
6/2/22

1

Sistemas de
Computação Móvel e
Ubíqua
2021/2022

IoT and
Cloud
2021/2022

2

6/2/22

2

IoT: what is IoT
“The term Internet of Things generally refers to scenarios
where internet connectivity and computing capability
extends to objects, sensors and everyday items not
normally considered computers, allowing these devices to
generate, exchange and consume data with minimal
human intervention.”

https://www.internetsociety.org/wp-content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf

3

IoT: enabling technologies
Ubiquitous IP connectivity
◦ Low–cost, high–speed, pervasive IP network connectivity, especially

through wireless technology, makes almost everything “connectable’’
◦ Network and Transport protocols for ad-hoc, zero-config and low-power

Miniaturization and computing economics
◦ Computing and communications technology and sensor devices can be

incorporated into any small objects at very low cost.

Advances in cloud computing and its services
◦ Cloud computing can provide the resources needed to store and analyse

data in a way that makes it possible to extract information and
knowledge from this data.

4

6/2/22

3

Examples: Human & Home
Devices attached or inside the human body
◦ Devices (wearables and ingestibles) to monitor and maintain

human health and wellness; disease management, increased
fitness, higher productivity

Devices at homes and buildings
◦ Home controllers, including lights, appliances, gardening, and

security systems

5

Examples: Industry and Commerce
Manufacturing
◦ Monitoring of machines to guarantee they are working correctly
◦ Monitor products to identify quality issues

Retail
◦ Better management of inventories
◦ Smart shelves equipped with weight or RFID sensors for better

monitoring of inventory

6

6/2/22

4

Examples: Transports and Vehicles
Transports
◦ Monitoring of cargo – e.g. temperature of drugs, food, etc.
◦ Better management of inventories

Vehicles
◦ Condition-based maintenance, usage-based design, presales

analytics

7

Examples: Smart Cities
Adaptive traffic control

Environmental monitoring
Resource management – e.g. water, energy, waste, ...
…

8

6/2/22

5

IoT key challenges
Availability – anytime, anywhere, for anyone
Reliability – proper working, resilient to failures
Mobility – from devices (including users)
Performance – QoS, response time, cost
Scalability – more devices, functionality and users
Interoperability – heterogeneous devices, protocols, services
Security and Privacy – authentication, data and users’ privacy
Management – configuration, monitoring and deploy of
devices, services, etc

9

IoT - Platform
An IoT platform provides a comprehensive set of generic
services that facilitates the development, deployment,
maintenance, analytics as well as intelligent decision
making capabilities to an IoT application.

One of the issues that usually needs to be address is that
of communication among devices of multiple types
◦ There is a need of some common standards to hide heterogeneity

of various devices by providing a common working environment to
them.

10

6/2/22

6

From: Internet of Things: Architectures, Protocols, and Applications
https://www.hindawi.com/journals/jece/2017/9324035/

Three layer Five layer

IoT - Architecture

11

IoT - Three Layer Architecture
Perception layer is the physical layer, which has sensors for
sensing and gathering information about the environment. It
senses some physical parameters or identifies other smart
objects in the environment.

Network layer is responsible for connecting to other smart
things, network devices and servers. Its features are also used
for transmitting and processing sensor data.

Application layer is responsible for delivering application
specific services to the user. It defines various applications in
which the IoT can be deployed (eg. smart homes, smart cities,
smart health, …)

12

6/2/22

7

IoT - Five Layer Architecture
Perception layer …
Transport layer transfers the sensor data from the perception
layer to the processing layer and vice versa through networks
such as wireless, 4G, LAN, Bluetooth, RFID, NFC, etc. …
Processing layer stores, analyzes, and processes huge amounts
of data that comes from the transport layer. Manage and
provide a diverse set of services to the lower layers (employ
technologies such as databases, cloud computing, and big data
processing modules).
Application layer …
Business layer manages the whole IoT system, including
applications, business and profit models, and users’ privacy.

