
Aquarium Management

Alexandre Correia (53298) & Hugo Rodrigues (53309)

June 2022

1 Introduction & Goals

Taking care of an aquarium is a hard task when it comes to responsibility and amount of work. In order to
keep fish alive, it is necessary to manage the aquarium’s environment properly, i.e. according to the fish’s
living conditions, specially regarding the characteristics of the water - type (salted or fresh), temperature
and pH - as well as the light conditions - darker or lighter.

People need to measure manually those parameters very often to make sure that the fish’s living conditions
are being satisfied. So, it is useful to have a mechanism that gives some sort of alert when those conditions
are not being respected, e.g. if the water’s pH is not within the appropriate range for the fish, then the user
could be notified with that information, instead of manually measuring it consistently.

In the context of the course of Mobile and Pervasive Computing Systems, we aim to develop a system that
not only shares the real-time conditions of aquariums with people, but also allows them to set, in real-time,
some of the aquariums’ characteristics either locally (same network) or remotely (different networks).

2 Functionalities

In order to achieve the required fish living conditions on the aquariums, the system developed enables the
users to both check and set various characteristics of multiple aquariums through an Android application:

• Temperature and PH:

– Check the current value;

– Set the allowed ranges of values;

– Check if the value is, or not, withing the range of values allowed.

• Brightness:

– Check the current level;

– Set the mode: either manual or automatic;

– When on manual mode, increment or decrement the level.

As far as the aquariums are concerned, it is possible to physically simulate the changing of these char-
acteristics’ values. They notify through their hardware when the temperature and/or the pH are not within
the range of values allowed. Also, when working on automatic mode, it is capable of adjusting the brightness
level inside the aquarium, depending on the ambient light from outside.

3 Architecture

For reaching these goals and functionalities, the system developed in this project consists of the design and
implementation of three components, as shown in Figure 1: a physical simulator, a mobile application and a
database.

1



Physical Simulator Mobile Application

APP

Database

Figure 1: Architecture

The physical simulator senses and controls the various hardware components, which are accessible and
controllable via a single-board microcontroller.

The mobile application is the main way of interaction with the user, allowing him to access and modify
some characteristics, and define some alerts for each of the aquariums.

For persistently storing every measured characteristic from each aquarium, there is a database which
stores that information. Both the physical simulator and the mobile application can communicate directly
with each other and with the database. The physical simulator needs to inform, periodically, the database
with the measured values so that the real-time state of the aquarium can be stored, as well as to obtain
the remote updates from the database. Also, the mobile application needs to get the real-time conditions of
the aquarium, periodically, from the database to display them. However, if both of them happen to be in
the same network, then they can communicate directly with each other, but the final state of the physical
simulator must be stored in the database.

4 Physical Simulator

4.1 Overview

The physical simulator consists of assembling some hardware components, as displayed in Figure 2:

• Microcontroller: 1 NodeMCU ESP32

• Sensors: 2 Potentiometers and 1 Photoresistor

– 1 Potentiometer (7): for simulating the pH level

– 1 Potentiometer (8): for simulating the temperature level

– 1 Photoresistor (9): for measuring the ambient light

• Actuators: 4 White LEDs, 1 Yellow LED and 1 Red LED

– 4 White LEDs (1-4): for simulating the internal light with multiple intensities (fixed)

– 1 Yellow LED (6): for warning the user that the pH level is not within the correct range (inter-
mittent)

– 1 Red LED (5): for warning the user that the temperature level is not within the correct range
(intermittent)

2



1

2

3

4

5

6

7

8

9

Figure 2: Physical Simulator

4.2 Implementation

As far as the software development of this component is concerned, we developed it using the PlatformIO
extension [4] of Visual Studio Code [5], which is a platform that manages every detail of this component
(boards, libraries, build, upload, monitor, among others).

4.2.1 Setup

When the aquarium is powered on, it connects itself to the internet (the WiFi details are on the secrets.h
file) and also to the Firebase Realtime Database (the connections details are also on the secrets.h file),
using the Firebase ESP32 Client library [2]. Then initializes the local web server, which receives the local
requests asynchronously, and finally creates the aquarium object on the database with every characteristic,
including its ssid and localIP.

Listing 1 illustrates the pattern of the secrets.h file, that needs to present in the src/ folder.

4.2.2 Execution with current and old variables per characteristic

Every second, to update the various values (temperature and its range, pH and its range, brightness and
mode), the aquarium starts by getting the updated current values from the database.

To efficiently recognize updates on these values and avoid updating them every time they are read, the
aquarium checks if the current value for each of the characteristics has changed since the last read or updated
value.

As mentioned before, there is the possibility of having both remote and local updates. In this scenario, if
there are only these two variables, then there is a collision when updating the current value since the local
updates can be overlapped with the remote ones and vice-versa. So, we assumed that the local updates
should have priority over the remote ones, i.e. in case of conflict, the local update is stored as the current
value.

