
Algorithms and Distributed
Systems

2019/2020
(Lecture Six)

MIEI - Integrated Master in Computer Science and
Informatics

Specialization block

João Leitão (jc.leitao@fct.unl.pt)

http://fct.unl.pt

Lecture structure:

• FLP
• Paxos

Last Lecture…

• We have started to study the Consensus Problem
• C1 Termination: Every correct process eventually decides

a value.
• C2 Validity: If a process decides v, then v was proposed

by some process.
• C3 Integrity: No process decides twice.
• C4 Uniform Agreement: No two processes decide

differently.

• We studied two algorithms for the synchronous
system (For regular and uniform consensus)

Solving Consensus on an
Asynchronous System
• What is your best proposal for solving consensus in

an asynchronous system where processes may fail
(Crash fault model)?

Solving Consensus on an
Asynchronous System
• What is your best proposal for solving consensus in

an asynchronous system where processes may fail
(Crash fault model)?

FLP

M. J. Fisher, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process. JACM, Vol. 32,
no. 2, April 1985, pp. 374-382

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”
problem.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols-
protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Systems-distributed
applications; distributed databases; network operating systems; C.4 [Performance of Systems]: Reliabil-
ity, Availability, and Serviceability; F. 1.2 [Computation by Abstract Devices]: Modes of Computation-
parallelism; H.2.4 [Database Management]: Systems-distributed systems; transaction processing
General Terms: Algorithms, Reliability, Theory
Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability

I. Introduction
The problem of reaching agreement among remote processes is one of the most
fundamental problems in distributed computing and is at the core of many
Editing of this paper was performed by guest editor S. L. Graham. The Editor-in-Chief of JACM did
not participate in the processing of the paper.
This work was supported in part by the OBice of Naval Research under Contract NO00 14-82-K-O 154,
by the Office of Army Research under Contract DAAG29-79-C-0155, and by the National Science
Foundation under Grants MCS-7924370 and MCS-8 116678.
This work was originally presented at the 2nd ACM Symposium on Principles of Database Systems,
March 1983.
Authors’ present addresses: M. J. Fischer, Department of Computer Science, Yale University, P.O. Box
2 158, Yale Station, New Haven, CT 06520; N. A. Lynch, Laboratory for Computer Science, Massachu-
setts Institute of Technology, 545 Technology Square, Cambridge, MA 02 139; M. S. Paterson, Depart-
ment of Computer Science, University of Warwick, Coventry CV4 7AL, England
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-541 l/85/0400-0374 $00.75

Journal of the Assccktion for Computing Machinery, Vol. 32, No. 2, April 1985, pp. 374-382.

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”
problem.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols-
protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Systems-distributed
applications; distributed databases; network operating systems; C.4 [Performance of Systems]: Reliabil-
ity, Availability, and Serviceability; F. 1.2 [Computation by Abstract Devices]: Modes of Computation-
parallelism; H.2.4 [Database Management]: Systems-distributed systems; transaction processing
General Terms: Algorithms, Reliability, Theory
Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability

I. Introduction
The problem of reaching agreement among remote processes is one of the most
fundamental problems in distributed computing and is at the core of many
Editing of this paper was performed by guest editor S. L. Graham. The Editor-in-Chief of JACM did
not participate in the processing of the paper.
This work was supported in part by the OBice of Naval Research under Contract NO00 14-82-K-O 154,
by the Office of Army Research under Contract DAAG29-79-C-0155, and by the National Science
Foundation under Grants MCS-7924370 and MCS-8 116678.
This work was originally presented at the 2nd ACM Symposium on Principles of Database Systems,
March 1983.
Authors’ present addresses: M. J. Fischer, Department of Computer Science, Yale University, P.O. Box
2 158, Yale Station, New Haven, CT 06520; N. A. Lynch, Laboratory for Computer Science, Massachu-
setts Institute of Technology, 545 Technology Square, Cambridge, MA 02 139; M. S. Paterson, Depart-
ment of Computer Science, University of Warwick, Coventry CV4 7AL, England
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-541 l/85/0400-0374 $00.75

Journal of the Assccktion for Computing Machinery, Vol. 32, No. 2, April 1985, pp. 374-382.

