
11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 1 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

Chapter 16 -- Architectures

PERSPECTIVE ON ARCHITECTURE DESIGN

factors in computer design:
 speed
 as fast as possible, of course
 dependent on technology and cost
 cost/price
 profit, non-profit, mass market, single use
 useablility
 shared/single user, size of machine, OS/software issues,
 power requirements
 depends on intended use!
 intended market
 mass market, scientific research, home use, multiple users,
 instructional, application specific
 technology

price/performance curve

 ^ |
 perf. | | x
 | x Want to be to the "left" of these,
 | x to have higher performance for the
 | price. "More bang for the buck."
 | x x

 price ->

technology -- a perspective

 electromechanical (1930) -- used mechanical relays

 vacuum tubes (1945)
 space requirement: room
 Manchester Mark 1 (late 1940s)

 transistors
 discrete (late 1950s)
 space requirement: a large cabinet to a room
 Examples:
 CDC 6600
 B 5000
 Atlas (?)

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 2 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

 PDP 11/10

 SSI, MSI (mid-late 1960s)
 1-10 10-100 transistors
 space requirement: a cabinet
 Examples:
 Cray 1
 VAX 11/780

 LSI (early 1970s)
 100-10,000 transistors
 space requirement: a board
 Examples:

 VLSI (late 1970s - today)
 >10,000 transistors
 space requirement: a chip, or chip set, board
 Examples:
 MIPS R2000
 Intel 386 (~275,000 transistors)
 Pentium (~4 million transistors?)
 Sparc
 PowerPC (millions of transistors)

RISC vs. CISC

 RISC - Reduced Instruction Set Computer
 The term was first used to name a research architecture at
 Berkeley: the RISC microprocessor. It has come to (loosely) mean a
 single chip processor that has the following qualities:
 1. load/store architecture
 2. very few addressing modes
 3. simple instructions
 4. pipelined implementation
 5. small instruction set -- easily decoded instructions
 6. fixed-size instructions

 CISC - Complex Instruction Set Computer
 This term was coined to distinguish computers that were not RISC.
 It generally is applied to computers that have the following
 qualities:
 1. complex instructions
 2. large instruction set
 3. many addressing modes

difficulties with these terms

 - not precisely defined

 - term introduced/applied to earlier machines

 - "RISC" has become a marketing tool

single chip constraint

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 3 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

As technologies advanced, it became possible to put a processor
 on a single VLSI chip. Designs became driven by how much
 (how many transistors) could go on the 1 chip.

 Why? 1. The time it takes for an electrical signal to cross a
 chip are significantly less than the time for the signal to
 get driven off the chip to somewhere else.
 2. The number of pins available was limited.

 So, the desire is to have as little interaction of the chip
 with the outside world as possible. It cannot be eliminated,
 but it can be minimized.

The earliest of single processors on a chip had to carefully
pick and choose what went on the chip. Cutting-edge designs
today can fit everything but main memory on the chip.

how the world has changed

 earliest computers had their greatest difficulties in getting
 the hardware to work --
 technology difficulties
 space requirements
 cooling requirements

 given a working computer, scientists would jump through whatever
 hoops necessary to use it.

 as hardware has gotten (much) faster and cheaper, attention has been
 diverted to software.
 OS
 compilers
 optimizers
 IPC (inter-process communication)

1 instruction at a time isn't enough. The technology
isn't "keeping up." So, do more than one instruction
at a time:

parallelism

 instruction level (ILP) -- pipelining
 superscalar -- more than one instruction at a time

 multis
 VLIW
 supercomputer

 WHICH OF THESE IS "BEST" and "FASTEST" DEPENDS ON WHAT PROGRAM

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 4 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

 IS BEING RUN -- THE INTENDED USEAGE.

on the 68000 Family

- released in the late 1970's
- an early "processor on a chip"
- a lot of its limitations have to do with what could fit on a VLSI
 chip in the late 1970's
- big early competitor of Intel

INSTRUCTIONS
 - a relatively simple set, but NOT a load/store arch.
 - a two-address architecture
 - most instructions are specified in 16 bits -- fixed size.
 - tight encoding, it is difficult to distinguish opcode from operands,
 but the m.s. 4 bits are always part of the opcode.

 integer arithmetic
 different opcode for varying size data
 (add.b add.w add.l)
 8-bit 16-bit 32-bit
 logical
 different opcode for varying size data
 control instructions
 conditional branches, jumps
 (condition code mechanism used -- where most instructions
 had the effect of setting the condition codes)
 procedure mechanisms
 call and return instructions
 floating point ??
 (I guess not!)
 decimal string
 arithmetic presuming representation of binary coded decimal

REGISTERS
 16 32-bit general purpose registers,
 only one is not general purpose (it is a stack pointer)
 the PC is not part of the general purpose registers

 the registers are divided up into two register files of 8,
 one is called the D (data) registers, and the other
 is called the A (address) registers. This is a distinction
 similar to the CRAY 1.

