Stream Processing

Lecture 5

2022/2023

Table of Contents

* Continuous processing
— Apache Storm

— Spark Streaming
— Apache Flink

Continuous stream processing

— Storm : A decentralized continuous data
processing system [designed at Twitter]

— Trident : High level framework for assembling
Storm topologies (standing queries)

Concepts - topology

Split Word Report
Net Spout |:> Line I:> Count I:> let
Bolt Bolt

* Jopology - a directed graph that embodies the
logic for a realtime data-flow application

— Vertices - represent a data computation
* (spouts + bolts)

— Edges - represent the data flow between components
— Cycles are allowed
— Runs continuously

Concepts: stream and tuples

* A stream is an unbounded sequence of tuples
that is processed and created in parallel in a
distributed fashion.

e Streams are defined with a schema that
names the fields in the stream's tuples.

Concepts: spout

Split Word Report
Net Spout |:> Line I:> Count I:> let
Bolt Bolt

* A spout is a source of streams in a topology.

— Spouts read tuples from an external source and
emit tuples into the topology — e.g. Kafka queue.

— can emit more than one stream [nextTuple]

— must not block when asked to emit the next
tuple

Concepts: spout

Split Word Report
Net Spout |:> Line I:> Count I:> let
Bolt Bolt

e Spouts can be reliable or unreliable.

— A reliable spout is capable of replaying a tuple if
its processing failed.

— An unreliable spout forgets about the tuple as
soon as it is emitted.

Concepts: bolts

Split Word Report
Net Spout |:> Line I:> Count I:> let
Bolt Bolt

* Bolts process incoming tuples and emit tuples
to the next stage.

— In Storm, all processing is done in bolts.
* Bolts can do anything from filtering, functions,

aggregations, joins, talking to databases, and
more.

Concepts: bolts

Split Word Report
Net Spout |:> Line I:> Count I:> let
Bolt Bolt

* Doing complex stream transformations often
requires multiple steps and thus multiple
bolts.

* Inputs are explicitly declared by subscribing
streams emitted by other components
(spouts, bolts).

Storm execution

» Jasks - an instance of a spout or bolt; the
level of parallelism is determined by the
number of tasks chosen/hinted.

* A stream grouping defines how that stream
should be partitioned among the bolt's tasks.

* The logical topology is mapped into a physical
topology composed of multiple tasks.

Example: word count

* Logical topology

Split Word Report
Net Spout I:> Line I:> Count I:> let
Bolt Bolt

Example: word count

* Logical topology

Split Word Report
Net Spout [Zi> Line EZ$> Count [Z$> an
Bolt Bolt

* Physical topology

{ NetSpout} EZ$>

ﬂ.\ |:> Report
Nord Bolt
Word

Count
Bolt

Stream grouping (partial)

e Shuffle grouping: Tuples are randomly distributed
across the bolt's tasks.

* Fields grouping: The stream is partitioned by the
fields specified in the grouping. E.g.: if the stream
is grouped by the "word" field, tuples with the
same “word" will go to the same task.

* All grouping: The stream is replicated across all
the bolt's tasks.

* Global grouping: The entire stream goes to a
single one of the bolt's tasks. Specifically, it goes
to the task with the lowest id.

Storm: Reliability (1)

* Every spout tuple will be fully processed by
the topology
— tuples are tracked across the topology
— a timeout causes a spout tuple to be replayed

— the application/bolt must manage dependencies
among tuples, upon emitting.