FLP

M. J. Fisher, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process. JACM, Vol. 32,
no. 2, April 1985, pp. 374-382

FLP: Explained

• There is no deterministic protocol that solves
consensus in an asynchronous system in which a
single process may fail by crashing.

FLP: Explained

• There is no deterministic protocol that solves
consensus in an asynchronous system in which a
single process may fail by crashing.

• How do we demonstrate this?

FLP: Explained

• There is no deterministic protocol that solves
consensus in an asynchronous system in which a
single process may fail by crashing.

• How do we demonstrate this?

• By contradiction and through an indistinguishability
argument.

System trace

• A system trace is a way to model the execution of a
distributed system considering only its externally
observable behaviour where:
• Only inputs and outputs are considered.
• We fully abstract the internal state of each process.

• Notation is usually: Process Identifier: Action
• E.g.:

• P1: Proposes(v), P2:Proposes(v’), P1:Decides(v),
P2: Decides(v)

FLP: Explained

• Let’s consider two sets of processes of arbitrary size
(with at least one process): A and B

• Now let’s assume that there exists a deterministic
algorithm that solves consensus.

• Let’s build a few traces of the execution of such
system (in an asynchronous system under the crash
fault model).

FLP: Explained

• Lets consider two sets of processes of arbitrary size
(at least one): A and B

• Now lets assume that there exists a deterministic
algorithm that solves consensus.

• Lets build a few traces of the execution of such
system (in an asynchronous system under the crash
fault model).

The Proof itself involves an initial step that is to
prove that the output of consensus must
depend on the ordering of messages exchanged
among processes.
This can be done by leveraging the property:

C2 Validity: If a process decides v, then v was
proposed by some process.

FLP: Explained

• Run One:
• All processes in B crash at time t0.

• All processes in A propose v at time t1 (t1 > t0).

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

FLP: Explained

• Run One:
• All processes in B crash at time t0.

• All processes in A propose v at time t1 (t1 > t0).
• All processes in A decide v at some time t2 (t2 > t1)

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

FLP: Explained

• Run One:
• All processes in B crash at time t0.

• All processes in A propose v at time t1 (t1 > t0).
• All processes in A decide v at some time t2 (t2 > t1)

• Trace: B:Crash(), A:Propose(v), A:Decide(v)

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

FLP: Explained

• Run Two:
• All processes in A crash at time t0.

• All processes in B propose v’ at time t1 (t1 > t0).

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

FLP: Explained

• Run Two:
• All processes in A crash at time t0.

• All processes in B propose v’ at time t1 (t1 > t0).
• All processes in B decide v’ at some time t3 (t3 > t1)

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

FLP: Explained

• Run Two:
• All processes in A crash at time t0.

• All processes in B propose v’ at time t1 (t1 > t0).
• All processes in B decide v’ at some time t3 (t3 > t1)

• Trace: A:Crash(), B:Propose(v’), B:Decide(v’)

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

FLP: Explained

• Run Three:
• Messages between processes in A and B are delayed up

to some time t5 (t5 > t4 and t5 > t3).

• All processes in A propose v at some time t1.
• All processes in B propose v’ at some time t1 (v != v’).

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

FLP: Explained

• Run Three:
• Messages between processes in A and B are delayed up

to some time t5 (t5 > t4 and t5 > t3).
• All processes in A propose v at some time t1.
• All processes in B propose v’ at some time t1 (v != v’).
• By indistinguishability with Run One processes in A

decide v at some time t2 (t2 > t1).
• By indistinguishability with Run Two processes in B

decide v’ at some time t3 (t3 > t1).

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

FLP: Explained

• Run Three:
• Messages between processes in A and B are delayed up

to some time t5 (t5 > t4 and t5 > t3).
• All processes in A propose v at some time t1.
• All processes in B propose v’ at some time t1 (v != v’).
• By indistinguishability with Run One processes in A

decide v at some time t2 (t2 > t1).
• By indistinguishability with Run Two processes in B

decide v’ at some time t3 (t3 > t1).

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

Trace:

A:Propose(v), B:Propose(v’), A:Decide(v), B:Decide(v’)

FLP: Explained

• Run Three:
• Messages between processes in A and B are delayed up

to some time t5 (t5 > t4 and t5 > t3).
• All processes in A propose v at some time t1.
• All processes in B propose v’ at some time t1 (v != v’).
• By indistinguishability with Run One processes in A

decide v at some time t2 (t2 > t1).
• By indistinguishability with Run Two processes in B

decide v’ at some time t3 (t3 > t1).

