
Stream Processing

Lecture 6

2022/2023

Table of Contents

• Storage for Big Data
– File systems
• HDFS

– Databases
• Key-Value stores
• Time-series databases

• IoT

2

Context

• Big data systems need to store huge amounts
of data

• Cloud platforms need to be elastic and fault
tolerant, supporting the addition and removal
of nodes
– Storage systems must support the same features

• Traditional storage systems are not adequate
for such settings

Table of Contents

• Storage for Big Data
– File systems

• HDFS

– Databases
• Key-Value stores
• Time-series databases

• IoT

4

HDFS

• HDFS is a distributed file system used
extensively for storing data to be processed
with Hadoop, Spark, etc.

• Design derived from Google File System (GFS).

Goals of HDFS

• Very Large Distributed File System
– 10K nodes, 100 million files, 10PB

• Assumes Commodity Hardware
– Files are replicated to handle hardware failure

• Optimized for Batch Processing
– Data locations exposed so that computations can

move to where data resides
– Provides very high aggregate bandwidth

HDFS Model

• Single Namespace for entire cluster
• Data Coherency
– Write-once-read-many access model
– Client can only append to existing files

• Files are broken up into blocks
– Typically 64MB block size
– Each block replicated on multiple DataNodes

HDFS Architecture

• Name node
• Data nodes

HDFS Architecture: Name Node

• Manages File System
Namespace
– Maps a file name to a set

of blocks
– Maps a block to the

DataNodes where it
resides

• Cluster Configuration
Management

• Replication Engine for
Blocks

HDFS Architecture: Data Nodes

• A Block Server
– Stores data in the local

file system (e.g. ext3)
– Stores metadata of a

block (e.g. CRC)
– Serves data and

metadata to Clients

• Block Report
– Periodically sends a

report of all existing
blocks to the NameNode

HDFS Architecture: Write File
1. Create file on NameNode /get

information on where to write
block (when available)

2. Write block to data on data node
– Write is replicated in a pipeline
– Replicated in multiple racks

(default: 1 local, 2 remote)
3. Ack returned to client when

write complete in a quorum of
replicas

4. Notifies the NameNode that
write was completed

Namenode

 rack1 rack2
Datanodes

Client

1. Create file

2. Write
block

3. Write
ack

4. Complete

Replication Engine

• NameNode detects DataNode failures
– Chooses new DataNodes for new replicas
– Balances disk usage
– Balances communication traffic to

DataNodes

NameNode Failure

• A single point of failure
• Transaction Log stored in multiple directories
– A directory on the local file system
– A directory on a remote file system (NFS/

CIFS)

• Several solutions for high availability of the
NameNode have been proposed.

Amazon S3

• Object store, with flat namespace
– Can emulate hierarchical namespace by using

names with structure.
• Used as a replacement for file systems
– E.g. storing static objects in a web site.

• Provides high availability, by storing objects at
multiple replicas (in multiple devices and facilities
in a given region)
– Supports for inter-region replication.

Filesystem Events

• HDFS and Amazon S3 include monitoring
subsystems
• It is possible to interface to these subsystems to

process these notifications to drive applications

• Eg. It is possible to monitor files being created/
deleted/replicated and use a processing
framework to generate custom reports.

Table of Contents

• Storage for Big Data
– File systems

• HDFS

– Databases
• Key-Value stores
• Time-series databases

• IoT

16

Key-value databases

• Data model: data is stored as key-value pairs.
• API (variants exist):

– get(key) -> value
– put(key, value)

• Some systems provide secondary indexes for faster retrieval of
data.

• Simpler model (compared to RDB SQL) simplifies scalable designs.

• Examples: Cassandra, DynamoDB.

