
11/02/22 11:29Lecture notes - Chapters 1 and 2 - Some basics.

Página 1 de 6http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/basics.html

Chapter 1 -- Some basics

Some introductory material

basic concept within computer science and engineering:
 Levels of Abstraction
 hierarchy
 models

 used (for our purposes) to design programs, computers

 when a problem is large, it needs to be broken down --
 we "divide and conquer"
 one way is by introducing a hierarchy (level), and solving
 the problem at each level
 example: design of a computer
 1. transistors available
 2. gates, flip flops
 3. components, like registers and adders
 4. CPU, memory system, I/O devices
 5. computer system

 | ------- CPU
 |
 computer system ------| ------- memory
 |
 | ------- I/O stuff

 components <----> gates <--------> transistors

 TOP-DOWN vs. BOTTOM-UP design

 another example: software levels of abstraction
 writing a large program -- >10,000 lines of code
 TOP-DOWN:
 divide into modules, design each module separately.
 define procedures (functions) that accomplish a task.
 specify interfaces (parameters) for the procedures.

 the implementation of a function is independent of
 its interface specification! it is a different level
 in the abstraction of program design.

11/02/22 11:29Lecture notes - Chapters 1 and 2 - Some basics.

Página 2 de 6http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/basics.html

 the "big picture" -- a computer with software running on it.

 HLL computer
 Pascal, C, Fortran hardware

 how do we get from one to the other?
 wanted: write in nice abstract HLL.
 have: stupid computer that only knows how to
 execute machine language

 what is machine language?
 binary sequences (lots of 1's and 0's in a very specific order)
 interpreted by computer as instructions.
 not very human readable.

 to help the situation, introduce assembly language --
 a more human readable form of machine language.
 uses MNEUMONICS for the instruction type, and operands
 BUT, now we need something to translate assembly lang.
 to machine lang.: an ASSEMBLER

 an example might be something like:
 add AA, BB

 "add" is the mneumonic or opcode (operation code)
 AA and CC are the operands, the variables used in
 the instruction.

 lastly, if we had a program that translated HLL programs
 to assembly language, then we'd have it made.
 a COMPILER does this.

 complete picture:

 ----------- ------------
 HLL ---> | compiler|---> assembly --->| assembler|--->machine
 ----------- language ------------ language

 (least detailed) (most detailed)
 (top level) (bottom level)

this course deals with the software aspects of assembly language,
 assemblers and machine language. It also deals with the
 hardware aspects of what the computer does to execute programs.
 It is an introduction to study of COMPUTER ARCHITECTURE:
 the interface between hardware and software.

11/02/22 11:29Lecture notes - Chapters 1 and 2 - Some basics.

Página 3 de 6http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/basics.html

about COMPUTER ARCHITECTURE

 the relationship between hardware (stuff you can touch)
 and software (programs, code)

 I can design a computer that has hardware which executes
 programs in any programming language.
 For example, a computer that directly executes Pascal.

 So, why don't we do just that?
 1. From experience (in the engineering community), we know
 that the hardware that executes HLL programs directly
 are slower than those that execute a more simple, basic
 set of instructions.

 2. Usability of the machine. Not everyone wants a Pascal
 machine. ANY high level language can be translated into
 assembly language.

In this class, in whatever language you are writing programs,
it will look like you have a machine that executes
those programs directly.

What we will do:

 hll ---> SASM ---> Pentium

we assume that you know a hll (high level language, like C++, C,
Pascal, Fortran). From that, we can give you
SASM. Later in the semester, you will learn Pentium.
Programs will be written in both SASM and Pentium.

hll and SASM are each abstractions.
Each defines a computer architecture.
Pentium happens to be a real (manufactured) architecture.

basic computer operation

simplified diagram of a computer system (hardware!)

 ------- ----------
 | CPU | <---------> | memory |
 ------- | ----------
 |
 |

11/02/22 11:29Lecture notes - Chapters 1 and 2 - Some basics.