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

Trace:

A:Propose(v), B:Propose(v’), A:Decide(v), B:Decide(v’)

FLP: Explained

• Run Three:
• Messages between processes in A and B are delayed up

to some time t5 (t5 > t4 and t5 > t3).
• All processes in A propose v at some time t1.
• All processes in B propose v’ at some time t1 (v != v’).
• By indistinguishability with Run One processes in A

decide v at some time t2 (t2 > t1).
• By indistinguishability with Run Two processes in B

decide v’ at some time t3 (t3 > t1).

Regular Consensus Specification:

C1 Termination: Every correct process eventually decides a value.
C2 Validity: If a process decides v, then v was proposed by some
process.
C3 Integrity: No process decides twice.
C4 Agreement: No two correct processes decide differently.

Trace:

A:Propose(v), B:Propose(v’), A:Decide(v), B:Decide(v’)

Contradition: Hence our base assumption that there is a
deterministic algorithm that solves consensus (in asynchronous
systems where a process can crash) must be false.

FLP: Secondary Result
(Positive Result)
• There are deterministic protocols that solve

consensus in an asynchronous system when no
process crashes during the execution of the
algorithm.

Consequences of FLP

• Consensus is not solvable (by a deterministic
algorithm) in asynchronous systems under the
crash fault model.
• What about equivalent problems to consensus?

Consequences of FLP
• A problem that has been demonstrated to be equivalent to

consensus: Total Order Broadcast

• Total Order Broadcast Specification:
• TO (Total Order): Let m1 and m2 be any two messages. Let pi and pj

be any two correct processes that deliver m1 and m2. If pi delivers
m1 before m2, then pj delivers m1 before m2.

• RB1 (Validity): If a correct process i broadcasts message m, then i
eventually delivers the message.

• RB2 (No Duplications): No message is delivered more than once.
• RB3 (No Creation): If a correct process j delivers a message m, then

m was broadcast to j by some process i.
• RB4 (Aggrement): If a message m is delivered by some correct

process i, them m is eventually delivered by every correct process j.

Consequences of FLP
• A problem that has been demonstrated to be equivalent to

consensus: Total Order Broadcast

• Total Order Broadcast Specification:
• TO (Total Order): Let m1 and m2 be any two messages. Let pi and pj

be any two correct processes that deliver m1 and m2. If pi delivers
m1 before m2, then pj delivers m1 before m2.

• RB1 (Validity): If a correct process i broadcasts message m, then i
eventually delivers the message.

• RB2 (No Duplications): No message is delivered more than once.
• RB3 (No Creation): If a correct process j delivers a message m, then

m was broadcast to j by some process i.
• RB4 (Aggrement): If a message m is delivered by some correct

process i, them m is eventually delivered by every correct process j.

Consequences of FLP
• A problem that has been demonstrated to be

equivalent to consensus: Total Order Broadcast

• Equivalent implies that:
• If you have consensus, then you can solve the total

order broadcast problem.
• If you have total order broadcast, then you can solve the

consensus problem.

Consequences of FLP
• A problem that has been demonstrated to be

equivalent to consensus: Total Order Broadcast

• Equivalent implies that:
• If you have consensus, then you can solve the total

order broadcast problem.
• If you have total order broadcast, then you can solve the

consensus problem.

• Bad News: Since the problems are equivalent the
FLP result also applies to Total Order Broadcast.

Consequences of FLP
• State machine replication requires either

Consensus or Total Order Broadcast (trivial to
demonstrate the second, since they are equivalent
J).

The World is asynchronous…
...so there goes state machine replication down the
drain!

Consequences of FLP

And so are distributed systems in practice?

Consequences of FLP
• So this is done right?

• We cannot do anything… maybe lets cancel this
course... Go home... And think about the vacum of
Human and distributed systems existence?

Consequences of FLP
• So this is done right?

• We cannot do anything… maybe lets cancel this
course... Go home... And think about the vacum of
Human and distributed systems existence?

• Not so fast: We can always circumvent (i.e, go
around) the impossibility result.
• But how?