13

IoT - Five Layer Architecture

https://pure.qub.ac.uk/portal/files/81384964/PID2566391.pdf

14

6/2/22

8

IoT – Communication Infrastructure

https://ieeexplore.ieee.org/document/7955906

15

IoT - Elements

From: “Internet of Things: A Survey on Enabling Technologies, Protocols and Applications”

To deliver the expected IoT functionalities there are
several elements that have to be considered.

16

6/2/22

9

IoT – Elements (1)
Identification

◦ Identification methods are used to provide a clear identity for each
object within the network.

◦ Identification is crucial for the IoT to name and match services
with their demand.

Many identification methods are available for the IoT:
◦ Name – Object ID, eg. electronic product codes (EPC), ubiquitous

codes (uCode)
◦ Address – address within a communication network, eg. IPv6 and

IPv4

17

IoT – Elements (2)
Sensing
◦ The IoT sensing means gathering data from related objects within

the network.
◦ The collected data is analyzed to take specific actions based on

required services.
◦ The IoT sensors can be smart sensors, actuators or wearable

sensing devices.

◦ e.g., Arduino WiFi, Raspberry PI, embedded hardware, etc...,
devices that typically connect to a central management portal to
provide the required data by customers.

18

6/2/22

10

IoT – Elements (3)
Communication
◦ The IoT communication technologies connect heterogeneous

objects together to deliver specific smart services.
◦ Typically, the IoT nodes should operate using low power in the

presence of lossy and noisy communication links.

◦ Examples of communication protocols used: WiFi, Bluetooth,
ZigBee, GSM/3G/4G/5G, …

◦ More specific communication technologies are also used like RFID,
BLE (Bluetooth Low Energy), NFC (Near Field Communication), etc.

19

IoT – Elements (4)
Computation
◦ Processing units (e.g., microcontrollers) and software applications

represent the core and the computational ability of the IoT.
◦ Various hardware platforms for devices such as Arduino, ESP, Intel

Galileo, Raspberry PI, …
◦ A large part of computation in IoT systems is performed at the

edge (gateways) or cloud platforms

20

6/2/22

11

IoT – Elements (5)
Services
IoT services can be categorized under four classes:

Identity-Related - relate identified real-world objects to virtual-
world objects.
Information Aggregation - collect and summarize raw sensory
measurements.
Collaborative-Aware - act on top of Information Aggregation
Services and use the obtained data to make decision and react
accordingly
Ubiquitous - aim to provide Collaborative-Aware Services anytime
they are needed to anyone who needs them anywhere.

21

IoT – Elements (6)
Semantics / analytics
◦ Semantics in the IoT refers to the ability to extract knowledge

smartly by different machines to provide the required services.
◦ Knowledge extraction includes:

◦ discovering and using resources and modeling information.
◦ recognizing and analyzing data to make sense of the right decision to provide

the exact service.

◦ Semantic represents the brain of the IoT by sending demands to
the right resource.

22

6/2/22

12

IoT Platform main features
Device management

Integration
Security
Protocols for data collection
Analytics
Support for visualizations

23

IoT - Device Management
Maintains a list of connected devices and tracks their
operation status.
◦ Identity management is a key challenge and it has implication in

the security of the system.

Handles configuration and firmware (or any other
software).
Manages updates.
Provides device level error reporting and error handling.

24

6/2/22

13

IoT - Integration Support
Support for integration of different “things” and services is
an important feature expected from an IoT software
platform.
The API should provide access to the operations and data
that needs to be exposed from the IoT platform.
◦ APIs often use REST to achieve this aim.

25

IoT - Information Security
Millions of devices being connected with an IoT platform
means we need to anticipate a proportional number of
vulnerabilities.
The network connection between the IoT devices and the
IoT software platform needs to be encrypted with a strong
encryption mechanism.

e.g. TLS is used for that.

26

6/2/22

14

IoT - Information Security
Authentication is key for achieving security.

Common approach:
1. Devices have unique identities, which are registered in

the IoT platform;
2. Devices include cryptographic keys stored in hardware,

which are used to authenticate the device in the
platform.

