
other server.

Reduced network and
server overhead due to
elimination of copying
operations.

Usually requires disk
mirroring or RAID
technology to com-
pensate for risk of disk
failure.

Servers Share Disks Multiple servers simul-
taneously share access
to disks.

Low network and server
overhead. Reduced risk
of downtime caused by
disk failure.

Requires lock manager
software. Usually used
with disk mirroring or
RAID technology.

674 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

Operating System Design Issues

Full exploitation of a cluster hardware configuration requires some enhancements
to a single-system operating system.

FAILURE MANAGEMENT How failures are managed by a cluster depends on the
clustering method used (Table 16.2). In general, two approaches can be taken to
dealing with failures: highly available clusters and fault-tolerant clusters. A highly
available cluster offers a high probability that all resources will be in service. If a
failure occurs, such as a node goes down or a disk volume is lost, then the queries in
progress are lost. Any lost query, if retried, will be serviced by a different computer
in the cluster. However, the cluster operating system makes no guarantee about
the state of partially executed transactions. This would need to be handled at the
application level.

A fault-tolerant cluster ensures that all resources are always available. This is
achieved by the use of redundant shared disks and mechanisms for backing out un-
committed transactions and committing completed transactions.

The function of switching an application and data resources over from a failed
system to an alternative system in the cluster is referred to as failover. A related
function is the restoration of applications and data resources to the original system
once it has been fixed; this is referred to as failback. Failback can be automated, but
this is desirable only if the problem is truly fixed and unlikely to recur. If not, au-
tomatic failback can cause subsequently failed resources to bounce back and forth
between computers, resulting in performance and recovery problems.

LOAD BALANCING A cluster requires an effective capability for balancing the
load among available computers. This includes the requirement that the cluster
be incrementally scalable. When a new computer is added to the cluster, the
load-balancing facility should automatically include this computer in scheduling
applications. Middleware mechanisms need to recognize that services can appear
on different members of the cluster and may migrate from one member to another.

PARALLELIZING COMPUTATION In some cases, effective use of a cluster requires
executing software from a single application in parallel. [KAPP00] lists three general
approaches to the problem:

Parallelizing compiler: A parallelizing compiler determines, at compile time,
which parts of an application can be executed in parallel. These are then split
off to be assigned to different computers in the cluster. Performance depends
on the nature of the problem and how well the compiler is designed.
Parallelized application: In this approach, the programmer writes the applica-
tion from the outset to run on a cluster and uses message passing to move data,
as required, between cluster nodes. This places a high burden on the program-
mer but may be the best approach for exploiting clusters for some applications.
Parametric computing: This approach can be used if the essence of the ap-
plication is an algorithm or program that must be executed a large number
of times, each time with a different set of starting conditions or parameters.

16.4 / CLUSTERS 675

A good example is a simulation model, which will run a large number of dif-
ferent scenarios and then develop statistical summaries of the results. For this
approach to be effective, parametric processing tools are needed to organize,
run, and manage the jobs in an orderly manner.

Cluster Computer Architecture

Figure 16.14 shows a typical cluster architecture. The individual computers are con-
nected by some high-speed LAN or switch hardware. Each computer is capable of
operating independently. In addition, a middleware layer of software is installed in
each computer to enable cluster operation. The cluster middleware provides a uni-
fied system image to the user, known as a single-system image. The middleware may
also be responsible for providing high availability, by means of load balancing and
responding to failures in individual components. [HWAN99] lists the following as
desirable cluster middleware services and functions:

Single entry point: A user logs on to the cluster rather than to an individual
computer
Single file hierarchy: The user sees a single hierarchy of file directories under
the same root directory.
Single control point: There is a default node used for cluster management and
control.
Single virtual networking: Any node can access any other point in the cluster,
even though the actual cluster configuration may consist of multiple intercon-
nected networks. There is a single virtual network operation.
Single memory space: Distributed shared memory enables programs to share
variables.

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Cluster middleware
(Single system image and availability infrastructure)

Sequential applications

High-speed-network/switch

Parallel applications

Parallel programming environment

Figure 16.14 Cluster Computer Architecture

676 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

Single job-management system: Under a cluster job scheduler, a user can sub-
mit a job without specifying the host computer to execute the job.
Single-user interface: A common graphic interface supports all users, regard-
less of the workstation from which they enter the cluster.
Single I/O space: Any node can remotely access any I/O peripheral or disk
device without knowledge of its physical location.
Single process space: A uniform process-identification scheme is used. A pro-
cess on any node can create or communicate with any other process on a re-
mote node.
Checkpointing: This function periodically saves the process state and interme-
diate computing results, to allow rollback recovery after a failure.
Process migration: This function enables load balancing.

The last four items on the preceding list enhance the availability of the cluster.
The remaining items are concerned with providing a single system image.

Returning to Figure 16.14, a cluster will also include software tools for enabling
the efficient execution of programs that are capable of parallel execution.

Clusters Compared to SMP

Both clusters and symmetric multiprocessors provide a configuration with multiple
processors to support high-demand applications. Both solutions are commercially
available, although SMP has been around far longer.

The main strength of the SMP approach is that an SMP is easier to manage
and configure than a cluster. The SMP is much closer to the original single-processor
model for which nearly all applications are written. The principal change required in
going from a uniprocessor to an SMP is to the scheduler function. Another benefit
of the SMP is that it usually takes up less physical space and draws less power than
a comparable cluster. A final important benefit is that the SMP products are well
established and stable.

Over the long run, however, the advantages of the cluster approach are likely
to result in clusters dominating the high-performance server market. Clusters are far
superior to SMPs in terms of incremental and absolute scalability. Clusters are also
superior in terms of availability, because all components of the system can readily be
made highly redundant.

 16.5 WINDOWS CLUSTER SERVER

Windows Failover Clustering is a shared-nothing cluster, in which each disk volume
and other resources are owned by a single system at a time.

The Windows cluster design makes use of the following concepts:

Cluster Service: The collection of software on each node that manages all clus-
ter-specific activity.
Resource: An item managed by the cluster service. All resources are objects
representing actual resources in the system, including hardware devices such

16.5 / WINDOWS CLUSTER SERVER 677

as disk drives and network cards and logical items such as logical disk volumes,
TCP/IP addresses, entire applications, and databases.
Online: A resource is said to be online at a node when it is providing service on
that specific node.
Group: A collection of resources managed as a single unit. Usually, a group
contains all of the elements needed to run a specific application and for client
systems to connect to the service provided by that application.

The concept of group is of particular importance. A group combines resources
into larger units that are easily managed, both for failover and load balancing.
Operations performed on a group, such as transferring the group to another node,
automatically affect all of the resources in that group. Resources are implemented
as dynamically linked libraries (DLLs) and managed by a resource monitor. The
resource monitor interacts with the cluster service via remote procedure calls and
responds to cluster service commands to configure and move resource groups.

Figure 16.15 depicts the Windows clustering components and their relation-
ships in a single system of a cluster. The node manager is responsible for maintain-
ing this node’s membership in the cluster. Periodically, it sends heartbeat messages
to the node managers on other nodes in the cluster. In the event that one node man-
ager detects a loss of heartbeat messages from another cluster node, it broadcasts a

Cluster management tools

Cluster API DLL

Event processor

RPC

Resource monitors

Communication
manager

Resource mgr
Failover mgrApp

resource
DLL

Physical
resource

DLL

Logical
resource

DLL

App
resource

DLL

Node
manager

Cluster
service

Resource
management

interface

Other
nodes

Nonaware
app

Cluster-aware
app

Database
manager

Global update
manager

Figure 16.15 Windows Cluster Server Block Diagram

678 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

message to the entire cluster, causing all members to exchange messages to verify
their view of current cluster membership. If a node manager does not respond, it is
removed from the cluster and its active groups are transferred to one or more other
active nodes in the cluster.

The configuration database manager maintains the cluster configuration da-
tabase. The database contains information about resources and groups and node
ownership of groups. The database managers on each of the cluster nodes cooperate
to maintain a consistent picture of configuration information. Fault-tolerant transac-
tion software is used to assure that changes in the overall cluster configuration are
performed consistently and correctly.

The resource manager/failover manager makes all decisions regarding re-
source groups and initiates appropriate actions such as startup, reset, and failover.
When failover is required, the failover managers on the active node cooperate to
negotiate a distribution of resource groups from the failed system to the remain-
ing active systems. When a system restarts after a failure, the failover manager can
decide to move some groups back to this system. In particular, any group may be
configured with a preferred owner. If that owner fails and then restarts, the group is
moved back to the node in a rollback operation.

The event processor connects all of the components of the cluster service,
handles common operations, and controls cluster service initialization. The commu-
nications manager manages message exchange with all other nodes of the cluster.
The global update manager provides a service used by other components within the
cluster service.

Microsoft is continuing to ship their cluster product, but they have also devel-
oped virtualization solutions based on efficient live migration of virtual machines
between hypervisors running on different computer systems as part of Windows
Server 2008 R2. For new applications, live migration offers many benefits over the
cluster approach, such as simpler management, and improved flexibility.

 16.6 BEOWULF AND LINUX CLUSTERS

In 1994, the Beowulf project was initiated under the sponsorship of the NASA High
Performance Computing and Communications (HPCC) project. Its goal was to in-
vestigate the potential of clustered PCs for performing important computation tasks
beyond the capabilities of contemporary workstations at minimum cost. Today, the
Beowulf approach is widely implemented and is perhaps the most important cluster
technology available.

Beowulf Features

Key features of Beowulf include the following [RIDG97]:

Mass market commodity components
Dedicated processors (rather than scavenging cycles from idle workstations)
A dedicated, private network (LAN or WAN or internetted combination)
No custom components

16.6 / BEOWULF AND LINUX CLUSTERS 679

Easy replication from multiple vendors
Scalable I/O
A freely available software base
Use of freely available distribution computing tools with minimal changes
Return of the design and improvements to the community

Although elements of Beowulf software have been implemented on
a number of different platforms, the most obvious choice for a base is Linux,
and most Beowulf implementations use a cluster of Linux workstations and/or
PCs. Figure 16.16 depicts a representative configuration. The cluster consists of
a number of workstations, perhaps of differing hardware platforms, all running
the Linux operating system. Secondary storage at each workstation may be made
available for distributed access (for distributed file sharing, distributed virtual
memory, or other uses). The cluster nodes (the Linux systems) are interconnected
with a commodity networking approach, typically Ethernet. The Ethernet sup-
port may be in the form of a single Ethernet switch or an interconnected set
of switches. Commodity Ethernet products at the standard data rates (10 Mbps,
100 Mbps, 1 Gbps) are used.

Beowulf Software

The Beowulf software environment is implemented as an add-on to commercially
available, royalty-free base Linux distributions. The principal source of open-source
Beowulf software is the Beowulf site at www.beowulf.org, but numerous other orga-
nizations also offer free Beowulf tools and utilities.

Each node in the Beowulf cluster runs its own copy of the Linux kernel and can
function as an autonomous Linux system. To support the Beowulf cluster concept,

Ethernet or
interconnected ethernets

Linux
workstations

Distributed
shared storage

Figure 16.16 Generic Beowulf Configuration

www.beowulf.org

680 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

extensions are made to the Linux kernel to allow the individual nodes to participate
in a number of global namespaces. The following are examples of Beowulf system
software:

Beowulf distributed process space (BPROC): This package allows a process
ID space to span multiple nodes in a cluster environment and also provides
mechanisms for starting processes on other nodes. The goal of this package is
to provide key elements needed for a single system image on Beowulf cluster.
BPROC provides a mechanism to start processes on remote nodes without
ever logging into another node and by making all the remote processes visible
in the process table of the cluster’s front-end node.
Beowulf Ethernet channel bonding: This is a mechanism that joins multiple
low-cost networks into a single logical network with higher bandwidth. The
only additional work over using single network interface is the computation-
ally simple task of distributing the packets over the available device transmit
queues. This approach allows load balancing over multiple Ethernets con-
nected to Linux workstations.
Pvmsync: This is a programming environment that provides synchronization
mechanisms and shared data objects for processes in a Beowulf cluster.
EnFuzion: EnFuzion consists of a set of tools for doing parametric computing.
Parametric computing involves the execution of a program as a large number of
jobs, each with different parameters or starting conditions. EnFusion emulates a
set of robot users on a single root node machine, each of which will log into one
of the many clients that form a cluster. Each job is set up to run with a unique,
programmed scenario, with an appropriate set of starting conditions [KAPP00].

 16.7 SUMMARY

Client/server computing is the key to realizing the potential of information sys-
tems and networks to improve productivity significantly in organizations. With
client/server computing, applications are distributed to users on single-user
workstations and personal computers. At the same time, resources that can and
should be shared are maintained on server systems that are available to all cli-
ents. Thus, the client/server architecture is a blend of decentralized and central-
ized computing.

Typically, the client system provides a graphical user interface (GUI) that en-
ables a user to exploit a variety of applications with minimal training and relative
ease. Servers support shared utilities, such as database management systems. The ac-
tual application is divided between client and server in a way intended to optimize
ease of use and performance.

The key mechanism required in any distributed system is interprocess
 communication. Two techniques are in common use. A message-passing facility
generalizes the use of messages within a single system. The same sorts of conven-
tions and synchronization rules apply. Another approach is the use of the remote

16.8 / RECOMMENDED READING 681

procedure call. This is a technique by which two programs on different machines
interact using procedure call/return syntax and semantics. Both the called and
calling program behave as if the partner program were running on the same
machine.

A cluster is a group of interconnected, whole computers working together
as a unified computing resource that can create the illusion of being one machine.
The term whole computer means a system that can run on its own, apart from the
cluster.

 16.8 RECOMMENDED READING

A good overview of middleware technology and products is [BRIT04]. [MENA05]
provides a performance comparison of remote procedure calls and distributed mes-
sage passing.

[TANE85] is a survey of distributed operating systems that covers both dis-
tributed process communication and distributed process management. [CHAN90]
provides an overview of distributed message passing operating systems. [TAY90] is a
survey of the approach taken by various operating systems in implementing remote
procedure calls.

Beowulf covered in [RIDG97]. Windows Cluster Server is described in
[SHOR97]; [RAJA00] provides a more detailed treatment. [LAI06] provides a close
examination of thin client architecture.

BRIT04 Britton, C. IT Architectures and Middleware. Reading, MA: Addison-
Wesley, 2004.

CHAN90 Chandras, R. “Distributed Message Passing Operating Systems.” Operating
Systems Review, January 1990.

HUTC08 Hutchinson, J., et al. “Migrating to SOAs by Way of Hybrid Systems.” IT Pro,
January/February 2008.

LAI06 Lai, A., and Nieh, J. “On the Performance of Wide-Area Thin-Client
Computing.” ACM Transactions on Computer Systems, May 2006.

MENA05 Menasce, D. “MOM vs. RPC: Communication Models for Distributed
Applications.” IEEE Internet Computing, March/April 2005.

RAJA00 Rajagopal, R. Introduction to Microsoft Windows NT Cluster Server. Boca
Raton, FL: CRC Press, 2000.

RIDG97 Ridge, D., et al. “Beowulf: Harnessing the Power of Parallelism in a Pile-of-
PCs.” Proceedings, IEEE Aerospace Conference, 1997.

SHOR97 Short, R.; Gamache, R.; Vert, J.; and Massa, M. “Windows NT Clusters for
Availability and Scalability.” Proceedings, COMPCON Spring 97, February 1997.

TANE85 Tanenbaum, A., and Renesse, R. “Distributed Operating Systems.”
Computing Surveys, December 1985.

TAY90 Tay, B., and Ananda, A. “A Survey of Remote Procedure Calls.” Operating
Systems Review, July 1990.

682 CHAPTER 16 / DISTRIBUTED PROCESSING, CLIENT/SERVER, AND CLUSTERS

 16.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Questions

 16.1. What is client/server computing?
 16.2. What distinguishes client/server computing from any other form of distributed data

processing?
 16.3. What is the role of a communications architecture such as TCP/IP in a client/server

environment?
 16.4. Discuss the rationale for locating applications on the client, the server, or split between

client and server.
 16.5. What are fat clients and thin clients, and what are the differences in philosophy of the

two approaches?
 16.6. Suggest pros and cons for fat client and thin client strategies.
 16.7. Explain the rationale behind the three-tier client/server architecture.
 16.8. What is middleware?
 16.9. Because we have standards such as TCP/IP, why is middleware needed?
 16.10. List some benefits and disadvantages of blocking and nonblocking primitives for

 message passing.
 16.11. List some benefits and disadvantages of nonpersistent and persistent binding for RPCs.
 16.12. List some benefits and disadvantages of synchronous and asynchronous RPCs.
 16.13. List and briefly define four different clustering methods.

Problems

 16.1. Let a be the percentage of program code that can be executed simultaneously by
n computers in a cluster, each computer using a different set of parameters or ini-
tial conditions. Assume that the remaining code must be executed sequentially by a
single processor. Each processor has an execution rate of x MIPS.
a. Derive an expression for the effective MIPS rate when using the system for exclu-

sive execution of this program, in terms of n, a, and x.
b. If n = 16 and x = 4 MIPS, determine the value of a that will yield a system perfor-

mance of 40 MIPS.
 16.2. An application program is executed on a nine-computer cluster. A benchmark pro-

gram takes time T on this cluster. Further, 25% of T is time in which the application
is running simultaneously on all nine computers. The remaining time, the application
has to run on a single computer.
a. Calculate the effective speedup under the aforementioned condition as compared to

executing the program on a single computer. Also calculate, the percentage of code

applications programming
interface

Beowulf
client
cluster
distributed message passing

failback
failover
fat client
file cache consistency
graphical user interface

(GUI)

message
middleware
remote procedure call

(RPC)
server
thin client

16.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 683

that has been parallelized (programmed or compiled so as to use the cluster mode)
in the preceding program.

b. Suppose that we are able to effectively use 18 computers rather than 9 comput-
ers on the parallelized portion of the code. Calculate the effective speedup that is
achieved.

 16.3. The following FORTRAN program is to be executed on a computer, and a parallel
version is to be executed on a 32-computer cluster.

L1: DO 10 I = 1, 1024
L2: SUM(I) = 0
L3: DO 20 J = 1, I
L4: 20 SUM(I) = SUM(I) + I
L5: 10 CONTINUE

Suppose lines 2 and 4 each take two machine cycle times, including all processor and
memory-access activities. Ignore the overhead caused by the software loop control
statements (lines 1, 3, 5) and all other system overhead and resource conflicts.
a. What is the total execution time (in machine cycle times) of the program on a single

computer?
b. Divide the I-loop iterations among the 32 computers as follows: Computer 1

 executes the first 32 iterations (I = 1 to 32), processor 2 executes the next 32 itera-
tions, and so on. What are the execution time and speedup factor compared with
part (a)? (Note that the computational workload, dictated by the J-loop, is unbal-
anced among the computers.)

c. Explain how to modify the parallelizing to facilitate a balanced parallel execution
of all the computational workload over 32 computers. A balanced load means an
equal number of additions assigned to each computer with respect to both loops.

d. What is the minimum execution time resulting from the parallel execution on
32 computers? What is the resulting speedup over a single computer?

This page intentionally left blank

A-1

APPENDIX A
TOPICS IN CONCURRENCY

 A.1 Mutual Exclusion: Software Approaches
Dekker’s Algorithm
Peterson’s Algorithm

 A.2 Race Conditions and Semaphores
Problem Statement
First Attempt
Second Attempt
Third Attempt
Fourth Attempt
A Good Attempt

 A.3 A Barbership Problem
An Unfair Barbershop
A Fair Barbershop

 A.4 Problems

A-2 APPENDIX A / TOPICS IN CONCURRENCY

 A.1 MUTUAL EXCLUSION: SOFTWARE APPROACHES

Software approaches can be implemented for concurrent processes that execute on
a single processor or a multiprocessor machine with shared main memory. These
approaches usually assume elementary mutual exclusion at the memory access
level ([LAMP91], but see Problem A.3). That is, simultaneous accesses (reading
and/or writing) to the same location in main memory are serialized by some sort
of memory arbiter, although the order of access granting is not specified ahead of
time. Beyond this, no support in the hardware, operating system, or programming
language is assumed.

Dekker’s Algorithm

Dijkstra [DIJK65] reported an algorithm for mutual exclusion for two processes,
designed by the Dutch mathematician Dekker. Following Dijkstra, we develop
the solution in stages. This approach has the advantage of illustrating many of the
 common bugs encountered in developing concurrent programs.

FIRST ATTEMPT As mentioned earlier, any attempt at mutual exclusion must rely
on some fundamental exclusion mechanism in the hardware. The most common of
these is the constraint that only one access to a memory location can be made at a
time. Using this constraint, we reserve a global memory location labeled turn. A
process (P0 or P1) wishing to execute its critical section first examines the contents
of turn. If the value of turn is equal to the number of the process, then the process
may proceed to its critical section. Otherwise, it is forced to wait. Our waiting process
repeatedly reads the value of turn until it is allowed to enter its critical section. This
procedure is known as busy waiting, or spin waiting, because the thwarted process
can do nothing productive until it gets permission to enter its critical section. Instead,
it must linger and periodically check the variable; thus it consumes processor time
(busy) while waiting for its chance.

After a process has gained access to its critical section and after it has com-
pleted that section, it must update the value of turn to that of the other process.

In formal terms, there is a shared global variable:

int turn = 0;

Figure A.1a shows the program for the two processes. This solution guarantees
the mutual exclusion property but has two drawbacks. First, processes must strictly
alternate in their use of their critical section; therefore, the pace of execution is dic-
tated by the slower of the two processes. If P0 uses its critical section only once per
hour but P1 would like to use its critical section at a rate of 1,000 times per hour, P1
is forced to adopt the pace of P0. A much more serious problem is that if one process
fails, the other process is permanently blocked. This is true whether a process fails in
its critical section or outside of it.

The foregoing construction is that of a coroutine. Coroutines are designed
to be able to pass execution control back and forth between themselves (see

A.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES A-3

Figure A.1 Mutual Exclusion Attempts

 /* PROCESS 0 /* /* PROCESS 1 */

 . .

 . .

 while (turn != 0) while (turn != 1)

 /* do nothing */ ; /* do nothing */;

 /* critical section*/; /* critical section*/;

 turn = 1; turn = 0;

 . .

(a) First attempt

 /* PROCESS 0 */ /* PROCESS 1 */

 . .

 . .

 while (flag[1]) while (flag[0])

 /* do nothing */; /* do nothing */;

 flag[0] = true; flag[1] = true;

 /*critical section*/; /* critical section*/;

 flag[0] = false; flag[1] = false;

 . .

(b) Second attempt

 /* PROCESS 0 */ /* PROCESS 1 */

 . .

 . .

 flag[0] = true; flag[1] = true;

 while (flag[1]) while (flag[0])

 /* do nothing */; /* do nothing */;

 /* critical section*/; /* critical section*/;

 flag[0] = false; flag[1] = false;

 . .

(c) Third attempt

 /* PROCESS 0 */ /* PROCESS 1 */

 . .

 . .

 flag[0] = true; flag[1] = true;

 while (flag[1]) { while (flag[0]) {

 flag[0] = false; flag[1] = false;

 /*delay */; /*delay */;

 flag[0] = true; flag[1] = true;

 } }

 /*critical section*/; /* critical section*/;

 flag[0] = false; flag[1] = false;

 .

(d) Fourth attempt

VideoNote

A-4 APPENDIX A / TOPICS IN CONCURRENCY

Problem 5.2). While this is a useful structuring technique for a single process, it is
inadequate to support concurrent processing.

SECOND ATTEMPT The flaw in the first attempt is that it stores the name of the
process that may enter its critical section, when in fact we need state information
about both processes. In effect, each process should have its own key to the critical
section so that if one fails, the other can still access its critical section. To meet this
requirement a Boolean vector flag is defined, with flag[0] corresponding to P0
and flag[1] corresponding to P1. Each process may examine the other’s flag but
may not alter it. When a process wishes to enter its critical section, it periodically
checks the other’s flag until that flag has the value false, indicating that the other
process is not in its critical section. The checking process immediately sets its own
flag to true and proceeds to its critical section. When it leaves its critical section, it
sets its flag to false.

The shared global variable1 now is

enum boolean (false = 0; true = 1);
boolean flag[2] = {0, 0}

Figure A.1b shows the algorithm. If one process fails outside the critical
 section, including the flag-setting code, then the other process is not blocked. In fact,
the other process can enter its critical section as often as it likes, because the flag
of the other process is always false. However, if a process fails inside its critical
section or after setting its flag to true just before entering its critical section, then
the other process is permanently blocked.

This solution is, if anything, worse than the first attempt because it does not
even guarantee mutual exclusion. Consider the following sequence:

P0 executes the while statement and finds flag[1] set to false
P1 executes the while statement and finds flag[0] set to false
P0 sets flag[0] to true and enters its critical section
P1 sets flag[1] to true and enters its critical section

Because both processes are now in their critical sections, the program is incor-
rect. The problem is that the proposed solution is not independent of relative pro-
cess execution speeds.

THIRD ATTEMPT Because a process can change its state after the other process
has checked it but before the other process can enter its critical section, the second
attempt failed. Perhaps we can fix this problem with a simple interchange of two
statements, as shown in Figure A.1c.

