
11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 1 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

Chapter 11 -- Procedures

All about Procedures

an introduction to procedures

why have procedures?
 -- reuse of code simplifies program writing
 -- modular code facilitates modification
 -- allows different programmers to write different parts of the
 same program
 -- etc.

Assembly languages typically provide little or no support for
 procedure implementation.

So, we get to build a mechanism for implementing procedures out
of what we already know.

First, some terms and what we need.

In Pascal:

 begin
 .
 .
 .
 x := larger(a, b); CALL
 .
 .
 .
 end.
 HEADER PARAMETERS
 function larger (one, two: integer): integer;
 begin
 if (one > two) then
 larger := one BODY
 else
 larger := two
 end;

In C:

 {
 .
 .
 .
 x = larger(a, b); CALL
 .
 .
 .
 }
 HEADER PARAMETERS
 int larger (int one, int two)
 {
 if (one > two)
 larger = one; BODY
 else
 larger = two;
 }

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 2 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

 }

Steps in the execution of the procedure:
 1. save return address
 2. procedure call
 3. execute procedure
 4. return

 what is return address? instruction following call

 what is procedure call? jump or branch to first instruction
 in the procedure

 what is return? jump or branch to return address

A possible Pentium implementation of procedure call:

 ; one call
 lea EAX, rtn_point
 jmp proc1
 rtn_point:

 ; another call
 lea EAX, rtn_point2
 jmp proc1
 rtn_point2:

 proc1: ; 1st instruction of procedure here
 .
 .
 .
 jmp (EAX)

This really doesn't work well if there are nested calls,
since we need a location to store the return address.
We CANNOT just use register EAX, as in the following
BAD code:

 ; one call
 lea EAX, rtn_point
 jmp proc1
 rtn_point:

 proc1: ; 1st instruction of procedure here
 .
 .
 .
 lea EAX, rtn_point_nested
 jmp proc2
 rtn_point_nested:
 .
 .
 .
 jmp [EAX] ; EAX will have been overwritten by the
 ; lea instruction in proc1.

 proc2: ; 1st instruction of procedure here
 .

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 3 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

 .
 .
 jmp [EAX]

What is needed to handle this problem is to have a way to
save return addresses as they are generated. For a recursive
subroutine, it is not known ahead of time how many times
the subroutine will be called. This data is generated
dynamically; while the program is running.

These return addresses will need to be used in the reverse
order that they are saved.

The best way to save dynamically generated data is on a STACK.

Here is the code rewritten to use a stack:

 .data
 addr_stack dd 100 dup(0) ; hope that 100 addresses is enough!
 stack_ptr dd ?

 ; stack initialization code
 lea EDX, addr_stack
 mov stack_ptr, EDX

 ; one call
 lea EAX, rtn_point
 jmp proc1
 rtn_point:

 proc1: ; 1st instruction of procedure here
 ; push return address on stack
 mov [EDX], EAX
 add EDX, 4
 .
 .
 .
 lea EAX, rtn_point_nested
 jmp proc2
 rtn_point_nested:
 .
 .
 .
 ; pop retn address off stack
 sub EDX, 4
 mov EAX, [EDX]
 jmp [EAX]

 proc2: ; 1st instruction of procedure here
 .
 .
 .
 jmp [EAX]

SYSTEM STACK

 A stack is so frequently used in implementing procedure call/return,
 that many computer systems predefine a stack, the SYSTEM STACK.

 A stack handles dynamic data well.

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 4 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

 STATIC -- can be defined when program is written (compile time)
 DYNAMIC -- is defined when a program is executed (run time)

 In this case, it is the amount of storage that cannot be
 determined until run time.

 The size of the system stack is very large. In theory, it should
 be infinitely large. In practice, it must have a size limit.

 In memory, we have:

 address | |
 0 | your |
 | program |
 | here |
 | |
 | |
 | |
 | |
 | |
 | system | / \
 very | stack | | grows towards smaller addresses
 large | here | |
 addresses

 terminology:

 Some people say that this stack grows DOWN in memory.
 This means that the stack grows towards smaller memory
 addresses. Their picture would show address 0 at the
 bottom (unlike my picture).

 DOWN and UP are vague terms, unless you know what the
 picture looks like.

 The Pentium stack is defined to grow towards smaller
 addresses, and the stack pointer points to the full location
 at the top of the stack. The stack pointer is register ESP,
 and it is defined before program execution begins (by the OS).

 push, in Pentium:

 sub esp, 4
 mov [esp], ?

 OR

 mov [esp - 4], ? ; not a good implementation, since it
 sub esp, 4 ; uses the space before allocation

 pop, in Pentium:

 mov ?, [esp]
 add esp, 4

 NOTE: If you use register esp for any use other than for
 a stack pointer, then the location of the stack is lost.