4.2.3 Execution with current, old, remote and local variables per characteristic

To handle this collision and priority situation, the aquarium stores these received updates separately and
then chooses the current value from these additional variables, where local overlaps the remote value.

3



4.2.4 General Execution

With these collisions treated, then the aquarium updates the values of the current temperature and pH, and
updates every updated value in the database.

To finish this execution (which is repeated every second), the LEDs that simulate the aquarium’s light
are turned on or off, according to the needed extra brightness.

4.2.5 Local Web Server

For receiving the local requests asynchronously while the aquarium is powered on, there are some defined
endpoints to access and update the characteristics of the aquarium:

GET / (Info): shows the values of every characteristic

PUT /brightness/increase (Brightness Increase): increases the brightness

PUT /brightness/decrease (Brightness Decrease): decreases the brightness

PUT /mode/auto (Automatic Mode): changes the brightness mode to automatic

PUT /mode/manual (Manual Mode): changes the brightness mode to manual

PUT /ranges (Ranges): changes the ranges of values of the temperature and pH, given the request’s
body. Listing 2 shows the JSON pattern of the request’s body.

5 Database

The database we chose relies on the Firebase Realtime Database [1] for the following reasons:

• There is no need for advanced querying, sorting or transactions;

• Both the physical simulator and mobile app will be sending a stream of tiny updates;

• Simple data is easy to store.

The database stores data as one large JSON tree, each field being saved as a key/value pair. The
aquariums are stored as JSON objects, directly at the root of the JSON tree, where the key corresponds
to its id. The remaining data, such as the properties of each aquarium, is kept as a key/value under the
aquarium’s JSON, where the key is the name of the property.

An example of the data stored in the database is shown in Listing 3, consisting of a JSON tree that has
one aquarium with the id -N2Qy6IYbzSgi–YvBun.

6 Mobile Application

6.1 Overview

The mobile application is composed by three main screens, which are illustrated in Figure 3:

• Aquariums List: displays two lists with the aquariums’ names:

– Local: showing only the local aquariums;

– Remote: showing all the remaining aquariums;

• Aquarium Details: displays the environment conditions of the chosen aquarium: temperature, pH
and brightness levels, which might be obtained directly from physical simulator (if local) or from the
database (if remote). The user can also choose between manually setting the illumination, or letting
the system to manage it automatically;

4



Figure 3: Mobile Application

• Aquarium Settings: allows the user to specify the range of values that are allowed for the temperature
and pH levels.

When the users open the application, they observe the Aquariums List screen, where they choose the
aquarium they intend to control and keep up with.

After selecting an aquarium, they are redirected to the Aquarium Details screen that allows them to
observe the environment characteristics of the aquarium selected, as well as controlling the brightness, or
simply having it automatic (according to what the photoresistor sensor is capturing).

Finally, when the users tap on the settings button of the aquarium, they can configure the range of values
allowed for the temperature and the pH levels of the water.

If the value of any of these parameters (temperature and pH levels) happens to be outside of the specified
range, then an alert on the Aquarium Details screen is shown, e.g in Figure 3, we can observe that the
measured value for the pH is outside of the defined range of values, so a “danger” icon is shown in the pH
measurement section, and the same could happen for the temperature.

6.2 Implementation

This component was developed in Kotlin using the Android Studio IDE.
In order to have three different interfaces for the user, we created three Activities (AquariumList.kt,

AquariumDetails.kt, AquariumRanges.kt).
The data that the application consumes and forwards may come/go from/to two different targets: Firebase

Realtime Database (remote) and the ESP32 itself (local). To send/query data to/from the Firebase Realtime
Database, we used the Firebase Realtime Database for Android library [3]. In order to locally send requests
to the ESP32, the Google’s Volley library [6] was used.

6.2.1 Aquarium List

In order to display a button for each existent aquarium, it is necessary to query the database. As mentioned
already, there are two lists of aquariums: local and remote. For each one of the received aquariums, we create
a button with its name, and if the ssid of the aquarium matches the one the Android’s device is connected
to, then we place the button in the local list, otherwise we place it in the remote list.

We took advantage of the fact that the Firebase Realtime Database library [3] offers callbacks that are
triggered whenever something changes in the database. So, when any aquarium changes, specially their ssid,
the activity performs the necessary changes automatically, e.g. if an aquarium used to have a different ssid
from the Android device’s, and it changed to the same of the Android device’s, then its correspondent button
moves from the remote list to the local list.

5



6.2.2 Aquarium Details

Whenever this activity is initialized, it receives the id of the aquarium, whether it is remote or local to the
Android device, and its localIP.

If the aquarium is remote, a callback is created to query its data (using the id property) on the creation
of the activity. Whenever the remote data changes (database), this callback is called in order to display the
most recent updates. Otherwise, we submit isolated requests to the aquarium locally every second.

When the user increments/decrements the brightness (when on manual mode) or changes modes (from
manual to automatic or vice-versa) we perform isolated requests to the database when dealing with a remote
aquarium, and then the main callback gets triggered with this change. However, when dealing with a local
aquarium, these isolated requests are submitted directly to the aquarium.