Circumventing FLP:
• By relaxing the specification of Consensus

obviously…

Circumventing FLP:
• By relaxing the specification of Consensus

obviously…
• C1 Termination: Every correct process eventually decides a value.
• C2 Validity: If a process decides v, then v was proposed by some process.
• C3 Integrity: No process decides twice.

• C4 Agreement: No two correct processes decide differently.

Circumventing FLP:
• By relaxing the specification of Consensus

obviously…
• C1 Termination: Every correct process eventually decides a value.
• C2 Validity: If a process decides v, then v was proposed by some process.
• C3 Integrity: No process decides twice.

• C4 Agreement: No two correct processes decide differently.

• Technique 1: Let’s use a probabilistic algorithm that
ensures termination with high probability (but not
for sure).

Circumventing FLP:
• By relaxing the specification of Consensus

obviously…
• C1 Termination: Every correct process eventually decides a value.
• C2 Validity: If a process decides v, then v was proposed by some process.
• C3 Integrity: No process decides twice.

• C4 Agreement: No two correct processes decide differently.

• Technique 2: Let’s relax the agreement and validity
properties such that there must exist proposed
values by at least k (k<n) processes, and we only
decide values with this property.

Circumventing FLP:
• By relaxing the specification of Consensus

obviously…
• C1 Termination: Every correct process eventually decides a value.
• C2 Validity: If a process decides v, then v was proposed by some process.
• C3 Integrity: No process decides twice.
• C4 Agreement: No two correct processes decide differently.

• Technique 3: Let’s modify our system model to say
that there is this “magic abstraction” that allows us
to detect process failures (failure detectors).
(Interesting question: what are the minimum guarantees that a
fault detector has to provide for consensus to be solvable?)

Circumventing FLP:
• By relaxing the specification of Consensus

obviously…
• C1 Termination: Every correct process eventually decides a value.
• C2 Validity: If a process decides v, then v was proposed by some process.
• C3 Integrity: No process decides twice.

• C4 Agreement: No two correct processes decide differently.

• Technique 4: Let’s relax the termination property
such that we “only ensure” termination if the
system behaves in a synchronous way (so no
termination at all).

Exploring alternative 4: Paxos
• Solves (a weaker variant

of) Consensus in
asynchronous systems
under crash fault model.
• Termination can only be

achieved in periods
where the system
behaves in a
synchronous way.

• Used in practice:
Google, Yahoo!,
Microsoft, Amazon, etc.

Exploring alternative 4: Paxos
• Solves (a variant of)

Consensus in
asynchronous systems
under crash fault model.
• Termination can only be

achieved in periods
where the system
behaves in a
synchronous way.

• Used in practice:
Google, Yahoo!,
Microsoft, Amazon, etc.

Exploring alternative 4: Paxos
• Solves (a variant of)

Consensus in
asynchronous systems
under crash fault model.
• Termination can only be

achieved in periods
where the system
behaves in a
synchronous way.

• Used in practice:
Google, Yahoo!,
Microsoft, Amazon, etc.

Paxos: a brief history

• Leslie Lamport. 1998. The part-time
parliament. ACM Trans. Comput. Syst. 16, 2 (May
1998), 133-169.

Paxos: a brief history

• Leslie Lamport. 1998. The part-time
parliament. ACM Trans. Comput. Syst. 16, 2 (May
1998), 133-169.
• Leslie Lamport. Paxos made simple. ACM SIGACT

News (Distributed Computing Column) 32, 4
(Whole Number 121, December 2001)

Paxos: a brief history

• Leslie Lamport. 1998. The part-time
parliament. ACM Trans. Comput. Syst. 16, 2 (May
1998), 133-169.
• Leslie Lamport. Paxos made simple. ACM SIGACT

News (Distributed Computing Column) 32, 4
(Whole Number 121, December 2001)

At the PODC 2001 conference, I got tired of everyone saying how
difficult it was to understand the Paxos algorithm, published in [122].
Although people got so hung up in the pseudo-Greek names that they
found the paper hard to understand, the algorithm itself is very simple.
So, I cornered a couple of people at the conference and explained the
algorithm to them orally, with no paper. When I got home, I wrote
down the explanation as a short note, which I later revised based on
comments from Fred Schneider and Butler Lampson. The current
version is 13 pages long, and contains no formula more complicated
than n1 > n2.
-- From Leslie Lamport page.

https://www.microsoft.com/en-us/research/publication/part-time-parliament/

Paxos: a brief history

• Leslie Lamport. 1998. The part-time
parliament. ACM Trans. Comput. Syst. 16, 2 (May
1998), 133-169.
• Leslie Lamport. Paxos made simple. ACM SIGACT

News (Distributed Computing Column) 32, 4
(Whole Number 121, December 2001)
• Robbert Van Renesse and Deniz Altinbuken. 2015.