As before, if one process fails inside its critical section, including the flag-
setting code controlling the critical section, then the other process is blocked, and if
a process fails outside its critical section, then the other process is not blocked.

1The enum declaration is used here to declare a data type (boolean) and to assign its values.

A.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES A-5

Next, let us check that mutual exclusion is guaranteed, using the point of view
of process P0. Once P0 has set flag[0] to true, P1 cannot enter its critical section
until after P0 has entered and left its critical section. It could be that P1 is already in
its critical section when P0 sets its flag. In that case, P0 will be blocked by the while
statement until P1 has left its critical section. The same reasoning applies from the
point of view of P1.

This guarantees mutual exclusion but creates yet another problem. If both
processes set their flags to true before either has executed the while state-
ment, then each will think that the other has entered its critical section, causing
 deadlock.

FOURTH ATTEMPT In the third attempt, a process sets its state without knowing
the state of the other process. Deadlock occurs because each process can insist on
its right to enter its critical section; there is no opportunity to back off from this
position. We can try to fix this in a way that makes each process more deferential:
Each process sets its flag to indicate its desire to enter its critical section but is
prepared to reset the flag to defer to the other process, as shown in Figure A.1d.

This is close to a correct solution but is still flawed. Mutual exclusion is still
guaranteed, using similar reasoning to that followed in the discussion of the third
attempt. However, consider the following sequence of events:

P0 sets flag[0] to true.
P1 sets flag[1] to true.
P0 checks flag[1].
P1 checks flag[0].
P0 sets flag[0] to false.
P1 sets flag[1] to false.
P0 sets flag[0] to true.
P1 sets flag[1] to true.

This sequence could be extended indefinitely, and neither process could enter
its critical section. Strictly speaking, this is not deadlock, because any alteration in
the relative speed of the two processes will break this cycle and allow one to enter
the critical section. This condition is referred to as livelock. Recall that deadlock oc-
curs when a set of processes wishes to enter their critical sections but no process can
succeed. With livelock, there are possible sequences of executions that succeed, but
it is also possible to describe one or more execution sequences in which no process
ever enters its critical section.

Although the scenario just described is not likely to be sustained for very long,
it is nevertheless a possible scenario. Thus we reject the fourth attempt.

A CORRECT SOLUTION We need to be able to observe the state of both processes,
which is provided by the array variable flag. But, as the fourth attempt shows, this
is not enough. We must impose an order on the activities of the two processes to
avoid the problem of “mutual courtesy” that we have just observed. The variable

A-6 APPENDIX A / TOPICS IN CONCURRENCY

turn from the first attempt can be used for this purpose; in this case the variable
indicates which process has the right to insist on entering its critical region.

We can describe this solution, referred to as Dekker’s algorithm, as follows.
When P0 wants to enter its critical section, it sets its flag to true. It then checks the
flag of P1. If that is false, P0 may immediately enter its critical section. Otherwise,
P0 consults turn. If it finds that turn = 0, then it knows that it is its turn to insist
and periodically checks P1’s flag. P1 will at some point note that it is its turn to defer
and set its to flag false, allowing P0 to proceed. After P0 has used its critical sec-
tion, it sets its flag to false to free the critical section and sets turn to 1 to transfer
the right to insist to P1.

Figure A.2 Dekker’s Algorithm

boolean flag [2];
int turn;
void P0()
{
 while (true) {
 flag [0] = true;
 while (flag [1]) {
 if (turn == 1) {
 flag [0] = false;
 while (turn == 1) /* do nothing */;
 flag [0] = true;
 }
 }
 /* critical section */;
 turn = 1;
 flag [0] = false;
 /* remainder */;
 }
}
void P1()
{
 while (true) {
 flag [1] = true;
 while (flag [0]) {
 if (turn == 0) {
 flag [1] = false;
 while (turn == 0) /* do nothing */;
 flag [1] = true;
 }
 }
 /* critical section */;
 turn = 0;
 flag [1] = false;
 /* remainder */;
 }
}
void main ()
{
 flag [0] = false;
 flag [1] = false;
 turn = 1;
 parbegin (P0, P1);
}

VideoNote

A.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES A-7

Figure A.2 provides a specification of Dekker’s algorithm. The construct
 parbegin (P1, P2, . . . , Pn) means the following: suspend the execution of the main
 program; initiate concurrent execution of procedures P1, P2, . . . , Pn; when all of P1,
P2, . . . , Pn have terminated, resume the main program. A verification of Dekker’s
algorithm is left as an exercise (see Problem A.1).

Peterson’s Algorithm

Dekker’s algorithm solves the mutual exclusion problem but with a rather complex
program that is difficult to follow and whose correctness is tricky to prove. Peterson
[PETE81] has provided a simple, elegant solution. As before, the global array vari-
able flag indicates the position of each process with respect to mutual exclusion,
and the global variable turn resolves simultaneity conflicts. The algorithm is pre-
sented in Figure A.3.

That mutual exclusion is preserved is easily shown. Consider process P0. Once
it has set flag[0] to true, P1 cannot enter its critical section. If P1 already is
in its critical section, then flag[1] = true and P0 is blocked from entering its
critical section. On the other hand, mutual blocking is prevented. Suppose that P0
is blocked in its while loop. This means that flag[1] is true and turn = 1. P0 can

Figure A.3 Peterson’s Algorithm for Two Processes

boolean flag [2];
int turn;
void P0()
{
 while (true) {
 flag [0] = true;
 turn = 1;
 while (flag [1] && turn == 1) /* do nothing */;
 /* critical section */;
 flag [0] = false;
 /* remainder */;
 }
}
void P1()
{
 while (true) {
 flag [1] = true;
 turn = 0;
 while (flag [0] && turn == 0) /* do nothing */;
 /* critical section */;
 flag [1] = false;
 /* remainder */
 }
}
void main()
{
 flag [0] = false;
 flag [1] = false;
 parbegin (P0, P1);
}

VideoNote

A-8 APPENDIX A / TOPICS IN CONCURRENCY

enter its critical section when either flag[1] becomes false or turn becomes 0.
Now consider three exhaustive cases:

 1. P1 has no interest in its critical section. This case is impossible, because it im-
plies flag[1] = false.

 2. P1 is waiting for its critical section. This case is also impossible, because if
turn = 1, P1 is able to enter its critical section.

 3. P1 is using its critical section repeatedly and therefore monopolizing access
to it. This cannot happen, because P1 is obliged to give P0 an opportunity by
 setting turn to 0 before each attempt to enter its critical section.

Thus we have a simple solution to the mutual exclusion problem for two processes.
Furthermore, Peterson’s algorithm is easily generalized to the case of processes
[HOFR90].

 A.2 RACE CONDITIONS AND SEMAPHORES

Although the definition of a race condition, provided in Section 5.1, seems straight-
forward, experience has shown that students usually have difficulty pinpointing
race conditions in their programs. The purpose of this section, which is based on
[CARR01],2 is to step through a series of examples using semaphores that should
help clarify the topic of race conditions.

Problem Statement

Assume that there are two processes, A and B, each of which consists of a number
of concurrent threads. Each thread includes an infinite loop in which a message is
exchanged with a thread in the other process. Each message consists of an integer
placed in a shared global buffer. There are two requirements:

 1. After a thread A1 of process A makes a message available to some thread B1
in B, A1 can only proceed after it receives a message from B1. Similarly, after
B1 makes a message available to A1, it can only proceed after it receives a
message from A1.

 2. Once a thread A1 makes a message available, it must make sure that no other
thread in A overwrites the global buffer before the message is retrieved by a
thread in B.

In the remainder of this section, we show four attempts to implement this
scheme using semaphores, each of which can result in a race condition. Finally, we
show a correct solution.

2I am grateful to Professor Ching-Kuang Shene of Michigan Technological University for permission to
use this example.

A.2 / RACE CONDITIONS AND SEMAPHORES A-9

First Attempt

Consider this approach:

semaphore a = 0, b = 0;
int buf_a, buf_b;

thread_A(. . .)
{
 int var_a;
 . . .
 while (true) {
 . . .
 var_a =. . .;
 semSignal(b);
 semWait(a);
 buf_a = var_a;
 var_a = buf_b;
 . . .;
 }
}

thread_B(. . .)
{
 int var_b;
 . . .
 while (true) {
 . . .
 var_b =. . .;
 semSignal(a);
 semWait(b);
 buf_b = var_b;
 var_b = buf_a;
 . . .;
 }
}

This is a simple handshaking protocol. When a thread A1 in A is ready to
 exchange messages, it sends a signal to a thread in B and then waits for a thread
B1 in B to be ready. Once a signal comes back from B1, which A perceives by
performing semWait(a), then A1 assumes that B1 is ready and performs the ex-
change. B1 behaves similarly, and the exchange happens regardless of which thread
is ready first.

This attempt can lead to race conditions. For example, consider the following
sequence, with time going vertically down the table:

Thread A1 Thread B1
semSignal(b)
semWait(a)

semSignal(a)
semWait(b)

buf_a = var_a
var_a = buf_b

buf_b = var_b

In the preceding sequence, A1 reaches semWait(a) and is blocked. B1
reaches semWait(b) and is not blocked, but is switched out before it can update its
buf_b. Meanwhile, A1 executes and reads from buf_b before it has the intended
value. At this point, buf_b may have a value provided previously by another thread
or provided by B1 in a previous exchange. This is a race condition.

A subtler race condition can be seen if two threads in A and B are active.
Consider the following sequence:

A-10 APPENDIX A / TOPICS IN CONCURRENCY

Thread A1 Thread A2 Thread B1 Thread B2
semSignal(b)
semWait(a)

semSignal(a)
semWait(b)

semSignal(b)
semWait(a)

buf_b = var_b1
semSignal(a)

buf_a = var_a1
buf_a = var_a2

In this sequence, threads A1 and B1 attempt to exchange messages and go
through the proper semaphore signaling instructions. However, immediately after
the two semWait signals occur (in threads A1 and B1), thread A2 runs and ex-
ecutes semSignal(b) and semWait(a), which causes thread B2 to execute
semSignal(a) to release A2 from semWait(a). At this point, either A1 or A2
could update buf_a next, and we have a race condition. By changing the sequence
of execution among the threads, we can readily find other race conditions.

Lesson Learned: When a variable is shared by multiple threads, race condi-
tions are likely to occur unless proper mutual exclusion protection is used.

Second Attempt

For this attempt, we use a semaphore to protect the shared variable. The purpose
is to ensure that access to buf_a and buf_b are mutually exclusive. The program
is as follows:

semaphore a = 0, b = 0; mutex = 1;
int buf_a, buf_b;

thread_A(. . .)
{
 int var_a;
 . . .
 while (true) {
 . . .
 var_a =. . .;
 semSignal(b);
 semWait(a);
 semWait(mutex);
 buf_a = var_a;
 semSignal(mutex);
 semSignal(b);
 semWait(a);
 semWait(mutex);
 var_a = buf_b;
 semSignal(mutex);
 . . .;
 }
}

thread_B(. . .)
{
 int var_b;
 . . .
 while (true) {
 . . .
 var_b =. . .;
 semSignal(a);
 semWait(b);
 semWait(mutex);
 buf_b = var_b;
 semSignal(mutex);
 semSignal(a);
 semWait(b);
 semWait(mutex);
 var_b = buf_a;
 semSignal(mutex);
 . . .;
 }
}

A.2 / RACE CONDITIONS AND SEMAPHORES A-11

Before a thread can exchange a message, it follows the same handshak-
ing protocol as in the first attempt. The semaphore mutex protects buf_a and
buf_b in an attempt to assure that update precedes reading. But the protection
is not adequate. Once both threads complete the first handshaking stage, the
values of semaphores a and b are both 1. There are three possibilities that could
occur:

 1. Two threads, say A1 and B1, complete the first handshaking and continue with
the second stage of the exchange.

 2. Another pair of threads starts the first stage.
 3. One of the current pair will continue and exchange a message with a new-

comer in the other pair.

All of these possibilities can lead to race conditions. As an example of a race
condition based on the third possibility, consider the following sequence:

Thread A1 Thread A2 Thread B1
semSignal(b)
semWait(a)

semSignal(a)
semWait(b)

buf_a = var_a1
buf_b = var_b1

semSignal(b)
semWait(a)

semSignal(a)
semWait(b)

buf_a = var_a2

In this example, after A1 and B1 go through the first handshake, they both
update the corresponding global buffers. Then A2 initiates the first handshaking
stage. Following this, B1 initiates the second handshaking stage. At this point, A2
updates buf_a before B1 can retrieve the value placed in buf_a by A1. This is a
race condition.

Lesson Learned: Protecting a single variable may be insufficient if the use
of that variable is part of a long execution sequence. Protect the whole execution
sequence.

Third Attempt

For this attempt, we want to expand the critical section to include the entire mes-
sage exchange (two threads each update one of two buffers and read from the other
buffer). A single semaphore is insufficient because this could lead to deadlock, with
each side waiting on the other. The program is as follows:

A-12 APPENDIX A / TOPICS IN CONCURRENCY

semaphore aready = 1, adone = 0, bready = 1 bdone = 0;
int buf_a, buf_b;

thread_A(. . .)
{
 int var_a;
 . . .
 while (true) {
 . . .
 var_a =. . .;
 semWait(aready);
 buf_a = var_a;
 semSignal(adone);
 semWait(bdone);
 var_a = buf_b;
 semSignal(aready);
 . . .;
 }
}

thread_B(. . .)
{
 int var_b;
 . . .
 while (true) {
 . . .
 var_b =. . .;
 semWait(bready);
 buf_b = var_b;
 semSignal(bdone);
 semWait(adone);
 var_b = buf_a;
 semSignal(bready);
 . . .;
 }
}

The semaphore aready is intended to insure that no other thread in A can up-
date buf_a while one thread from A enters its critical section. The semaphore adone
is intended to insure that no thread from B will attempt to read buf_a until buf_a
has been updated. The same considerations apply to bready and bdone. However,
this scheme does not prevent race conditions. Consider the following sequence:

Thread A1 Thread B1
buf_a = var_a
semSignal(adone)
semWait(bdone)

buf_b = var_b
semSignal(bdone)
semWait(adone)

var_a = buf_b;
semSignal(aready)
. . .loop back. . .
semWait(aready)
buf_a = var_a

var_b = buf_a

In this sequence, both A1 and B1 enter their critical sections, deposit their
 messages, and reach the second wait. Then A1 copies the message from B1 and
leaves its critical section. At this point, A1 could loop back in its program, gener-
ate a new message, and deposit it in buf_a, as shown in the preceding execution
sequence. Another possibility is that at this same point another thread of A could
generate a message and put it in buf_a. In either case, a message is lost and a race
condition occurs.

A.2 / RACE CONDITIONS AND SEMAPHORES A-13

Lesson Learned: If we have a number of cooperating thread groups, mutual
exclusion guaranteed for one group may not prevent interference from threads in
other groups. Further, if a critical section is repeatedly entered by one thread, then
the timing of the cooperation between threads must be managed properly.

Fourth Attempt

The third attempt fails to force a thread to remain in its critical section until the
other thread retrieves the message. Here is an attempt to achieve this objective:

semaphore aready = 1, adone = 0, bready = 1 bdone = 0;
int buf_a, buf_b;

thread_A(. . .)
{
 int var_a;
 . . .
 while (true) {
 . . .
 var_a =. . .;
 semWait(bready);
 buf_a = var_a;
 semSignal(adone);
 semWait(bdone);
 var_a = buf_b;
 semSignal(aready);
 . . .;
 }
}

thread_B(. . .)
{
 int var_b;
 . . .
 while (true) {
 . . .
 var_b =. . .;
 semWait(aready);
 buf_b = var_b;
 semSignal(bdone);
 semWait(adone);
 var_b = buf_a;
 semSignal(bready);
 . . .;
 }
}

In this case, the first thread in A to enter its critical section decrements
bready to 0. No subsequent thread from A can attempt a message exchange until
a thread from B completes the message exchange and increments bready to 1. This
approach too can lead to race conditions, such as in the following sequence:

Thread A1 Thread A2 Thread B1
semWait(bready)
buf_a = var_a1
semSignal(adone)

semWait(aready)
buf_b = var_b1
semSignal(bdone)
semWait(adone)
var_b = buf_a
semSignal(bready)

semWait(bready)
. . .
semWait(bdone)
var_a2 = buf_b

A-14 APPENDIX A / TOPICS IN CONCURRENCY

In this sequence, threads A1 and B1 enter corresponding critical sections in
order to exchange messages. Thread B1 retrieves its message and signals bready.
This enables another thread from A, A2, to enter its critical section. If A2 is faster
than A1, then A2 may retrieve the message that was intended for A1.

Lesson Learned: If the semaphore for mutual exclusion is not released by
its owner, race conditions can occur. In this fourth attempt, a semaphore is locked
by a thread in A and then unlocked by a thread in B. This is risky programming
practice.

A Good Attempt

The reader may notice that the problem in this section is a variation of the bounded-
buffer problem and can be approached in a manner similar to the discussion in
Section 5.4. The most straightforward approach is to use two buffers, one for B-to-A
messages and one for A-to-B messages. The size of each buffer needs to be one. To
see the reason for this, consider that there is no ordering assumption for releasing
threads from a synchronization primitive. If a buffer has more than one slot, then
we cannot guarantee that the messages will be properly matched. For example, B1
could receive a message from A1 and then send a message to A1. But if the buffer
has multiple slots, another thread in A may retrieve the message from the slot in-
tended for A1.

Using the same basic approach as was used in Section 5.4, we can develop the
following program:

semaphore notFull_A = 1, notFull_B = 1;
semaphore notEmpty_A = 0, notEmpty_B = 0;
int buf_a, buf_b;

thread_A(. . .)
{
 int var_a;
 . . .
 while (true) {
 . . .
 var_a =. . .;
 semWait(notFull_A);
 buf_a = var_a;
 semSignal(notEmpty_A);
 semWait(notEmpty_B);
 var_a = buf_b;
 semSignal(notFull_B);
 . . .;
 }
}

thread_B(. . .)
{
 int var_b;
 . . .
 while (true) {
 . . .
 var_b =. . .;
 semWait(notFull_B);
 buf_b = var_b;
 semSignal(notEmpty_B);
 semWait(notEmpty_A);
 var_b = buf_a;
 semSignal(notFull_A);
 . . .;
 }
}

To verify that this solution works, we need to address three issues:

 1. The message exchange section is mutually exclusive within the thread group.
Because the initial value of notFull_A is 1, only one thread in A can pass
through semWait(notFull_A) until the exchange is complete as signaled

A.3 / A BARBERSHOP PROBLEM A-15

by a thread in B that executes semSignal(notFull_A). A similar reason-
ing applies to threads in B. Thus, this condition is satisfied.

 2. Once two threads enter their critical sections, they exchange messages with-
out interference from any other threads. No other thread in A can enter its
critical section until the thread in B is completely done with the exchange, and
no other thread in B can enter its critical section until the thread in A is com-
pletely done with the exchange. Thus, this condition is satisfied.

 3. After one thread exits its critical section, no thread in the same group can
rush in and ruin the existing message. This condition is satisfied because a
one-slot buffer is used in each direction. Once a thread in A has executed
semWait(notFull_A) and entered its critical section, no other thread in A
can update buf_a until the corresponding thread in B has retrieved the value
in buf_a and issued a semSignal(notFull_A).

Lesson Learned: It is well to review the solutions to well-known problems,
because a correct solution to the problem at hand may be a variation of a solution
to a known problem.

 A.3 A BARBERSHOP PROBLEM

As another example of the use of semaphores to implement concurrency, we
 consider a simple barbershop problem.3 This example is instructive because the
problems encountered when attempting to provide tailored access to barbershop
resources are similar to those encountered in a real operating system.

Our barbershop has three chairs, three barbers, and a waiting area that can
accommodate four customers on a sofa and that has standing room for additional
customers (Figure A.4). Fire codes limit the total number of customers in the shop

Sofa

Standing
room
area

Entrance

Exit

Barber chairs

Cashier

Figure A.4 The Barbershop

3I am indebted to Professor Ralph Hilzer of California State University at Chico for supplying this treat-
ment of the problem.

A-16 APPENDIX A / TOPICS IN CONCURRENCY

to 20. In this example, we assume that the barbershop will eventually process 50
customers.

A customer will not enter the shop if it is filled to capacity with other custom-
ers. Once inside, the customer takes a seat on the sofa or stands if the sofa is filled.
When a barber is free, the customer that has been on the sofa the longest is served
and, if there are any standing customers, the one that has been in the shop the lon-
gest takes a seat on the sofa. When a customer’s haircut is finished, any barber can
accept payment, but because there is only one cash register, payment is accepted for
one customer at a time. The barbers divide their time among cutting hair, accepting
payment, and sleeping in their chair waiting for a customer.

An Unfair Barbershop

Figure A.5 shows an implementation using semaphores; the three procedures are
listed side-by-side to conserve space. We assume that all semaphore queues are han-
dled with a first-in-first-out policy.

The main body of the program activates 50 customers, 3 barbers, and the ca-
shier process. We now consider the purpose and positioning of the various synchro-
nization operators:

Shop and sofa capacity: The capacity of the shop and the capacity of the sofa
are governed by the semaphores max_capacity and sofa, respectively.
Every time a customer attempts to enter the shop, the max_capacity sema-
phore is decremented by 1; every time a customer leaves, the semaphore is
incremented. If a customer finds the shop full, then that customer’s process
is blocked on max_capacity by the semWait function. Similarly, the sem-
Wait and semSignal operations surround the actions of sitting on and get-
ting up from the sofa.
Barber chair capacity: There are three barber chairs, and care must be taken
that they are used properly. The semaphore barber_chair assures that
no more than three customers attempt to obtain service at a time, trying to
avoid the undignified occurrence of one customer sitting on the lap of an-
other. A customer will not get up from the sofa until at least one chair is free
[semWait(barber_chair)], and each barber signals when a customer has
left that barber’s chair [semSignal(barber_chair)]. Fair access to the
barber chairs is guaranteed by the semaphore queue organization: The first
customer to be blocked is the first one allowed into an available chair. Note
that, in the customer procedure, if semWait(barber_chair) occurred after
semSignal(sofa), each customer would only briefly sit on the sofa and
then stand in line at the barber chairs, creating congestion and leaving the bar-
bers with little elbow room.
Ensuring customers are in barber chair: The semaphore cust_ready pro-
vides a wakeup signal for a sleeping barber, indicating that a customer has just
taken a chair. Without this semaphore, a barber would never sleep but would
begin cutting hair as soon as a customer left the chair; if no new customer had
grabbed the seat, the barber would be cutting air.

A
-17

/* program barbershop1 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3;
semaphore coord = 3;
semaphore cust_ready = 0, finished = 0, leave_b_chair = 0, payment = 0, receipt = 0;

void customer() void barber() Void cashier()
{ { {
 semWait(max_capacity); while (true) while (true)
 enter_shop(); { { semWait(payment);
 semWait(sofa); semWait(cust ready); semWait(coord);
 sit_on_sofa(); semWait(coord); accept_pay();
 semWait(barber_chair); cut_hair(); semSignal(coord);
 get_up_from_sofa(); semSignal(coord); semSignal(receipt);
 semSignal(sofa); semSignal(finished); }
 sit_in_barber_chair(); semWait(leave_b_chair); }
 semSignal(cust_ready); semSignal(barber_chair);
 semWait(finished); }
 leave_barber_chair(); }
 semSignal(leave_b_chair);
 pay();
 semSignal(payment);
 semWait(receipt);
 exit_shop();
 semSignal(max_capacity)
}
void main()
{
 parbegin (customer,. . .50 times,. . .customer, barber, barber, barber, cashier);
}

Figure A.5 An Unfair BarbershopVideoNote

A-18 APPENDIX A / TOPICS IN CONCURRENCY

Holding customers in barber chair: Once seated, a customer remains in the
chair until the barber gives the signal that the haircut is complete, using the
semaphore finished.
Limiting one customer to a barber chair: The semaphore barber_chair
is intended to limit the number of customers in barber chairs to three.
However, by itself, barber_chair does not succeed in doing this. A cus-
tomer that fails to get the processor immediately after his barber executes
semSignal(finished) (i.e., one who falls into a trance or stops to chat
with a neighbor) may still be in the chair when the next customer is given the
go ahead to be seated. The semaphore leave_b_chair is intended to cor-
rect this problem by restraining the barber from inviting a new customer into
the chair until the lingering one has announced his departure from it. In the
problems at the end of this chapter, we will find that even this precaution fails
to stop the mettlesome customer lap sittings.
Paying and receiving: Naturally, we want to be careful when dealing with
money. The cashier wants to be assured that each customer pays before leaving
the shop, and the customer wants verification that payment was received (a
receipt). This is accomplished, in effect, by a face-to-face transfer of the money.
Each customer, upon arising from a barber chair, pays, then alerts the cashier
that money has been passed over [semSignal(payment)], and then waits
for a receipt [semWait(receipt)]. The cashier process repeatedly takes pay-
ments: It waits for a payment to be signaled, accepts the money, and then sig-
nals acceptance of the money. Several programming errors need to be avoided
here. If semSignal(payment) occurred just before the action pay, then a
customer could be interrupted after signaling; this would leave the cashier free
to accept payment even though none had been offered. An even more serious
error would be to reverse the positions of the semSignal(payment) and
semWait(receipt) lines. This would lead to deadlock because that would
cause all customers and the cashier to block at their respective semWait
operators.
Coordinating barber and cashier functions: To save money, this barbershop
does not employ a separate cashier. Each barber is required to perform that
task when not cutting hair. The semaphore coord ensures that barbers per-
form only one task at a time.