For example, Listing 4 shows the pattern of a response from an aquarium, when requesting its data locally
(GET request to the / endpoint of the async web server of the ESP32).

6.2.3 Aquarium Ranges

Whenever this activity is initialized, it also receives the id of the aquarium, whether it is remote or local to
the Android device, and its localIP.

If the aquarium is remote, we request the ranges of the temperature and pH in an isolated manner, i.e.
no callbacks, using the id property. Otherwise, we submit a local request to obtain them. Either of these
operations is done only on the creation of the activity, since users may update the ranges on the EditText
components.

When hitting save, isolated requests are performed to the target. The target is the database when we
are dealing with a remote aquarium. However, when the aquarium is local to the Android’s device, it sends
the ranges data directly to the ESP32 (PUT request to the /ranges endpoint of the async web server of the
ESP32). After receiving a 200 response, we forward the user to the Aquarium Details interface.

6.2.4 Interface Design

Having every detail working on each of the activities screens, it is important to have a nice and intuitive
interface to help the navigation.

We started by creating some margins between the components and the edges of the screen, with the use
of some guidelines (e.g. at 5% and 95% vertically from the top, and at 10% and 90% horizontally from the
left). With these various guidelines, the elements can then be better placed from each other as well as adjust
automatically to most of the devices screen sizes.

7 Conclusion

This project is another example of a smart IoT system. It reveals to be very useful for people who do not
have the time to keep up with the aquarium’s proper characteristics.

In terms of scaling the system for having many more aquariums, and for having more security, it would
be necessary to store more aquariums on the database. In order to restrict the access to the aquariums, it
would be necessary to implement an account system, where each user would have access to a restricted set
of aquariums. To do that, a database is needed to store the accounts, and their respective aquariums.

What we take the most out of this project is that we were introduced to two new technologies: development
of Android applications and microcontrollers programming, where third-party applications are able to access
them. Also, we have noticed that debugging issues related to hardware (ESP32) are more difficult to detect
and solve, whereas on the Android side, we found it easier.

6



References

[1] Firebase Realtime Database. url: https://firebase.google.com/docs/database. (accessed: 19.05.2022).

[2] Firebase Realtime Database Arduino Library for ESP32. url: https://github.com/mobizt/Firebase-
ESP32. (accessed: 19.05.2022).

[3] Firebase Realtime Database Library for Android Documentation. url: https://firebase.google.com/
docs/database/android/start. (accessed: 09.06.2022).

[4] PlatformIO Website. url: https://platformio.org/. (accessed: 09.06.2022).

[5] Visual Studio Code Website. url: https://code.visualstudio.com/. (accessed: 09.06.2022).

[6] Volley Documentation. url: https://google.github.io/volley/. (accessed: 09.06.2022).

1 // Replace with your network credentials

2 const char *WIFI_SSID = "";

3 const char *WIFI_PASSWORD = "";

4

5 // Replace with your Firebase API key

6 const char *API_KEY = "";

7

8 // Replace with your Firebase Realtime Database URL

9 String DATABASE_URL = "";

Listing 1: Pattern of the secrets.h file

1 {

2 "temperatureMin": 20

3 "temperatureMax": 30,

4 "phMin": 6.5,

5 "phMax": 7.5

6 }

Listing 2: JSON pattern of the request body for the /ranges endpoint

7

https://firebase.google.com/docs/database
https://github.com/mobizt/Firebase-ESP32
https://github.com/mobizt/Firebase-ESP32
https://firebase.google.com/docs/database/android/start
https://firebase.google.com/docs/database/android/start
https://platformio.org/
https://code.visualstudio.com/
https://google.github.io/volley/


1 {

2 "-N2Qy6IYbzSgi--YvBun": {

3 "brightness": 1,

4 "localIP": "172.20.10.11",

5 "manualMode": true,

6 "name": "Atlantis",

7 "ph": 7,

8 "phMax": 8,

9 "phMin": 6,

10 "ssid": "MEO-A8B113",

11 "temperature": 26,

12 "temperatureMax": 30,

13 "temperatureMin": 20

14 }

15 }

Listing 3: Firebase Realtime Database JSON tree with one aquarium stored example

1 {

2 "name": "Atlantis",

3 "manualMode": false,

4 "brightness": 0,

5 "temperature": 22,

6 "temperatureMin": 20,

7 "temperatureMax": 30,

8 "ph": 6,

9 "phMin": 6,

10 "phMax": 8

11 }

Listing 4: Pattern of a JSON response from an aquarium (ESP32) when requesting its data

8


	Introduction & Goals
	Functionalities
	Architecture
	Physical Simulator
	Overview
	Implementation
	Setup
	Execution with current and old variables per characteristic
	Execution with current, old, remote and local variables per characteristic
	General Execution
	Local Web Server


	Database
	Mobile Application
	Overview
	Implementation
	Aquarium List
	Aquarium Details
	Aquarium Ranges
	Interface Design


	Conclusion