Paxos Made Moderately Complex. ACM Comput.
Surv. 47, 3, Article 42 (February 2015), 36 pages.

Paxos: Consensus Specification

• C2 Validity: If a process decides v, then v was
proposed by some process.
• C3 Integrity: No process decides twice.
• C4 Agreement: No two correct processes decide

differently.

Paxos: Assumptions

• Asynchronous System
• Messages exchanged among processes can be lost,

duplicated, but never corrupted.
• Processes can fail by crash and recover at some

point in the future (crash-recovery fault model).
• Each process has access to persistent storage (e.g., hard

disk) that ’survives’ to a crash.

Paxos: Separation of Roles

• 3 different types of processes:
• Proposers: Propose values
• Acceptors: Accept proposed values.
• Learners: Learn decided values.

• In practice these three roles can be executed
together in a single machine
• A process can have and execute all three roles

simultaneously.

Trivial Solution: Single Acceptor
Proposers Acceptors Learners

3 9 5

5

5

Trivial Solution: Single Acceptor
Proposers Acceptors Learners

3 9 5

5

5

First proposal to be
received by the acceptor
is accepted, all other are
rejected.

Trivial Solution: Single Acceptor
Proposers Acceptors Learners

3 9 5

5

5

First proposal to be
received by the acceptor
is accepted, all other are
rejected.

Problem: Not really fault
tolerant -> what if the
acceptor crashes?
What to do?

Paxos: Tolerating failure of the
Acceptor (Through Replication)

Proposers Acceptors Learners

3 9 5

3
5

9

First proposal to be
received by the acceptor
is accepted, all other are
rejected.

When can processes decide?

• Problem: different acceptors might receive
proposals in a different order, so when can they
make a “final” decision?

When can processes decide?

• Problem: different acceptors might receive
proposals in a different order, so when can they
make a “final” decision?
• Suggestion: Lets think in this in terms of quorums…

When can processes decide?

• Problem: different acceptors might receive
proposals in a different order, so when can they
make a “final” decision?
• Suggestion: Lets think in this in terms of quorums…

• Decision is made when a majority accepts the same
value, this will ensure an intersection as in a
majority-based quorum.

Paxos: Tolerating failure of the
Acceptor (Quorum)

Proposers Acceptors Learners

3 9 5

5 5

9

5When there is a majority,
then we can make a
decision

Paxos: Tolerating failure of the
Acceptor (Quorum)

Proposers Acceptors Learners

3 9 5

3
5

9

?
Problem: What if there is no majority?
(Acceptors only accept the first value)
Could we employ a deterministic
function as we did with registers to pick,
for instance the largest value?

How to deal with multiple
(concurrent) proposals?

How to deal with multiple
(concurrent) proposals?
• Acceptors must be able to accept more than one

proposal (i.e., more than one value, meaning that
they might change their opinion regarding the
value that is going to be decided).

How to deal with multiple
(concurrent) proposals?
• Acceptors must be able to accept more than one proposal (i.e.,

more than one value, meaning that they might change their
opinion regarding the value that is going to be decided).

• Each proposal will be enriched with a sequence number that
allows to distinguish different proposal and order them.
• Proposal = (psn, value)
• All proposals have a different proposal sequence number (psn)
• Definition: a proposal (meaning a pair (psn, value)) is considered

selected when it is accepted by a majority of acceptors (f < N/2).
• At this point learns can declare the decided value.

• Sequence numbers can be generated by each proposal by using
its identifiers (1..N, where N is the number of proposers) and
adding N whenever it needs a new sequence number.

Paxos: Tolerating failure of the
Acceptor (Quorum)

Proposers Acceptors Learners

(1,3) (3,9) (2,5) So now acceptors can
accept any proposal if the
psn is greater than the
previously accepted
proposal. Will this work?