Table A.1 summarizes the use of each of the semaphores in the program.
The cashier process could be eliminated by merging the payment function into

the barber procedure. Each barber would sequentially cut hair and then ac-
cept pay. However, with a single cash register, it is necessary to limit access to the
accept pay function to one barber at a time. This could be done by treating that
function as a critical section and guarding it with a semaphore.

A Fair Barbershop

Figure A.5 is a good effort, but some difficulties remain. One problem is solved
in the remainder of this section; others are left as exercises for the reader (see
Problem A.6).

A.3 / A BARBERSHOP PROBLEM A-19

Table A.1 Purpose of Semaphores in Figure A.5

Semaphore Wait Operation Signal Operation

max_capacity Customer waits for space to enter shop. Exiting customer signals customer
waiting to enter.

sofa Customer waits for seat on sofa. Customer leaving sofa signals cus-
tomer waiting for sofa.

barber_chair Customer waits for empty barber chair. Barber signals when that barber’s
chair is empty.

cust_ready Barber waits until a customer is in the chair. Customer signals barber that cus-
tomer is in the chair.

finished Customer waits until his haircut is complete. Barber signals when cutting hair
of this customer is done.

leave_b_chair Barber waits until customer gets up from the
chair.

Customer signals barber when
customer gets up from chair.

payment Cashier waits for a customer to pay. Customer signals cashier that he
has paid.

receipt Customer waits for a receipt for payment. Cashier signals that payment has
been accepted.

coord Wait for a barber resource to be free to perform
either the hair cutting or cashiering function.

Signal that a barber resource is
free.

There is a timing problem in Figure A.5 that could lead to unfair treat-
ment of customers. Suppose that three customers are currently seated in the
three barber chairs. In that case, the customers would most likely be blocked on
semWait(finished), and due to the queue organization they would be released
in the order they entered the barber chair. However, what if one of the barbers is
very fast or one of the customers is quite bald? Releasing the first customer to enter
the chair could result in a situation where one customer is summarily ejected from
his seat and forced to pay full price for a partial haircut while another is restrained
from leaving his chair even though his haircut is complete.

The problem is solved with more semaphores, as shown in . We assign a unique
customer number to each customer; this is equivalent to having each customer
take a number upon entering the shop. The semaphore mutex1 protects access to
the global variable count so that each customer receives a unique number. The
semaphore finished is redefined to be an array of 50 semaphores. Once a cus-
tomer is seated in a barber chair, he executes semWait(finished[custnr])
to wait on his own unique semaphore; when the barber is finished with that cus-
tomer, the barber executes semSignal(finished[b_cust]) to release the
correct customer.

It remains to say how a customer’s number is known to the barber. A cus-
tomer places his number on the queue enqueue1 just prior to signaling the barber
with the semaphore cust_ready. When a barber is ready to cut hair, dequeue1
(b_cust) removes the top customer number from queue1 and places it in the
barber’s local variable b_cust.

A
-20

Figure A.6 A Fair Barbershop

/* program barbershop2 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3, coord = 3;
semaphore mutex1 = 1, mutex2 = 1;
semaphore cust_ready = 0, leave_b_chair = 0, payment= 0, receipt = 0;
semaphore finished [50] = {0};
int count;

void customer () void barber() void cashier()
{ { {
 int custnr; int b_cust; while (true)
 semWait(max_capacity); while (true) {
 enter_shop(); { semWait(payment);
 semWait(mutex1); semWait(cust_ready); semWait(coord);
 custnr = count; semWait(mutex2); accept_pay();
 count++; dequeue1(b_cust); semSignal(coord);
 semSignal(mutex1); semSignal(mutex2); semSignal(receipt);
 semWait(sofa); semWait(coord); }
 sit_on_sofa(); cut_hair(); }
 semWait(barber_chair); semSignal(coord);
 get_up_from_sofa(); semSignal(finished[b_cust]);
 semSignal(sofa); semWait(leave_b_chair);
 sit_in_barber_chair(); semSignal(barber_chair);
 semWait(mutex2); }
 enqueue1(custnr); }
 semSignal(cust_ready);
 semSignal(mutex2);
 semWait(finished[custnr]);
 leave_barber_chair();
 semSignal(leave_b_chair);
 pay();
 semSignal(payment);
 semWait(receipt);
 exit_shop();
 semSignal(max_capacity)
}

void main()
{ count := 0;
 parbegin (customer,. . .50 times,. . .customer, barber, barber, barber, cashier);
}

VideoNote

A.4 / PROBLEMS A-21

 A.4 PROBLEMS

 A.1. Demonstrate the correctness of Dekker’s algorithm.
a. Show that mutual exclusion is enforced. Hint: Show that when Pi enters its critical

section, the following expression is true:

flag[i] and (not flag[1 − i])

b. Show that a process requiring access to its critical section will not be delayed in-
definitely. Hint: Consider the following cases: (1) A single process is attempting
to enter the critical section; (2) both processes are attempting to enter the critical
section, and (2a) turn = 0 and flag[0] = false, and (2b) turn = 0 and
flag[0] = true.

 A.2. Consider Dekker’s algorithm, written for an arbitrary number of processes by chang-
ing the statement executed when leaving the critical section from

turn = 1 − i /* i.e. P0 sets turn to 1 and P1 sets turn to 0 */

to

turn = (turn + 1) % n /* n = number of processes */

Evaluate the algorithm when the number of concurrently executing processes is
greater than two.

 A.3. Demonstrate that the following software approaches to mutual exclusion do not de-
pend on elementary mutual exclusion at the memory access level:
a. the bakery algorithm
b. Peterson’s algorithm

 A.4. Answer the following questions relating to the fair barbershop (Figure A.6):
a. Does the code require that the barber who finishes a customer’s haircut collect

that customer’s payment?
b. Do barbers always use the same barber chair?

 A.5. A number of problems remain with the fair barbershop of Figure A.6. Modify the
program to correct the following problems.
a. The cashier may accept pay from one customer and release another if two or more

are waiting to pay. Fortunately, once a customer presents payment, there is no way
for him to un-present it, so in the end, the right amount of money ends up in the
cash register. Nevertheless, it is desirable to release the right customer as soon as
his payment is taken.

b. The semaphore leave_b_chair supposedly prevents multiple access to a single
barber chair. Unfortunately, this semaphore does not succeed in all cases. For ex-
ample, suppose that all three barbers have finished cutting hair and are blocked at
semWait(leave_b_chair). Two of the customers are in an interrupted state
just prior to leave barber chair. The third customer leaves his chair and ex-
ecutes semSignal (leave_b_chair). Which barber is released? Because the
leave_b_chair queue is first in first out, the first barber that was blocked is
released. Is that the barber that was cutting the signaling customer’s hair? Maybe,
but maybe not. If not, then a new customer will come along and sit on the lap of a
customer that was just about to get up.

c. The program requires a customer first sits on the sofa even if a barber chair is
empty. Granted, this is a rather minor problem, and fixing it makes code that is
already a bit messy even messier. Nevertheless, give it a try.

This page intentionally left blank

APPENDIX B
PROGRAMMING AND OPERATING

SYSTEM PROJECTS
 B.1 OS/161

 B.2 Simulations

 B.3 Programming Projects
Textbook-Defined Projects
Additional Major Programming Projects
Small Programming Projects

 B.4 Research Projects

 B.5 Reading/Report Assignments

 B.6 Writing Assignments

 B.7 Discussion Topics

 B.8 BACI

B-1

B-2 APPENDIX B / PROGRAMMING AND OPERATING SYSTEM PROJECTS

Many instructors believe that implementation or research projects are crucial to
the clear understanding of operating system concepts. Without projects, it may be
difficult for students to grasp some of the basic OS abstractions and interactions
among components; a good example of a concept that many students find difficult
to master is that of semaphores. Projects reinforce the concepts introduced in this
book, give the student a greater appreciation of how the different pieces of an OS fit
together, and can motivate students and give them confidence that they are capable
of not only understanding but also implementing the details of an OS.

In this text, I have tried to present the concepts of OS internals as clearly
as possible and have provided numerous homework problems to reinforce those
concepts. Many instructors will wish to supplement this material with projects. This
appendix provides some guidance in that regard and describes support material
available in the Instructor’s Resource Center (IRC) for this book accessible from
Pearson for instructors. The support material covers eight types of projects and
other student exercises:

OS/161 projects
Simulation projects
Programming projects
Research projects
Reading/report assignments
Writing assignments
Discussion topics
BACI

 B.1 OS/161

The Instructor’s Resource Center (IRC) for this book provides support for using
OS/161 as an active learning component.

OS/161 is an educational operating system developed at Harvard University
[HOLL02]. It aims to strike a balance between giving students experience in work-
ing on a real operating system, and potentially overwhelming students with the com-
plexity that exists in a fully fledged operating system, such as Linux. Compared to
most deployed operating systems, OS/161 is quite small (approximately 20,000 lines
of code and comments), and therefore it is much easier to develop an understanding
of the entire code base.

The source code distribution contains a full operating system source tree, in-
cluding the kernel, libraries, various utilities (ls, cat,…), and some test programs.
OS/161 boots on the simulated machine in the same manner as a real system might
boot on real hardware.

System/161 simulates a “real” machine to run OS/161 on. The machine fea-
tures a MIPS R2000/R3000 CPU including an MMU, but no floating-point unit or
cache. It also features simplified hardware devices hooked up to the system bus.

B.2 / SIMULATIONS B-3

These devices are much simpler than real hardware, and thus make it feasible for
students to get their hands dirty without having to deal with the typical level of
complexity of physical hardware. Using a simulator has several advantages: Unlike
other software students write, buggy OS software may result in completely locking
up the machine, making it difficult to debug and requiring a reboot. A simulator
enables debuggers to access the machine below the software architecture level as
if debugging was built into the CPU. In some senses, the simulator is similar to an
in-circuit emulator (ICE) that you might find in industry, only it is implemented in
software. The other major advantage is the speed of reboots. Rebooting real hard-
ware takes minutes, and hence the development cycle can be frustratingly slow on
real hardware. System/161 boots OS/161 in mere seconds.

The OS/161 and System/161 simulators can be hosted on a variety of plat-
forms, including Unix, Linux, Mac OS X, and Cygwin (the free Unix environment
for Windows).

The IRC includes the following:

Package for instructor’s Web server: A set of html and pdf files that can be
easily uploaded to the instructor’s site for the OS course, which provides all
the online resources for OS/161 and S/161 access, user’s guides for students,
assignments, and other useful material.
Getting started for instructors: This guide lists all of the files that make up the
Web site for the course and instructions on how to set up the Web site.
Getting started for students: This guide explains to students step-by-step how
to download and install OS/161 and S/161 on their PC.
Background material for students: This consists of two documents that provide
an overview of the architecture of S/161 and the internals of OS/161. These
overviews are intended to be sufficient so that the student is not overwhelmed
with figuring out what these systems are.
Student exercises: A set of exercises that cover some of the key aspects of OS
internals, including support for system calls, threading, synchronization, locks
and condition variables, scheduling, virtual memory, files systems, and security.

The IRC OS/161 package was prepared by Andrew Peterson and other col-
leagues and students at the University of Toronto.

 B.2 SIMULATIONS

The IRC provides support for assigning projects based on a set of simulations
developed at the University of Texas, San Antonio. Table B.1 lists the simulations
by chapter. The simulators are all written in Java and can be run either locally as a
Java application or online through a browser.

The IRC includes the following:

 1. A brief overview of the simulations available.
 2. How to port them to the local environment.

B-4 APPENDIX B / PROGRAMMING AND OPERATING SYSTEM PROJECTS

 3. Specific assignments to give to students, telling them specifically what they
are to do and what results are expected. For each simulation, this section
provides one or two original assignments that the instructor can assign to
students.

These simulation assignments were developed by Adam Critchley (University
of Texas at San Antonio).

 B.3 PROGRAMMING PROJECTS

Three sets of programming projects are provided.

Textbook-Defined Projects

Two major programming projects, one to build a shell, or command line inter-
preter, and one to build a process dispatcher are described in the online portion
of the textbook. The projects can be assigned after Chapter 3 and after Chapter 9,

Table B.1 OS Simulations by Chapter

Chapter 5 — Concurrency: Mutual Exclusion and Synchronization

Producer-consumer Allows the user to experiment with a bounded buffer
synchronization problem in the context of a single
producer and a single consumer

UNIX Fork-pipe Simulates a program consisting of pipe, dup2, close,
fork, read, write, and print instructions

Chapter 6 — Concurrency: Deadlock and Starvation

Starving philosophers Simulates the dining philosophers problem

Chapter 8 — Virtual Memory

Address translation Used for exploring aspects of address translation.
It supports 1- and 2-level page tables and a translation
lookaside buffer

Chapter 9 — Uniprocessor Scheduling

Process scheduling Allows users to experiment with various process
scheduling algorithms on a collection of processes and to
compare such statistics as throughput and waiting time

Chapter 11 — I/O Management and Disk Scheduling

Disk head scheduling Supports the standard scheduling algorithms such as
FCFS, SSTF, SCAN, LOOK, C-SCAN, and C-LOOK
as well as double buffered versions of these

Chapter 12 — File Management

Concurrent I/O Simulates a program consisting of open, close,
read, write, fork, wait, pthread_create,
pthread_detach, and pthread_join instructions

B.3 / PROGRAMMING PROJECTS B-5

respectively. The IRC provides further information and step-by-step exercises for
developing the programs.

These projects were developed by Ian G. Graham of Griffith University,
Australia.

Additional Major Programming Projects

A set of programming assignments, called machine problems (MPs), are available
that are based on the Posix Programming Interface. The first of these assignments
is a crash course in C, to enable the student to develop sufficient proficiency in C to
be able to do the remaining assignments. The set consists of nine machine problems
with different difficulty degrees. It may be advisable to assign each project to a team
of two students.

Each MP includes not only a statement of the problem but a number of C files
that are used in each assignment, step-by-step instructions, and a set of questions for
each assignment that the student must answer that indicate a full understanding of
each project. The scope of the assignments includes:

 1. Create a program to run in a shell environment using basic I/O and string
manipulation functions.

 2. Explore and extend a simple Unix shell interpreter.
 3. Modify faulty code that utilizes threads.
 4. Implement a multithreaded application using thread synchronization primitives.
 5. Write a user-mode thread scheduler.
 6. Simulate a time-sharing system by using signals and timers.
 7. A six-week project aimed at creating a simple yet functional networked file

system. Covers I/O and file system concepts, memory management, and net-
working primitives.

The IRC provides specific instructions for setting up the appropriate support
files on the instructor’s Web site of local server.

These project assignments were developed at the University of Illinois at
Urbana-Champaign, Department of Computer Science and adapted by Matt Sparks
(University of Illinois at Urbana-Champagne) for use with this textbook.

Small Programming Projects

The instructor can also assign a number of small programming projects described in
the IRC. The projects can be programmed by the students on any available computer
and in any appropriate language: They are platform and language independent.

These small projects have certain advantages over the larger projects. Larger
projects usually give students more of a sense of achievement, but students with
less ability or fewer organizational skills can be left behind. Larger projects usually
elicit more overall effort from the best students. Smaller projects can have a higher
concepts-to-code ratio, and because more of them can be assigned, the opportu-
nity exists to address a variety of different areas. Accordingly, the instructor’s IRC

B-6 APPENDIX B / PROGRAMMING AND OPERATING SYSTEM PROJECTS

contains a series of small projects, each intended to be completed in a week or
so, which can be very satisfying to both student and teacher. These projects were
developed at Worcester Polytechnic Institute by Stephen Taylor, who has used and
refined the projects in the course of teaching operating systems a dozen times.

 B.4 RESEARCH PROJECTS

An effective way of reinforcing basic concepts from the course and for teaching
students research skills is to assign a research project. Such a project could in-
volve a literature search as well as a Web search of vendor products, research lab
activities, and standardization efforts. Projects could be assigned to teams or, for
smaller projects, to individuals. In any case, it is best to require some sort of project
proposal early in the term, giving the instructor time to evaluate the proposal for
appropriate topic and appropriate level of effort. Student handouts for research
projects should include

A format for the proposal
A format for the final report
A schedule with intermediate and final deadlines
A list of possible project topics

The students can select one of the listed topics or devise their own comparable
project. The IRC includes a suggested format for the proposal and final report as
well as a list of possible research topics developed by Professor Tan N. Nguyen of
George Mason University.

 B.5 READING/REPORT ASSIGNMENTS

Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers to be assigned, organized by chapter. A
PDF copy of each of the papers is available at box.com/OS8e. The IRC also includes
a suggested assignment wording.

 B.6 WRITING ASSIGNMENTS

Writing assignments can have a powerful multiplier effect in the learning process
in a technical discipline such as OS internals. Adherents of the Writing Across the
Curriculum (WAC) movement (http://wac.colostate.edu/) report substantial ben-
efits of writing assignments in facilitating learning. Writing assignments lead to more
detailed and complete thinking about a particular topic. In addition, writing assign-
ments help to overcome the tendency of students to pursue a subject with a minimum

http://wac.colostate.edu/

B.8 / BACI B-7

of personal engagement, just learning facts and problem-solving techniques without
obtaining a deep understanding of the subject matter.

The IRC contains a number of suggested writing assignments, organized by chap-
ter. Instructors may ultimately find that this is an important part of their approach to
teaching the material. I would greatly appreciate any feedback on this area and any
suggestions for additional writing assignments.

 B.7 DISCUSSION TOPICS

One way to provide a collaborative experience is discussion topics, a number of
which are included in the IRC. Each topic relates to material in the book. The instruc-
tor can set it up so that students can discuss a topic either in a class setting, an online
chat room, or a message board. Again, I would greatly appreciate any feedback on
this area and any suggestions for additional discussion topics.

 B.8 BACI

In addition to all of the support provided at the IRC, the Ben-Ari Concurrent
Interpreter (BACI) is a publicly available package that instructors may wish to use.
BACI simulates concurrent process execution and supports binary and counting
semaphores and monitors. BACI is accompanied by a number of project assign-
ments to be used to reinforce concurrency concepts.

Appendix O provides a more detailed introduction to BACI, with information
about how to obtain the system and the assignments.

This page intentionally left blank

ABRA06 Abramson, T. “Detecting Potential Deadlocks.” Dr. Dobb’s Journal, January
2006.

ADAM06 Adams, K., and Agesen, O., “A Comparison of Software and Hardware
Techniques for x86 Virtualization.” ACM ASPLOS’06, 2006.

AGAR89 Agarwal, A. Analysis of Cache Performance for Operating Systems and
Multiprogramming. Boston: Kluwer Academic Publishers, 1989.

ANAN92 Ananda, A.; Tay, B.; and Koh, E. “A Survey of Asynchronous Remote
Procedure Calls.” Operating Systems Review, April 1992.

ANDE04 Anderson, T.; Bershad, B.; Lazowska, E.; and Levy, H. “Thread Management
for Shared-Memory Multiprocessors.” In [TUCK04].

ANDE80 Anderson, J. Computer Security Threat Monitoring and Surveillance. Fort
Washington, PA: James P. Anderson Co., April 1980.

ANDE89 Anderson, T.; Laxowska, E.; and Levy, H. “The Performance Implications of
Thread Management Alternatives for Shared-Memory Multiprocessors.”
IEEE Transactions on Computers, December 1989.

ANDR83 Andrews, G., and Schneider, F. “Concepts and Notations for Concurrent
Programming.” Computing Surveys, March 1983.

ATLA89 Atlas, A., and Blundon, B. “Time to Reach for It All.” UNIX Review, January
1989.

BACH86 Bach, M. The Design of the UNIX Operating System. Englewood Cliffs, NJ:
Prentice Hall, 1986.

BACO03 Bacon, J., and Harris, T. Operating Systems: Concurrent and Distributed Software
Design. Reading, MA: Addison-Wesley, 2003.

BARK89 Barkley, R., and Lee, T. “A Lazy Buddy System Bounded by Two Coalescing
Delays per Class.” Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles, December 1989.

BAYS77 Bays, C. “A Comparison of Next-Fit, First-Fit, and Best-Fit.” Communications
of the ACM, March 1977.

BAER80 Baer, J. Computer Systems Architecture. Rockville, MD: Computer Science
Press, 1980.

BEAZ01 Beazley, D.; Ward, B.; and Cooke, I. “The Inside Story on Shared Libraries and
Dynamic Loading.” Computing in Science & Engineering, September/October
2001.

BELA66 Belady, L. “A Study of Replacement Algorithms for a Virtual Storage
Computer.” IBM Systems Journal, No. 2, 1966.

REFERENCES

ABBREVIATIONS

ACM Association for Computing Machinery
IBM International Business Machines Corporation
IEEE Institute of Electrical and Electronics Engineers
NIST National Institute of Standards and Technology

685

686 REFERENCES

BELL94 Bellovin, S., and Cheswick, W. “Network Firewalls.” IEEE Communications
Magazine, September 1994.

BEN06 Ben-Ari, M. Principles of Concurrent and Distributed Programming. Harlow,
England: Addison-Wesley, 2006.

BIRR89 Birrell, A. An Introduction to Programming with Threads. SRC Research
Report 35, Compaq Systems Research Center, Palo Alto, CA, January 1989.
Available at http://www.hpl.hp.com/techreports/Compaq-DEC

BLAC90 Black, D. “Scheduling Support for Concurrency and Parallelism in the Mach
Operating System.” Computer, May 1990.

BOLO89 Bolosky, W.; Fitzgerald, R.; and Scott, M. “Simple but Effective Techniques for
NUMA Memory Management.” Proceedings, Twelfth ACM Symposium on
Operating Systems Principles, December 1989.

BONW94 Bonwick, J. “An Object-Caching Memory Allocator.” Proceedings, USENIX
Summer Technical Conference, 1994.

BORG90 Borg, A.; Kessler, R.; and Wall, D. “Generation and Analysis of Very Long
Address Traces.” Proceedings of the 17th Annual International Symposium on
Computer Architecture, May 1990.

BOVE06 Bovet, D., and Cesati, M. Understanding the Linux Kernel. Sebastopol, CA:
O’Reilly, 2006.

BREN89 Brent, R. “Efficient Implementation of the First-Fit Strategy for Dynamic
Storage Allocation.” ACM Transactions on Programming Languages and
Systems, July 1989.

BREW97 Brewer, E. “Clustering: Multiply and Conquer.” Data Communications, July
1997.

BRIA99 Briand, L., and Roy, D. Meeting Deadlines in Hard Real-Time Systems: The Rate
Monotonic Approach. Los Alamitos, CA: IEEE Computer Society Press, 1999.

BRIN01 Brinch Hansen, P. Classic Operating Systems: From Batch Processing to
Distributed Systems. New York: Springer-Verlag, 2001.

BRIT04 Britton, C. IT Architectures and Middleware. Reading, MA: Addison-Wesley,
2004.

BUHR95 Buhr, P., and Fortier, M. “Monitor Classification.” ACM Computing Surveys,
March 1995.

BUON01 Buonadonna, P.; Hill, J.; and Culler, D. “Active Message Communication for
Tiny Networked Sensors.” Proceedings, IEEE INFOCOM 2001, April 2001.

BUTT99 Buttazzo, G. “Optimal Deadline Assignment for Scheduling Soft Aperiodic
Tasks in Hard Real-Time Environments.” IEEE Transactions on Computers,
October 1999.

BUZE73 Buzen, J., and Gagliardi, U. “The Evolution of Virtual Machine Architecture.”
AFIPS National Computer Conference, 1973.

CARR01 Carr, S.; Mayo, J.; and Shene, C. “Race Conditions: A Case Study.” The Journal
of Computing in Small Colleges, October 2001.

CARR05 Carrier, B. File System Forensic Analysis. Upper Saddle River, NJ: Addison-
Wesley, 2005.

CARR81 Carr, R. Virtual Memory Management. SLAN National Accelerator Laboratory,
Report STAN-CS-81-873, 1981. www.slac.stanford.edu/cgi-wrap/getdoc/
slac-r-244.pdf

http://www.hpl.hp.com/techreports/Compaq-DEC
www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-244.pdf
www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-244.pdf

REFERENCES 687

CARR89 Carriero, N., and Gelernter, D. “How to Write Parallel Programs: A Guide for
the Perplexed.” ACM Computing Surveys, September 1989.

CHAN90 Chandras, R. “Distributed Message Passing Operating Systems.” Operating
Systems Review, January 1990.

CHU72 Chu, W., and Opderbeck, H. “The Page Fault Frequency Replacement
Algorithm.” Proceedings, Fall Joint Computer Conference, 1972.

CLAR13 Clark, L. “Intro to Embedded Linux Part 1: Defining Android vs. Embedded
Linux.” Libby Clark Blog, Linux.com, March 6, 2013.

CLAR85 Clark, D., and Emer, J. “Performance of the VAX-11/780 Translation Buffer:
Simulation and Measurement.” ACM Transactions on Computer Systems,
February 1985.

COFF71 Coffman, E.; Elphick, M.; and Shoshani, A. “System Deadlocks.” Computing
Surveys, June 1971.