27

IoT – Data Collection Protocols
Protocols used for data communication between the
components of an IoT software platform.
An IoT platform may need to be scaled to millions or even
billions of devices (nodes).
Lightweight communication protocols should be used to
enable low energy use as well as low network bandwidth
functionality.
May deal with heterogeneous devices and heterogeneous
physical communication technologies.

28

6/2/22

15

29

MQTT Protocol (note)
MQTT stands for MQ Telemetry Transport.
It is a publish/subscribe, extremely simple and lightweight
messaging protocol
◦ designed for constrained devices and low-bandwidth, high-latency

or unreliable networks.
◦ also attempting to ensure reliability and some degree of assurance

of delivery.

These principles also turn out to make the protocol ideal of
the emerging “machine-to-machine” (M2M) or “Internet of
Things” and for mobile applications where bandwidth and
battery power are at a premium.

http://mqtt.org/
30

6/2/22

16

IoT - Data Analytics
Data collected from the sensors connected to an IoT platform needs
to be analyzed (usually in a cloud)
Main types of analytics which can be conducted on IoT data: real-
time, batch, predictive, and interactive analytics.
Real-time analytics conduct online (on-the-fly) analysis of the
streaming data.
Batch analytics runs operations on an accumulated set of data. Thus,
batch operations run at scheduled time periods and may last for
several hours or days.
Predictive analytics is focused on making predictions based on
various statistical and machine learning techniques.
Interactive analytics runs multiple exploratory analysis on both
streaming and batch data.

31

IoT key challenges
Availability – anytime, anywhere, for anyone
Reliability – proper working, resilient to failures
Mobility – from devices (including users)
Performance – QoS, response time, cost
Scalability – more devices, functionality and users
Interoperability – heterogeneous devices, protocols, services
Security and Privacy – authentication, data and users’ privacy
Management – configuration, monitoring and deploy of
devices, services, etc

32

6/2/22

17

Edge Computing / Fog Computing
The Internet of Things (IoT) is generating an
unprecedented volume and variety of data.
Analyse the most time-sensitive data at the network edge
◦ close to where it is generated
◦ instead of sending vast amounts of IoT data to the cloud.

Send selected data to the cloud for
◦ historical analysis
◦ longer-term storage.

33

Edge Computing
As possible solution to some of the problems:
◦ Bring some compute and storage resources to the edge of the

network instead of relying on the cloud for everything.
◦ Improve response time.
◦ Reduce network and cloud resources loads.

34

6/2/22

18

Edge Computing
Fog computing - a term originally coined by Cisco.
Edge computing is more common currently
In contrast to the cloud, fog platforms have been described
as dense computational architectures at the network’s
edge.
Characteristics of such platforms reportedly include low
latency, location awareness and use of wireless access.
Benefits include real-time analytics and improved security.

35

The Fog Computing Paradigm: Scenarios and
Security Issues

Ivan Stojmenovic
SIT, Deakin University, Burwood, Australia

and
SEECS, University of Ottawa, Canada

Email: stojmenovic@gmail.com

Sheng Wen
School of Information Technology,

Deakin University,
220 Burwood Highway, Burwood, VIC, 3125, Australia

Email: wesheng@deakin.edu.au

Abstract—Fog Computing is a paradigm that extends Cloud
computing and services to the edge of the network. Similar
to Cloud, Fog provides data, compute, storage, and application
services to end-users. In this article, we elaborate the motivation
and advantages of Fog computing, and analyse its applications
in a series of real scenarios, such as Smart Grid, smart traffic
lights in vehicular networks and software defined networks. We
discuss the state-of-the-art of Fog computing and similar work
under the same umbrella. Security and privacy issues are further
disclosed according to current Fog computing paradigm. As an
example, we study a typical attack, man-in-the-middle attack,
for the discussion of security in Fog computing. We investigate
the stealthy features of this attack by examining its CPU and
memory consumption on Fog device.

Index Terms—Fog Computing, Cloud Computing, Internet of
Things, Software Defined Networks.