Paxos: Tolerating failure of the
Acceptor (Quorum)

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

(2,5) (2,5)

(2,5)

So now acceptors can
accept any proposal if the
psn is greater than the
previously accepted
proposal. Will this work?

Paxos: Tolerating failure of the
Acceptor (Quorum)

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

(2,5) (2,5)

(2,5)

(3,9) (3,9)

(3,9)

(3,9)

So now acceptors can
accept any proposal if the
psn is greater than the
previously accepted
proposal. Will this work?

Paxos: Tolerating failure of the
Acceptor (Quorum)

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

(2,5) (2,5)

(2,5)

(3,9) (3,9)

(3,9)

(3,9)

UPS…
Problem: Not so simple, one cannot
simply accept any proposal just if that
proposal has a higher sequence number.

So now acceptors can
accept any proposal if the
psn is greater than the
previously accepted
proposal. Will this work?

When should an acceptor change
its accepted proposal?

When should an acceptor change
its accepted proposal?
• If an acceptor changes its currently accepted

proposal just because it receives a proposal with a
higher sequence number, more than one value can
be decided (violating the definition of consensus).

When should an acceptor change
its accepted proposal?
• If an acceptor changes its currently accepted

proposal just because it receives a proposal with a
higher sequence number, more than one value can
be decided (violating the definition of consensus).

• The trick is to avoid an acceptor to change its
accepted proposal if there is already a proposal
that was accepted by a majority (and hence
decided).
• A value in a proposal that was accepted by a

majority of acceptors is said to be locked-in.

Problelm of acceptors changing
previously accepted proposal.

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

(2,5) (2,5)

(2,5)

(3,9) (3,9)

(3,9)

In this run we are violating that
condition, since (3,9) will be accepted
after (2,5) has been selected (locked-in,
i.e., accepted by a majority) and 9 != 5

What is the solution for this?

• Intuitively, an acceptor could safely accept another
proposal if the sequence number of that proposal is
higher than the previously accepted proposal and:

1. If there is no previously locked-in value, then that
proposal can propose any value to be decided by
consensus.

2. If there is already a locked-in value v, then the new
proposal also proposes v (this will ensure that two
different values cannot be decided).

What is the solution for this?

• We must delegate in the proposers the
responsibility to check if a value has already been
locked-in before they make their propose.
• If no value has been locked-in, then the proposer

can propose its initial value to be decided.
• If some value v has been already locked-in, then the

proposer must propose that value.

What is the solution for this?

• We must delegate in the proposers the
responsibility to check if a value has already been
locked-in before they make their propose.
• If no value has been locked-in, then the proposer

can propose its initial value to be decided.
• If some value v has been already locked-in, then the

proposer must propose that value.

• This can be achieved by having the proposer read
accepted values from a majority of acceptors.

How to determine if there is a previous proposal that
is locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

How to determine if there is a previous proposal that
is locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

prepare ()

ok ((⊥, ⊥))

The proposer starts by preparing its
propose, by checking the currently
selected proposal in a majority of
acceptors.

Since there was no proposal sent before,
the acceptor report that they do not
know a current proposal.

How to determine if there is a previous proposal that
is locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

(2,5) (2,5)

prepare ()

ok ((⊥, ⊥))

So now the proposer can send its
proposal to the acceptors, using his own
initial value (5).

How to determine if there is a previous proposal that
is locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

(2,5) (2,5)

prepare ()

ok ((⊥, ⊥))

So far so good...

How to determine if there is a previous proposal that
is locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

(2,5) (2,5)

prepare ()

ok ((⊥, ⊥))

prepare ()

ok ((2, 5))

How to determine if there is a previous proposal that
is locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

(2,5) (2,5)

prepare ()

ok ((⊥, ⊥))

prepare ()

ok ((2, 5))

Now the second proposer knows that
there is already a proposal for value 5
(that might be) locked-in.

How to determine if there is a previous proposal that
is locked-in?

Proposers Acceptors Learners

(1,3) (3,5) (2,5)

(2,5) (2,5)

prepare ()

ok ((⊥, ⊥))

prepare ()

ok ((2, 5))

Now the second proposer knows that
there is already a proposal for value 5
(that might be) locked-in.

How to determine if there is a previous proposal that
is locked-in?

Proposers Acceptors Learners

(1,3) (3,5) (2,5)

(2,5) (2,5)

prepare ()

ok ((⊥, ⊥))

prepare ()

ok ((2, 5))

All seems fine in the World... Value 5 is
decided by consensus...
But is this really fine?

