
Stream Processing

Lecture 5

2022/2023

Table of Contents

• Continuous processing
– Apache Storm

– Spark Streaming

– Apache Flink

2

Continuous stream processing

– Storm : A decentralized continuous data
processing system [designed at Twitter]

– Trident : High level framework for assembling
Storm topologies (standing queries)

Concepts - topology

• Topology - a directed graph that embodies the
logic for a realtime data-flow application
– Vertices - represent a data computation

• (spouts + bolts)

– Edges - represent the data flow between components
– Cycles are allowed
– Runs continuously

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Concepts: stream and tuples

• A stream is an unbounded sequence of tuples
that is processed and created in parallel in a
distributed fashion.

• Streams are defined with a schema that
names the fields in the stream's tuples.

Concepts: spout

• A spout is a source of streams in a topology.
– Spouts read tuples from an external source and

emit tuples into the topology – e.g. Kafka queue.
– can emit more than one stream [nextTuple]
– must not block when asked to emit the next

tuple

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Concepts: spout

• Spouts can be reliable or unreliable.
– A reliable spout is capable of replaying a tuple if

its processing failed.

– An unreliable spout forgets about the tuple as
soon as it is emitted.

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Concepts: bolts

• Bolts process incoming tuples and emit tuples
to the next stage.
– In Storm, all processing is done in bolts.

• Bolts can do anything from filtering, functions,
aggregations, joins, talking to databases, and
more.

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Concepts: bolts

• Doing complex stream transformations often
requires multiple steps and thus multiple
bolts.

• Inputs are explicitly declared by subscribing
streams emitted by other components
(spouts, bolts).

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Storm execution

• Tasks - an instance of a spout or bolt; the
level of parallelism is determined by the
number of tasks chosen/hinted.

• A stream grouping defines how that stream
should be partitioned among the bolt's tasks.

• The logical topology is mapped into a physical
topology composed of multiple tasks.

Example: word count

• Logical topology

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Example: word count

• Logical topology

• Physical topology

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Split
Line
Bolt

Split
Line
Bolt

Split
Line
Bolt

Split
Line
Bolt

Word
Count
Bolt

Word
Count
Bolt

Word
Count
Bolt

Word
Count
Bolt

Report
Bolt

Report
Bolt

Stream grouping (partial)

• Shuffle grouping: Tuples are randomly distributed
across the bolt's tasks.

• Fields grouping: The stream is partitioned by the
fields specified in the grouping. E.g.: if the stream
is grouped by the ”word" field, tuples with the
same ”word" will go to the same task.

• All grouping: The stream is replicated across all
the bolt's tasks.

• Global grouping: The entire stream goes to a
single one of the bolt's tasks. Specifically, it goes
to the task with the lowest id.

Storm: Reliability (1)

• Every spout tuple will be fully processed by
the topology
– tuples are tracked across the topology

– a timeout causes a spout tuple to be replayed

– the application/bolt must manage dependencies
among tuples, upon emitting.

– the application/bolt must ack the tuples to signal
they have been fully processed

Storm: Reliability (2)

• Storm provides two basic tuple processing
semantics under failures

•at least once - a tuple is guaranteed to be
processed at least once; idempotence must be
implemented by the application

•at most once (best effort) - a tuple is processed
once or, not at all, in case of failure

•also available in later versions [Trident]

•exactly once - expensive; provided via
transactional-topologies and Trident; involves
tuple batches and issuing “DB” transactions.

Storm: Reliability (3)

• Stateless bolts forget everything upon a failure
– replaying lost tuples is not enough for correct

results
• (consider sliding windows, moving averages, etc)

– there is no automatic provision for checkpointing
or to recreate state prior to the failure

– Stateful topologies can be achieved via Trident; or
interfacing with external (in-memory) databases
(ad hoc)

Programming Example (WordCount)

NetSpout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Emitted Tuple Fields

line word word, count

Method invoked when reading
new data. In this case, reads a
line from the socket.

public class NetSpout extends BaseRichSpout {
private BufferedReader reader;
private SpoutOutputCollector collector;
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields(”line"));
}
public void open(Map config, TopologyContext context, SpoutOutputCollector collector) {

this.collector = collector;
reader = new BufferedReader(new InputStreamReader(new Socket(“localhost”,7070)));

}
public void nextTuple() {

try {
this.collector.emit(reader.readLine());

} catch(IOException e) {
// do nothing

}
}

}

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

public class SplitSentenceBolt extends BaseRichBolt{

private OutputCollector collector;

public void prepare(Map config, TopologyContext context, OutputCollector collector) {

this.collector = collector;