I. INTRODUCTION

C ISCO recently delivered the vision of fog computing
to enable applications on billions of connected devices,

already connected in the Internet of Things (IoT), to run
directly at the network edge [1]. Customers can develop,
manage and run software applications on Cisco IOx framework
of networked devices, including hardened routers, switches
and IP video cameras. Cisco IOx brings the open source Linux
and Cisco IOS network operating system together in a single
networked device (initially in routers). The open application
environment encourages more developers to bring their own
applications and connectivity interfaces at the edge of the
network. Regardless of Cisco’s practices, we first answer the
questions of what the Fog computing is and what are the
differences between Fog and Cloud.

In Fog computing, services can be hosted at end devices
such as set-top-boxes or access points. The infrastructure of
this new distributed computing allows applications to run as
close as possible to sensed actionable and massive data, com-
ing out of people, processes and thing. Such Fog computing
concept, actually a Cloud computing close to the ‘ground’,
creates automated response that drives the value.

Both Cloud and Fog provide data, computation, storage
and application services to end-users. However, Fog can be
distinguished from Cloud by its proximity to end-users, the
dense geographical distribution and its support for mobility
[2]. We adopt a simple three level hierarchy as in Figure 1.

Cloud

Fog

Core

Edge
Locations

Fig. 1. Fog between edge and cloud.

In this framework, each smart thing is attached to one of Fog
devices. Fog devices could be interconnected and each of them
is linked to the Cloud.

In this article, we take a close look at the Fog computing
paradigm. The goal of this research is to investigate Fog
computing advantages for services in several domains, such as
Smart Grid, wireless sensor networks, Internet of Things (IoT)
and software defined networks (SDNs). We examine the state-
of-the-art and disclose some general issues in Fog computing
including security, privacy, trust, and service migration among
Fog devices and between Fog and Cloud. We finally conclude
this article with discussion of future work.

II. WHY DO WE NEED FOG?

In the past few years, Cloud computing has provided many
opportunities for enterprises by offering their customers a
range of computing services. Current “pay-as-you-go” Cloud
computing model becomes an efficient alternative to owning
and managing private data centres for customers facing Web
applications and batch processing [3]. Cloud computing frees
the enterprises and their end users from the specification of
many details, such as storage resources, computation limitation
and network communication cost. However, this bliss becomes

Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems pp. 1–8

DOI: 10.15439/2014F503
ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1

cloudlets

36

6/2/22

19

Edge Computing
The fog can be viewed as a cloud, which is close to the
“ground”.
Data can be stored, processed, filtered, and analyzed on a
cloudlet or smart gateway at the edge of the network
before sending it to the cloud through expensive
communication media.
The fog and cloud paradigms can go together for a better
performance of IoT applications.

37

Edge Computing
Edge tasks:
◦ collecting sensor data, preprocessing and filtering
◦ communicating with the cloud, sending only necessary data
◦ provide computation, storage and networking to IoT devices
◦ provide cloud services closer to IoT
◦ monitoring power consumption of IoT devices
◦ monitoring activities and services of IoT devices
◦ ensuring security and privacy of data.

39

6/2/22

20

Edge Architecture - features
Low latency: less time is required to access computing and
storage resources on fog nodes (smart gateways).
Location awareness: as the edge is located on the edge of the
network, it is aware of the location of the applications and their
context. This is beneficial as context awareness is an important
feature of IoT applications.
Distributed nodes: edge nodes are distributed unlike
centralized cloud nodes. Multiple edge nodes need to be
deployed in distributed geographical areas in order to provide
services to mobile devices in those areas. (e.g. in vehicular
networks, deploying fog nodes at highways can provide low
latency data/video streaming to vehicles).

41

Edge Architecture - features
Mobility: the edge supports mobility as smart devices can
directly communicate with smart gateways present in their
proximity.
Real time response: edge nodes can give an immediate
response unlike the cloud, which has a much greater
latency.
Interaction with the cloud: edge nodes can further interact
with the cloud and communicate only that data, which is
required to be sent to the cloud.

42

6/2/22

21

IoT - Platforms
Summary
◦ IoT Platform connects the data network to the sensors and

provides insights using backend applications to make sense of
plethora of data generated by hundreds of sensors.