(3,5) (3,5)

What did we do there?
• Assume that proposer p wants to emit a proposal with

psni.

• If p can be sure that there is no other proposal with psnj,
such that psnj < psni, and value v’ that was not decided
then he can propose his initial value v.
• Otherwise, p must propose value v’ that was already

locked in.
• To do so, the proposer checks selected proposals from a

majority of acceptors, and if there is a proposal already
there, he changes his proposed value to the value in the
proposal with largest psnj (might not be locked-in yet, but
is safe).

Is this enough to ensure that we don’t decide two
different values?

Proposers Acceptors Learners

(1,3) (3,9) (2,5) Let’s try a different execution...

Is this enough to ensure that we don’t decide two
different values?

Proposers Acceptors Learners

(1,3) (3,9) (2,5) Let’s try a different execution...
prepare ()

ok ((⊥, ⊥))

Is this enough to ensure that we don’t decide two
different values?

Proposers Acceptors Learners

(1,3) (3,9) (2,5) So far so good... ...but something might
be wrong around the corner...prepare ()

ok ((⊥, ⊥))

prepare ()

ok ((⊥, ⊥))

Is this enough to ensure that we don’t decide two
different values?

Proposers Acceptors Learners

(1,3) (3,9) (2,5) 5 is now locked-id...
prepare ()

ok ((⊥, ⊥))

prepare ()

ok ((⊥, ⊥))

(2,5) (2,5)

Is this enough to ensure that we don’t decide two
different values?

Proposers Acceptors Learners

(1,3) (3,9) (2,5) And now 9 is locked in... If learners learn
these values we might have decided
twice... UPS...

prepare ()

ok ((⊥, ⊥))

prepare ()

ok ((⊥, ⊥))

(2,5) (2,5)

(3,9) (3,9)

Is this enough to ensure that we don’t decide two
different values?

Proposers Acceptors Learners

(1,3) (3,9) (2,5) And now 9 is locked in... If learners learn
these values we might have decided
twice... UPS...

prepare ()

ok ((⊥, ⊥))

prepare ()

ok ((⊥, ⊥))

(2,5) (2,5)

(3,9) (3,9)

(2,5)
(3,9)This is wrong... Why?

What went wrong there?
• By checking if some proposal was already selected in a

majority of acceptors, the proposer can be sure that
things in his past (i.e., proposals with psn below his own)
have not yet locked-in a value…
• However, this does not provides a guaranteee to the

proposer that in the future there will be no proposal with
a psn below his own that will lock-in a value.

What went wrong there?
• By checking if some proposal was already selected in a

majority of acceptors, the proposer can be sure that
things in his past (i.e., proposals with psn below his own)
have not yet locked-in a value…
• However, this does not provides a guaranteee to the

proposer that in the future there will bo no proposal with
a psn below his own that will lock-in a value.

• In some sense we covered the past, but we also need to
make sure that proposals with lower psn cannot affect the
future. How to do this?

Ensuring that the past no longer
affects the future…

• Future manipulation is tricky, and the proposer on its own
will not be able to control it.
• We need to get assistance from the acceptors.

• In particular, when the proposer checks if there is already
a locked-in value, he can inform the acceptors (a majority
in this case) of the sequence number that he is planning
on using. Acceptor that reply to him also promise to not
accept any proposal with a psn below that one (hence
the past cannot affect the future)

How to determine if there is a previous
proposal that is either locked-in or can become
locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

How to determine if there is a previous
proposal that is either locked-in or can become
locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

prepare (2)

ok Will not
accept n’ < 2

How to determine if there is a previous
proposal that is either locked-in or can become
locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

prepare (2)

ok
prepare (3)

ok

Will not
accept n’ < 2

Will not
accept n’ < 3

How to determine if there is a previous
proposal that is either locked-in or can become
locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

__ (2,5)

prepare (2)

ok
prepare (3)

ok

Will not
accept n’ < 2

Will not
accept n’ < 3

How to determine if there is a previous
proposal that is either locked-in or can become
locked-in?

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

__ (2,5)

(3,9) (3,9)

(3,9)

prepare (2)

ok
prepare (3)

ok

Will not
accept n’ < 2

Will not
accept n’ < 3

Why does this work?