Página 4 de 6http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/basics.html

 | I/O |

CPU -- controls the running of programs
 executes instructions
 makes requests of the memory
 CPU stands for central processing unit
 CPU and processor are synonyms (book uses the term processor)

 NOTE: Many PC users incorrectly identify the term CPU
 with whatever is in the box that their display sits
 on top of. Chances are the real CPU is inside that
 box, but there will be many more things in there as
 well.

memory -- where programs and program variables are stored
 handles requests from the CPU

 (STORED PROGRAM COMPUTER concept)

interaction between processor and memory.
 to execute an instruction, the processor must be able to
 request 3 things from memory:

 1. instruction FETCH
 2. operand (variable) load LOAD
 3. operand (variable) store STORE

 the memory really only needs to be able to do 2 operations

 1. read (fetch or load)
 2. write (store)

 where? a label specifies a unique place (a location) in memory.
 a label is often identified as an address.

 read: CPU specifies an address and a read operation
 memory responds with the contents of the given address

 write: CPU specifies an address, data to be stored, and
 a write operation
 memory responds by overwriting the data at the
 address specified

for discussion: how (most) processors operate WRT the execution
 of instructions.

 discussion by a generic assembly language instruction example:
 mult aa, bb, cc

 instructions and operands are stored in memory.

11/02/22 11:29Lecture notes - Chapters 1 and 2 - Some basics.

Página 5 de 6http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/basics.html

 before they can be used by the processor, they must
 be fetched/loaded

 processor steps involved:
 1. fetch the instruction
 questions for later: which instruction? at what address?
 2. figure out what the instruction is -- DECODE
 IT IS A MULT INSTRUCTION
 this also reveals how many operands there are, since
 the number of operands is fixed for any given instruction
 THERE ARE 3 OPERANDS
 3. load operand(s)
 OPERANDS ARE bb AND cc
 4. do the operation specified by the instruction
 MULTIPLY bb AND cc TOGETHER
 5. store result(s) (if any)
 RESULT GOES INTO VARIABLE aa

 next step:
 suppose we want to execute multiple instructions, like
 a program

 except for control instructions, execute instructions in their
 (given) sequential storage order.

 the CPU must keep track of which instruction is to be
 executed

 it does this by the use of an extra variable contained within
 and maintained by the processor, called a PROGRAM COUNTER, or PC
 the contents of the variable is the address of the next
 instruction to be executed.

 Note: Intel calls the PC an Instruction Pointer or IP. The rest
 of the world uses PC.

 modify the above CPU steps:
 1. fetch the instruction at the address given by the PC

 added step. modify the PC such that it contains the address of
 the next instruction to execute

 2-5. the same as above

 The added step could come at any time after step 1. It is convenient
 to think of it as step 2.

 This set of steps works fine for all instructions EXCEPT
 control instructions.

 Control Instructions example
 beq x, y, label

 1. fetch instruction -- address given by PC
 2. update PC

11/02/22 11:29Lecture notes - Chapters 1 and 2 - Some basics.

Página 6 de 6http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/basics.html

 3. decode
 (its a BEQ instruction, and there are 3 operands)
 4. fetch operands (x and y)
 5. compare operands (for equality)
 6. if equal, overwrite PC with address implied by 3rd operand (label)

The processor steps involved:
 1. fetch the instruction
 2. update PC
 3. decode
 4. load operand(s)
 5. do the operation specified by the instruction
 6. store result(s) (if any)

notice that this series of steps gets repeated constantly --
to make the computer useful, all that is needed is a way
to give the PC an initial value (the first instruction of a program),
and to have a way of knowing when the program is done, so the
PC can be given the starting address of another program.

the cycle of steps is very important -- it forms the basis for
understanding how a computer operates. The cycle of steps
is termed the INSTRUCTION FETCH and EXECUTE CYCLE.