Key-value databases

• Interfacing with Processing Streams
• Connectors allow KV Databases to be used

as sinks for stream processing results

• When programmable triggers are available,
such as in Cassandra, it is possible to feed
KV DB events to Kafka; acting as the source
of stream processing applications

Table of Contents

• Storage for Big Data
– File systems
• HDFS

– Databases
• Key-Value stores
• Time-series databases

• IoT

19

What are time-series?

• A “Time Series is an ordered
sequence of values of a variable
(e.g. temperature) with an
associated timestamp”.
– Time series can be obtained at

equally spaced time intervals or
not.

• “Sequence of discrete-time data,
ordered on a timeline.”

• “Time series data are simply
measurements or events that are
tracked, monitored,
downsampled, and aggregated
over time”.

Timestamp Value

2016-12-06 08:58:00 0.2

2016-12-06 08:58:05 0.3

2016-12-06 08:58:10 1.0

2016-12-06 08:58:15 5.0

2016-12-06 08:58:17 5.5

2016-12-06 08:58:20 4.2

Chart Title

0

1,5

3

4,5

6

12/6/16 8:58 12/6/16 8:58 12/6/16 8:58

Why are time series important?

• First-generation time series focused mainly on
financial markets.

• Current drivers:
– Monitoring of computing infrastructures in a

cluster: performance monitoring, network data;
– Monitoring of physical world – IoT, sensor

networks, etc.

• Emergence of Time-series Databases (TSDB)

Time-series databases popularity

Requirements: writes dominate

• It should always be possible to execute writes.
• Write scale is huge - example from server monitoring

2,000 servers, VMs, containers, or sensor units
1,000 measurements per server/unit
every 10 seconds
= 17,280,000,000 distinct points per day

• Read scale is smaller
– E.g. Facebook Gorilla reports “couple orders of magnitude lower”
– Automated systems watching “important” time series
– Dashboards for humans
– Human operators wishing to diagnose an observed problem

Requirements: state transitions

• Identify issues that occur on monitored data.
• TSDB should support fine-grained aggregations

over short-time windows.
• TSDB should have the ability to identify state

transitions within tens of seconds.

Requirements: high availability and fault
tolerance

• TSDB should support write and reads even in
the presence of network partitions.

• TSDB should replicate data to survive server
failure.

Other requirements

• ACID guarantees are not a requirement, but...
• …high percentage of writes must succeed at all

times (some may fail… typically not a problem
under high load). Why?

• … recent data is of higher value than older
data.

Design of a TSDB

• Problem: scale of data is enormous
• Solution: compression of the data

Time series compression

• Compresses data points within a time series.
• e.g.: Facebook Gorilla
• Each data point is a pair of 64 bit values

representing the time stamp and value at
that time.

• Timestamps and values are compressed
separately using information about previous
values – storing deltas is cheaper.

Time series compression

Time series compression

Start by storing
a base date

Time series compression

Store the delta
from the base
date: 14 bits

Time series compressionStore the delta
from the delta: 9
bits

Time series compression
Same delta: 1 bit

Time series compression

Store the initial
value: 64 bits

Time series compression
Store the same
value: 1 bit only

Time series compression
Store a delta
from the
previous value

Design of a TSDB

• Problem: need to write fast, read fast
• Solution: new storage designs, keep indices in

memory

Indexing time series

• Need to support fast writes…
• … and fast reads

Indexing time series (cont.)

• Database indexes (B-trees) are not appropriate
for time series databases

• Time series databases indexes usually based on
LSM trees

Log-structured merge tree (LSM-tree)

• An LSM-tree consists of a hierarchy of storage levels that
increase in size.

• The first level, L0, is stored in memory – used to buffer
updates. When this level gets full, it is merged with the other
levels.

• The other levels are stored on disk.

LSM-tree: operations (cont.)

