
11/02/22 11:34Lecture notes - Chapter 7 - Floating Point Arithmetic

Página 1 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

Chapter 7 -- floating point arithmetic

about FLOATING POINT ARITHMETIC

arithmetic operations on floating point numbers consist of
 addition, subtraction, multiplication and division

the operations are done with algorithms similar to those used
 on sign magnitude integers (because of the similarity of
 representation) -- example, only add numbers of the same
 sign. If the numbers are of opposite sign, must do subtraction.

ADDITION

 example on decimal value given in scientific notation:

 3.25 x 10 ** 3
 + 2.63 x 10 ** -1

 first step: align decimal points
 second step: add

 3.25 x 10 ** 3
 + 0.000263 x 10 ** 3

 3.250263 x 10 ** 3
 (presumes use of infinite precision, without regard for accuracy)

 third step: normalize the result (already normalized!)

 example on fl pt. value given in binary:

 .25 = 0 01111101 00000000000000000000000

 100 = 0 10000101 10010000000000000000000

 to add these fl. pt. representations,
 step 1: align radix points

 shifting the mantissa LEFT by 1 bit DECREASES THE EXPONENT by 1

 shifting the mantissa RIGHT by 1 bit INCREASES THE EXPONENT by 1

 we want to shift the mantissa right, because the bits that
 fall off the end should come from the least significant end
 of the mantissa

11/02/22 11:34Lecture notes - Chapter 7 - Floating Point Arithmetic

Página 2 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

 -> choose to shift the .25, since we want to increase it's exponent.
 -> shift by 10000101
 -01111101

 00001000 (8) places.

 0 01111101 00000000000000000000000 (original value)
 0 01111110 10000000000000000000000 (shifted 1 place)
 (note that hidden bit is shifted into msb of mantissa)
 0 01111111 01000000000000000000000 (shifted 2 places)
 0 10000000 00100000000000000000000 (shifted 3 places)
 0 10000001 00010000000000000000000 (shifted 4 places)
 0 10000010 00001000000000000000000 (shifted 5 places)
 0 10000011 00000100000000000000000 (shifted 6 places)
 0 10000100 00000010000000000000000 (shifted 7 places)
 0 10000101 00000001000000000000000 (shifted 8 places)

 step 2: add (don't forget the hidden bit for the 100)

 0 10000101 1.10010000000000000000000 (100)
 + 0 10000101 0.00000001000000000000000 (.25)

 0 10000101 1.10010001000000000000000

 step 3: normalize the result (get the "hidden bit" to be a 1)

 it already is for this example.

 result is
 0 10000101 10010001000000000000000

SUBTRACTION

 like addition as far as alignment of radix points

 then the algorithm for subtraction of sign mag. numbers takes over.

 before subtracting,
 compare magnitudes (don't forget the hidden bit!)
 change sign bit if order of operands is changed.

 don't forget to normalize number afterward.

MULTIPLICATION

 example on decimal values given in scientific notation:

 3.0 x 10 ** 1
 + 0.5 x 10 ** 2

 algorithm: multiply mantissas
 add exponents

11/02/22 11:34Lecture notes - Chapter 7 - Floating Point Arithmetic

Página 3 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

 3.0 x 10 ** 1
 + 0.5 x 10 ** 2

 1.50 x 10 ** 3

 example in binary: use a mantissa that is only 4 bits so that
 I don't spend all day just doing the multiplication
 part.

 0 10000100 0100
 x 1 00111100 1100

 mantissa multiplication: 1.0100
 (don't forget hidden bit) x 1.1100

 00000
 00000
 10100
 10100
 10100

 1000110000
 becomes 10.00110000

 add exponents: always add true exponents
 (otherwise the bias gets added in twice)

 biased:
 10000100
 + 00111100

 10000100 01111111 (switch the order of the subtraction,
 - 01111111 - 00111100 so that we can get a negative value)
 ---------- ----------
 00000101 01000011
 true exp true exp
 is 5. is -67

 add true exponents 5 + (-67) is -62.

 re-bias exponent: -62 + 127 is 65.
 unsigned representation for 65 is 01000001.

 put the result back together (and add sign bit).

 1 01000001 10.00110000

 normalize the result:

11/02/22 11:34Lecture notes - Chapter 7 - Floating Point Arithmetic

Página 4 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

 (moving the radix point one place to the left increases
 the exponent by 1.)

 1 01000001 10.00110000
 becomes
 1 01000010 1.000110000

 this is the value stored (not the hidden bit!):
 1 01000010 000110000

DIVISION

 similar to multiplication.

 true division:
 do unsigned division on the mantissas (don't forget the hidden bit)
 subtract TRUE exponents

 The IEEE standard is very specific about how all this is done.
 Unfortunately, the hardware to do all this is pretty slow.