}

public void execute(Tuple tuple) {

String line = tuple.getStringByField(”line");

String[] words = line.split(" ");

for(String word : words){

this.collector.emit(new Values(word));

}

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word"));

}

}

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Defines how to process
a line. In this case, splits
the line and emits each
word in a tuple.

public class SplitSentenceBolt extends BaseRichBolt{

private OutputCollector collector;

public void prepare(Map config, TopologyContext context, OutputCollector collector) {

this.collector = collector;

}

public void execute(Tuple tuple) {

String line = tuple.getStringByField(”line");

String[] words = line.split(" ");

for(String word : words){

this.collector.emit(new Values(word));

}

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word"));

}

}

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

public class WordCountBolt extends BaseRichBolt{
private OutputCollector collector;
private HashMap<String, Long> counts = null;
public void prepare(Map config, TopologyContext context, OutputCollector collector) {

this.collector = collector;
this.counts = new HashMap<>();

}
public void execute(Tuple tuple) {

String word = tuple.getStringByField("word");
Long count = this.counts.get(word);
if(count == null){

count = 0L;
}
count++;
this.counts.put(word, count);
this.collector.emit(new Values(word, count));

}
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word", "count"));
}

}

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Stores the running
counts.

Defines how to process
a word. In this case,
updates the count for
the word and forwards
it to the next Bolt.

public class WordCountBolt extends BaseRichBolt{
private OutputCollector collector;
private HashMap<String, Long> counts = null;
public void prepare(Map config, TopologyContext context, OutputCollector collector) {

this.collector = collector;
this.counts = new HashMap<>();

}
public void execute(Tuple tuple) {

String word = tuple.getStringByField("word");
Long count = this.counts.get(word);
if(count == null){

count = 0L;
}
count++;
this.counts.put(word, count);
this.collector.emit(new Values(word, count));

}
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word", "count"));
}

}

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

public class ReportBolt extends BaseRichBolt {

private TreeMap<String, Long> counts = null;

public void prepare(Map config, TopologyContext context, OutputCollector collector) {

this.counts = new TreeMap<>();

}

public void execute(Tuple tuple) {

String word = tuple.getStringByField("word");

Long count = tuple.getLongByField("count");

this.counts.put(word, count);

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {

// this bolt does not emit anything

}

public void cleanup() {

System.out.println("--- FINAL COUNTS ---");

for (Map.Entry<String, Count> e : counts.entrySet())

System.out.println(e.getKey() + " : " + e.getValue());

}

}

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Defines what to do
when finishing. In this
case, just dump to the
console.

Report
Bolt

Stores the running
counts.

Defines how to process
a new tuple. In this
case, just updates the
count associated with
each word.

public class ReportBolt extends BaseRichBolt {

private TreeMap<String, Long> counts = null;

public void prepare(Map config, TopologyContext context, OutputCollector collector) {

this.counts = new TreeMap<>();

}

public void execute(Tuple tuple) {

String word = tuple.getStringByField("word");

Long count = tuple.getLongByField("count");

this.counts.put(word, count);

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {

// this bolt does not emit anything

}

public void cleanup() {

System.out.println("--- FINAL COUNTS ---");

for (Map.Entry<String, Count> e : counts.entrySet())

System.out.println(e.getKey() + " : " + e.getValue());

}

}

Net Spout
Split
Line
Bolt

Word
Count
Bolt

NetSpout spout = new NetSpout();

SplitLineBolt splitBolt = new SplitLineBolt();

WordCountBolt countBolt = new WordCountBolt();

ReportBolt reportBolt = new ReportBolt();

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(“net-spout”, spout);

// NetSpout --> SplitLineBolt

builder.setBolt("split-bolt", splitBolt).shuffleGrouping(“net-spout”);

// SplitLineBolt --> WordCountBolt

builder.setBolt("count-bolt", countBolt).fieldsGrouping("split-bolt", new Fields("word"));

// WordCountBolt --> ReportBolt

builder.setBolt("report-bolt", reportBolt).globalGrouping("count-bolt");

Config config = new Config();

LocalCluster cluster = new LocalCluster();

cluster.submitTopology(TOPOLOGY_NAME, new Config(), builder.createTopology());

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Defines how to connect
elements. In this case,
lines are shuffled by
the split line bolts.