◦ IoT Platform fills the gap between the device sensors and data
networks.

There are many IoT platforms available, that provide
option to deploy IoT applications on the go.

43

IoT – Amazon Web Service

Amazon Web Services (AWS) provides trusted, cloud-
based solutions.
AWS IoT is a cloud platform that lets connected devices
easily and securely interact with cloud applications and
other devices.
AWS IoT can support billions of devices and trillions of
messages, and can process and route those messages to
AWS endpoints and to other devices reliably and
securely.
https://aws.amazon.com/iot-platform/

44

6/2/22

22

IoT – Google Cloud

Google Cloud IoT is a set of fully managed and integrated services
that allow you to easily and securely connect, manage, and ingest
IoT data from globally dispersed devices at a large scale, process
and analyze/visualize that data in real time, and implement
operational changes and take actions as needed.

https://cloud.google.com/solutions/iot/

45

IoT – Google Cloud

46

6/2/22

23

IoT – Microsoft Azure
Microsoft Azure is a growing collection of integrated cloud services that
developers use to build, deploy, and manage applications through
Microsoft global network of data centers.
Connect quickly and scale with efficiency:
◦ Easily scale from just a few sensors to millions of simultaneously connected devices.

Analyze and act on untapped data:
◦ Collect data from devices and sensors, and use built-in capabilities to visualize - and

act on - that data.
◦ Set up real-time analytics by using SQL-based syntax in a scalable, high-

performance.

Integrate:
◦ Easily integrate Azure IoT Suite with your systems and applications

Enhance security of IoT solutions with per-device authentication:
◦ Set up individual identities and credentials for each of the connected devices

https://azure.microsoft.com/en-us/overview/iot/

47

(Many) IoT applications are about time
series
Many IoT applications
register the values of a
variable (e.g. temperature)
with an associated
timestamp.
This is a Time Series.
There are currently many
databases specialized in
handling time series: time-
series databases.

Timestamp Value

2016-12-06 08:58:00 0.2

2016-12-06 08:58:05 0.3

2016-12-06 08:58:10 1.0

2016-12-06 08:58:15 5.0

2016-12-06 08:58:17 5.5

2016-12-06 08:58:20 4.2

0
2
4
6

06
/12
/2
0…

06
/12
/2
0…

06
/12
/2
0…

06
/12
/2
0…

06
/12
/2
0…

06
/12
/2
0…

Chart Title

49

6/2/22

24

Requirements: write dominate
It should always be possible to execute writes.
Write scale is huge - example from server monitoring

2,000 servers, VMs, containers, or sensor units
1,000 measurements per server/unit
every 10 seconds
= 17,280,000,000 distinct points per day

Read scale is smaller
◦ E.g. Facebook Gorilla reports “couple orders of magnitude lower”
◦ Automated systems watching “important” time series
◦ Dashboards for humans
◦ Human operators wishing to diagnose an observed problem

51

Requirements: state transitions
Identify issues that occur on monitored data.

TSDB should support fine-grained aggregations over short-
time windows.
TSDB should have the ability to identify state transitions
within tens of seconds.

52

6/2/22

25

Requirements: high availability and
fault tolerance
TSDB should support write and reads even in the presence
of network partitions.
TSDB should replicate data to survive server failure.

53

Other requirements
ACID guarantees are not a requirement, but...

…high percentage of writes must succeed at all times
(some may fail… typically not a problem under high load).
Why?
… recent data is of higher value than older data.

54

6/2/22

26

Design of a TSDB
Problem: scale of data is enormous… just do the math
considering you have N sensors, sampling values every T
seconds and each value occupies K bytes.
Solution 1: compression of the data

55

Time series compression
Compresses data points within a time series.

E.g.: Facebook Gorilla
Each data point is a pair of 64 bit values representing the
time stamp and value at that time.
Timestamps and values are compressed separately using
information about previous values – storing deltas is
cheaper.