COME79 Comer, D. “The Ubiquitous B-Tree.” Computing Surveys, June 1979.
CONW63 Conway, M. “Design of a Separable Transition-Diagram Compiler.”

Communications of the ACM, July 1963.
CONW67 Conway, R.; Maxwell, W.; and Miller, L. Theory of Scheduling. Reading, MA:

Addison-Wesley, 1967. Reprinted by Dover Publications, 2003.
CORB62 Corbato, F.; Merwin-Daggett, M.; and Dealey, R. “An Experimental Time-

Sharing System.” Proceedings of the 1962 Spring Joint Computer Conference,
1962. Reprinted in [BRIN01].

CORB68 Corbato, F. “A Paging Experiment with the Multics System.” MIT Project MAC
Report MAC-M-384, May 1968.

CORB96 Corbett, J. “Evaluating Deadlock Detection Methods for Concurrent
Software.” IEEE Transactions on Software Engineering, March 1996.

CORM09 Cormen, T., et al. Introduction to Algorithms. Cambridge, MA: MIT Press, 2009.
COX89 Cox, A., and Fowler, R. “The Implementation of a Coherent Memory

Abstraction on a NUMA Multiprocessor: Experiences with PLATINUM.”
Proceedings, Twelfth ACM Symposium on Operating Systems Principles,
December 1989.

DALE68 Daley, R., and Dennis, R. “Virtual Memory, Processes, and Sharing in
MULTICS.” Communications of the ACM, May 1968.

DASG92 Dasgupta, P., et al. “The Clouds Distributed Operating System.” IEEE
Computer, November 1992.

DENN68 Denning, P. “The Working Set Model for Program Behavior.” Communications
of the ACM, May 1968.

DENN05 Denning, P. “The Locality Principle.” Communications of the ACM, July 2005.
DENN70 Denning, P. “Virtual Memory.” Computing Surveys, September 1970.
DENN71 Denning, P. “Third Generation Computer Systems.” ACM Computing Surveys,

December 1971.
DENN80a Denning, P.; Buzen, J.; Dennis, J.; Gaines, R.; Hansen, P.; Lynch, W.; and

Organick, E. “Operating Systems.” In [ARDE80].
DENN80b Denning, P. “Working Sets Past and Present.” IEEE Transactions on Software

Engineering, January 1980.
DENN84 Denning, P., and Brown, R. “Operating Systems.” Scientific American,

September 1984.

688 REFERENCES

DIJK65 Dijkstra, E. Cooperating Sequential Processes. Eindhoven, The Netherlands:
Technological University, 1965. (Reprinted in Great Papers in Computer
Science, P. Laplante, ed., IEEE Press, New York, NY, 1996.) Also reprinted in
[BRIN01].

DIJK68 Dijkstra, E. “The Structure of ‘THE’ Multiprogramming System.”
Communications of the ACM, May 1968. Reprinted in [BRIN01].

DIJK71 Dijkstra, E. “Hierarchical Ordering of sequential Processes.” Acta informatica,
Volume 1, Number 2, 1971. Reprinted in [BRIN01].

DIMI98 Dimitoglou, G. “Deadlocks and Methods for Their Detection, Prevention,
and Recovery in Modern Operating Systems.” Operating Systems Review,
July 1998.

DOWN08 Downey, A. The Little Book of Semaphores. www.greenteapress.com/
semaphores/

DUBE98 Dube, R. A Comparison of the Memory Management Sub-Systems in
FreeBSD and Linux. Technical Report CS-TR-3929, University of Maryland,
September 25, 1998.

EISC07 Eischen, C. “RAID 6 Covers More Bases.” Network World, April 9, 2007.
FEIT90a Feitelson, D., and Rudolph, L. “Distributed Hierarchical Control for Parallel

Processing.” Computer, May 1990.
FEIT90b Feitelson, D., and Rudolph, L. “Mapping and Scheduling in a Shared Parallel

Environment Using Distributed Hierarchical Control.” Proceedings, 1990
International Conference on Parallel Processing, August 1990.

FERR83 Ferrari, D., and Yih, Y. “VSWS: The Variable-Interval Sampled Working Set
Policy.” IEEE Transactions on Software Engineering, May 1983.

FINK88 Finkel, R. An Operating Systems Vade Mecum. Englewood Cliffs, NJ: Prentice
Hall, 1988.

FRAN97 Franz, M. “Dynamic Linking of Software Components.” Computer, March 1997.
GANA98 Ganapathy, N., and Schimmel, C. “General Purpose Operating System Support

for Multiple Page Sizes.” Proceedings, USENIX Symposium, 1998.
GAND11 Gandhewar, N., and Sheikh, R. “Google Android: An Emerging Software

Platform For Mobile Devices.” International Journal on Computer Science and
Engineering, February 2011.

GAY03 Gay, D., et al. “The nesC Language: A Holistic Approach to Networked
Embedded Systems.” Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, 2003.

GAY05 Gay, D.; Levis, P.; and Culler, D. “Software Design Patterns for TinyOS.”
Proceedings, Conference on Languages, Compilers, and Tools for Embedded
Systems, 2005.

GEHR87 Gehringer, E.; Siewiorek, D.; and Segall, Z. Parallel Processing: The Cm*
Experience. Bedford, MA: Digital Press, 1987.

GIBB87 Gibbons, P. “A Stub Generator for Multilanguage RPC in Heterogeneous
Environments.” IEEE Transactions on Software Engineering, January 1987.

GING90 Gingras, A. “Dining Philosophers Revisited.” ACM SIGCSE Bulletin,
September 1990.

GOLD74 Goldberg, R. “Survey of Virtual Machine Research.” Computer, June 1974.
GOLD89 Goldman, P. “Mac VM Revealed.” Byte, November 1989.

www.greenteapress.com/semaphores/
www.greenteapress.com/semaphores/

REFERENCES 689

GOOD94 Goodheart, B., and Cox, J. The Magic Garden Explained: The Internals of
UNIX System V Release 4. Englewood Cliffs, NJ: Prentice Hall, 1994.

GORM04 Gorman, M. Understanding the Linux Virtual Memory Manager. Upper Saddle
River, NJ: Prentice Hall, 2004.

GOTT12 Gottschlich, J., and Boehm, H. “Why Locks Should Not Be Used In Generic
Programming.” HP Laboratories, HPL-2012-246, December 2012.

GOYE99 Goyeneche, J., and Souse, E. “Loadable Kernel Modules.” IEEE Software,
January/February 1999.

GRAH72 Graham, G., and Denning, P. “Protection—Principles and Practice.”
Proceedings, AFIPS Spring Joint Computer Conference, 1972.

GRAY97 Gray, J. Interprocess Communications in UNIX: The Nooks and Crannies.
Upper Saddle River, NJ: Prentice Hall, 1997.

GRIM05 Grimheden, M., and Torngren, M. “What is Embedded Systems and How
Should It Be Taught?—Results from a Didactic Analysis.” ACM Transactions
on Embedded Computing Systems, August 2005.

GROS86 Grosshans, D. File Systems: Design and Implementation. Englewood Cliffs, NJ:
Prentice Hall, 1986.

GUPT78 Gupta, R., and Franklin, M. “Working Set and Page Fault Frequency
Replacement Algorithms: A Performance Comparison.” IEEE Transactions on
Computers, August 1978.

HALD91 Haldar, S., and Subramanian, D. “Fairness in Processor Scheduling in Time
Sharing Systems.” Operating Systems Review, January 1991.

HALL10 Hall, B. Beej’s Guide to Unix IPC., 2010. http://beej.us/guide/bgipc/
HAND98 Handy, J. The Cache Memory Book. San Diego: Academic Press, 1998.
HARR06 Harris, W. “Multi-core in the Source Engine.” Bit-tech.net Technical Paper,

November 2, 2006. bit-tech.net/gaming/2006/11/02/Multi_core_in_the_Source_
Engin/1.

HATF72 Hatfield, D. “Experiments on Page Size, Program Access Patterns, and
Virtual Memory Performance.” IBM Journal of Research and Development,
January 1972.

HENR84 Henry, G. “The Fair Share Scheduler.” AT&T Bell Laboratories Technical
Journal, October 1984.

HERL90 Herlihy, M. “A Methodology for Implementing Highly Concurrent Data
Structures,” Proceedings of the Second ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming, March 1990.

HILL00 Hill, J., et al. “System Architecture Directions for Networked Sensors.” Proceedings,
Architectural Support for Programming Languages and Operating Systems, 2000.

HOAR74 Hoare, C. “Monitors: An Operating System Structuring Concept.”
Communications of the ACM, October 1974.

HOAR85 Hoare, C. Communicating Sequential Processes. Englewood Cliffs, NJ: Prentice-
Hall, 1985.

HOFR90 Hofri, M. “Proof of a Mutual Exclusion Algorithm.” Operating Systems Review,
January 1990.

HOLL02 Holland, D.; Lim, A.; and Seltzer, M. “A New Instructional Operating System.”
Proceedings of SIGCSE 2002, 2002.

HOLT72 Holt, R. “Some Deadlock Properties of Computer Systems.” Computing
Surveys, September 1972.

http://beej.us/guide/bgipc/

690 REFERENCES

HONG89 Hong, J.; Tan, X.; and Towsley, D. “A Performance Analysis of Minimum Laxity
and Earliest Deadline Scheduling in a Real-Time System.” IEEE Transactions
on Computers, December 1989.

HOWA73 Howard, J. “Mixed Solutions for the Deadlock Problem.” Communications of
the ACM, July 1973.

HP96 Hewlett Packard. White Paper on Clustering. June 1996.
HUCK83 Huck, T. Comparative Analysis of Computer Architectures. Stanford University

Technical Report Number 83–243, May 1983.
HUCK93 Huck, J., and Hays, J. “Architectural Support for Translation Table Management

in Large Address Space Machines.” Proceedings of the 20th Annual
International Symposium on Computer Architecture, May 1993.

HWAN99 Hwang, K., et al. “Designing SSI Clusters with Hierarchical Checkpointing and
Single I/O Space.” IEEE Concurrency, January–March 1999.

HYMA66 Hyman, H. “Comments on a Problem in Concurrent Programming Control.”
Communications of the ACM, January 1966.

ISLO80 Isloor, S., and Marsland, T. “The Deadlock Problem: An Overview.” Computer,
September 1980.

IYER01 Iyer, S., and Druschel, P. “Anticipatory Scheduling: A Disk Scheduling
Framework to Overcome Deceptive Idleness in Synchronous I/O.” Proceedings,
18th ACM Symposium on Operating Systems Principles, October 2001.

JACO98a Jacob, B., and Mudge, T. “Virtual Memory: Issues of Implementation.”
Computer, June 1998.

JACO98b Jacob, B., and Mudge, T. “Virtual Memory in Contemporary Microprocessors.”
IEEE Micro, August 1998.

JACK10 Jackson, J. “Multicore requires OS rework, Windows architect advises.”
Network World, March 19, 2010.

JOHN92 Johnson, T., and Davis, T. “Space Efficient Parallel Buddy Memory
Management.” Proceedings, Third International Conference on Computers and
Information, May 1992.

JONE80 Jones, S., and Schwarz, P. “Experience Using Multiprocessor Systems—A
Status Report.” Computing Surveys, June 1980.

JONE97 Jones, M. “What Really Happened on Mars?” http://research.microsoft.
com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html, 1997.

KANG98 Kang, S., and Lee, J. “Analysis and Solution of Non-Preemptive Policies for
Scheduling Readers and Writers.” Operating Systems Review, July 1998.

KAPP00 Kapp, C. “Managing Cluster Computers.” Dr. Dobb’s Journal, July 2000.
KATZ89 Katz, R.; Gibson, G.; and Patterson, D. “Disk System Architecture for High

Performance Computing.” Proceedings of the IEEE, December 1989.
KAY88 Kay, J., and Lauder, P. “A Fair Share Scheduler.” Communications of the ACM,

January 1988.
KESS92 Kessler, R., and Hill, M. “Page Placement Algorithms for Large Real-Indexed

Caches.” ACM Transactions on Computer Systems, November 1992.
KHAL93 Khalidi, Y.; Talluri, M.; Williams, D.; and Nelson, M. “Virtual Memory Support

for Multiple Page Sizes.” Proceedings, Fourth Workshop on Workstation
Operating Systems, October 1993.

KILB62 Kilburn, T.; Edwards, D.; Lanigan, M.; and Sumner, F. “One-Level Storage
System.” IRE Transactions, April 1962.

http://research.microsoft

REFERENCES 691

KLEI95 Kleiman, S. “Interrupts as Threads.” Operating System Review, April 1995.
KLEI96 Kleiman, S.; Shah, D.; and Smallders, B. Programming with Threads. Upper

Saddle River, NJ: Prentice Hall, 1996.
KLEI04 Kleinrock, L. Queuing Systems, Volume 3: Computer Applications. New York:

Wiley, 2004.
KNUT71 Knuth, D. “An Experimental Study of FORTRAN Programs.” Software

Practice and Experience, Volume 1, 1971.
KNUT97 Knuth, D. The Art of Computer Programming, Volume 1: Fundamental

Algorithms. Reading, MA: Addison-Wesley, 1997.
KNUT98 Knuth, D. The Art of Computer Programming, Volume 3: Sorting and Searching.

Reading, MA: Addison-Wesley, 1998.
KOOP96 Koopman, P. “Embedded System Design Issues (The Rest of the Story).”

Proceedings, 1996 International Conference on Computer Design, 1996.
KRIS94 Krishna, C., and Lee, Y., eds. “Special Issue on Real-Time Systems.” Proceedings

of the IEEE, January 1994.
LAI06 Lai, A., and Nieh, J. “On the Performance of Wide-Area Thin-Client

Computing.” ACM Transactions on Computer Systems, May 2006.
LAMP71 Lampson, B. “Protection.” Proceedings, Fifth Princeton Symposium on

Information Sciences and Systems, March 1971. Reprinted in Operating Systems
Review, January 1974.

LAMP74 Lamport, L. “A New Solution to Dijkstra’s Concurrent Programming Problem.”
Communications of the ACM, August 1974.

LAMP80 Lampson, B., and Redell D. “Experience with Processes and Monitors in
Mesa.” Communications of the ACM, February 1980.

LAMP86 Lamport, L. “The Mutual Exclusion Problem.” Journal of the ACM, April 1986.
LAMP91 Lamport, L. “The Mutual Exclusion Problem Has Been Solved.”

Communications of the ACM, January 1991.
LARO92 LaRowe, R.; Holliday, M.; and Ellis, C. “An Analysis of Dynamic Page Placement

in a NUMA Multiprocessor.” Proceedings, 1992 ACM SIGMETRICS and
Performance ’92, June 1992.

LEBL87 LeBlanc, T., and Mellor-Crummey, J. “Debugging Parallel Programs with
Instant Replay.” IEEE Transactions on Computers, April 1987.

LEE93 Lee, Y., and Krishna, C., eds. Readings in Real-Time Systems. Los Alamitos, CA:
IEEE Computer Society Press, 1993.

LEON07 Leonard, T. “Dragged Kicking and Screaming: Source Multicore.” Proceedings,
Game Developers Conference 2007, March 2007.

LERO76 Leroudier, J., and Potier, D. “Principles of Optimality for Multiprogramming.”
Proceedings, International Symposium on Computer Performance Modeling,
Measurement, and Evaluation, March 1976.

LETW88 Letwin, G. Inside OS/2. Redmond, WA: Microsoft Press, 1988.
LEUT90 Leutenegger, S., and Vernon, M. “The Performance of Multiprogrammed

Multiprocessor Scheduling Policies.” Proceedings, Conference on Measurement
and Modeling of Computer Systems, May 1990.

LEVI00 Levine, J. Linkers and Loaders. San Francisco: Morgan Kaufmann, 2000.
LEVI03a Levine, G. “Defining Deadlock.” Operating Systems Review, January 2003.
LEVI03b Levine, G. “Defining Deadlock with Fungible Resources.” Operating Systems

Review, July 2003.

692 REFERENCES

LEVI05 Levis, P., et al. “T2: A Second Generation OS for Embedded Sensor
Networks.” Technical Report TKN-05-007, Telecommunication Networks
Group, Technische Universitat Berlin, 2005. http://csl.stanford.edu/~pal/pubs
.html

LEWI96 Lewis, B., and Berg, D. Threads Primer. Upper Saddle River, NJ: Prentice Hall,
1996.

LHEE03 Lhee, K., and Chapin, S. “Buffer Overflow and Format String Overflow
Vulnerabilities.” Software—Practice and Experience, Volume 33, 2003.

LI10 Li, Y., et al. “A Survey of Virtual Machine Systems: Current Technology and
Future Trends.” Third International Symposium on Electronic Commerce and
Security, 2010.

LIGN05 Ligneris, B. “Virtualization of Linux based computers: The Linux-VServer proj-
ect.” Proceedings of the 19th International Symposium on High Performance
Computing Systems and Applications, 2005.

LIND04 Lindsley, R. “What’s New in the 2.6 Scheduler.” Linux Journal, March 2004.
LIU73 Liu, C., and Layland, J. “Scheduling Algorithms for Multiprogramming in a

Hard Real-time Environment.” Journal of the ACM, February 1973.
LOVE04 Love, R. “I/O Schedulers.” Linux Journal, February 2004.
LOVE10 Love, R. Linux Kernel Development. Upper Saddle River, NJ: Addison-Wesley,

2010.
LU08 Lu, S., et al. “Learning from Mistakes—A Comprehensive Study on Real World

Concurrency Bug Characteristics.” ACM ASPLOS’08, March 2008.
MAEK87 Maekawa, M.; Oldehoeft, A.; and Oldehoeft, R. Operating Systems: Advanced

Concepts. Menlo Park, CA: Benjamin Cummings, 1987.
MAIA10 Maia, C.; Nogueira, L.; and Pinho, L. “Evaluating Android OS for Embedded

Real-Time Systems.” Proceedings of the 6th International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications,
July 2010.

MAJU88 Majumdar, S.; Eager, D.; and Bunt, R. “Scheduling in Multiprogrammed
Parallel Systems.” Proceedings, Conference on Measurement and Modeling of
Computer Systems, May 1988.

MARW06 Marwedel, P. Embedded System Design. Dordrecht, The Netherlands: Springer,
2006.

MAUE08 Mauerer, W. Professional Linux Kernel Architecture. New York: Wiley, 2008.
MCDO06 McDougall, R., and Laudon, J. “Multi-Core Microprocessors are Here.” login,

October 2006.
MCDO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris

Kernel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.
MCKU05 McKusick, M., and Neville-Neil, J. The Design and Implementation of the

FreeBSD Operating System. Reading, MA: Addison-Wesley, 2005.
MENA05 Menasce, D. “MOM vs. RPC: Communication Models for Distributed

Applications.” IEEE Internet Computing, March/April 2005.
MORG92 Morgan, K. “The RTOS Difference.” Byte, August 1992.
MOSB02 Mosberger, D., and Eranian, S. IA-64 Linux Kernel: Design and Implementation.

Upper Saddle River, NJ: Prentice Hall, 2002.
MS96 Microsoft Corp. Microsoft Windows NT Workstation Resource Kit. Redmond,

WA: Microsoft Press, 1996.

http://csl.stanford.edu/~pal/pubs.html
http://csl.stanford.edu/~pal/pubs.html

REFERENCES 693

NAND05 Nanda, S., and Chiueh, T. “A Survey on Virtualization Technologies.” SUNY
RPE Report TR-179, Experimental Computer Systems Lab, SUNY Stony
Brook, 2005.

NEHM75 Nehmer, J. “Dispatcher Primitives for the Construction of Operating System
Kernels.” Acta Informatica, Volume 5, 1975.

NELS88 Nelson, M.; Welch, B.; and Ousterhout, J. “Caching in the Sprite Network File
System.” ACM Transactions on Computer Systems, February 1988.

NELS91 Nelson, G. Systems Programming with Modula-3. Englewood Cliffs, NJ:
Prentice Hall, 1991.

NIST08 National Institute of Standards and Technology. Guide to Industrial Control
Systems (ICS) Security. Special Publication 800-82, Final Public Draft,
September 2008.

NOER05 Noergarrd, T. Embedded Systems Architecture: A Comprehensive Guide for
Engineers and Programmers. New York: Elsevier, 2005.

OH12 Oh, H. “Evaluation of Android Dalvik Virtual Machine.” 10th International
Workshop on Java Technologies for Real-time and Embedded Systems,
October 2012.

OUST85 Ousterhout, J., et al. “A Trace-Drive Analysis of the UNIX 4.2 BSD File System.”
Proceedings, Tenth ACM Symposium on Operating System Principles, 1985.

OUST88 Ousterhout, J., et al. “The Sprite Network Operating System.” Computer,
February 1988.

PANW88 Panwar, S.; Towsley, D.; and Wolf, J. “Optimal Scheduling Policies for a Class of
Queues with Customer Deadlines in the Beginning of Service.” Journal of the
ACM, October 1988.

PATT82 Patterson, D., and Sequin, C. “A VLSI RISC.” Computer, September 1982.
PATT85 Patterson, D. “Reduced Instruction Set Computers.” Communications of the

ACM, January 1985.
PATT88 Patterson, D.; Gibson, G.; and Katz, R. “A Case for Redundant Arrays of

Inexpensive Disks (RAID).” Proceedings, ACM SIGMOD Conference of
Management of Data, June 1988.

PAZZ92 Pazzini, M., and Navaux, P. “TRIX, A Multiprocessor Transputer-Based
Operating System.” Parallel Computing and Transputer Applications, edited by
M. Valero et al., Barcelona: IOS Press/CIMNE, 1992.

PEAR13 Pearce, M. et al. “Virtualization: Issues, Security Threats, and Solutions.” ACM
Computing Surveys, February 2013.

PEIR99 Peir, J.; Hsu, W.; and Smith, A. “Functional Implementation Techniques for
CPU Cache Memories.” IEEE Transactions on Computers, February 1999.

PETE77 Peterson, J., and Norman, T. “Buddy Systems.” Communications of the ACM,
June 1977.

PETE81 Peterson, G. “Myths About the Mutual Exclusion Problem.” Information
Processing Letters, June 1981.

PHAM96 Pham, T., and Garg, P. Multithreaded Programming with Windows NT. Upper
Saddle River, NJ: Prentice Hall, 1996.

PIZZ89 Pizzarello, A. “Memory Management for a Large Operating System.”
Proceedings, International Conference on Measurement and Modeling of
Computer Systems, May 1989.

694 REFERENCES

PRES72 Presser, L., and White, J. “Linkers and Loaders.” Computing Surveys, September
1972.

PRZY88 Przybylski, S.; Horowitz, M.; and Hennessy, J. “Performance Trade-offs in Cache
Design.” Proceedings, Fifteenth Annual International Symposium on Computer
Architecture, June 1988.

RAJA00 Rajagopal, R. Introduction to Microsoft Windows NT Cluster Server. Boca
Raton, FL: CRC Press, 2000.

RAMA94 Ramamritham, K., and Stankovic, J. “Scheduling Algorithms and Operating
Systems Support for Real-Time Systems.” Proceedings of the IEEE, January
1994.

RASH88 Rashid, R., et al. “Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures.” IEEE Transactions on
Computers, August 1988.

RAYN86 Raynal, M. Algorithms for Mutual Exclusion. Cambridge, MA: MIT Press, 1986.
REIM06 Reimer, J. “Valve Goes Multicore.” Ars Technica, November 5, 2006. arstechnica.

com/articles/paedia/cpu/valve-multicore.ars
RIDG97 Ridge, D., et al. “Beowulf: Harnessing the Power of Parallelism in a Pile-of-PCs.”

Proceedings, IEEE Aerospace Conference, 1997.
RITC74 Ritchie, D., and Thompson, K. “The UNIX Time-Sharing System.”

Communications of the ACM, July 1974.
RITC78 Ritchie, D. “UNIX Time-Sharing System: A Retrospective.” The Bell System

Technical Journal, July–August 1978.
RITC84 Ritchie, D. “The Evolution of the UNIX Time-Sharing System.” AT&T Bell

Labs Technical Journal, October 1984.
ROBB04 Robbins, K., and Robbins, S. UNIX Systems Programming: Communication,

Concurrency, and Threads. Upper Saddle River, NJ: Prentice Hall, 2004.
ROBE03 Roberson, J. “ULE: A Modern Scheduler for FreeBSD.” Proceedings of

BSDCon ’03, September 2003.
ROBI90 Robinson, J., and Devarakonda, M. “Data Cache Management Using

Frequency-Based Replacement.” Proceedings, Conference on Measurement
and Modeling of Computer Systems, May 1990.

ROME04 Romer, K., and Mattern, F. “The Design Space of Wireless Sensor Networks.”
IEEE Wireless Communications, December 2004.

ROSE04 Rosenblum, M. “The Reincarnation of Virtual Machines.” ACM Queue, July/
August 2004.

ROSE05 Rosenblum, R., and Garfinkel, T. “Virtual Machine Monitors: Current
Technology and Future Trends.” Computer, May 2005.