NetSpout spout = new NetSpout();

SplitLineBolt splitBolt = new SplitLineBolt();

WordCountBolt countBolt = new WordCountBolt();

ReportBolt reportBolt = new ReportBolt();

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(“net-spout”, spout);

// NetSpout --> SplitLineBolt

builder.setBolt("split-bolt", splitBolt).shuffleGrouping(“net-spout”);

// SplitLineBolt --> WordCountBolt

builder.setBolt("count-bolt", countBolt).fieldsGrouping("split-bolt", new Fields("word"));

// WordCountBolt --> ReportBolt

builder.setBolt("report-bolt", reportBolt).globalGrouping("count-bolt");

Config config = new Config();

LocalCluster cluster = new LocalCluster();

cluster.submitTopology(TOPOLOGY_NAME, new Config(), builder.createTopology());

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Defines how to connect
elements. In this case,
all tuples with the same
word go to the same
bolt.

NetSpout spout = new NetSpout();

SplitLineBolt splitBolt = new SplitLineBolt();

WordCountBolt countBolt = new WordCountBolt();

ReportBolt reportBolt = new ReportBolt();

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(“net-spout”, spout);

// NetSpout --> SplitLineBolt

builder.setBolt("split-bolt", splitBolt).shuffleGrouping(“net-spout”);

// SplitLineBolt --> WordCountBolt

builder.setBolt("count-bolt", countBolt).fieldsGrouping("split-bolt", new Fields("word"));

// WordCountBolt --> ReportBolt

builder.setBolt("report-bolt", reportBolt).globalGrouping("count-bolt");

Config config = new Config();

LocalCluster cluster = new LocalCluster();

cluster.submitTopology(TOPOLOGY_NAME, new Config(), builder.createTopology());

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

NetSpout spout = new NetSpout();

SplitLineBolt splitBolt = new SplitLineBolt();

WordCountBolt countBolt = new WordCountBolt();

ReportBolt reportBolt = new ReportBolt();

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(“net-spout”, spout);
// NetSpout --> SplitLineBolt

builder.setBolt("split-bolt", splitBolt).shuffleGrouping(“net-spout”);

// SplitLineBolt --> WordCountBolt

builder.setBolt("count-bolt", countBolt).fieldsGrouping("split-bolt", new Fields("word"));

// WordCountBolt --> ReportBolt

builder.setBolt("report-bolt", reportBolt).globalGrouping("count-bolt");

Config config = new Config();

LocalCluster cluster = new LocalCluster();

cluster.submitTopology(TOPOLOGY_NAME, new Config(), builder.createTopology());

Net Spout
Split
Line
Bolt

Word
Count
Bolt

Report
Bolt

Defines how to connect
elements. In this case,
all tuples are sent to a
single bolt.

Trident

• A high-level abstraction for doing realtime
computing on top of Storm
– (much like Apache Pig is for MapReduce)

– extends Storm with primitives for doing stateful,
incremental processing on top of any
database or persistence store

– exactly-once semantics, under failures

Trident : execution

• Trident topologies compile to efficient
Storm topologies
– the goal is to avoid unnecessary network

shuffles (i.e., moving data around)

Table of Contents

• Continuous processing
– Apache Storm

– Spark Streaming

– Apache Flink

31

pause

Continuous mode in Spark Streaming

• Continuous processing is an experimental
streaming execution mode that enables low (~1
ms) end-to-end latency with at-least-once, no
fault-tolerance guarantees.

• Supported operation (> v. 2.4.5):
– Only projections (select, map, flatMap, mapPartitions,

etc.) and selections (where, filter, etc.) are supported.

– Aggregations are not supported.

Continuous mode in Spark Streaming
spark \
 .readStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers",\

 "host1:port1,host2:port2") \
 .option("subscribe", "topic1") \
 .load() \
 .selectExpr("CAST(key AS STRING)",\

 "CAST(value AS STRING)") \
 .writeStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers", \

 "host1:port1,host2:port2") \
 .option("topic", "topic1") \
 .trigger(continuous="1 second") \
 .start()

Only change necessary
to the program.
1 second is the
checkpointing interval.

Table of Contents

• Continuous processing
– Apache Storm

– Spark Straming

– Apache Flink

35

Apache Flink

Stateful Computations over Data Streams

Apache Flink

• In many cases, data can be seen as a stream of events. We
can identify two dimensions:

• Bounded vs. unbounded streams:
– Bounded streams have a defined start and end; size is limited.

– Unbounded streams have a start but no defined end; it is not
possible to wait for all input data to arrive.