• A simple lookup consists in:
– Searching the value in L0
– If not found, continue searching in the following levels

• For efficiency, each level records a summary of the elements
present, as a Bloom filter

• Range lookups consist in:
– Executing a range search in every level
– Slow, but…

• If searching for recent values, they will be in L0 (if large
enough)

• The way merging works makes values added at similar times
to be in close levels

LSM-based storage in a TSDB (e.g. Influx
DB)

© 2017 InfluxData. All rights reserved. 65

awesome time series data

WAL (an append only file)

in memory index

on disk index

(periodic flushes)

How to explore this for indexing in TSDB
– e.g. Influx DB

Data divided in a sequence of time
series.
Each field has its unique identifier.

 Key for a value includes the
identifier of the field and the

timestamp.

© 2017 InfluxData. All rights reserved. 37

Arranging in Key/Value Stores

1,1443782126

Key Value

80

2,1443782126 18
1,1443782127 81key space

is ordered

Influx DB ecosystem

InfluxDB 2.0

• InfluxDB 2.0 has an interface with integrated
querying and displaying of information
– Also allows to export data for being displayed by

other systems – e.g., Grafana (Dashboards).

Weblogs example: kafka + telegraf +
influxdb

Weblogs example: kafka + telegraf +
influxdb

Top 3 IPs displayed as
a scatered plot.

Weblogs example: kafka + telegraf +
influxdb

Top 3 IPs displayed as
a table.

Weblogs example: kafka + telegraf +
influxdb

Comparing top 3 IPs
in window with the
global value for those
IPs.

First example

• List the top-3 IP sources with more accesses in
windows of 30 seconds, every 10 seconds, for
the last 15 minutes.

Querying data
• from (bucket: name)

– Select the bucket that stores the data. A bucket may have
multiple time series.
• In the weblog, there is one time series per property (IP,dur,etc.)

from(bucket: "weblog")

Querying data (cont.)
• range(start: time[, end: time])

– Select the data to be used. e.g.
• (start: -5m) : the last 5 minute
• (start: v.timeRangeStart, stop: v.timeRangeStop) : selected range

from(bucket: "weblog")
 |> range(start: -5m)

Querying data (cont.)
• filter (fn)

– Filters the data to be queried.
• (fn: (r) => r._field == "IP") : selects the time series of with the IP

addresses

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")

Querying data (cont.)
• window(every: time, period: time,…)

– Group data in windows: every specifies the time between
windows; period specified the window duration, etc.

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")
 |> window(every: 10s, period: 30s)

Querying data (cont.)
• window(every: time, period: time,…)

– Group data in windows: every specifies the time between
windows; period specified the window duration, etc.

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")
 |> window(every: 10s, period: 30s)

Querying data (cont.)
• group (columns: […], mode: "by")

– Group data by the values of a column for executing an
aggregation.
• Modes: by and except.

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")
 |> window(every: 10s, period: 30s)
 |> group(columns: ["_start", "_stop", "_value"], mode:"by")

Querying data (cont.)
• count (column: name)

– Counts the number of records in the group and outputs the
value in the given column.

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")
 |> window(every: 10s, period: 30s)
 |> group(columns: ["_start", "_stop", "_value"], mode:"by")
 |> count(column: "_field")

Querying data (cont.)
• count (column: name)

– Counts the number of records in the group and outputs the
value in the given column.

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")
 |> window(every: 10s, period: 30s)
 |> group(columns: ["_start", "_stop", "_value"], mode:"by")
 |> count(column: "_field")

Querying data (cont.)
• top (n:3, columns: […])

– Returns the top n element, giving the value of the given
columns.
• E.g. for computing the top element of each window, group by

window _start first

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")
 |> window(every: 10s, period: 30s)
 |> group(columns: ["_start", "_stop", "_value"], mode:"by")
 |> count(column: "_field")
 |> group(columns: ["_start"], mode:"by")
 |> top(n:3,columns:["_field"])

Querying data (cont.)
• top (n:3, columns: […])

– Returns the top n element, giving the value of the given
columns.
• E.g. for computing the top element of each window, group by

window _start first

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")
 |> window(every: 10s, period: 30s)
 |> group(columns: ["_start", "_stop", "_value"], mode:"by")
 |> count(column: "_field")
 |> group(columns: ["_start"], mode:"by")
 |> top(n:3,columns:["_field"])

Querying data (cont.)
• group ()

– Ungroup data.