RUBI97 Rubini, A. “The Virtual File System in Linux.” Linux Journal, May 1997.
RUDO90 Rudolph, B. “Self-Assessment Procedure XXI: Concurrency.” Communications

of the ACM, May 1990.
RUSS11 Russinovich, M.; Solomon, D.; and Ionescu, A. Windows Internals: Covering

Windows 7 and Windows Server 2008 R2. Redmond, WA: Microsoft Press, 2011.
SATY81 Satyanarayanan, M., and Bhandarkar, D. “Design Trade-Offs in VAX-11

Translation Buffer Organization.” Computer, December 1981.
SAUE81 Sauer, C., and Chandy, K. Computer Systems Performance Modeling. Englewood

Cliffs, NJ: Prentice Hall, 1981.

REFERENCES 695

SCHR11 Schreiber, T. “Android Binder: Android Interprocess Communication.”
Seminar Thesis, Ruhr University Bochum, October 5, 2011. www.nds.rub.de/
media/attachments/files/2012/03/binder.pdf

SHA90 Sha, L.; Rajkumar, R.; and Lehoczky, J. “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization.” IEEE Transactions on Computers,
September 1990.

SHA91 Sha, L.; Klein, M.; and Goodenough, J. “Rate Monotonic Analysis for Real-
Time Systems.” In [TILB91].

SHA94 Sha, L.; Rajkumar, R.; and Sathaye, S. “Generalized Rate-Monotonic Scheduling
Theory: A Framework for Developing Real-Time Systems.” Proceedings of the
IEEE, January 1994.

SHEN02 Shene, C. “Multithreaded Programming Can Strengthen an Operating Systems
Course.” Computer Science Education Journal, December 2002.

SHOR75 Shore, J. “On the External Storage Fragmentation Produced by First-Fit and
Best-Fit Allocation Strategies.” Communications of the ACM, August, 1975.

SHUB90 Shub, C. “ACM Forum: Comment on a Self-Assessment Procedure on
Operating Systems.” Communications of the ACM, September 1990.

SHUB03 Shub, C. “A Unified Treatment of Deadlock.” Journal of Computing in Small
Colleges, October 2003. Available through the ACM digital library.

SIRA09 Siracusa, J. “Grand Central Dispatch.” Ars Technica Review, 2009. http://
arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12

SMIT05 Smith, J., and Nair, R. “The Architecture of Virtual Machines.” Computer, May
2005.

SMIT82 Smith, A. “Cache Memories.” ACM Computing Surveys, September 1982.
SMIT85 Smith, A. “Disk Cache—Miss Ratio Analysis and Design Considerations.”

ACM Transactions on Computer Systems, August 1985.
SOLT07 Soltesz, S., et al. “Container-based Operating System Virtualization: A Scalable

High-Performance Alternative to Hypervisors.” Proceedings of the EuroSys
2007 2nd EuroSys Conference, Operating Systems Review, June 2007.

STAL12 Stallings, W., and Brown L. Computer Security: Principles and Practice. Upper
Saddle River, NJ: Pearson, 2012.

STAL13 Stallings, W. Computer Organization and Architecture, 9th ed. Upper Saddle
River, NJ: Pearson, 2013.

STAN89 Stankovic, J., and Ramamrithan, K. “The Spring Kernel: A New Paradigm for
Real-Time Operating Systems.” Operating Systems Review, July 1989.

STAN93 Stankovic, J., and Ramamritham, K., eds. Advances in Real-Time Systems. Los
Alamitos, CA: IEEE Computer Society Press, 1993.

STAN96 Stankovic, J., et al. “Strategic Directions in Real-Time and Embedded Systems.”
ACM Computing Surveys, December 1996.

STEE95 Steensgarrd, B., and Jul, E. “Object and Native Code Mobility Among
Heterogeneous Computers.” Proceedings, 15th ACM Symposium on Operating
Systems Principles, December 1995.

STON93 Stone, H. High-Performance Computer Architecture. Reading, MA: Addison-
Wesley, 1993.

STRE83 Strecker, W. “Transient Behavior of Cache Memories.” ACM Transactions on
Computer Systems, November 1983.

www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
http://arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12
http://arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12

696 REFERENCES

SUGE01 Sugerman, J., et al. “Virtualizing I/O Devices on VMware Workstation’s Hosted
Virtual Machine Monitor.” 2001 USENIX Annual Technical Conference, 2001.

TAKA01 Takada, H. “Real-Time Operating System for Embedded Systems.” In Imai, M.
and Yoshida, N. (eds). Asia South-Pacific Design Automation Conference, 2001.

TALL92 Talluri, M.; Kong, S.; Hill, M.; and Patterson, D. “Tradeoffs in Supporting Two
Page Sizes.” Proceedings of the 19th Annual International Symposium on
Computer Architecture, May 1992.

TAMI83 Tamir, Y., and Sequin, C. “Strategies for Managing the Register File in RISC.”
IEEE Transactions on Computers, November 1983.

TANE78 Tanenbaum, A. “Implications of Structured Programming for Machine
Architecture.” Communications of the ACM, March 1978.

TANE85 Tanenbaum, A., and Renesse, R. “Distributed Operating Systems.” Computing
Surveys, December 1985.

TAY90 Tay, B., and Ananda, A. “A Survey of Remote Procedure Calls.” Operating
Systems Review, July 1990.

TEVA87 Tevanian, A., et al. “Mach Threads and the UNIX Kernel: The Battle for
Control.” Proceedings, Summer 1987 USENIX Conference, June 1987.

TILB91 Tilborg, A., and Koob, G., eds. Foundations of Real-Time Computing: Scheduling
and Resource Management. Boston: Kluwer Academic Publishers, 1991.

TIME02 TimeSys Corp. “Priority Inversion: Why You Care and What to Do About
It.” TimeSys White Paper, 2002. https://linuxlink.timesys.com/docs/priority_
inversion

TUCK04 Tucker, A., ed. The Computer Science Handbook. Boca Raton, FL: CRC Press,
2004.

TUCK89 Tucker, A., and Gupta, A. “Process Control and Scheduling Issues for
Multiprogrammed Shared-Memory Multiprocessors.” Proceedings, Twelfth
ACM Symposium on Operating Systems Principles, December 1989.

UHLI05 Uhlig, R., et al. “Intel Virtualization Technology.” Computer, May 2005.
VAHA96 Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ:

Prentice Hall, 1996.
VANC13 Vance, A. “Behind the ‘Internet of Things’ Is Android—and It’s Everywhere.”

Bloomberg Businessweek, May 30, 2013.
VENU09 Venugopal, K. File Structures Using C++. New York: McGraw-Hill, 2009.
WARD80 Ward, S. “TRIX: A Network-Oriented Operating System.” Proceedings,

COMPCON ’80, 1980.
WEIZ81 Weizer, N. “A History of Operating Systems.” Datamation, January 1981.
WEND89 Wendorf, J.; Wendorf, R.; and Tokuda, H. “Scheduling Operating System

Processing on Small-Scale Microprocessors.” Proceedings, 22nd Annual Hawaii
International Conference on System Science, January 1989.

WHIT05 Whitaker, A., et al. “Rethinking the Design of Virtual Machine Monitors.”
Computer, May 2005.

WIED87 Wiederhold, G. File Organization for Database Design. New York: McGraw-
Hill, 1987.

WOOD86 Woodside, C. “Controllability of Computer Performance Tradeoffs Obtained
Using Controlled-Share Queue Schedulers.” IEEE Transactions on Software
Engineering, October 1986.

https://linuxlink.timesys.com/docs/priority_inversion
https://linuxlink.timesys.com/docs/priority_inversion

REFERENCES 697

WOOD89 Woodbury, P. et al. “Shared Memory Multiprocessors: The Right Approach to
Parallel Processing.” Proceedings, COMPCON Spring ’89, March 1989.

YAGH13 Yaghmour, K. Embedded Android. Sebastopol, CA: O’Reilly, 2013.
ZAHO90 Zahorjan, J., and McCann, C. “Processor Scheduling in Shared Memory

Multiprocessors.” Proceedings, Conference on Measurement and Modeling of
Computer Systems, May 1990.

ZEAD97 Zeadally, S. “An Evaluation of the Real-Time Performance of SVR4.0 and
SVR4.2.” Operating Systems Review, January 1977.

ZHUR12 Zhuravlev, S., et al. “Survey of Scheduling Techniques for Addressing Shared
Resources in Multicore Processors.” ACM Computing Surveys, November
2012.

This page intentionally left blank

699

CREDITS

Chapter 2: p. 60 List adapted from Denning, P.; Buzen, J.; Dennis, J.; Gaines,
R.; Hansen, P.; Lynch, W.; and Organick, E. “Operating Systems.” In [ARDE80]
(which is not in references); p. 80 Figure adapted from C/o Rosemary Caperton,
One Microsoft Way, Redmond WA 98052; p. 83 List adapted from Russinovich,
M.; Solomon, D.; and Ionescu, A. Windows Internals: Covering Windows 7 and
Windows Server 2008 R2. Redmond, WA: Microsoft Press, 2011; p. 94 Figure
adapted from Mosberger, David, Eranian, Stephane, IA-64 Linux Kernel: Design
and Implementation, 1st Ed., (c) 2002. Reprinted and Electronically reproduced
by permission of Pearson Education, Inc., Upper Saddle River, NJ 07458;

Chapter 3: p. 143 Figure adapted from Bach, Maurice J., Design of the UNIX
Operating System, 1st Ed., (c) 1986. Reprinted and Electronically reproduced by
permission of Pearson Education, Inc., Upper Saddle River, NJ 07458; p. 146 List
adapted from Bach, M. The Design of the UNIX Operating System. Englewood
Cliffs, NJ: Prentice Hall, 1986;

Chapter 4: p. 156 List adapted from Letwin, G. Inside OS/2. Redmond, WA:
Microsoft Press, 1988; p. 157 List adapted from Anderson, T.; Bershad, B.; Lazowska,
E.; and Levy, H. “Thread Management for Shared-Memory Multiprocessors.” In
Tucker, A. ed. The Computer Science Handbook. Boca Raton, FL: CRC Press,
2004; p. 158 Figure adapted from Kleiman, Steve; Shah, Devang; Smaalders, Bart,
Programming with Threads, 1st Ed., ©1996. Reprinted and Electronically repro-
duced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey;
p. 169 List adapted from Harris, W. “Multi-core in the Source Engine.” bit-tech.net
technical paper, November 2, 2006. bit-tech.net/gaming/2006/11/02/Multi_core_
in_the_Source_Engin/1; p. 170 List adapted from Leonard, T. “Dragged Kicking
and Screaming: Source Multicore.” Proceedings, Game Developers Conference
2007, March 2007; p. 174 Figure adapted from C/o Rosemary Caperton, One
Microsoft Way, Redmond WA 98052; p. 179 Figure adapted from MCDOUGALL,
RICHARD; MAURO, JIM, SOLARIS INTERNALS: SOLARIS 10 AND
OPENSOLARIS KERNEL ARCHITECTURE, 2nd Ed., ©2007. Reprinted and
Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle
River, New Jersey; p. 180 Figure adapted from Lewis, Bil; Berg, Daniel J., Threads
Primer: A Guide To Multithreaded Programming, 1st Ed., © 1996. Reprinted and
Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle
River, New Jersey;

Chapter 5: p. 211 Code adapted from Herlihy, M. “A Methodology for
Implementing Highly Concurrent Data Structures,” Proceedings of the Second
ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming,
March 1990; p. 215 List adapted from Downey, A. The Little Book of Semaphores.
www.greenteapress.com/semaphores/; p. 220 Figure adapted from Bacon, Jean;

www.greenteapress.com/semaphores/

700 CREDITS

Harris, Tim, Operating Systems: Concurrent and Distributed Software Design, 1st
Ed., (c) 2003. Reprinted and Electronically reproduced by permission of Pearson
Education, Inc., Upper Saddle River, NJ 07458; p. 247 Box adapted from Conway,
M. “Design of a Separable Transition-Diagram Compiler.” Communications of
the ACM, July 1963; p. 250 Code adapted from Lamport, L. “A New Solution to
Dijkstra’s Concurrent Programming Problem.” Communications of the ACM,
August 1974;

Chapter 6: p. 264 Figure adapted from Bacon, Jean; Harris, Tim, Operating
Systems: Concurrent and Distributed Software Design, 1st Ed., (c) 2003. Reprinted
and Electronically reproduced by permission of Pearson Education, Inc., Upper
Saddle River, NJ 07458; p. 266 Table adapted from Isloor, S., and Marsland, T. “The
Deadlock Problem: An Overview.” Computer, September 1980; p. 279 List adapted
from Howard, J. “Mixed Solutions for the Deadlock Problem.” Communications
of the ACM, July 1973; p. 288 List adapted from Love, R. “I/O Schedulers.” Linux
Journal, February 2004;

Chapter 8: p. 372 Figure adapted from Denning, p. “Virtual Memory.” Computing
Surveys, September 1970. AND Denning, p. “Working Sets Past and Present.” IEEE
Transactions on Software Engineering, January 1980; p. 373 Figure adapted from
Maekawa, Mamoru; Oldehoeft, Arthur; Oldehoeft, Rodney, Operating Systems:
Advanced Concepts, 1st Ed., (c) 1987. Reprinted and Electronically reproduced by
permission of Pearson Education, Inc., Upper Saddle River, NJ 07458; p. 377 List
adapted from Carr, R. Virtual Memory Management. SLAN National Accelerator
Laboratory, Report STAN-CS-81-873, 1981. www.slac.stanford.edu/cgi-wrap/getdoc/
slac-r-244.pdf; p. 381 List adapted from Vahalia, Uresh, UNIX Internals: The New
Frontiers, 1st Ed., (c) 1996. Reprinted and Electronically reproduced by permission
of Pearson Education, Inc., Upper Saddle River, NJ 07458;

Chapter 9: p. 409 Example adapted from Finkel, R. An Operating Systems Vade
Mecum. Englewood Cliffs, NJ: Prentice Hall, 1988;

Chapter 10: p. 440 List adapted from Leutenegger, S., and Vernon, M.
“The Performance of Multiprogrammed Multiprocessor Scheduling Policies.”
Proceedings, Conference on Measurement and Modeling of Computer
Systems, May 1990; p. 442 Figure adapted from Feitelson, D., and Rudolph, L.
“Mapping and Scheduling in a Shared Parallel Environment Using Distributed
Hierarchical Control.” Proceedings, 1990 International Conference on Parallel
Processing, August 1990; p. 456 Figure adapted from Warren. C. “Rate Monotonic
Scheduling.” IEEE Micro, June 1991; p. 458 List adapted from Adapted from
Sha, L.; Klein, M.; and Goodenough, J. “Rate Monotonic Analysis for Real-
Time Systems.” in Tilborg, A., and Koob, G. eds. Foundations of Real-Time
Computing: Scheduling and Resource Management. Boston: Kluwer Academic
Publishers, 1991;

Chapter 12: p. 526 List adapted from GROSSHANS, D., FILE SYSTEMS:
DESIGN AND IMPLEMENTATION, 1st Ed., © 1986, p. 6 . Reprinted and

www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-244.pdf
www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-244.pdf

CREDITS 701

Electronically reproduced by permission Of Pearson Education, Inc., Upper Saddle River,
New Jersey; p. 543 Figure adapted from Wiederhold, G. File Organization for Database
Design. New York: McGraw-Hill, 1987. Reprinted by permission of The McGraw-Hill
Companies, Inc; p. 545 List adapted from Wiederhold, G. File Organization for Database
Design. New York: McGraw-Hill, 1987. Reprinted by permission of The McGraw-Hill
Companies, Inc; p. 551 Box adapted from Carrier, Brian, File System Forensic Analysis,
1st Ed., (c) 2005. Reprinted and Electronically reproduced by permission of Pearson
Education, Inc., Upper Saddle River, NJ 07458; p. 565 List adapted from Russinovich, M.;
Solomon, D.; and Ionescu, A. Windows Internals: Covering Windows 7 and Windows Server
2008 R2. Redmond, WA: Microsoft Press, 2011;

Chapter 13: p. 572 Box adapted from Michael Barr, Embedded Systems Glossary.
http://www.barrgroup.com. Reproduced by permission of Michael Barr, CTO, Barr Group;
p. 573 Figure adapted from Koopman, P. “Embedded System Design Issues (the Rest of
the Story)”. Proceedings, 1996 International Conference on Computer Design, 1996; p. 579
List adapted from Hill, J., et al. “System Architecture Directions for Networked Sensors.”
Proceedings, Architectural Support for Programming Languages and Operating Systems.
2000;

Chapter 15: p. 615 List adapted from Anderson, J. Computer Security Threat Monitoring
and Surveillance. Fort Washington, PA: James p. Anderson Co., April 1980; p. 617 List (top)
adapted from Internet Engineering Task Force, RFC 2828; p. 617 List (bottom) adapted
from Internet Engineering Task Force, RFC 2828; p. 619 List adapted from Bellovin, S., and
Cheswick, W. “Network Firewalls.” IEEE Communications Magazine, September 1994;
p. 619 Box adapted from NIST Glossary of Key Information Security Terms; p. 638 List
adapted from National Institute of Standards and Technology, Guide to Industrial Control
Systems (ICS) Security, Special Publication 800-82, Final Public Draft, Sept 2008; p. 642 List
adapted from National Institute of Standards and Technology, Guide to Industrial Control
Systems (ICS) Security, Special Publication 800-82, Final Public Draft, Sept 2008;

Chapter 16: p. 671 List adapted from Brewer, E. “Clustering: Multiply and Conquer.”
Data Communications, July 1997; p. 674 List adapted from Kapp, C. “Managing Cluster
Computers.” Dr. Dobb’s Journal, July 2000; p. 675 List adapted from Hwang, K, et al.
“Designing SSI Clusters with Hierarchical Checkpointing and Single I/O Space.” IEEE
Concurrency, January-March 1999; p. 678 List adapted from Ridge, D., et al. “Beowulf:
Harnessing the Power of Parallelism in a Pile-of-PCs.” Proceedings, IEEE Aerospace
Conference, 1997;

Appendix A: p. A-8 Section adapted from Professor Ching-Kuang Shene; p. A-15 Used by
permission of Professor Ralph Hilzer;

http://www.barrgroup.com

This page intentionally left blank

703

INDEX

A
Absolute loading, 335–336
Absolute scalability, 671
Access

efficiency, 43
matrix, 628
methods for file systems, 527
rights for file sharing, 540–541, 629
time, 490
token, 644–645

Access control, 618, 627–635
categories of, 629–630
commands, 633
discretionary, 629, 630–633
file systems, 627–629
function of, 632
lists, 529, 637–638
mandatory, 629
matrix of, 628
policies, 629–635
protection and, 65
role-based, 629, 633–635
security scheme, 644
structures of, 628–629
UNIX systems, 635–638

Access control lists, 637
discretionary, 646
file system security, 552
system, 646
UNIX systems, 637–638

Access control policy, 629
Access matrix, 628
Accounting information, 108
Accumulator (AC), 12
Active secondary, 672, 673
Activity manager, Android, 97
Address binding, 335
Addresses. See also Address translation;

Virtual addresses
executable, space protection, 626
logical, 323, 327
physical, 323

real, 341
registers, 9, 10
relative, 232
space, 183, 341
space randomization, 626

Addressing, 67, 236–237
direct, 236
indirect, 236
indirect process communication, 236–237
Linux virtual memory, 383–384
many-to-one relationship, 236
message passing, 235–236
one-to-many relationship, 236
one-to-one relationship, 236
for process, requirements of, 311
translation of, 327
virtual memory, 383–384

Address translation
for paging system, 346, 347
in segmentation, 357, 358

Advanced local procedure call (ALPC)
facility, 82

Alignment check, 131
All users class, 542
AMD64, 387
Amdahl’s law, 166
Analyzers for intrusion detection, 617
Android

activities, 101, 186–187, 188–189
activity state, 188–189
applications, 188
architecture, 97–101
file management, 566–567
framework, 97–98
interprocess communication, 299–300
killing an application, 189–190
and Linux, 577
memory management, 389
power management, 101
process, 186–190
runtime, 99
services, 187

704 INDEX

Auxiliary carry flag, 131
Auxiliary memory, 27
Availability of information, 68, 71
Available state, 388
Avoidance approaches for operating

systems, 266
Awareness, degrees of, 206

B
Background work, 156
Backup, 643
Balancing resources, 403
Ballooning, 599
Banker’s algorithm, 272
Barbershop problem, A-15–20
Basic buffer overflow, 620
Basic file systems, 523
Basic input/output supervisor, 527
Basic spinlocks, 288–289
Batch systems

multiprogrammed, 55–58
simple, 52–55

Bell Labs, 86
Beowulf clusters, 678–679

configuration of, 679
features of, 678–679

Beowulf distributed process space
(BPROC), 680

Beowulf Ethernet channel bonding, 680
Beowulf software, 679–680
Berkeley Software Distribution

(BSD), 89
Best fit strategy, 319, 545
_bh, 289
Binary semaphores, 214, 216, 220, 224, 225,

290–291
Bitmap operations, Linux atomic, 287, 288
Bit tables, 549–550
Block device drivers, 96
Block diagram, 36, 482
Blocked : blocked/suspend process, 122
Blocked : exit process, 118
Blocked process, 120–121
Blocked : ready process, 118
Blocked state, 118, 142–143
Blocked/suspend : blocked process, 122
Blocked/suspended process, 122

Android (continued)
system libraries, 99
threads, 186–190
virtual machines, 609–611

Anticipatory input/output scheduler,
513–514

Anys state : exit process, 123
Aperiodic tasks, 446, 454
Appending access rights, 541
Application binary interface (ABI), 49
Application programming interface (API),

49, 654
Architecture

client/server application, three-tier, 655,
660–661

client/server model, 82–83
cluster, 675–676
file management systems, 526
Linux VServer, 608
microkernel, 70
Microsoft Windows, 79–82
middleware, 660–664
UNIX systems, 89

Archive, 643
Assignment of processes to processors,

435–436
Associative lookup for page table, 352
Associative mapping, 350
Asynchronous input/output, Windows,

515–516
Asynchronous procedure call (APC), 516
Asynchronous processing, 156–157
Asynchronous remote procedure calls

(RPC), 670
Atomic bitmap operations, 287, 288
Atomic integer operations, 287–288
Atomic operations, 201, 287–288
AT&T, 87, 89
Attribute definition table, 564
Authentication, 617–618

computer security, 617–618
steps of, 617
of user’s identification, 617, 618
verification step of, 617

Authenticity of information, 68
Automatic allocation, 65
Automatic management, 65

INDEX 705

defending against, 623
run-time defenses, 625–626

Buffer overrun. See Buffer overflow
Buffer registers

input/output buffer register (I/OBR), 9
memory buffer register (MBR), 9–10

Buffer swapping. See Double buffer
Busy waiting technique, 213, A-2

C
Cache consistency, 662
Cache levels, 30
Cache manager, 81, 515, 565
Cache memory, 27–31, 505–506. See also

Disk cache
blocks, 28
block size, 30
cache size, 30
categories of, 30
design of, 29–30
main memory and, 28–29
mapping function, 30
motivation, 27
principles of, 28–29
read operation of, 29–30
replacement algorithm, 30
slots, 28
write policy, 30

Cache operation, 352
Cache size, 30, 368
Canary value, 625
Capability tickets, 629
Carry flag, 131
Central processing unit (CPU), 8
Chained allocation, 547–548
Chained free portions, 550
Chain pointer, 348
Changing protection access rights, 541
Character device drivers, Linux, 96
Character queue, UNIX SVR 4, 512
Chbind, 607
Chcontext, 607
Chroot command, 607
Checkpointing, 676
Child process, 114
Chip multiprocessor, 35–36
Chroot, 607

Blocked/suspend : ready/suspend process, 122
Blocked/waiting process state, 115
Blocking, 235

fixed, 542
nonblocking, 667
permanent, 260
record, 542–544

Block operation, 157
Block-oriented device, 486
Blocks, 28, 190–191, 545

boot, 556
data, 557
defined, 190
dispatched, 191
function of, 191
process control, 108–109
scheduled, 191
size of, 29

Boot block, 556
Bottom half code, 289
Bottom-half kernel threads, 467
Bounded-buffer monitor code, 228
Bounded-buffer producer/consumer

problem, 230, 239
Broadcase receivers, Android, 187
B-trees, 533–536

characteristics of, 534
definition of, 534
nodes into, insertion of, 536
properties of, 534
rules for, 535

Buddy system, 321–322
algorithms of, 321
example of, 321
tree representation of, 323

Buffer cache, UNIX system, 509–510
Buffering, 367, 486–489
Buffer overflow, 619–627

attacks, 619–623
basic, example of, 620
compile-time defenses
examples, 620
runtime defenses, 625–627
stack values, 621

Buffer overflow attacks, 619–623
compile-time defenses, 623–627
dealing with, 623–627

706 INDEX

Clouds, 166
Cluster bit map, 563
Clusters, 433, 562, 671–676

architecture of, 675–676
benefits of, 673
Beowulf, 678–680
configurations of, 671–673
limitations of, 673
Linux, 679–680
methods of, 673
multiprocessor system, 433
objectives of, 671
operating system design issues with,

674–675
parallelizing computation, 674–675
requirements of, 671
sizes of, 563
SMP, 676
in symmetric multiprocessor, 676

Cluster service, 676
Coarse parallelism, 434–435
Coarse threading, 169
Codecs, 10
Commands, TinyOS, 581
Commercial operating systems, 575
Committed state, 388
Common Object Request Broker