 A7 is the stack pointer.

DATA TYPES
 byte
 word (16 bits)
 longword (32 bits)

 addresses are really their own data type.

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 5 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

 arithmetic on A registers is 32 bit arithmetic. However,
 pin limitations on the VLSI chip required a reduced
 size of address. Addresses that travel on/off chip are
 24 bits -- and the memory is byte-addressable. So
 a 24-bit address specifies one of 16Mbyte memory locations.

each instruction operates on a fixed data type

OPERAND ACCESS

 the number of operands for each individual instructions
 is fixed

 like the VAX, the addressing mode of an operand does not
 depend on the instruction. To simplify things, one of the
 operands (of a 2 operand instruction) must usually come from
 the registers (like the Pentium).

 the number/type of addressing modes is much larger than
 the MIPS, but fewer than the VAX, similar to Pentium.

PERFORMANCE
 ?, they got faster as new technologies got faster.

ORIGINAL SIZE
 1 64-pin VLSI chip (a huge number of pins at that time)

all about the Cray 1

 There has always been a drive to design the best, fastest computer in
 the world. Whatever computer is the fastest has generally been called
 a supercomputer.

 The Cray 1 earned this honor, and was the fastest for a relatively long
 period of time.

 The man who designed the machine, Semour Cray, was a bit of an eccentric,
 but he can get away with it because he was so good. The Cray 1 has an
 exceptionally "clean" design, and that makes it fast. (This is probably
 a bit exaggerated due to my bias -- the Cray 1 is probably my favorite
 computer.)

 Mostly my opinion:
 To make the circuitry as fast as possible, the Cray 1 took 2 paths
 1. Physical -- a relatively "time-tested" technology was used, but
 much attention was paid to making circuits physically close
 (Semour was aware of the limits imposed by the speed of light.)
 and the technology was pushed to its limits.
 2. Include only what was necessary, but on that, a "don't spare the
 horses" philosophy was used.
 This means that extra hardware was used (not paying attention to
 the cost) wherever it could to make the machine faster. And, at
 the same time, any functionality that wasn't necessary (in Semour's

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 6 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

 opinion) was left out.
 Just remember:
 if something seems out of place to you, or some functionality of a
 computer that you think is essential and was not included in the Cray 1,
 it wasn't necessary! And, leaving something out made the machine
 faster.

 What the Cray 1 was good for:
 It was designed to be used for scientific applications that required
 lots and lots of floating point manipulations. It wouldn't make
 a good instructional machine (don't want to hook lotsa terminals up
 to it!), and it wouldn't be much fun to try to implement a modern
 operating system on.

 How it is used:
 most often, a separate (not as fast/powerful) computer was hooked up
 as what was commonly called a host computer. The host is where you do
 all your editing and debugging of programs. The host also maintains a
 queue of jobs to be run on the Cray. One by one the jobs are run, so
 the only thing that the Cray is doing is running the final jobs -- often
 with LOTS of data. Although its operating system would allow it,
 the "multi-tasking" (more than 1 program running simultaneously)
 ability was not often used.

 instruction set
 fixed length instructions
 either 16 or 32 bit (no variability that depends on
 the number of operands)
 number of operands possible for an instruction
 0-3 (it is a 3-address instruction set)
 number and kind of instructions
 op codes are 7 bits long -- giving 128 instrucitons
 This includes complete integer and floating point
 instructions.

 Notice that missing from the instruction set are:
 character (byte) manipulation, duplicates
 of anything (!), integer divide

 Data representation is vastly simpified from what we've
 seen so far! There are ONLY 64-bit 2's complement integers,
 24-bit addresses, and floating point numbers!

 ALL accesses to memory are done in WORD chunks. A word
 on the Cray 1 is 64 bits. All instructions operate on
 a single size of data -- Either a 64 bit word, or on an
 address (24 bits).

 addressing modes (strikingly similar to MIPS)
 Register Mode. An instruction (op code) specifies exactly where
 the data is.
 Base Displacement Mode. Used only for load and store instructions.

 REGISTERS:
 There are an ENORMOUS number of registers.
 There are 5 types of registers.