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 5 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

The use of the stack is SO common, that there are explicit
instruction to do the push and pop operations:

 push r/m
 reg
 immed

 pop reg

So, we would never use the 2-instruction sequence above,
only the push and pop instructions!

An example of using the system stack to save return addresses:

 lea EAX, rtn1
 jmp proc1
rtn1
 .
 .
 .
 lea EAX, rtn2
 jmp proc1
rtn2:
 .
 .
 .

proc1: push EAX ; save return address

 .
 .
 .
 lea EAX, rtn3 ; this would overwrite the return
 jmp proc2 ; address if it had not been saved.
rtn3:
 .
 .
 .

 pop EAX ; restore return address
 jmp [EAX]

proc2:
 .
 .
 .
 jmp [EAX]

It is presumed that the code to call/return from procedures
will be well-used. And, it is.

To make the compiler or assembly language programmer's job
easier, there are 2 instructions that do procedure call and
return.

 call r/m ; Push the return address onto the stack
 ; and jump to effective address given by
 ; the operand.
 ; The return address is the address of the
 ; instruction following the call.

 ret immed ; Pop the return address off the stack

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 6 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

 ; and jump to that address. Stack pointer
 ; (esp) is adjusted by the number of bytes
 ; given in the immediate operand.
 ; This instruction can also be used with no
 ; operands. It then defaults to only popping
 ; the return address off the stack.

The example again, using call and return instead of push/pop/lea/jmp.

 call proc1
 .
 .
 .
 call proc1
 .
 .
 .

proc1:
 .
 .
 .
 call proc2
 .
 .
 .
 ret

proc2:
 .
 .
 .
 ret

about STACK FRAMES (ACTIVATION RECORDS)

From a compiler's point of view, there are a bunch of things
that should go on the stack relating to procedure call/return.
They include:
 return address
 parameters
 other various registers

Each procedure has different requirements for numbers of
 parameters, their size, and how many registers (which ones)
 will need to be saved on the stack. So, we compose a
 STACK FRAME or ACTIVATION RECORD that is specific to a
 procedure.

Space for a stack frame gets placed on the stack each time
a procedure is called, and taken off the stack each time a
return occurs. These stack frames are pushed/popped
DYNAMICALLY (while the program is running).

example:
 call A
 call B
 .

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 7 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

 .

A: call C
 call D
 ret

B: call D
 ret

C: call E
 ret

D: ret

E: ret

 show stack for a trace through this calling sequence

The code (skeleton) for one of these procedures:
A: call C
 call D
 ret

 becomes . . .

A: sub esp, 20 ; allocate frame for A
 ; A's return address is at [esp+20]
 call C
 call D

 add esp, 20 ; remove A's frame from stack
 ret

Some notes on this:
-- the allocation and removal of a frame should be done within
 the body of the procedure. That way, the compiler does not
 need to know the size of a procedure's frame.
-- Accesses to A's frame can be done via offsets from esp.

about frame pointers

The stack gets used for more than just pushing/popping stack frames.
During the execution of a procedure, there may be a need for temporary
storage of variables. The common example of this is in expression
evaluation.
 Example: high level language statement
 Z = (X * Y) + (A/2) - 100
 The intermediate values of X*Y and A/2 must be stored somewhere.
On older machines, register space was at a premium. There just weren't
enough registers to be used for this sort of thing. So, intermediate
results (local variables) were stored on the stack.

They don't go in the stack frame of the executing procedure; they
are pushed/popped onto the stack as needed.

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 8 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

So, at one point in a procedure, return address might be at [esp+16]

 | | --- <- esp
 --------- |
 | | |
 --------- |
 | | |--- procedure's frame
 --------- |
 | | |
 --------- |
 |rtnaddr| |
 --------- ---

and, at another point within the same procedure, it might be
at [esp+24]

temp2

temp1

rtnaddr
 --------- ---

All this is motivation for keeping an extra pointer around that does
not move with respect to the current stack frame.

Call it a FRAME POINTER. Make it point to the base of the current
frame:

temp2

temp1

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 9 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

 --------- |
 |rtnaddr| | <- frame pointer
 --------- ---

Now items within the frame can be accessed with offsets from the
frame pointer, AND the offsets do not change within the procedure.

The return address will now be at frame pointer.

Pentium architecture has a register dedicated as a frame
pointer. It is EBP. The last 2 letters stand for "base pointer".

Items within the the frame are accessed using negative
(but fixed) offsets from EBP.

NOTE:
 -- EBP must be initialized at the start of every procedure,
 and restored at the end of every procedure.