• When a proposer gathers a majority quorum from
acceptors that promise that they will not accept a
proposal with a lower psn than his own, it makes it
impossible for such a proposal value to be decided
(since a majority that will accept a proposal with a
lower sequence number becomes impossible to
obtain).

Why does this work?

• When a proposer gathers a majority quorum from
acceptor that promise that they will not accept a
proposal with a psn lower than his own, it makes it
impossible for such a proposal value to be decided
(since a majority that will accept a proposal with a
lower sequence number becomes impossible to
obtain).
• From a practical standpoint, this ensures that if a

proposer effectively proposes his initial value, then no
proposal with a lower sequence number exists that was
already accepted by a majority of acceptor or will ever
be accepted by such a majority.

Proposer Algorithm

PROPOSE(v)

choose unique n, higher than any n seen so far

send PREPARE(n) to all nodes

if PREPARE_OK(na, va) from majority then

va = va with highest na (or choose v
otherwise)

send ACCEPT (n, va) to all

if ACCEPT_OK(n) from majority then

send DECIDED(va) to all

Proposer Algorithm

PROPOSE(v)

choose unique n, higher than any n seen so far

send PREPARE(n) to all nodes

if PREPARE_OK(na, va) from majority then

va = va with highest na (or choose v
otherwise)

send ACCEPT (n, va) to all

if ACCEPT_OK(n) from majority then

send DECIDED(va) to all

Evidently, if no valid quorum is gathered of either PREPARE_OK or
ACCEPT_OK messages, the proposer should timeout and reset this algorithm
using a larger sequence number (n).

Acceptor Algorithm
State: np (highest prepare), na, va (highest accept)
/* This state is maintained in stable storage */

PREPARE(n)
if n > np then

np = n // will not accept with seq. nub. < n
reply <PREPARE_OK,na,va>

ACCEPT(n, v)
if n >= np then

na = n
va = v
reply with <ACCEPT_OK,n>

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

prepare (2)

prepareOK Will not
accept n’ < 2

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

prepare (2)

prepareOK
prepare (3)

Will not
accept n’ < 2

Will not
accept n’ < 3

prepareOK

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

__ (2,5)

prepare (2)
prepare (3)

Will not
accept n’ < 2

Will not
accept n’ < 3accept(2,5)

prepareOK

prepareOK

acceptOK

Paxos running

Proposers Acceptors Learners

(1,3) (3,9) (2,5)

__ (2,5)

(3,9) (3,9)

(3,9)

prepare (2)
prepare (3)

Will not
accept n’ < 2

Will not
accept n’ < 3

prepareOK

prepareOK

accept(2,5)

accept(3,9)
acceptOK

Learners

• Learns can either contact acceptors or be contacted
by acceptors to know the value that they have
selected.
• When a majority of acceptors select the same value

then a decision can be made.

Liveness is not guaranteed
(Termination Property)

• To ensure liveness (termination) there must be a
single proposer (leader). This is only possible if a long
enough period of synchrony happens in the system.

P1

A1

A2

PREPARE(1) PREPARE_OK(1,?)

PREPARE(2) PREPARE_OK(2,_)

PREPARE(3) PREPARE_OK(3,?)ACCEPT(1,v)

A3

P2
… For
ever
and
ever

Homework 3:
• Use paxos to build a total order broadcast protocol that

operates in an asynchronous system model under the crash
fault model:
• TO (Total Order): Let m1 and m2 be any two messages. Let pi and pj

be any two correct processes that deliver m1 and m2. If pi delivers
m1 before m2, then pj delivers m1 before m2.

• RB1 (Validity): If a correct process i broadcasts message m, then i
eventually delivers the message.

• RB2 (No Duplications): No message is delivered more than once.
• RB3 (No Creation): If a correct process j delivers a message m, then

m was broadcast to j by some process i.
• RB4 (Aggrement): If a message m is delivered by some correct

process i, them m is eventually delivered by every correct process j.
• You can use up to two primitives (paxos is mandatory):

• Paxos
• - Request: pprepare(v)
• - Indication: pdecided(v)

• Reliable Broadcast
• - Request: broadcast(m)
• - Indication: deliver(m)

Interface of your protocol:
Request: - tobcast(m)
Indication: - todeliver (m)