• Real-time vs. recorded streams:
– Real-time refers to processing the stream as it is generated.

– Recorded refers to persisting the stream before processing it.

Apache Flink (2)

• Batch processing corresponds to processing a
bounded recorded stream.
– Can be processed by ingesting all data before

performing any computations;
– Ordered ingestion is not required, as a bounded

dataset can always be sorted.
• Stream processing corresponds to processing an

unbounded real-time stream.
– Do not terminate and provide data as it is generated;
– Must be continuously processed;
– It is not possible to wait for all input data to arrive.

Apache Flink (2)

• Apache Flink is an open source platform for
distributed stream processing.

Programming model: abstraction

• Stream is a (potentially never-ending) flow of
data records

• Transformation is an operation that takes one
or more streams as input, and produces one
or more output streams as a result.

Programming model: execution

• Programs are mapped to streaming
dataflows, consisting of streams and
transformation operators.

• Each dataflow starts with one or
more sources and ends in one or more sinks.

• The dataflows resemble arbitrary directed
acyclic graphs (DAGs).

Parallel dataflows

• During execution, a stream has one or
more stream partitions, and each operator has
one or more operator subtasks.

• The operator subtasks are independent and
execute in different threads/machines.

• The number of operator subtasks is
the parallelism of the operator. The parallelism of
a stream is always that of its producing operator.
Different operators of the same program may
have different levels of parallelism.

Parallel dataflows (cont.)

• Communication between operators
– One-to-one

– Redistributing

Concepts: streams

• Flink can handle any kind of stream.
• Bounded and unbounded streams: Streams

can be unbounded or bounded, i.e.,
fixed-sized data sets.

• Real-time and recorded streams: All data are
generated as streams. There are two ways to
process the data. Processing it in real-time as
it is generated or persisting the stream to a
storage system and processed it later.

State

• Every non-trivial
streaming application is
stateful.

• Any application that
runs basic business logic
needs to remember
events or intermediate
results.

State (2)

• Multiple State Primitives: Flink supports different data types.

• Pluggable State Backends: Application state is managed in
and checkpointed by a pluggable state backend.

• Exactly-once state consistency: Flink’s checkpointing and
recovery algorithms guarantee the consistency of application
state in case of a failure.

• Very Large State: Flink is able to maintain application state of
several terabytes due to its asynchronous and incremental
checkpoint algorithm.

• Scalable Applications: Scales stateful applications by
redistributing the state to more or fewer workers.

Local State

• Task state is maintained in memory or, if the
state size exceeds the available memory, in
access-efficient on-disk data structures.

• Hence, tasks perform all computations by
accessing local, often in-memory, state
yielding very low processing latencies.

Local State (2)

• Flink guarantees exactly-once state
consistency in case of failures by periodically
and asynchronously checkpointing the local
state to durable storage.

Fault tolerance

• Combines stream replay and checkpointing.
• A checkpoint is related to a specific point in each

of the input streams along with the corresponding
state for each of the operators.

• A streaming dataflow can be resumed from a
checkpoint while maintaining
consistency (exactly-once processing
semantics) by restoring the state of the operators
and replaying the events from the point of the
checkpoint.

Time

• Processing-time Mode: Applications that
performs computations as triggered by the
wall-clock time of the processing machine.

• Event-time Mode: Applications that process
streams based on timestamps of the events.

– Watermark Support: Flink employs watermarks to
reason about time in event-time applications.

– Late Data Handling: Flink features multiple options to
handle late events, such as rerouting them via side
outputs and updating previously completed results.

Windows

• Windows allow to aggregate events from a
defined time-period.

Example

Layered architecture

• Possible to program using different levels of
abstractions

Layered architecture

• Possible to program using different levels of
abstractions (similar to Spark Streaming).

Only API available in Python.

Datastream API

• Provides programming abstractions at a level
similar to Spark Core

ProcessFunction

• ProcessFunctions are the most expressive
interfaces.
– Process individual events from input streams or

window

– Fine-grain control over time

– Can arbitrarily modify its state and register timers
that trigger a callback

Bibliography

• Apache Flink: Stream and batch processing in a
single engine. P. Carbone, et. al. IEEE Data
Engineering Bulletin. 38.

• https://flink.apache.org/
• https://storm.apache.org/
• Storm @Twitter. Ankit Toshniwal, et. al.

Sigmod’14.

• Acknowledgments: some images in this slide deck
are from Flink and Storm sites.

https://flink.apache.org/
https://storm.apache.org/