Architecture (CORBA), 670
Communication

cooperation among processes by, 209–210
devices, 479
indirect process, 236–237
interprocess, 234
lines, security of, 511

Compaction of memory, 319
Compare&swap instruction, 211–213
Compatible Time-Sharing System (CTSS),

59–60
Competition, 206
Compile-time defenses, 623–625

language extensions, safe libraries and,
624–625

programming language choices, 623–624
safe coding techniques, 623
stacking protection mechanisms, 625

Completion deadline, 452
Computer-aided design (CAD), 41

C implementation of UNIX systems, 87
Circular buffer, 488
Circular SCAN (C-SCAN) policy, 496
Circular wait process, deadlock prevention

using, 268, 270
Clandestine user, 616
Classes

all users, 542
availability, 74
of client-server applications, 658–660
of interrupts, 13
kernel (99-60), 465
objects, 84
priority, 466, 470
real time (159-100), 465–466
real-time priority, 470
specific user, 542
time-shared (50-0), 466
user groups, 542
variable priority, 470

Cleaning policy, 375–376
Client, 653, 654. See also Client/server

computing
Client-based processing, 659
Client machines, 653
Client/server applications, 655–662

classes of, 658–660
database applications, 656–658
file cache consistency, 661–662
three-tier architecture of, 660–661

Client/server binding, 669
Client/server computing, 653–654. See also

Client/server applications
architecture of, 655
concept of, 653
definition of, 653–655
middleware, 662–664
network for, 654
servers in, 653–654
terminology of, 654

Client-server model, 82–83
Clock algorithm, 366, 380, 385
Clock interrupt, 136
Clock page, 380
Clock replacement policy, 364, 365
Cloned () process, 184
Closing files, 524

INDEX 707

Contiguous allocation, 546–547
Control, 11

bits, 131, 347
complexity of, 479
load, 376–377
mode, 133
with multiple interrupts, transfer of, 2
objects, Windows, 85
operating system, structures of, 125–126
process, 133–138
scheduling and, 484–485
status registers and, 129, 130
user, 447

Control bits, 131, 348
Control mode, 134
Control objects, Windows, 85
Cooperation, 206
Cooperative processing, 659
Cores, 10, 35
Coroutines, 284, A-2
Countermeasures, intruders

access control, 618
authentication, 617–618
firewalls, 618–619
intrusion detection, 617

Counting (general) semaphores, 216, 222,
290–291

Create file operation, 538
Creation of files, 524
Critical resource, 207
Critical sections, 201, 207, 297–298
C-SCAN (circular SCAN) policy, 496
Csignal (c), 228
Currency mechanisms, 214
Cwait (c), 228

D
Data

block, 556
directory, 566
Context, 129
integrity, 68
memory, external fragmentation of, 319
processing, 11
rate, 479
semaphores and, 220
set of, 108

Computer systems. See also Operating sys-
tems (OS)

basic elements of, 8–10
cache memory, 27–31
direct memory access, 31–32
instruction execution, 10–13
interrupts, 13–23
memory hierarchy, 24–27
microprocessor, 10, 32–36
overview of, 7–45
top-level components of, 9

Concurrency, 199–258, 259–307, A-1–20
barbershop problem, A-15–21
contexts of, 200–201
deadlock, 260–307
dining philosophers problem, 280–282
example of, 202–204
Linux kernel, mechanisms of, 286–293
message passing, 233–240
monitors, 227–233
mutual exclusion, 210–214
operating systems, concerns of, 205
principles of, 202–210
process interaction, 206–210
race conditions of, 205
readers/writers problems, 240–244
semaphores, 214–227, A-8–15
Solaris thread synchronization, primitives

of, 293–295
terms related to, 201
UNIX, mechanisms of, 282–286
Windows 7, mechanisms of, 295–298

Concurrent process, simultaneous, 76
Concurrent threads, simultaneous, 76
Condition codes, 131
Condition variables, 214, 228, 295, 298

monitors, 227
Confidentiality, of information, 68
Configurability, 574
Configuration database manager, 678
Configuration manager, Windows, 82
Consistency, 661
Consolidation ratio, 591
Consumable resources, deadlock and,

265–267
Content providers, Android, 97, 187
Context data, 108

708 INDEX

Default owner, 645
Degrees of awareness, 206
Dekker’s algorithm, A-2–7
Delay variable, 381–382
Delete access, 647
Delete file operation, 538
Deletion access rights, 541
Deletion of files, 524
Demand cleaning policy, 375
Demand paging, 360
Dentry object, Linux, 558, 560
*deps, 93
Design issues

with deadline scheduling, 452
of disk cache, 505–508
for embedded operating systems, 573
of input/output, 483–485
with multiprocessor scheduling, 435–437

Determinism, 447–448
Device drivers, 80, 526
Device input/output, 484
Device list, 509
Die, 35
Differential responsiveness, 68
Digital Signal Processors (DSPs), 10
Dining philosophers problem, 280–282

dining arrangement, for philosophers, 280
monitors, solutions using, 281–282
semaphores, solutions using, 281

Direct addressing, 236
Direct (hashed) file, 533
Direction flag, 131
Direct lookup for page table, 352
Direct memory access (DMA), 31–32

block diagram, 482
configurations for, alternative, 482
input/output operations, techniques for,

31–32, 480–483
Directories

attributes, 563
cache, 566
file, 552–553
management, 484
system, 566
tree, Android, 566
UNIX, 556

Disabled interrupts, 22–23

Data (continued)
SIMD techniques, 10
streams, multiple, 561
table entry, page frame, 379–380
transfer capacity, RAID level 0 for high,

518–519
Database, 525

client/server applications, 656–658
configuration database manager, 678
relational, 653

DDR2 (double data rate) memory
controller, 35

Deadlines, 403
Deadline scheduler, 512–513
Deadline scheduling, 451–455

design issues, 452
real-time scheduling, 451–455
for tasks, 451–455

Deadlocks, 63, 201, 207, 214
conditions for, 268–269
consumable resources, 265–267
errors in process, 63
example of, 262
execution paths of, 263
illustration of, 261
integrated strategy for, 279
no, example of, 264
principles of, 260–269
resource allocation graphs, 267–268
reusable resources, 264–265

Deadlock avoidance, 269, 271–276
logic of, 276
process initiation denial, 271–272
resource allocation denial, 272–276
restrictions of, 275

Deadlock detection, 266, 269, 277–279
algorithm of, 277–278
recovery, 278–279

Deadlock prevention, 266, 269–270
circular wait condition, 270
hold and wait condition, 270
mutual exclusion, 270
no preemption condition, 268, 270

Decision mode, 406
Dedicated processor assignment, 442–443
Dedicated resources, 585–586
Default ACL, 645

INDEX 709

DMA. See Direct memory access (DMA)
Double buffer, 48
Downtime, 73
DVM, 609

file format, 610
Driver input/output queue, 509
Dynamic allocation, 544–545
Dynamically linked libraries (DLLs), 677
Dynamic best effort scheduling, 451
Dynamic biometrics, 618
Dynamic linker, 338–339
Dynamic linking, Linux, 92, 338–339
Dynamic link libraries (DLLs), 82, 339
Dynamic partitioning for memory, 318–321

effect of, 318
placement algorithm, 319–321
replacement algorithm, 320–321

Dynamic planning-based scheduling, 449,
450

Dynamic run-time loading, 337
Dynamic scheduling, 444

E
Efficiency, 68, 483
EFLAGS register, Pentium, 130–131
Elevator scheduler, 512
Embedded operating systems, 571–589

advantages, 577
Android, 577
characteristics of, 573–575
compilation, 576
commercial operating systems, adapting

to existing, 575
definition of, 572
design issues for, 573
elements of, 572
file system, 576–577
kernel size, 576
organization of, 573
purpose-built, 575–576
requirements/constraints of, 572–573
TinyOS, 577–587

Emerald system, 166
Encapsulation, 84
Encryption, volume, 517
Enforcing priorities, 403
EnFuzion, 680

Discretionary access control (DAC), 629,
630–633

Discretionary access control list (DACL),
646

Disk allocation tables, 548
Disk block descriptors, 379–380
Disk cache, 39, 505–508

design issues of, 505–507
performance issues of, 507–508

Disk drives, 511
Disk duplexing, 517
Disk performance parameters, 489–491

rotational delay, 490–491
seek time, 490
timing comparison, 491

Disk scheduling
algorithms for, 493–494
anticipatory input/output scheduler,

513–514
deadline scheduler, 512–513
disk performance parameters, 489–492
elevator scheduler, 512
input/output management and, 477–531
policies for, 492–496

Disk storage, 562–564
Dispatched blocks, 191
Dispatcher objects, 85, 296–297
Dispatcher program, 109
Dispatch queues, 466
Distributed message passing, 664–667

blocking, differentiating between non-
blocking and, 667

middleware, 665
primitives of, basic, 665
reliability, differentiating between unreli-

ability and, 666
Distributed multiprocessor system, 433
Distributed operating systems, 72
Distributed processing, 200

Beowulf clusters, 678–680
client/server computing, 653–664
clusters, 671–676
distributed message passing, 664–667
Linux clusters, 678–680
Microsoft Windows cluster server,

676–678
remote procedure call (RPC), 667–670

710 INDEX

Faults, 96
information redundancy, 75
permanent, 74
spatial (partial) redundancy, 74–75
temporal redundancy, 75
temporary, 74

Fault tolerance, 73–75
concepts, 73–74
faults, 74
OS mechanisms, 75

Feedback, 415–417
Feedback scheduling, 416
Fetches, 10
Fetch policy, 360–361
Fetch stage, 11–12
Fiber, 171
Field, input/output files, 524–525
File allocation, 544–552

dynamic allocation vs. preallocation,
544–545

methods of, 546–548
portion size, 545–546
UNIX, 555–556

File allocation table (FAT), 544
File directories, 536–540

contents of, 536–537
elements of, 537
naming, 539–540
structure of, 538–539
tree-structured, 539, 540
working, 540

File management systems, 552–570
Android, 566–567
architecture of, 526–527
B-trees, 553–536
elements of, 523
file sharing, 541–542
functions of, 527–528
Linux virtual file system (VFS), 557–561
objectives of, 526
overview of, 523–529
record blocking, 542–544
requirements of, minimal, 526
secondary storage management, 544–552
security. See File system security
UNIX, 552–557

File object, Linux, 516, 558, 560

Enterprise Edition (J2EE platform), 169
Environmental subsystems,

Windows, 81
Errors in process, causes of, 62–63

deadlocks, 62
mutual exclusion, failed, 62–63
program operation, nondeterminate, 63
synchronization, improper, 62

Event flags, 214
Event object, Windows, 297, 516
Event processor, 678
Events, TinyOS, 581
Exchange instruction, 212
Executable address space

protection, 626
Executable program, 63
Executables (EXEs), 82
Execution

access rights, 541
context (process state), 63
modules of, 79–80
of object-oriented design, 84
paths of deadlock, 263
of process, 153
process control, modes of, 133–138
of Solaris threads, 180–181
speed of, 157
stack, 155
state, 182

Executive stage, 12–13
Exit process state, 116
Exponential averaging, 412, 414
Exponential smoothing coefficients, 319
External fragmentation of memory

data, 319

F
Failback, 674
Failover, 674
Failover manger, 678
Fail-soft operation, 448–449
Failure management, clusters, 674
Fairness, 68, 403
Fair-share scheduling, 422–424
Fatal region, 263
Fat client, 659
Faulting processing, 377

INDEX 711

tables, 125, 544, 563
tree-structured, 539, 540
UNIX, 552–553
UNIX FreeBSD, structure of, 554
writing, 524

File systems, 183, 485, 523, 563
drivers, 515
isolation, 607
Windows, 561–565

File system security, 62–634
access control lists, 629
access control structures, 628–629
capability tickets, 629

File tables, 125
allocation table (FAT), 544
volume master, 563

Fine-grained parallelism, 435
Fine-grained threading, 169
Finish operation, 157
Finite circular buffer, for producer/con-

sumer problem, 225
Firewalls, 618–619
First-come-first-served (FCFS), 407, 440
First fit strategy, 319, 545
First-in-first-out (FIFO) policy, 217, 364, 492
Five-state process model, 114–119

states of, 115
transitions of, 117–118

Fixed allocation
local page, 366
local scope, 370
replacement policy, 369

Fixed blocking, 542
Fixed function units, 10
Fixed partitioning for memory, 314–317

partition size, 314–315
placement algorithm, 315–317

Flags, 93, 645
Flexibility of input/output devices, 574
Foreground work, 156
FORTRAN programs, 40
Four page replacement algorithm, behavior

of, 363
Frame, 310, 325, 326
Frame locking, 362
Free block list, 550–551
Free frame, 325

File organization/access, 529–533
criteria for, 529–530
direct file, 533
hash file, 533
indexed file, 532–533
indexed sequential file, 531–532
performance, grades of, 529
pile, 530–531
sequential file, 531
types of, common, 529–530

Files, 523
allocation. See File allocation
cache consistency, 661–662
closing, 524
creation of, 524
deletion of, 524
direct, 533
directories. See File directories
field, input/output, 524–525
hashed, 535
indexed, 532–533
indexed sequential, 531–532
large, support for, 561
links, 553
log, 563
long-term existence of, 523
management. See File management

systems
MFT 2, 563
naming, 539–540
object, Linux, 516, 558, 560
opening, 524
operations performed on, 524
ordinary, 552
organization/access. See File organization/

access
performance, grades of, 529
pile, 530–531
properties of, 524
reading, 524
regular, 552
sequential. See Sequential files
sharing, 208–209, 312, 523, 541–542
special, 553
structure, 524–525, 562–564
symbolic links, 553, 562
systems. See File systems

712 INDEX

Group
concept of, 677
resources, 677
SIDs, 645

Guard pages, 627
Gupta Corp, 659

H
Hamming code, 502
Handspread, 381
Hard affinity process, 472
Hard links, 562
Hard real-time task, 446
Hardware

device drivers, 515
interrupt processing, 19–20
mutual exclusion, 210–214
RAID, 516
relocation, 324
simple batch systems, 55–56
virtual memory (paging), 337–349

Hardware abstraction layer (HAL), 79
Hashed file, 533
Hash table, 510
Hexadecimal digit, 12
High availability, 671
Highest response ratio next (HRRN), 415
High-level language (HLL), 49
High Performance Computing and

Communications (HPCC), 678
Hit ratio (H), 24
Hold and wait process, deadlock prevention

using, 268, 270
Host-based processing, 658
Hosting platform, 607
Hot-based IDS, 617
Human readable devices, 478
Hybrid threading, 169–170
Hypervisor, 591

type-1, 595–596
type-2, 595–596

I
IBM personal computer (PC), 59, 91
Identification flag, 131
Identification step of authentication, 617
Identifiers, 108, 182

Free list, 509
Free Software Foundation

(FSF), 91
Free space management, 548–551

bit tables, 549–550
chained free portions, 550
free block list, 550–551
indexing, 550

FREE state, 181
Frequency-based replacement, 506
FSCAN policy, 496
Functionally specialized multiprocessor

system, 433
Functions

access control, 632
blocks, 191
file management systems, 527–528
kernel (nucleus), 134
linking, 338
loading, 333
MAC OS Grand Central Dispatch

(GCD), 193
mapping, 30, 31
Microsoft Windows input/output, 515
operating systems (OS), 47–51
processor, 9
resource management in OS,

scheduling and, 69
selection, 405
support, 133
threads, 157–159
wait, 296

Fuzzing, 622

G
Gang scheduling, 441
GCC (GNU Compiler Collection), 625
General message format, 237–238
General semaphores, 216, 222
Generic_all access bits, 647
Global replacement policy, 369
Global scope, 370
Grand Central Dispatch (GCD), 77–78
Granularity, 452–453. See also Parallelism
Graphical Processing Units

(GPUs), 10
Graphic user interface (GUI), 656

INDEX 713

Linux, 512–514
logical structure of, 484–485
management, 133
manager, 81, 515, 565
model of, 485
modules, 9, 10
organization of, 480–484
performing, techniques for, 31–32, 480
physical, 523, 527
processor, 10, 480
program/programmed, 14, 31–32, 480
RAID, 496–505
scheduling, 398
space, single, 676
status information, 108
supervisor, basic, 527
tables, 125
UNIX SVR 4 input/output, 509–511
virtual machine, 600–602
Windows, 515–517

Input/output (I/O) buffering, 486–489
circular buffer, 488
double buffer, 488
single buffer, 486–488
utility of, 489

Input/output buffer register (I/OBR), 9
Input/output (I/O) devices

data rates of, 479
flexibility of, 574
types of, 478–480

Instantiation of objects, 84
Instruction cycle, 11, 15–18
Instruction execution, 10–13. See also Direct

memory access (DMA)
categories of, 11
characteristics of, 12
executive stage of, 11
fetch stage of, 11
partial program execution, 12–13
steps of, 11

Instruction register (IR), 11
Instruction set architecture (ISA), 49
Instructor’s Resource Center (IRC), B-2–3
Integer operations, atomic, 288
Integrated strategy for deadlock, 279
Intel Core i7, 35, 36
Interactive scoring, 469–470

Idle user, 467
IDS. See Intrusion detection systems (IDS)
If statements, 232
In-circuit emulator (ICE), B-3
Incremental growth, 34
Incremental scalability, 671
Independence, and conditional probability,

19–21
Independent parallelism, 434
Indexed allocation, 548
Indexed files, 532–533
Indexed sequential files, 531–532
Indexing, 550
Index register, 63–64
Indirect addressing, 236
Indirect process communication, 236–237
Individual processors, 436–437
Infinite buffer for producer/consumer

problem, 221, 222, 224
Information, 67–68, 182
Inheritance, 84
Inode object, 558, 559
Inodes, UNIX, 553–555

elements of, 553–555
FreeBSD, structure of, 555

Inode table, 547
Input/output (I/O)

address register (I/OAR), 9
address registers, 9
anticipatory scheduler, 513–514
asynchronous, Windows, 515–516
basic, 515
buffering. See Input/output (I/O)

buffering
channel, 481
completion ports, 506
design issues with, 483–485
devices. See Input/output (I/O) devices
direct memory access, 481–483
disk cache, 505–508
disk scheduling, 477–521
driver queues, 509
evolution of, 480–481
field files, 524–525
file system, logical, 484–485, 527
function, organization of, 480–482
interrupt, 31, 136, 480

714 INDEX

Intrusion detection
sensors for, 617

Intrusion detection systems (IDS), 617–618
analyzers, 617
hot-based, 617
network-based, 617–618
user interface, 617

Inverted page tables, 347, 349
I/O. See Input/output (I/O)
IOPL (I/O privilege level), 131
Iris
_irq, 288
_irqsave, 288
Itanium, 93

J
Jacketing, 163
Java Application Server, 168
Java Virtual Machine (JVM), 606
Java 2 Platform, 168
Java VM, 606
Job, serial processing, 52
Job control language (JCL), 54
Joint progress diagram, 261–262
Journaling, 562

K
Kernel-level threads (KLT), 163–164
Kernel memory allocation

Linux, 385
Solaris, 377, 381–383
UNIX, 377, 381–383

Kernels, 50, 79
class (99-60), 46
control objects, 85
functions of, 134
input/output manager, 515
Linux. See Linux kernels
memory allocation. See Kernel memory

allocation
microkernels, 70
Microsoft Windows, 81–82
mode, 55, 133
modules, 92
monolithic, 70
nonprocess, 139–140
UNIX systems, 89–90

Interactive threads, 469
Interfaces

application binary, 49
application programming, 70, 654
graphic user interface, 656
native system, 82
resource, 586
single user, 676
TinyOS resource, 585–587
of typical operating systems, 50
user, in intrusion detection systems, 617
user/computer, 48–49

Internal fragmentation, 343, 353
Internal registers of processor, 9–10
Internal resources, 279
Interprocess communication (IPC), 70, 183,

233
Interrupt-driven input/output, 31, 480
Interruptible state, 184
Interrupt processing, 19–21

hardware events of, sequence of, 19–20
memory for, changes in, 20–21
operations of, 20
registers for, changes in, 20–21
simple, 19

Interrupts, 13–23, 55, 96, 136. See also
specific types of

classes of, 13
direct use of, 574–575
disabled/disabling, 22–23, 211
enable flag, 131
handler, 17
and instruction cycle, 15–19
multiple, 21–23
processing. See Interrupt processing
program flow of control with/without,

14–15
request, 15
Solaris threads, 181–182
stage, 16
WRITE call, 14–15, 18
WRITE instruction, 15

Interrupt service routine (ISR), 23
Intruders, 615–616

countermeasures, See Countermeasures,
intruders

Intrusion, 617–618

INDEX 715

2.4, 462
2.6, 91, 462
virtual machine process scheduling,

607–608
virtual memory. See Linux virtual

memory
VServer, architecture, 606–609

Linux kernels
components of, 93–94
concurrency mechanisms, 286–293
memory allocation, 385

Linux scheduling, 461–464
non-real-time scheduling, 462–464
real-time scheduling, 461–462

Linux virtual file system (VFS), 557–561
concept of, 568
context of, 567
dentry object, 560
file object, 560
inode object, 559
object types in, 558
superblock object, 559

Linux virtual memory, 383–385
page allocation, 384–385
page replacement algorithm, 385
virtual memory addressing, 383–385

Linux VServer
applications running on, 607
architecture of, 607
chbind, 607
chcontext, 607
chroot, 607
file system isolation, 607
hosting platform, 607
network isolation, 607
process isolation, 607
root isolation, 607
token bucket filter (TBF), 607–608
virtual machine architecture, differentiat-

ing between, 606–607
virtual platform, 607
virtual servers, 606–607

List directory operation, 538
Livelocks, 201, A-5
Loadable modules, Linux, 91–93, 336

absolute, 336
characteristics of, 92

Key field for sequential files, 531
Knowledge access rights, 541

L
Language extensions, 624–625
Large disks, 561
Large files, 561
Largest process, 377
Last-in-first-out (LIFO) implementation,

127, 129
Last process activated, 377
Lazy buddy system algorithm, 382–383
Least frequently used policy (LFU), 385,

506
Least recently used (LRU) policy, 31,

362–363, 505–506
Lightweight processes (LPW), 178, 179. See

also Threads
Lines of memory, 28
Linkage editor, 337–338
Linking, 337–339

dynamic linker, 338–339
function of, 338
linkage editor, 337–338

Links, 183
Links file, 553
Linux, 91–96, 383–386. See also Linux virtual

file system (VFS); Linux VServer
and Android, 99–101
character device drivers, 96
clusters, 678–680
dentry object, 558, 560
dynamic linking, 92, 338–339
embedded, 576–577
file object, 516, 558, 560
history of, 91–92
input/output, 512–514
loadable modules, 92–93, 336
memory barrier operations, 292
modular structure of, 91–93
page cache, 514
real-time tasks, 464
scheduling. See Linux scheduling
semaphores, 291
spinlocks, 289
tasks, 182–184
threads, 184–185

716 INDEX

functions of, 193
purpose of, 191

Mac OS X, 90
Mailboxes, 214, 236
Main memory, 8, 10, 27–28, 279
Main memory cache, 39
Malicious software, 616
Mandatory access control (MAC), 629
Many-to-many relationships, 165–166
Many-to-one relationships, 236
Mapping function, cache memory, 30, 31
Marshalling, 300
Masquerader, 615
Master file table (MFT), 563
Matrix of access control, 630
Mean time to failure (MTTF), 73
Medium-grained parallelism, 435
Medium-term scheduling, 398, 401–402
Memory

auxiliary, 27
cache, 27–31, 505–506
compaction of, 319
dynamic partitioning for, 318–321
fault, 136–137
for interrupt processing, changes in,

20–21
layout for resident monitor, 53, 54
Linux virtual, 383–385
main, 9, 9, 27–28, 279
physical, 96
pointers, 108
processor, 10
protection, 55
real, 343
secondary, 27
shared, 284
tables, 125–126
two-level, 39–45
virtual, 39, 65, 96, 340–389

Memory address register (MAR), 9
Memory buffer register (MBR), 9–10
Memory hierarchy, 24–27

auxiliary memory, 27
hit ratio, 24
levels of, 24–26
locality of reference, 26
secondary memory, 27

Loadable modules, Linux (continued)
kernel modules, 92
module table, elements of, 92–93

Load balancing, clusters, 674
Load control, 376–377
Loading, 335–337

absolute, 335–336
addressing binding, 335
approaches to, 335
dynamic run-time, 337
function of, 334
modules, 335
relocatable, 336–337

Load sharing, 439–440
Load-time dynamic linking, 338
Locality of references, 26, 40–42, 343–344

principle of, 344
spatial, 41
temporal, 41

Local organization, 313
Local procedure call (LPC) facility, 668
Local replacement policy, 369
Local scope, 371–375
Location manager, Android, 98
Lock-free synchronization, 298
Log file, NTFS, 563
Log file service, 564
Logging, 642–643
Logical address, 323, 327
Logical input/output file system, 484–485,

527
Logic bomb, 616
Long-term existence of files, 523
Long-term scheduling, 398, 399–401
Long-term storage, 65
Loosely coupled multiprocessor system, 433
Loosely coupled service, 433
Lotus Domino, 168
Lowest-priority process, 377

M
Mach 3.0, 90
Machine readable devices, 478
MAC OS Grand Central Dispatch (GCD),