56

6/2/22

27

Time series compression

Header:
March 24, 2015 02:00:00

Compressed data

March 24,
2015 02:01:02

Value:
12

Data stream

62 12

02:02:02 12

'10' : -2 '0'

64 14 64 9 1

02:03:02 24

Bit length

'0'

1

'11' : 11 : 1 :'1'

2 + 5 + 6 + 1

Previous Value

Value

XOR

12.0

24.0

-

0x4028000000000000

0x4038000000000000

0x0010000000000000

11 leading zeros, # of meaningful bits is 1

N-2 timestamp

N-1 timestamp

timestamp

02:00:00

02:01:02

02:02:02

-
Delta: 62

Delta: 60
Delta of deltas:

-2

a)

b) c)

Figure 2: Visualizing the entire compression algorithm. For this example, 48 bytes of values and time stamps
are compressed to just under 21 bytes/167 bits.

and e�cient scans of all data while maintaining constant
time lookup of individual time series.

The key specified in the monitoring data is used to uniquely
identify a time series. By sharding all monitoring data based
on these unique string keys, each time series dataset can be
mapped to a single Gorilla host. Thus, we can scale Go-
rilla by simply adding new hosts and tuning the sharding
function to map new time series data to the expanded set of
hosts. When Gorilla was launched to production 18 months
ago, our dataset of all time series data inserted in the past
26 hours fit into 1.3TB of RAM evenly distributed across 20
machines. Since then, we have had to double the size of the
clusters twice due to data growth, and are now running on
80 machines within each Gorilla cluster. This process was
simple due to the share-nothing architecture and focus on
horizontal scalability.

Gorilla tolerates single node failures, network cuts, and
entire datacenter failures by writing each time series value
to two hosts in separate geographic regions. On detecting a
failure, all read queries are failed over to the alternate region
ensuring that users do not experience any disruption.

4.1 Time series compression
In evaluating the feasibility of building an in-memory time

series database, we considered several existing compression
schemes to reduce the storage overhead. We identified tech-
niques that applied solely to integer data which didn’t meet
our requirement of storing double precision floating point
values. Other techniques operated on a complete dataset
but did not support compression over a stream of data as
was stored in Gorilla [7, 13]. We also identified lossy time se-
ries approximation techniques used in data mining to make
the problem set more easily fit within memory [15, 11], but

Gorilla is focused on keeping the full resolution representa-
tion of data.

Our work was inspired by a compression scheme for float-
ing point data derived in scientific computation. This scheme
leveraged XOR comparison with previous values to generate
a delta encoding [25, 17].

Gorilla compresses data points within a time series with
no additional compression used across time series. Each data
point is a pair of 64 bit values representing the time stamp
and value at that time. Timestamps and values are com-
pressed separately using information about previous values.
The overall compression scheme is visualized in Figure 2,
showing how time stamps and values are interleaved in the
compressed block.

Figure 2.a illustrates the time series data as a stream con-
sisting of pairs of measurements (values) and time stamps.
Gorilla compresses this data stream into blocks, partitioned
by time. After a simple header with an aligned time stamp
(starting at 2 am, in this example) and storing the first value
in a less compressed format, Figure 2.b shows that times-
tamps are compressed using delta-of-delta compression, de-
scribed in more detail in Section 4.1.1. As shown in Figure
2.b the time stamp delta of delta is �2. This is stored with
a two bit header (‘10’), and the value is stored in seven bits,
for a total size of just 9 bits. Figure 2.c shows floating-point
values are compressed using XOR compression, described in
more detail in Section 4.1.2. By XORing the floating point
value with the previous value, we find that there is only a
single meaningful bit in the XOR. This is then encoded with
a two bit header (‘11’), encoding that there are eleven lead-
ing zeros, a single meaningful bit, and the actual value (‘1’).
This is stored in fourteen total bits.

1819

57

Design of a TSDB
Problem: scale of data is enormous… just do the math
considering you have N sensors, sampling values every T
seconds and each value occupies K bytes.
Often there is no need to keep all data forever.
Solution 2: Discard data that is not necessary or summarize
old data.
Keep all data values only for the last K days. For older data,
just keep an aggregation – e.g. average, minimum,
maximum for each hour/day.