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")
 |> window(every: 10s, period: 30s)
 |> group(columns: ["_start", "_stop", "_value"], mode:"by")
 |> count(column: "_field")
 |> group(columns: ["_start"], mode:"by")
 |> top(n:3,columns:["_field"])
 |> group()

Querying data (cont.)
• rename(columns: …)

– Renames column names.

from(bucket: "weblog")
 |> range(start: -5m)
 |> filter(fn: (r) => r._field == "IP")
 |> window(every: 10s, period: 30s)
 |> group(columns: ["_start", "_stop", "_value"], mode:"by")
 |> count(column: "_field")
 |> group(columns: ["_start"], mode:"by")
 |> top(n:3,columns:["_field"])
 |> group()
 |> rename(columns: {_value : "IP", _field : "count"})

Build a scatter plot with this data

Tasks

• Storing all data forever is not an option, but
still interesting to store aggregate information.

• Possible to define a task that periodically
downsamples data, by computing aggregate
values from data in one bucket and stores
them in other bucket.

Table of Contents

• Storage for Big Data
– File systems

• HDFS

– Databases
• Key-Value stores
• Time-series databases

• IoT

65

Internet of things (definition)

“Things are active participants in business, information
and social processes where they are enabled to interact
and communicate among themselves and with the
environment by exchanging data and information sensed
about the environment, while reacting autonomously to
the real/physical world events and influencing it by
running processes that trigger actions and create services
with or without direct human intervention.”

H. Sundmaeker, P. Guillemin, P. Friess, S. Woelfflé, Vision and challenges for
realising the Internet of Things, Cluster of European Research Projects on the
Internet of Things—CERP IoT, 2010.

IoT challenges

• IoT creates of an unprecedented amount of
data.

• Applications act based on input data.
• Challenges
– How to manage data

• Store all data, aggregations, expiration, etc.

– How to process data
• Centralized, distributed?

IoT platforms

• IoT is emerging as a key infrastructure in many
domains

• Architecture requirements
– Interconnect many heterogeneous devices
– Collect data from multiple sources
– Connect several services

IoT approaches: cloud centric

• Connect devices directly to the cloud
– Every data is sent to the cloud
– All computing is performed in the cloud

• Use “standard” stream processing systems/
analytics to process incoming data

• Use “time series” databases to manage sensor
data

IoT approaches: edge / fog computing

• Execute computations closer to the devices
– “Powerful” edge devices process data and execute

actions
– Only part of the data is propagated to the cloud

• Analytics / ML at the edge?
– Models built on the cloud
– Models used at the edge to classify / execute

actions

Some research questions

• How to distribute computations across
multiple devices?

• How to minimize resource consumption –
network, storage?

• How to build / evolve models without
propagating all data to the cloud?

• How to execute computation while keeping
some degree of privacy?

Bibliography

• HDFS Architecture. Dhruba Borthakur.
– http://svn.apache.org/repos/asf/hadoop/common/tags/

release-0.19.2/docs/hdfs_design.pdf

• Gorilla: A Fast, Scalable, In-Memory Time Series
– https://www.vldb.org/pvldb/vol8/p1816-teller.pdf

• Too detailed references:
– Log-structured merge trees

• https://www.cs.umb.edu/~poneil/lsmtree.pdf

– https://docs.influxdata.com/influxdb/v1.7/concepts/
storage_engine/

Acknowledgments

• Some images from:
– Inside the InfluxDB Storage Engine. Gianluca

Arbezzano
– Tuomas Pelkonen, et. al. Gorilla: A Fast, Scalable,

In-Memory Time Series Database. VLDB’15.