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 7 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

 S registers -- 'S' stands for scalar. These are 64
 bit regs. They are used for all sorts of data, but
 not addresses. There's 8 of them.

 T registers --
 These are 64 64-bit backup registers for the S registers.
 If you were to do some heavy programming on the Cray 1,
 you'd find these registers very useful. This is partially
 because you run out of S registers quickly, so you
 need temporary storage, but don't want your program
 to store to main memory (slow!). There's also an
 instruction that allows you to load a block of memory
 to the T registers. That's 1 instruction to do a bunch
 of loads.

 A registers -- 'A' stands for address. These are
 24 bit regs. They are used for addresses, and to a
 rather limited extent, integer counters.

 B registers --
 These are backups to the A regs and are used in the
 same manner as the T regs.

 V registers -- 'V' stands for vector.
 There are 8 sets of V regs. Each set has 64 64-bit
 registers! That is a lot! They are used mainly for
 processing large quantities of "array" data. Their use
 makes the Cray 1 very fast. A single instruction that uses
 a vector register (1 set) will cause something to happen
 to each of the 64 registers within that set.
 (SIMD)

 hardware stack
 no support for stack accesses at all! There is no
 special stack pointer register.
 cache
 none. There's so many registers that there isn't
 really a need for one.

 size of machine
 A bit bigger than 2 refrigerators.
 speed of machine
 Significantly faster than the VAX and 68000.
 For a while, it was the fastest machine around.

 price of machine
 As an analogy to some very pricey restaurants:
 If you need to see the prices on the menu, you can't
 afford to eat there.

 Probably about $3 million for the basic machine when
 they first came out.

 A Cray 1 came with a full time hardware engineer,
 (a field service person). Why? Down time on a Cray
 is very expensive due to the way they are expected to
 be used. Waiting for field service to come was
 considered too expensive.
 how many instructions get executed at one time

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 8 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

 its debatable. There can be more than 1 instruction
 at some point in its execution at 1 time. It is a
 pipelined machine. This can only go so far (only
 1 new instruction can be started each clock cycle).
 complexity of ALU
 There are actually quite a few alu's in the machine.
 Cray calls them functional units. Each one is a specialized
 piece of hardware that does its own job as fast as can
 be done. Each of them could conceivably be working at
 the same time.

on the VAX

The VAX was a popular and commercially successful computer
put out in the early 1970's by DEC (Digital Equipment Corp).

It might be characterized by the term CISC.
 RISC (Reduced Instruction Set Computer)
 CISC (Complex Instruction Set Computer)

A CISC computer is often characterized by
 1. many instructions
 2. lots of addressing modes
 3. (this one is debatable) variable length instructions
 4. memory-to-memory architecture

Some details:

LOTS OF INSTRUCTIONS (like Pentium)
 integer arithmetic
 different opcode for varying size data
 logical
 different opcode for varying size data
 address manipulations
 bit manipulations
 control instructions
 conditional branches, jumps, looping instructions
 procedure mechanisms
 call and return instructions (there were more than 1!)
 floating point (on more than one representation)
 character string manipulations
 crc (Cyclic Redundancy Check)
 decimal string
 arithmetic presuming representation of binary coded decimal
 string edit

 overall: more than 200 instructions

 opcodes were of variable length, but always a multiple
 of 8 -- most opcodes were specified in the first 8 bits
 of an instruction.

REGISTERS
 16 32-bit general purpose registers,

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 9 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

 except that they really weren't all general purpose
 R15 is the PC -- note that the programmer can change the
 PC at will!
 R14 is a stack pointer
 R13 is a frame pointer
 R12 is an argument pointer (address of where a procedure's
 parameters are stored -- sometimes on the stack,
 and sometimes in main memory)

DATA TYPES
 byte
 word (16 bits)
 longword (32 bits)
 quadword (64 bits)
 octaword (128 bits)

 F floating point (32 bits -- 7 bits of exponent)
 D floating point (64 bits -- 7 bits of exponent)
 G floating point (64 bits -- 10 bits of exponent)
 H floating point (128 bits -- 15 bits of exponent)

 character string (consecutive bytes in memory, specified always
 by a starting address and the length in bytes)
 numeric string (the ASCII codes that represent an integer)
 packed decimal string (consecutive sequence of bytes in memory
 that represent a BCD integer. BCD digits are each in
 4-bit quantities (a "nibble")

 example: the integer +123 is represented by
 0001 0010 0011 1100
 (1) (2) (3) (+)
 numbering a<7-4> a<3-0> a+1<7-4> a+1<3-0>

each instruction operates on a fixed data type

OPERAND ACCESS

 the number of operands for each individual instructions
 is fixed

 a 3-address instruction set

 the location of operands is definitely not fixed,
 they can be in memory, or registers, and the variety
 of addressing modes that specify the location of an
 operand is large!