65

6/2/22

28

Design of a TSDB
Problem: need to write fast, read fast

Solution: new storage designs, keep indices in memory

66

Indexing time series
Need to support fast writes…

… and fast reads

Database indexes (B-trees) are not appropriate for time
series database
Time series databases indexes usually based on LSM trees

67

6/2/22

29

Log-structured merge tree (LSM-tree)
An LSM-tree consists of a hierarchy of storage levels that increase in
size.

The first level, L0, is stored in memory – used to buffer updates.
When this level gets full, it is merged with the other levels.

The other levels are stored on disk.

68

LSM-tree: operations (cont.)
A simple lookup consists in:
◦ Searching the value in L0
◦ If not found, continue searching in the following levels

◦ For efficiency, each level records a summary of the elements present, as a Bloom filter

Range lookups consist in:
◦ Executing a range search in every level
◦ Slow, but…

◦ If searching for recent values, they will be in L0 (if large enough)
◦ The way merging works makes values added at similar times to be in close levels

69

6/2/22

30

ũ������,QIOX['DWD��$OO�ULJKWV�UHVHUYHG����

�

'DWD�SHU�,'�LV�WXSOHV�RUGHUHG�E\�WLPH

WHPSHUDWXUH�GHYLFH GHY��EXLOGLQJ E��LQWHUQDO

WHPSHUDWXUH�GHYLFH GHY��EXLOGLQJ E��H[WHUQDO

�

�

� ����������������

� ����������������

Data model – e.g. InfluxDB

Data divided in a sequence of time series.

Each field has its unique identifier.

Key for a value includes the identifier of
the field and the timestamp.

ũ������,QIOX['DWD��$OO�ULJKWV�UHVHUYHG����

,QIOX['%�GDWD

WHPSHUDWXUH�GHYLFH GHY��EXLOGLQJ E��LQWHUQDO ���H[WHUQDO �������������

0HDVXUHPHQW 7DJV
�WDJVHW�DOO�
WRJHWKHU�

)LHOGV 7LPHVWDPS

ũ������,QIOX['DWD��$OO�ULJKWV�UHVHUYHG����

$UUDQJLQJ�LQ�.H\�9DOXH�6WRUHV

������������

.H\ 9DOXH

��

������������ ��

������������ ��
NH\�VSDFH
LV�RUGHUHG

71

From SQL schema to
InfluxDB schema

72

6/2/22

31

From SQL schema to
InfluxDB schemaThe identifiers

are used to
name the time
series – stored

only once

73

From SQL schema to
InfluxDB schemaThe data

consists in the
timestamp

and the value
of the data

74

6/2/22

32

Design of a TSDB
Challenge 3: need to import data from multiple source.

Solution: Open protocols – e.g. MQTT – and connection to
multiple sources.

75

Design of a TSDB
Challenge 4: need to provide
information to
users/operators.
Solution: Rich dashboards.

76

6/2/22

33

Bibliography
“Internet of Things: A Survey on Enabling Technologies, Protocols and
Applications”, Ala Al-Fuqaha, et al., IEEE Communications Surveys &
Tutorials, 2015. https://ieeexplore.ieee.org/document/7123563

“The Emergence of Edge Computing”, Mahadev Satyanarayanan, Computer
IEEE, 2017. https://ieeexplore.ieee.org/document/7807196

“Mobile cloud computing: A survey”, Niroshinie Fernando, et al., Future
Generation Computer Systems, 2014.
https://link.springer.com/article/10.1007/s11036-013-0477-4 (only the
topics on the slides)

Gorilla: A Fast, Scalable, In-Memory Time Series
◦ https://www.vldb.org/pvldb/vol8/p1816-teller.pdf

77

https://ieeexplore.ieee.org/document/7123563
https://ieeexplore.ieee.org/document/7807196
https://link.springer.com/article/10.1007/s11036-013-0477-4
https://www.vldb.org/pvldb/vol8/p1816-teller.pdf