 Some comparisons of approximate times:
 2's complement integer add 1 time unit
 fl. pt add 4 time units
 fl. pt multiply 6 time units
 fl. pt. divide 13 time units

 There is a faster way to do division. Its called
 division by reciprocal approximation. It takes about the same
 time as a fl. pt. multiply. Unfortunately, the results are
 not always the same as with true division.

 Division by reciprocal approximation:

 instead of doing a / b

 they do a x 1/b.

 figure out a reciprocal for b, and then use the fl. pt.
 multiplication hardware.

 example of a result that isn't the same as with true division.

 true division: 3/3 = 1 (exactly)

 reciprocal approx: 1/3 = .33333333

 3 x .33333333 = .99999999, not 1

 It is not always possible to get a perfectly accurate reciprocal.

11/02/22 11:34Lecture notes - Chapter 7 - Floating Point Arithmetic

Página 5 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

ISSUES in floating point
 note: this discussion only touches the surface of some issues that
 people deal with. Entire courses could probably be taught on each
 of the issues.

rounding

arithmetic operations on fl. pt. values compute results that cannot
be represented in the given amount of precision. So, we must round
results.

There are MANY ways of rounding. They each have "correct" uses, and
exist for different reasons. The goal in a computation is to have the
computer round such that the end result is as "correct" as possible.
There are even arguments as to what is really correct.

3 methods of rounding:
 round toward 0 -- also called truncation.
 figure out how many bits (digits) are available. Take that many
 bits (digits) for the result and throw away the rest.
 This has the effect of making the value represented closer
 to 0.

 example:
 .7783 if 3 decimal places available, .778
 if 2 decimal places available, .77

 round toward + infinity --
 regardless of the value, round towards +infinity.

 example:
 1.23 if 2 decimal places, 1.3
 -2.86 if 2 decimal places, -2.8

 round toward - infinity --
 regardless of the value, round towards -infinity.

 example:
 1.23 if 2 decimal places, 1.2
 -2.86 if 2 decimal places, -2.9

in binary -- rounding to 2 digits after radix point
--
 round toward + infinity --

 1.1101
 |
 1.11 | 10.00

 1.001
 |
 1.00 | 1.01

11/02/22 11:34Lecture notes - Chapter 7 - Floating Point Arithmetic

Página 6 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

 round toward - infinity --

 1.1101
 |
 1.11 | 10.00

 1.001
 |
 1.00 | 1.01

 round toward zero (TRUNCATE) --

 1.1101
 |
 1.11 | 10.00

 1.001
 |
 1.00 | 1.01

 -1.1101
 |
 -10.00 | -1.11

 -1.001
 |
 -1.01 | -1.00

 round toward nearest --
 ODD CASE:
 if there is anything other than 1000... to the right
 of the number of digits to be kept, then
 rounded in IEEE standard such that the least significant
 bit (to be kept) is a zero.

 1.1111
 |
 1.11 | 10.00

 1.1101
 |
 1.11 | 10.00

 1.001 (ODD CASE)
 |
 1.00 | 1.01

11/02/22 11:34Lecture notes - Chapter 7 - Floating Point Arithmetic

Página 7 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

 -1.1101 (1/4 of the way between)
 |
 -10.00 | -1.11

 -1.001 (ODD CASE)
 |
 -1.01 | -1.00

 NOTE: this is a bit different than the "round to nearest" algorithm
 (for the "tie" case, .5) learned in elementary school for decimal numbers.

use of standards

--> allows all machines following the standard to exchange data
 and to calculate the exact same results.

--> IEEE fl. pt. standard sets
 parameters of data representation (# bits for mantissa vs. exponent)

--> Pentium architecture follows the standard

overflow and underflow

Just as with integer arithmetic, floating point arithmetic operations
can cause overflow. Detection of overflow in fl. pt. comes by checking
exponents before/during normalization.

Once overflow has occurred, an infinity value can be represented and
propagated through a calculation.

Underflow occurs in fl. pt. representations when a number is
to small (close to 0) to be represented. (show number line!)

if a fl. pt. value cannot be normalized
 (getting a 1 just to the left of the radix point would cause
 the exponent field to be all 0's)
 then underflow occurs.

HW vs. SW computing

floating point operations can be done by hardware (circuitry)
or by software (program code).

-> a programmer won't know which is occuring, without prior knowledge
 of the HW.

-> SW is much slower than HW. by approx. 1000 times.

A difficult (but good) exercize for students would be to design
a SW algorithm for doing fl. pt. addition using only integer
operations.

SW to do fl. pt. operations is tedious. It takes lots of shifting

11/02/22 11:34Lecture notes - Chapter 7 - Floating Point Arithmetic

Página 8 de 8http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

and masking to get the data in the right form to use integer arithmetic
operations to get a result -- and then more shifting and masking to put
the number back into fl. pt. format.

A common thing that manufacturers used to do is to offer 2 versions of the
same architecture, one with HW, and the other with SW fl. pt. ops.