190–193
blocks, 190–193
codes for, 192

INDEX 717

Messages, 238, 284. See also Mailboxes
format, 237–238
mutual exclusion, 238

MFT2 files, 563
Micro-electromechanical sensors

(MEMS), 578
Microkernels, 70
Microprocessor

cores, 10
Digital Signal Processors (DSPs), 10
evolution of, 10
Graphical Processing Units

(GPUs), 10
multicore computer (chip multiprocessor),

35–36
and multicore organization, 32–35
Single-Instruction Multiple

Data (SIMD)
techniques, 10
sockets, 10
symmetric (SMP), 33–35
System on a Chip (SoC), 10

Microsoft
DOS, 79
Xenix System V, 89

Microsoft Windows. See also Microsoft
Windows 7; Microsoft Windows 8

architecture of, 79–82
asynchronous input/output, 515–517
client-server model, 82–83
cluster server, 676–678
file system, 561–565
input/output, 515–517
kernel-mode components of, 79–80
memory management, 386–389
object-oriented design, 84–86
scheduling, 470–472
symmetric multiprocessing

(SMP),threads for, 83
Microsoft Windows 7

concurrency mechanisms of, 295–298
synchronization objects, 296

Microsoft Windows 8
characteristics of, 173
object-oriented design of, 174–175
subsystems of, support for, 177
thread objects, 174–175

in software, 27
two-level memory, 24–25, 49–5

Memory management, 58, 76, 133, 309–329
Android, 389
buffer overflow, 619–623
definition of, 310
formats for, typical, 345
Linux, 383–386
memory partitioning, 314–324
in OS, 65–67
paging, 325–328
read address, 66
requirements of, 310–314
security issues, 619–627
segmentation, 328–329
Solaris, 377–383
storage management responsibilities

of, 65
terms associated with, 31
UNIX, 377–383
UNIX SVR4, parameters of, 379–380
virtual address, 66
virtual machine, 598–600
virtual memory, 66–67
Windows, 386–389

Memory management unit (MMU), 626
Memory partitioning, 314–324

buddy system, 321–324
dynamic partitioning, 318–321
fixed partitioning, 314–317
relocation, 322–324

Mesa monitors, 231
Message passing, 233–240

addressing, 236–237
blocking, 235
distributed. See Distributed message

passing
implementation of, 235
for interprocess communication, design

characteristics of, 234
message format, 237–238
mutual exclusion, 238–240
nonblocking, 235
producer/consumer problem using, solu-

tion to bounded-buffer, 239
queuing discipline, 238
synchronization, 233–235

718 INDEX

dining philosophers problem, solutions
using, 281–282

Mesa, 231
resident, 53, 54
security reference, 81
with signal, 227–231
simple batch systems, 52
structure of, 229
virtual machine, 591

Monolithic kernel, 70
Motivation, 27, 179
MS-DOS, 79
Multicore computer, 35–36

DDR3 (double data rate) memory con-
troller, 35

Intel Core i7, example of, 35–36
multithreading of, 166–171
operating systems, 76–78
QuickPath Interconnect (QPI), 35–36
software on, 166–171
support, 467–470
valve game software, application exam-

ple, 169–171
Multicore organization, 35–36
Multics, 86
Multiinstance applications, 169
Multilevel feedback, 416
Multiple applications, 200
Multiple data streams, 561
Multiple interrupts, 21–23

approaches to, 22–23
control with, transfer of, 22
disable interrupt, 22–23
interrupt service routine (ISR), 23
time sequence of, 23

Multiprocess applications, 168
Multiprocessing, 71–72, 200
Multiprocessor operating system, 76–79
Multiprocessor scheduling, 433–446, 472

design issues, 435–437
granularity, 433–435
process scheduling, 437–438
thread scheduling, 437–444

Multiprocessor system, 433
Multiprogrammed batch systems, 55–58

example of, 57
memory management, 58

Middleware, 654, 662–664
architecture of, 663–664
distributed message passing, 664

MIPS, 354,
Misfeasor, 616
Modern operating systems (OS)

development leading to, 70–72
distributed operating system, 72
microkernel architecture, 70
monolithic kernel, 70
multiprocessing, 70–71
multiprogramming, 70–71
multithreading, 70–71
object-oriented design, 72
process, 71
symmetric multiprocessing

(SMP), 71–72
Modes

control, 133
decision, 40
kernel, 55, 134
nonpreemptive, 406
preemptive, 406
switching, 137–138
system, 134
user, 55, 134

Modular programming, 65
Modular program structure, 157
Modular structure of Linux, 91–93
Modules. See also specific types of

of execution, 79–80
input/output, 9, 10
kernel, 92
loadable, Linux, 92, 335–336
loading, 335
rendering, 169–170
stackable, 92
table, elements of, 92–93

Monitor point of view, 53
Monitors, 53, 214, 227–233

alternate model of, with notify and
broadcast, 231–233

bounded-buffer producer/consumer
problem, 230

characteristics of, 227
concurrency, 227–233
condition variables, 238

INDEX 719

Nearest fit strategy, 545
Nested task flag, 131
Network-based IDS, 617
Networks, 654. See also specific networks

device drivers, 96
drivers, 515
isolation, 607
protocols, 96

New process state, 117
New : ready process, 117
New : ready/suspend and new : ready pro-

cess, 122
New Technology File System (NTFS)

cluster sizes, 563
components of, 565
directory attributes, types of, 564
disk storage, concepts of, 562–563
examples of, 561
features of, 561–562
file structure, 562–563
hard links, 562
journaling, 562
large disks, support for, 561
large files, support for, 562
multiple data streams, 561
partition sizes, 563
recoverability, 561–562, 564–565
security, 561
symbolic links, 562
volume, 562–564

*next, 92
Next-fit, 319
No access rights, 541
Node, 671
No deadlock, 264
Node manager, 677
Nodes into B-trees, insertion of, 536
No-execute bit, 626
Nonblocking, 235, 667
Nonpersistent binding, 669
Nonpreemptive mode, 406
Nonprocess kernel, 139–140
Non-real-time scheduling, 462–463

disadvantages of, 462
priorities, calculating, 464–465
real-time tasks, relationship to, 464
timeslices, calculating, 464–465

multiprogramming (multitasking), 56
program execution attributes of,

sample, 57
on resource utilization, effects of, 57
system utilization of, 56
time-sharing systems, differentiating

between, 59
uniprogramming, 57
utilization histograms, 58, 59

Multiprogramming, 57, 71–72, 200
processors, 435–436

Multiprogramming levels, 376–377
Multitasking. See Multiprogramming
Multithreading, 70–71, 154–157

of multicore computer, 166–171
native applications, 168
process models, 155
on uniprocessor, 159
Windows, 176

Mutex, 214, 217–218, 297. See also Mutual
exclusion

Mutex object, 297
Mutual exclusion, 201, 207, 238–239, 268,

270, A-2–8
attempts for, A-3
Dekker’s algorithm, A-2–7
failed, 62–63
hardware support for, 210–214
illustration of, 207
interrupt disabling, 211
lock, 239–240
Peterson’s algorithm, A-7–8
requirements for, 210
semaphores, 219
software approaches, A-2–8
special machine instructions, 211–214
using messages, 238

N
*name, 92
Named pipes, 553
Naming files, 539–540
NASA, 678
National Institute of Standards and

Technology (NIST), 619, 633
Native system interfaces (NT API), 82
Ndeps, 92

720 INDEX

Online resources, 677
ONPROC state, 180
Opcode, 12
Opening files, 524
Open-source Tomcat, 168
Operating systems (OS). See also Modern

operating systems (OS)
achievements of, major, 61–69
aspects of, 47–51
avoidance approaches for, 266
central themes of, 200
commercial, 575
concurrency, concerns of, 205
development of, 61–62
distributed, 72
embedded. See Embedded operating

systems
evolution of, 52–61
functions, 47–51
information in, protection and security of,

67–68
interfaces of, typical, 49
Linux. See Linux
Mac OS X, 90
memory management in, 65–67
Microsoft. See Microsoft Windows
modern, development leading to, 70–72
multiprocessor/multicore, 76–78
objectives/functions of, 47–51
organization of, 79–82
overview of, 46–103
process-based, 141–142
processes, 61–65, 139–142
real-time, 447–449, 573
resource management in, 50–51, 68–69
services provided by, 48
structure, 200
symmetric multiprocessor, considerations

of, 76–77
TinyOS. See TinyOS
UNIX. See UNIX systems
as user/computer interface, 48–49
virtual machines (VM), 591–611

Operating systems (OS) control
file tables, 125
input/output tables, 125
memory tables, 125

Nonuniform memory access
(NUMA), 361

No preemption deadlock prevention,
268, 270

Normalized response time, 419–420
Notification manager, Android, 98
Notify and broadcast, 231–233
N-step-SCAN policy, 496
Nsyms, 93
NTFS. See New Technology File System

(NTFS)
Nucleus. See Kernels
Null Fork, 163
Null : new process, 117

O
Object-oriented design, 72

categories of, 85
concepts of, 84–86
Executive of, 84
kernel control objects, 86
Security Descriptor (SD) of, 85
Windows, 174–175

Object-oriented mechanisms, 617
Objects

access rights, 628
classes, 84
control, Windows, 86
dentry, Linux, 558, 560
dispatcher, 85, 296–297
event, Windows, 297, 516
file, Linux, 516, 558, 560
inode, 558, 559
instance, 84
instantiation of, 84
kernel control, 86
manager, 81
mutex, 297
owner of, 646
request broker, 665, 670
semaphore, 297
superblock, 558–559
thread, 174–175
types, 558
waitable timer, 297

One-to-many relationships, 165–166, 236
One-to-one relationship, 236

INDEX 721

translation lookaside buffer (TLB),
349–353

virtual memory, 343, 344–355
Windows, 388

Page tables, 325, 384
direct vs. associative lookup for, 352
inverted, 347–349
structure of, 346–347
two-level hierarchical, 347

Parallelism, 77–78, 434–435
coarse, 434–435
fine-grained, 435
independent, 434
medium-grained, 435
synchronization, 434
very coarse-grained, 434–435

Parallelized application, 674
Parallelizing compiler, 674
Parallelizing computation, clusters, 674–675
Parameter passing, 669
Parameter representation, 669
Parametric computing, 674–675
Parasitic, 616
Paravirtualization, 596
Parbegin, A-7
Parcel, 300
Parent process, 114
Parity flag, 131
Partial program execution, 12–13
Partition/partitioning

boot sector, 563
dynamic, 318–321
fixed, 314–317
memory, 314–324
size, 314–315, 563

Passive standby, 672, 673
Password, 618
Pathname, 539
Pentium EFLAGS Register bits, 131
PeopleSoft, 168
Performance

disk cache, issues of, 507–508
of software on multicore computer,

166–171
Performance comparison, 417–422

queuing analysis, 417–420
simulation modeling, 420–422

process tables, 126
structures of, 125–126

Operating systems (OS) software
cleaning policy, 375
fetch policy, 360–361
load control, 376–377
placement policy, 361
policies for, 360
replacement policy, 361–368
resident set management, 368–375
virtual memory, 359–377

Optimal (OPT) replacement policy, 362
Oracle, 168
Ordinary file, 552
OS. See Operating systems (OS)
Overall normalized response time, 419
Overcommit, memory, 600
Overflow flag, 131
Owner of object, 646

P
Package manager, Android, 97
Page/paging, 311, 325–328

address translation in system for,
346, 348

allocation, 384–385
behavior, 353
buffering, 367
cache, Linux, 514
characteristics of, 343
demand, 360
directory, 383
fault, 349
fault frequency (PFF), 374
frame data table entry, 378
logical addresses, 327
middle directory, 384
numbers, 347
prepaging, 360
replacement, 378
replacement algorithm, 385
segmentation and, combining, 357–358
sharing, 599
simple, 343
size, 353–355
system, 378–380
table entry, 378–379

722 INDEX

queuing, 404
thread, 470–472
use of, 404–405

Priority inversion, 458–461
priority ceiling, 460
priority inheritance, 459–460
unbounded, 458

Privileged instructions, batch systems, 55
Privileges, 645
Problem statement, A-8
Procedure call, asynchronous, 516
Process-based operating systems, 141–142
Process control, 133–138

execution, modes of, 133–135
information, 128–129, 130, 132
operating system, structures of, 125–126
process attributes, 128–133
process creation, 135
process location, 127–128
process switching, 136–138
structures of, 127–133
UNIX System V Release 4 (SVR4),

146–147
Process control blocks, 108–109

elements of, 128–129
role of, 132–133
simplified, 109

Process(es), 71, 94, 105–147
for addressing, requirements of, 311
affinity, 467, 469
attributes of, 128–133
characteristics of, 153
components of, 63
concept of, 61–65, 107, 153
control (See Process control)
creation of, 113–114, 135
definition of, 61, 107–109
description of, 124–133
dispatching, 437
elements of, 108, 127
errors in, causes of, 62–63
execution of, mechanisms for

interrupting, 136
identification, 128–129
identifier, 348
image, 127, 144–145
implementation of, 64

Periodic tasks, 446, 453
Permanent blocking, 260
Persistent binding, 669
Personal identification number (PIN), 618
Peterson’s algorithm, A-7–8
Physical address, 323
Physical input/output, 524, 527
Physical memory, Linux, 96
Physical organization, 313–314, 485
Pile files, 530–531
Pipes, UNIX, 284
Placement algorithm for memory, 315–317
Placement policy, 360, 361
Plain spinlocks, 289
Plug-and-play manager, Windows, 81
Poisson arrival rate, 418
Polymorphism, 84
Portion, 544, 545
Portion size, 545–546
Ports, microkernels and, 70
POSIX, 82, 184
PowerBuilder, 659
Power manager

Android, 101
Windows, 81

PowerPC, 91, 347
Preallocation, 544–545
Precleaning, 375
Predictability, 403
Preempted process, 117
Preemptive mode, 406
Preemptive smallest number of threads

first, 440
Prepaging, 361
per-thread static storage, 155
Printer interrupt service routine (ISR), 23
Printers, 511
Priorities, 452

ceiling, 460
classes, 466–467, 470
enforcing, 403
inheritance, 459–460
level, 108
Linux, calculating, 464
policy, 492–494
priority queuing, 404
process, 470–472

INDEX 723

specific context, 183
state information, 128–129, 130
utilization, 403

Process state, 63, 109–124
changing of, 138
five-state model, 114–119
suspended processes, 119–123
two-state process model, 112–113
ULT, relationship with, 161
UNIX System V Release 4 (SVR4),

142–144
Process-thread manager, Windows, 81
Producer/consumer problem

bounded-buffer, 230, 239
semaphores, 220–226

Program code, 108
Program counter (PC), 11, 20, 108
Program execution attributes, 57
Program flow of control with/without

interrupts, 14–15
Programmed input/output, 31–32, 480
Programming language, 623
Program operation, 63
Program status word (PSW), 19, 130
Project MAC, 59, 86
Protection, 312

access control and, 65
sharing and, 358–359

Pthread libraries, 184
Pull mechanism, 470
Purpose-built embedded operating

systems, 575
Push mechanism, 470
Pvmsync, 680

Q
Queues

character, UNIX SVR 4, 510
dispatch, 466
driver input/output, 509
process, 242
single-server, formulas for, 418
structure, 468

Queuing
diagram for scheduling, 401
discipline, 238
priority, 404

initiation denial, deadlock avoidance
strategy, 271–272

input/output, 11
isolation, 65, 75
with largest remaining execution

window, 377
location of, 127–128
management of, 65–67
memory, 11
migration, 676
of operating systems (OS), 61–69, 139–142
priorities, 470–472
process control blocks and, 108–109,

132–133
processing time, 452
processor affinity, 174
queues, 242
scheduling, 406, 437–438
security issues, 615–619
with smallest resident set, 377
spawning, 114
state of (See Process state)
state transitions, 399
structure, 179–180
suspension, 377
switching, 136–138
synchronization, 434
table entry, 145
tables, 126
termination of, 114
threads and, 65, 153–159, 164, 178
traces of, 109–111
UNIX SVR4 process management,

142–147
Process interaction, 206–210

awareness, 206
communication, 209–210
resources, 207–208
sharing, 208–209

Process operation latencies (µs), 163
Processors, 8. See also Central processing

unit (CPU)
unit (CPU); specific types of functions

of, 9
internal registers of, 10
point of view, 53–54
scheduling, types of, 399–401

724 INDEX

Real time
class (159-100), 465
operating systems, 447–449, 573
priority classes, 470
tasks, Linux, 464
user, 467

Real-time scheduling, 432–472
algorithms for, 449
deadline scheduling, 451–455
history of, 446–447
Linux, 461–462
and multiprocessor, 432–472
priority inversion, 458–461
rate monotonic scheduling, 455–458
real-time operating systems,

characteristics of, 447–449
types of, 451

Receive primitive, 234–236
Record blocking, 542–544

fixed blocking, 543
methods of, 542–543
variable-length spanned, 542
variable-length unspanned, 543

Records, 524
Recoverability, 561, 564–567
Recovery, 278–279
Redundant array of independent disks.

See RAID (redundant array of
independent disks)

*refs, 93
Registers

address, 9
context, 144
control and status, 129, 130
index, 63–64
input/output address, 29
instruction, 10–11
internal, of processor, 9–10
for interrupt processing, changes in,

19–21
memory address, 9
memory buffer, 9–10
Pentium EFLAGS, 130–131

Regular file, 552
Relational database, 654
Relative address, 323
Reliability, 73, 77, 448, 552, 666

Queuing analysis, 417–420
QuickPath Interconnect (QPI), 35–36

R
Race conditions, 201, 205, A-8–15

problem statement, A-8
RAID (redundant array of independent

disks), 496–505
characteristics of, 497
for high data transfer capacity, 501
for high input/output request rate, 501
level 0, 500–501
level 1, 501–502
level 2, 502
level 3, 503
level 4, 503–504
level 5, 504
level 6, 504–505
proposal for, 497
software, 516–517

Random scheduling, 492
Rate monotonic scheduling, 455–458
Reactive operation, embedded

systems, 573
Real address, 66
Read_control access, 647
Readers/writers

lock, 295
mechanisms, 240–244
priorities of, 241–244
process queues, state of, 242
semaphores, 291
spinlocks, 289–290
using semaphores, solution to, 241, 242

Reading access rights, 541
Reading files, 524
Read operation, 29–30
Ready : exit process, 118
Ready process state, 120
Ready : ready/suspend process, 121
Ready : running process, 117
Ready state, 115, 176
Ready/suspend process, 121
Ready/suspend : ready process, 122
Ready time, 452
Real address, 66, 341
Real memory, 343

INDEX 725

ownership, 153(See also Process(es))
requested interface, 586
requirements, 452
utilization, 57

Resources, allocation of
denial, 272–276
graphs, 267–268

Resources, management of, 68–69
Android, 98
elements of, major, 68–69
factors of, 68
functional description of, 69
round-robin, 69

Resource-specific interface, 586
Response time, 403

normalized, 419–420
overall normalized, 419

Responsiveness, 447
Resume flag, 131
Reusable resources, deadlock and, 264–265
Role-based access control (RBAC), 629,

633–635
Root isolation, 307
Rotational delay, 490–491
Rotational positional sensing (RPS), 490
Round-robin techniques, 69, 114, 409–411
Running : blocked process, 117
Running : exit process, 117
Running process state, 108, 118, 177, 180, 183
Running : ready process, 117
Running : ready/suspend process, 123
Run-time, Android, 99
Run-time defenses, 625–627

address space randomization, 626–627
executable address space protection, 626
guard pages, 627

Run-time dynamic linking, 339

S
Safe coding techniques, 623–624
Safe libraries, 624–625
Safe states, resource allocation, 272–273
Saved thread context, 155
Scaling, 71
SCAN policy, 495–496
Scanrate, 381
Scheduled blocks, 191

Relocatable loading, 336–337
Relocation, 311–312, 322–324
Remote procedure call (RPC), 158, 667–670

advantages of, 667
asynchronous, 670
client/server binding, 669
mechanism for, 667
object-oriented mechanisms, 670
parameter passing, 669
parameter representation, 669
synchronous, 670

Rendering module, 170
Replacement, frequency-based, 506
Replacement algorithms, 30, 31, 320–321,

361–368
clock page, 380
clock policy, 364–365
first-in-first-out (FIFO) policy, 364
fixed-allocation, local page, 366
four page, behavior of, 363
least recently used (LRU) policy, 363–364
optimal policy, 362

Replacement policies, 360, 362–368. See also
specific types of

algorithms for, basic, 361–368
and cache size, 368
concepts of, 362
frame locking, 362
page buffering, 367–368

Replacement scope, 369
Reserved state, 388
Resident monitor, 53
Resident set, 342

size, 368–369
Resident set management, 360, 368–375

fixed allocation, local scope, 369
replacement scope, 369
resident set size, 369
variable allocation, 370–375

Resources, 676–677
balancing, 403
competition among processes for,

207–209
configure interface, 586
interface, 586
manager, 50, 678
of Microsoft Windows 8

726 INDEX

shortest process next, 412–413
shortest remaining time, 413–415

S.count value, 220
Search operation, 538
Secondary memory, 27
Secondary storage management, 544–552

file allocation, 544–548
free space management, 548–551
reliability, 552
volumes, 551

Sector, 562
Security Descriptor (SD), 85

discretionay access control list
(DACL), 646

flags, 645
owner, 646
system access control list (SACL), 646

Security ID (SID), 644
Security reference monitor, 81
Security Requirements for Cryptographic

Modules, 633
Security maintenance, 642–643

backup and archive, 643
logging, 642–643

Security, operating system, 614–649
access control, 629–635
additional controls, 641–642
authentication, 617–618
buffer overflow attacks, 619–623
configuration, 640–641
countermeasures for, 617–619
installation, 638–639
intrusion detection, 617
maintenance, 642–643
memory management, 619–623
New Technology File System

(NTFS), 561
of process, 615–619
system access threats, 615–616
testing, 641–642
Windows security, 643–648

Seek time, 490, 491
Segmentation, 328–329

address translation in, 356, 357
advantages of, 355
characteristics of, 343
implications of, 355

Scheduler, 95
Scheduling, 52, 76, 153

control and, 484
criteria for, 403
deadline, 451–455
disk, 477–518
dynamic, 439, 444
dynamic best effort, 451
dynamic planning-based, 451
feedback, 416
gang, 439
input/output, 398
levels of, 400
Linux, 461–464
long-term, 398, 399–401
medium-term, 398, 401–402
multicore, 433
multiprocessor, 433–444
non-real-time, 462–464
process, 406, 437–438
processor, types of, 398–402
and process state transitions, 399
queuing diagram for, 401
random, 492
rate monotonic, 455–458
real-time, 432–472
short-term, 398, 402
static priority-driven preemptive, 449
static table-driven, 449
thread, 439–444
types of, 398
uniprocessor, 397–427
UNIX, traditional, 424–426
UNIX FreeBSD, 466–470
UNIX SVR 4, 465–466
Windows, 470–472

Scheduling algorithms, 402–424
fair-share scheduling, 422–424
performance comparison, 417–422
priorities, use of, 403–405
scheduling policies, alternative, 405–417
short-term scheduling criteria, 402–404

Scheduling policies, 405–417
feedback, 415–417
first-come-first-served (FCFS), 407–409
highest ratio next, 415
round robin, 409–411

INDEX 727

Service(s)
processes, Windows, 82
requestor, 710

Set of data, 108
Setup time, 52
Shadow copies, volume, 517
Shared data protected, 220
Shared disk approach, 673
Shared memory multiprocessor, 284
Shared nothing, 673
Shared resources, 585
Sharing files, 208–209, 312, 524
Shortest process next (SPN) scheduling,

412–413
Shortest remaining time (SRT) scheduling,

413–415
Shortest-service-time-first (SSTF) policy,

495
Short-term scheduling, 398, 402–404
Siebel CRM (Customer Relationship

Manager), 168
Signaling/signals, 94, 285

event object, 516
file object, 516
monitors with, 227–231

Signal-Wait, 164
Sign flag, 131
Simple batch systems, 52–55

hardware features of, 55
job control language (JCL), 54
kernel mode, 55
monitor, 53
points of view of, 53–54
user mode, 55

Simple interrupt processing, 19
Simple paging, 343
Simple segmentation, 343
Simulation modeling for scheduling,

420–422
Simulation result, 421
Simultaneous access for file sharing, 542
Simultaneous concurrent process, 76
Simultaneous concurrent threads, 76
Single buffer, 486–488
Single control point, 675
Single entry point, 675
Single file hierarchy, 675

organization of, 356–357
paging and, combining, 357–358
segments, protection relationship

between, 358
simple, 343
virtual memory, 343, 355

Segment pointers, 310, 328, 358
Selection function, 405
Semaphores, 214–227, 284–285,