The skeleton implementation of a procedure that uses a frame pointer:

A: push ebp ; save caller's frame pointer
 mov ebp, esp ; set up A's frame pointer
 sub esp, 16 ; allocate remainder of frame for A
 ; A's return address is at [ebp+4]
 call C
 call D

 mov esp, ebp ; remove A's frame from stack
 pop ebp ; restore caller's frame pointer
 ret

parameter passing.

parameter = argument

Just as there is little/no support for implementing procedures
in many assembly languages, there is little/no support for passing
parameters to those procedures.

Remember, when it comes to the implementation,
 -- convention
 -- its up to the programmer to follow the conventions

Passing parameters means getting data into a place set aside
for the parameters. Both the calling program and the procedure
need to know where the parameters are.

 The calling program places them there, and possibly uses
 values returned by the procedure. The procedure uses
 the parameters.

a note on parameter passing --

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 10 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

 a HLL specifies rules for passing parameters. There are basically
 2 types of parameters.

 Note that a language can offer 1 or both types.

 call by value -- what C has. In Pascal, these are parameters
 declared without the var in front of the variable name.
 Fortran doesn't have this type of parameter.

 The parameter passed may not be modified by the procedure.
 This can be implemented by passing a copy of the value.
 What call by value really implies is that the procedure can
 modify the value (copy) passed to it, but that the value
 is not changed outside the scope of the procedure.

 call by reference -- what Fortran has. In Pascal, these are
 "var type" parameters.

 The parameter passed to the subroutine can be modified,
 and the modification is seen outside the scope of the
 subroutine. It is sort of like having access to global
 variable.

There are many ways of implementing these 2 variable types.
If call by value is the only parameter type allowed, how
can we implement a reference type parameter?
 Pass the address of the variable as the parameter. Then
 access to the variable is made through its address. This
 is what is done in C.

Simplest parameter passing mechanism -- Use registers

the calling program puts the parameter(s) into specific registers,
and the procedure uses them.

 example:

 .
 .
 .
 mov EAX, [EDX] ; put parameter in EAX
 call decrement
 mov [EDX], EAX ; recopy parameter to its correct place.
 .
 .
 .
 decrement:
 sub EAX, 1
 ret

Notes: -- This is a trivial example, since the procedure is 1 line
 long.
 -- Why not just use [EDX] within the procedure?
 1. convention -- parameters are passed in specific registers.
 2. same procedure could be used to decrement the value
 in other parameters -- just copy the value in before
 the call, and copy it out afterwards.

 -- The Intel architectures suffer from not having enough
 registers. With only a few to play around with (as
 general purpose registers), we VERY soon run out of

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 11 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

 registers to use. So, this method of passing parameters
 is really not used for this architecture. It IS used
 on all the more modern architectures. They even go so
 far as to set aside a subset of their registers dedicated
 as a location for passing parameters.

historically more significant mechanism: parameters on stack

 (The method of choice for this architecture.)

place the parameters to a procedure (function) in the activation
record (AR) for the procedure.

 push P1 ; place parameter 1 into AR of proc
 push P2 ; place parameter 2 into AR of proc
 call proc
 .
 .
 .
proc: push ebp ; save caller's frame pointer
 mov ebp, esp ; set up A's frame pointer
 sub esp, 16 ; allocate remainder of frame for A
 ; A's return address is at [ebp+4]

 ; use parameters in procedure calculations
 ; P1 is at [ebp+12]
 ; P2 is at [ebp+8]

 mov esp, ebp ; remove A's frame from stack
 pop ebp ; restore caller's frame pointer
 ret 8 ; pop return address, return, and
 ; remove the parameters!

calling program: pushes parameters into stack
 calls procedure

procedure: allocates AR (or remainder of AR)
 deallocates AR of procedure

The activation record (frame) for a procedure so far:

 ^ smaller addresses up here
 |----------------|

caller's ebp

return address

P2

P1

11/02/22 11:34Lecture notes - Chapter 11 - Procedures

Página 12 de 12http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/procedures.html

New problem:
 What happens if a procedure has lots of variables, and it
 runs out of registers to put them in. These are really the
 local variables of the procedure.

 Most common solution: store local variables temporarily on the
 stack in AR.

Two ways of implementing this:

CALLEE SAVED
 A procedure clears out some registers for its own use.

 The called procedure saves register values in its AR.

CALLER SAVED
 The calling program saves the registers and local variables
 that it does not want a called procedure to overwrite.

REVISITING PROCEDURES.

What needs to be done depends on HLL.
The order is fairly consistent.
What is done by caller/callee varies from implementation to implementation.

Needed:
 --> items to go in activation record.

 return address
 frame pointer (if used)
 parameters
 local variables --| may be some overlap here
 saved registers --|

 --> mechanism

 before ANY procedure CALL
 1. caller gets parameters into correct location
 then
 2. control is transfered to procedure

 before procedure RETURN
 1. put return values into correct location
 2. restore anything that needs to be restored (return address, callee
 saved registers, frame pointer)
 3. remove activation record
 then
 4. jump to return location