 equivalent of Pentium mov EAX, ECX
 add EAX, EDX ; EAX <- ECX + EDX

 addl3 R3, R4, R2
 ^^
 ||-- 3 operands
 |
 |--- operate on a 32 bit quantity
 (there is also addb3, addw3, addb2, addw2, addl2)

 (and this is just for 2's complement addition!)

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 10 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

 This instruction does R3 + R4 -> R2

 This is a VERY simple use of addressing modes.
 The syntax of operand specification allows MANY possible
 addressing modes -- every one presented this semester,
 plus more!

 for example
 addl3 (R3), R4, R2
 uses Register Direct addressing mode for the first
 operand --
 operation
 the address of the first operand is in R3,
 load the operand at the address, add to the
 contents of R4, and place the result into R2

 The addressing mode for each operand can (an often is)
 be different! NO restrictions (unlike Pentium and Motorola 68000)

One type addressing mode sticks out --
auto-increment and auto-decrement
 They have the side effect of changing the address used to get
 an operand, as well as specifying an address. (Motorola 68000
 has this addressing mode.)

 addl3 (R3)+, R4, R2
 operation
 the address of the first operand is in R3, load
 the operand at the address, then increment the contents
 of R3 (the address), then add data loaded from memory
 to the contents of R4 and place the result into R2

 the amount added to the contents of R3 depends on the
 size of the data being operated on. In this case, it
 will be 4 (longwords are 4 bytes)

MACHINE CODE

Together with each operand is an addressing mode specification.
Each operand specification requires (at least) 1 byte.

Format for the simple addl3 R3, R4, R2

 8-bit opcode 0101 0011 0101 0100 0101 0010
 ^ ^ ^ ^ ^ ^
 | | | | | |
 ---- | ---------- | --------- | -- mode (register = 5)
 | | |
 |------------|-----------|--- which register

Format for the addl3 (R3), R4, R2

 same
 8-bit opcode 0110 0011 0101 0100 0101 0010
 ^ ^ ^ ^ ^ ^

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 11 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

 | | | | | |
 ---- | ---------- | --------- | -- mode
 | | |
 |------------|-----------|--- which register

Each instruction has an 8-bit opcode.
There will be 1 8-bit operand specifier for each operand that
 the instruction specifies.

Because of the large number and variety of addressing modes,
an operand specification can be much more than 1 byte.
Example: Immediates are placed directly after their specification
within the code.

PERFORMANCE

 the term MIPS (millions of instructions per second) really came
 from the VAX --
 the VAX 11 780 ran at just about 1 MIPS
 note that this term is misleading --
 Instructions take variable times to fetch and execute,
 so the performance depends on the program

SIZE
 one version: the VAX11 750 was about the size of a large-capacity
 washing machine
 another version: the VAX11 780 was about the size of 2 refridgerators,
 standing side by side

the SPARC architecture

Scalar Processor ARChitecture
- - ---

developed in late 1980s by Sun Microsystems

some details:

 -- single chip processor
 -- load store architecture
 -- machine code instructions are fixed size: 32 bits
 -- control instructions based on condition code bits (like Pentium)
 -- design goal: make procedure call and return efficient

So, the big difference between this architecture and others
is that it uses/assigns registers differently.

Think about the way that we write programs. There are
LOTS of procedures, and therefore lots of procedure calls
within a program. For each procedure call, parameters
have to be placed on the stack. Within the procedure,
the parameters are copied back out of the stack into
registers, in order to be used. Also, return values from

11/02/22 11:35Lecture notes - Chapter 16 - Architectures

Página 12 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/case.studies.html

the procedure (function, really) must be placed somewhere.
This somewhere was usually on the stack.

What if . . .the current activation record at the top of
the stack was in registers, instead of memory? It would
make the program go faster, since accesses to the activation
record would really be to registers, NOT to memory.

This is what the SPARC processor does. There are a very
large number of registers. They are divided into overlapping
sets called WINDOWS. One window contains a procedure's
activation record.

See manuscript, page 320 for a diagram of this.
A program places parameters to a procedure in the
current window's OUTs. The procedure call switches
windows, such that the new window receives the
parameters in its INS.