290–291, 294
binary, 214, 216, 290–291
counting, 216, 222, 290–291
currency mechanisms, common, 214
definition of, consequences of, 215–216
dining philosophers problem, solutions

using, 281
first-in-first-out (FIFO) process, 217
general, 216, 222
implementation of, 226–227
Linux, 291
mechanism of, example of, 218
mutex, 217
mutual exclusion, 219–220
object, Windows, 297
producer/consumer problem, 220–226
readers/writers, 241, 242–243
reader-writer, 291
s.count, value of, 220
shared data protected by, process

accessing, 220
strong, 217
as variable, operations of, 215
weak, 217

Semaphores, A-8–15
Sensors for intrusion detection, 617
Separate servers, 673
Sequential files, 531

indexed, 531–532
key field for, 531
processing of, 525

Sequential search, 531
Serial processing, 52
Server-based processing, 658
Servers

client/server computing, 653–655
connected to disks, 673
share disks, 673

728 INDEX

Special system processes, Windows, 82
Specific user class, 542
Spinlocks, 214, 288–290

basic, 288–289
Linux, 289
plain, 288
reader-writer, 289–290

Spin waiting, 213, A-2
Sprite, 661–662
SQLite, 567
SQL Windows, 659
Stackable modules, Linux, 92–93
Stacking protection mechanisms, 625
Stack overflow, 620
Stack values, 621
Standby state, 176
Starting deadline, 452
Starvation, 201, 207, 214
States, 272. See also specific states

available, 388
blocked, 117–118, 142–143
blocked/waiting process, 116
committed, 388
execution, 182
exit process, 116
FREE, 181
interruptible, 184
new process, 116
ONPROC, 180
process, 64, 109–124
of processes, 64, 109–121
ready, 115, 176
ready process, 120
reserved, 388
running process, 108, 115, 177,

180, 183
safe, resource allocation,

272–273
SLEEP, 181
spawn, 157
standby, 176–177
stopped, 181, 184
system operational, 73
terminated, 177
thread, 157–159
thread execution, 155
transition, 177

Single input/output space, 676
Single-Instruction Multiple Data (SIMD)

techniques, 10
Single job-management system, 676
Single memory space, 675
Single process space, 676
Single-server queues, 418
Single-system image, 675
Single-threaded process models, 155
Single user interface, 676
Single-user multiprocessing system, 156–157
Single virtual networking, 675
Size, 92
Slab allocation, 386
SLEEP state, 181
Slim read-writer locks, 298
Slots of memory, 28
Smallest number of threads first, 440
SMP. See Symmetric multiprocessor (SMP)
Sockets, 10
Soft affinity policy, 178
Soft real-time task, 446
Software

Beowulf, 679–680
malicious, 616, 615–619
memory hierarchy in, 27
RAID, 516–517
valve game, 169–171

Solaris
memory management, 377–383
process structure of, 179
10, 90–91
three-level thread structure of, 179

Solaris threads
SMP management of, 178–182
states of, 180–181
synchronization primitives, 293–295

Spanned blocking, variable-length, 542
SPARC, 626
Spatial locality, 41
Spawn state, 157
Special file, 553
Special machine instructions, 211–214

compare&swap instruction, 211–213
disadvantages of, 213–214
exchange instruction, 213
properties of, 213–214

INDEX 729

Symmetric multiprocessor (SMP), 33–35,
76–77

advantages of, 33–34
availability, 33
characteristics of, 33
cluster, differentiating between, 676
definition of, 33
incremental growth, 71
multicore support and, 467–470
organization of, 34–35
OS considerations of, 76–77
scaling, 71
threads for, 83–84

*syms, 93
Synchronization, 76, 234–235

design characteristics of, 234
granularity, 433–434
improper, 62
lock-free, 298
message passing, 233–235
processes, 434

Solaris, thread primitives, 293–295
of threads, 159

Synchronized access, 646
Synchronous input/output, Windows,

515–516
Synchronous RPC, 670
System access control list (SACL), 646
System directory, 566
System-level context, 144
System libraries, Android

bionic LibC, 99
browser engine, 99
media framework, 99
openGL, 99
SQL database, 99
surface manager, 99

System on a Chip (SoC), 10
System operational states, 73
System oriented, other criteria, 403
System oriented, performance related

criteria, 403
System(s)

access control list (SACL), 646
access threats, 615–616
bus, 9
calls, Linux, 95

uninterruptible, 184
unsafe, 272
waiting, 176
zombie, 181, 184

Static biometrics, 618
Static priority-driven preemptive

scheduling, 449, 451
Static table-driven scheduling, 449, 451
Stopped state, 181, 184
Storage management, 65

access control, protection and, 65
automatic allocation/management, 65
long-term storage, 65
modular programming, support of, 65
process isolation, 65

Streamlined protection mechanisms, 574
Stream-oriented device, 486
Stripe, 500
Strong semaphores, 217
Structured applications, 200
Structured programming (SAL), 40
Structured query language (SQL),

654, 657, 663
Subject access rights, 628
Subtask structure, 452
Sun Microsystems, 89, 91
SunOS, 89
Superblock object, 558–559
Superblocks, 557
Superior price performance, 671
Supervisor call, 137
Support functions, 134
Suspended processes states, 119–123

characteristics of, 123
purposes of, 124
states of, 120–121
swapping, 119–123
transitions of, 121, 122–123

SVR 4. See UNIX System V Release 4
(SVR4)

Swap, 212
Swappable space, 279
Swapping process states, 119–123
Swap-use table entry, 378–379
Switching process, 136–138
Sybase Inc., 659
Symbolic links file, 553, 562

730 INDEX

pool, 171
priorities, 470–472
processes and, 153–159, 164, 178
process operation latencies (µs), 163
processor affinity, 174
remote procedure call (RPC) using, 158
single-threaded process models, 155
in single-user multiprocessing system,

156–157
for SMP, 83–84
Solaris, and SMP management, 178–182
states of, 157–159
synchronization, 159
top-half kernel, 467
types of, 159–166
user-level (ULT), 159–164, 178
Windows 8, 171

Thread scheduling, 439–444
approaches to, 439
dedicated processor assignment, 442–443
dynamic scheduling, 444
gang scheduling, 439
load sharing, 439–441

Thread states, 157–159
of Microsoft Windows 8, 176–177
of Solaris, 180–181

Three-level thread structure, Solaris, 179
Three-tier client-server architecture,

660–661
Throughput, 403
Tightly coupled multiprocessor system, 433
Time, creation of, 183
Timeliness, 533
Timers, batch systems, 55, 183
Time sequence of multiple interrupts, 23
Time-shared (59-0) class, 466
Time-sharing systems, 59–61

batch multiprogramming, differentiating
between, 59

Compatible Time-Sharing System
(CTSS), 59–60

memory requirements of, 60
time sharing, 59
time slicing, 59

Time-sharing user, 467
Timeslices/timeslicing, 59, 136, 427, 464
Timing comparison, 491–492

System(s) (continued)
files, 563
ISA, 49
mode, 134
security, See Security, system
response time, 62
utilization of, 56

T
Tape drives, 511
Tasks, 581. See also Process(es)

aperiodic, 446
deadline scheduling for, 451–455
hard real-time, 446
Linux, 182–184
periodic, 446
real-time, Linux, 464
soft real-time, 446

Telephony manager, Android, 97
Temporal locality, 41
Terminals, 511
Termination of process states, 177
Thin client, 660
Thrashing, load control, 344
Threading granularity options, 169
Threads, 65, 152–193. See also specific

types of
Android, 186–190
benefits of, 156
bottom-half kernel, 467
execution state, 155
functionality of, 157–159
interactive, 469
kernel-level (KLT), 163–164, 178
Linux process and, management of,

182–186
MAC OS Grand Central Dispatch

(GCD), 190–193
management of, 182–186
many-to-many relationships of, 165–166
migration, 469–470
multithreaded process models, 155
multithreading, 154–157, 166–171
objects, 174–175
one-to-many relationships of, 165–166
operations associated with change

in, 157

INDEX 731

UNIX BSD (Berkeley Software
Distribution), 87

UNIX FreeBSD, 90
files, structure of, 554
inodes, structure of, 554
scheduling, 466–470

UNIX systems, 86–89, 552–557. See also
specific systems

access control lists, 635–638
architecture of, 87
Berkeley Software Distribution (BSD),

89–91
buffer cache, organization of, 510
C implementation of, 87
concurrency mechanisms of, 282–286
description of, general, 87–89
devices, types of, 511
directories, 556
file access control, 635–637
file allocation, 555–556
files, 552–554
history of, 86
inodes, 553–555
input/output, structure of, 509
kernel, 88, 90
license for, 87
memory management, 377–383
modern, 89–91
process structure of, 179
scheduling, traditional, 424–426
signals of, 286
Solaris 10, 90–91
System III, 87
System V, 87
traditional, 86–89
traditional, file access control,

635–637
Version 6, 87
Version 7, 87
volume structure, 556–557

UNIX System V Release 4 (SVR4), 89–90
buffer cache, 509–510
character queue, 510–511
devices, types of, 511
dispatch queues, 465
input/output, 509–511
parameters of, 378–379

TinyOS, 577–587
components of, 580–583
configurations for, examples of, 583–585
goals of, 579–580
resource interface, 585–587
scheduler, 583
wireless sensor networks, 578

TLB. See Translation lookaside
buffer (TLB)

Token, 618
Token bucket filter (TBF), 607–608
Top-half kernel threads, 467
Torvalds, Linus, 91
Trace of process, 111
Transfer time, 490
Transition of process state, 177
Translation lookaside buffer (TLB), 349–352

cache operation and, 352
operation of, 351

Trap flag, 131
Traps, 96, 137
Tree representation of buddy system, 323
Tree-structured file directory, 539, 540
TRIX, 165
Turnaround time (TAT), 403, 406, 421
Two-handed clock algorithm, 380
Two-level hierarchical page table, 347
Two-level memory

characteristics of, 39–45
locality, 40–42
operation of, 42
performance of, 24–25, 42–45

Two-priority categories, 418
Two-state process model, 112–113

U
U area, 145–146
ULT. See User-level threads (ULT)
Unblock state, 157
Unbounded priority inversion, 458
Unbuffered input/output, 511
Uninterruptible state, 184
Uniprocessor

multithreading on, 159
scheduling, 397–427

Uniprogramming systems, 58
University of California at Berkeley, 497

732 INDEX

V
Valve game software, 169–171
Variable, operations of, 215
Variable-allocation replacement

policy, 369
global scope, 370–371
local scope, 371–375

Variable-interval sampled working set
(VSWS) policy, 374–375

Variable-length spanned, 542
Variable-length unspanned, 543
Variable priority classes, 470
VAX/VMS, 87
Verification step of authentication, 617
Very coarse-grained parallelism, 434–435
VFS. See Linux virtual file system (VFS)
View system, Android, 98
Virtual addresses

map, 387–388
memory management, 66
space, 155, 341

Virtual interrupt flag, 131
Virtual interrupt pending, 131
Virtualization, 591
Virtualized resources, 585
Virtual machines (VM), 590–611

Android, 609–611
concept, 592
consolidation, 592
Hyper V, 605
input and output management, 600–602
Java VM, 606
Linux VServer architecture, differentiating

between, 606–609
memory management, 598–600
monitor, 591, 595
processor issues, 596–598
VMware ESXi, 602–604

Virtual memory, 39, 66, 96, 340–390
addressing, 67, 383–384
concepts of, 66
hardware/control structures of, 346–358
locality and, 343–344
management, 383–386
manager, 81, 565
operating system software, 358–377
paging, 343, 344–355

UNIX System V Release 4 (continued)
process control of, 146–147
process description of, 144–146
process image of, 144
process management, 142–147
process states of, 142–144
process table entry of, 145
scheduling, 465–466
U area, 145–146
unbuffered input/output, 511

Unmarshalling, 300
Unreliability, 666
Unsafe state, resource allocation,

272, 275
Unspanned blocking, variable-length,

543–544
Update directory operation, 538
Updating access rights, 541
Uptime, 74
Usecount, 93
User applications, Windows, 82
User control, 447–448
User groups class, 542
User identification (ID), 635
User interfaces, 48–49
User ISA, 49
User-level context, 144
User-level threads (ULT), 159–163

advantages of, 162–163
and KLT, combined with, 163–164
occurrences of, 160, 162
process states, relationship with, 161

User mode, 55, 134
User-mode processes, 82

environmental subsystems, 82
execution within, 140–141
service processes, 82
special system processes, 82
user applications, 82
in virtual memory, 132

User-mode scheduling (UMS), 172
User-oriented, other criteria, 403
User-oriented, performance related

criteria, 403
User’s identity authentication, 618
User-visible registers, 129
Utilization histograms, 57, 58

INDEX 733

Windowing/graphics system, 81
Window manager, Android, 97
Windows. See Microsoft Windows
Windows security, 643–648

access control scheme, 644
access mask, 647
access token, 644–645
security descriptors, 645–648

Wireless sensor networks
(WSN), 578

Working directories, 540
Working set strategy, 371
WRITE call, 14–15, 18
Write_DAC access, 647
WRITE instruction, 15
Write_owner access, 646
Write policy, cache memory, 30, 31
Writing files, 524

X
XMPP, Android, 98

Z
ZF (zero flag), 131
Zombies, 143, 184
Zombie state, 181, 184
Zygote, 691

protection, sharing and, 358
segmentation, 355–357
terminology of, 341
user-mode processes in, 132

Virtual 8086 mode, 131
Virtual platform, 607
Virtual servers, 606–607
VM. See Virtual machines (VM)
Volume, 551, 562–564

encryption, 517
layout, 563–564
master file table, 564
shadow copies, 517
structure, UNIX, 556
volume layout, 563–564

W
Waitable timer object, Window, 296, 297
Wait functions, Windows, 296
Waiting state, 177
Waiting time, 421
Weak semaphores, 217
Weblogic, 168
Web resources, 4–5
Websphere, 168
While loops, 232
Win 32, 82

This page intentionally left blank

AES Advanced Encryption Standard
API Application Programming Interface
CD Compact Disk
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CTSS Compatible Time-Sharing System
DES Date Encryption Standard
DMA Direct Memory Access
DVD Digital Versatile Disk
FAT File Allocation Table
FCFS First Come First Served
FIFO First In First Out
GUI Graphical User Interface
IBM International Business Machines Corporation
I/O Input/Output
IP Internet Protocol
IPC InterProcess Communication
JCL Job Control Language
LAN Local Area Network
LIFO Last In First Out
LRU Least Recently Used
MVS Multiple Virtual Storage
NTFS NT File System
NUMA Nonuniform Memory Access
ORB Object Request Broker
OSI Open Systems Interconnection
PC Program Counter
PCB Process Control Block
PSW Processor Status Word
RAID Redundant Array of Independent Disks
RISC Reduced Instruction Set Computer
RPC Remote Procedure Call
SMP Symmetric Multiprocessing or Symmetric Multiprocessor
SPOOL Simultaneous Peripheral Operation On Line
SVR4 System V Release 4
TCP Transmission Control Protocol
TLB Translation Lookaside Buffer
UDP User Datagram Protocol

Acronyms

The William Stallings Books on Computer
and Data Communications Technology

Data and Computer Communications, Tenth Edition

A comprehensive survey that has become the standard in the field, covering
(1) data communications, including transmission, media, signal encoding, link
control, and multiplexing; (2) communication networks, including circuit- and
packet-switched, frame relay, ATM, and LANs; (3) the TCP/IP protocol suite,
including IPv6, TCP, MIME, and HTTP, as well as a detailed treatment of
network security. Received the 2007 Text and Academic Authors Association
(TAA) award for the best Computer Science and Engineering Textbook
of the year.

Computer Organization and Architecture, Ninth Edition

A unified view of this broad field. Covers fundamentals such as CPU, control
unit, microprogramming, instruction set, I/O, and memory. Also covers advanced
topics such as multicore, superscalar, and parallel organization. Five-time winner
of the TAA award for the best Computer Science and Engineering Textbook
of the year.

Business Data Communications, Seventh Edition (with Tom Case)

A comprehensive presentation of data communications and telecommunications
from a business perspective. Covers voice, data, image, and video communications
and applications technology and includes a number of case studies. Topics covered
include data communications, TCP/IP, cloud computing, Internet protocols and
applications, LANs and WANs, network security, and network management.

Cryptography and Network Security, Sixth Edition

A tutorial and survey on network security technology. Each of the basic building
blocks of network security, including conventional and public-key cryptography,
authentication, and digital signatures, are covered. Provides a thorough
mathematical background for such algorithms as AES and RSA. The book covers
important network security tools and applications, including S/MIME, IP Security,
Kerberos, SSL/TLS, network access control, and Wi-Fi security. In addition,
methods for countering hackers and viruses are explored. Second edition received
the TAA award for the best Computer Science and Engineering Textbook of 1999.

Network Security Essentials, Fifth Edition

A tutorial and survey on network security technology. The book covers important
network security tools and applications, including S/MIME, IP Security, Kerberos,
SSL/TLS, network access control, and Wi-Fi security. In addition, methods for
countering hackers and viruses are explored.

Computer Security, Second Edition (with Lawrie Brown)

A comprehensive treatment of computer security technology, including algorithms,
protocols, and applications. Covers cryptography, authentication, access control,
database security, intrusion detection and prevention, malicious software, denial of
service, firewalls, software security, physical security, human factors, auditing, legal
and ethical aspects, and trusted systems. Received the 2008 TAA award for the
best Computer Science and Engineering Textbook of the year.

High-Speed Networks and Internets, Second Edition

A state-of-the-art survey of high-speed networks. Topics covered include TCP
congestion control, ATM traffic management, Internet traffic management,
differentiated and integrated services, Internet routing protocols and multicast
routing protocols, resource reservation and RSVP, and lossless and lossy
compression. Examines important topic of self-similar data traffic.

Computer Networks with Internet Protocols and Technology

An up-to-date survey of developments in the area of Internet-based protocols and
algorithms. Using a top-down approach, this book covers applications, transport
layer, Internet QoS, Internet routing, data link layer and computer networks,
security, and network management.

Wireless Communications and Networks, Second Edition

A comprehensive, state-of-the-art survey. Covers fundamental wireless
communications topics, including antennas and propagation, signal encoding
techniques, spread spectrum, and error correction techniques. Examines satellite,
cellular, wireless local loop networks, and wireless LANs, including Bluetooth
and 802.11. Covers Mobile IP and WAP.

	Cover
	Title Page
	Copyright Page
	Contents
	Online Resources
	VideoNotes
	Preface
	About the Author
	Chapter 0 Guide for Readers and Instructors
	0.1 Outline of this Book
	0.2 Example Systems
	0.3 A Roadmap for Readers and Instructors
	0.4 Internet and Web Resources

	PART 1 BACKGROUND
	Chapter 1 Computer System Overview
	1.1 Basic Elements
	1.2 Evolution of the Microprocessor
	1.3 Instruction Execution
	1.4 Interrupts
	1.5 The Memory Hierarchy
	1.6 Cache Memory
	1.7 Direct Memory Access
	1.8 Multiprocessor and Multicore Organization
	1.9 Recommended Reading
	1.10 Key Terms, Review Questions, and Problems
	1A Performance Characteristics of Two-Level Memories

	Chapter 2 Operating System Overview
	2.1 Operating System Objectives and Functions
	2.2 The Evolution of Operating Systems
	2.3 Major Achievements
	2.4 Developments Leading to Modern Operating Systems
	2.5 Fault Tolerance
	2.6 OS Design Considerations for Multiprocessor and Multicore
	2.7 Microsoft Windows Overview
	2.8 Traditional UNIX Systems
	2.9 Modern UNIX Systems
	2.10 Linux
	2.11 Android
	2.12 Recommended Reading and Animations
	2.13 Key Terms, Review Questions, and Problems

	PART 2 PROCESSES
	Chapter 3 Process Description and Control
	3.1 What Is a Process?
	3.2 Process States
	3.3 Process Description
	3.4 Process Control
	3.5 Execution of the Operating System
	3.6 UNIX SVR4 Process Management
	3.7 Summary
	3.8 Recommended Reading and Animations
	3.9 Key Terms, Review Questions, and Problems

	Chapter 4 Threads
	4.1 Processes and Threads
	4.2 Types of Threads
	4.3 Multicore and Multithreading
	4.4 Windows 8 Process and Thread Management
	4.5 Solaris Thread and SMP Management
	4.6 Linux Process and Thread Management
	4.7 Android Process and Thread Management
	4.8 Mac OS X Grand Central Dispatch
	4.9 Summary
	4.10 Recommended Reading
	4.11 Key Terms, Review Questions, and Problems

	Chapter 5 Concurrency: Mutual Exclusion and Synchronization
	5.1 Principles of Concurrency
	5.2 Mutual Exclusion: Hardware Support
	5.3 Semaphores
	5.4 Monitors
	5.5 Message Passing
	5.6 Readers/Writers Problem
	5.7 Summary
	5.8 Recommended Reading and Animations
	5.9 Key Terms, Review Questions, and Problems

	Chapter 6 Concurrency: Deadlock and Starvation
	6.1 Principles of Deadlock
	6.2 Deadlock Prevention
	6.3 Deadlock Avoidance
	6.4 Deadlock Detection
	6.5 An Integrated Deadlock Strategy
	6.6 Dining Philosophers Problem
	6.7 UNIX Concurrency Mechanisms
	6.8 Linux Kernel Concurrency Mechanisms
	6.9 Solaris Thread Synchronization Primitives
	6.10 Windows 7 Concurrency Mechanisms
	6.11 Android Interprocess Communication
	6.12 Summary
	6.13 Recommended Reading and Animations
	6.14 Key Terms, Review Questions, and Problems

	PART 3 MEMORY
	Chapter 7 Memory Management
	7.1 Memory Management Requirements
	7.2 Memory Partitioning
	7.3 Paging
	7.4 Segmentation
	7.5 Summary
	7.6 Recommended Reading and Animations
	7.7 Key Terms, Review Questions, and Problems
	7A Loading and Linking

	Chapter 8 Virtual Memory
	8.1 Hardware and Control Structures
	8.2 Operating System Software
	8.3 UNIX and Solaris Memory Management
	8.4 Linux Memory Management
	8.5 Windows Memory Management
	8.6 Android Memory Management
	8.7 Summary
	8.8 Recommended Reading and Animations
	8.9 Key Terms, Review Questions, and Problems

	PART 4 SCHEDULING
	Chapter 9 Uniprocessor Scheduling
	9.1 Types of Processor Scheduling
	9.2 Scheduling Algorithms
	9.3 Traditional UNIX Scheduling
	9.4 Summary
	9.5 Recommended Reading and Animations
	9.6 Key Terms, Review Questions, and Problems

	Chapter 10 Multiprocessor, Multicore, and Real-Time Scheduling
	10.1 Multiprocessor and Multicore Scheduling
	10.2 Real-Time Scheduling
	10.3 Linux Scheduling
	10.4 UNIX SVR4 Scheduling
	10.5 UNIX FreeBSD Scheduling
	10.6 Windows Scheduling
	10.7 Summary
	10.8 Recommended Reading
	10.9 Key Terms, Review Questions, and Problems

	PART 5 INPUT/OUTPUT AND FILES
	Chapter 11 I/O Management and Disk Scheduling
	11.1 I/O Devices
	11.2 Organization of the I/O Function
	11.3 Operating System Design Issues
	11.4 I/O Buffering
	11.5 Disk Scheduling
	11.6 RAID
	11.7 Disk Cache
	11.8 UNIX SVR4 I/O
	11.9 Linux I/O
	11.10 Windows I/O
	11.11 Summary
	11.12 Recommended Reading and Animations
	11.13 Key Terms, Review Questions, and Problems

	Chapter 12 File Management
	12.1 Overview
	12.2 File Organization and Access
	12.3 B-Trees
	12.4 File Directories
	12.5 File Sharing
	12.6 Record Blocking
	12.7 Secondary Storage Management
	12.8 UNIX File Management
	12.9 Linux Virtual File System
	12.10 Windows File System
	12.11 Android File Management
	12.12 Summary
	12.13 Recommended Reading
	12.14 Key Terms, Review Questions, and Problems

	PART 6 EMBEDDED SYSTEMS
	Chapter 13 Embedded Operating Systems
	13.1 Embedded Systems
	13.2 Characteristics of Embedded Operating Systems
	13.3 Embedded Linux
	13.4 TinyOS
	13.5 Recommended Reading
	13.6 Key Terms, Review Questions, and Problems

	Chapter 14 Virtual Machines
	14.1 Approaches to Virtualization
	14.2 Processor Issues
	14.3 Memory Management
	14.4 I/O Management
	14.5 VMware ESXi
	14.6 Microsoft Hyper-V and Xen Variants
	14.7 Java VM
	14.8 Linux VServer Virtual Machine Architecture
	14.9 Android Virtual Machine
	14.10 Summary
	14.11 Recommended Reading
	14.12 Key Terms, Review Questions, and Problems

	Chapter 15 Operating System Security
	15.1 Intruders and Malicious Software
	15.2 Buffer Overflow
	15.3 Access Control
	15.4 UNIX Access Control
	15.5 Operating Systems Hardening
	15.6 Security Maintenance
	15.7 Windows Security
	15.8 Summary
	15.9 Recommended Reading
	15.10 Key Terms, Review Questions, and Problems

	Chapter 16 Distributed Processing, Client/Server, and Clusters
	16.1 Client/Server Computing
	16.2 Distributed Message Passing
	16.3 Remote Procedure Calls
	16.4 Clusters
	16.5 Windows Cluster Server
	16.6 Beowulf and Linux Clusters
	16.7 Summary
	16.8 Recommended Reading
	16.9 Key Terms, Review Questions, and Problems

	APPENDICES
	Appendix A: Topics in Concurrency
	Appendix B: Programming and Operating System Projects
	References
	Credits
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