— the application/bolt must ack the tuples to signal
they have been fully processed

Storm: Reliability (2)

* Storm provides two basic tuple processing
semantics under failures

-at least once - a tuple is guaranteed to be
processed at least once; idempotence must be
implemented by the application

-at most once (best effort) - a tuple is processed
once or, not at all, in case of failure

-also available in later versions [Trident]

-exactly once - expensive; provided via
transactional-topologies and Trident; involves

FirimxvlAa AatrcrlhAace “nA tecciitinies “"ND? FvranrnmecacrcdF AN~

Storm: Reliability (3)

 Stateless bolts forget everything upon a failure

— replaying lost tuples is not enough for correct
results
* (consider sliding windows, moving averages, etc)

— there is no automatic provision for checkpointing
or to recreate state prior to the failure

— Stateful topologies can be achieved via Trident; or

interfacing with external (in-memory) databases
(ad hoc)

Programming Example (WordCount)

{ NetSpout } I:>

line

Split Word

Line I:> Count

Bolt Bolt
word

:C Report
Bolt

word, count

Emitted Tuple Fields

Report

Net Spout Bolt

public class NetSpout extends BaseRichSpout {

private BufferedReader reader;

private SpoutOutputCollector collector;

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields(”line"));

}

public void open(Map config, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
reader = new BufferedReader(new InputStreamReader(new Socket(“localhost”,7070)));

}
public void nextTuple() {
try {
this.collector.emit(reader.readLine());
} catch(I0Exception e) {
// do nothing
}
}
i Method invoked when reading
new data. In this case, reads a
line from the socket.

Report

Net Spout Bolt

public class SplitSentenceBolt extends BaseRichBolt{
private OutputCollector collector;
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}
public void execute(Tuple tuple) {
String line = tuple.getStringByField(”line");
String[] words = line.split(" ");
for(String word : words){
this.collector.emit(new Values(word));

}
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word"));

Report

Net Spout Bolt

public class SplitSentenceBolt extends BaseRichBolt{

private OutputCollector collector;
public void prepare(Map config, TopologyContext context, OutputCollector collector) {

this.collector = collector;

}

public void execute(Tuple tuple) { Defines how to process
String line = tuple.getStringByField(”line"); a line. In this case, splits
String[] words = line.split(" "); the line and emits each
for(String word : words){ word in a tuple.

this.collector.emit(new Values(word));

}

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));

Report

Net Spout Bolt

public class WordCountBolt extends BaseRichBolt{
private OutputCollector collector;
private HashMap<String, Long> counts = null;
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
this.counts = new HashMap<>();
}
public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
Long count = this.counts.get(word);
if(count == null){
count = 0L;
}
count++;
this.counts.put(word, count);
this.collector.emit(new Values(word, count));
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));

}

Net Spout

public class WordCountBolt extends BaseRichBolt{
private OutputCollector collector;

Report
Bolt

private HashMap<String, Long> counts = null;

Stores the running
counts.

publicvoid prepare(Map config, TopotogyContext context, OutputCotle
this.collector = collector;
this.counts = new HashMap<>();

}

orcottector)$

public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
Long count = this.counts.get(word);
if(count == null){
count = OL;
}
count++;
this.counts.put(word, count);
this.collector.emit(new Values(word, count));

}

Defines how to process
a word. In this case,
updates the count for
the word and forwards
it to the next Bolt.

publicvoid dectareOutputFietds{OutputFietdsDectarer dectarer){
declarer.declare(new Fields("word", "count"));

}

Report

Net Spout Bolt

public class ReportBolt extends BaseRichBolt {

private TreeMap<String, Long> counts = null;

public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.counts = new TreeMap<>();

}

public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
Long count = tuple.getLongByField("count");
this.counts.put(word, count);

}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
// this bolt does not emit anything

}

public void cleanup() {
System.out.printin("--- FINAL COUNTS ---");
for (Map.Entry<String, Count> e : counts.entrySet())

System.out.printin(e.getKey() + " : " + e.getValue());

Net Spout

public class ReportBolt extends BaseRichBolt {

Report
Bolt

private TreeMap<String, Long> counts = null;

Stores the running
counts.

public void prepare(Map config, TopologyContext context, OutputCollector collector) {

this.counts = new TreeMap<>();

}

public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
Long count = tuple.getLongByField("count");
this.counts.put(word, count);

1

1
public void declareOutputFields(OutputFieldsDeclarer declarer) {

// this bolt does not emit anything
1

Defines how to process
a new tuple. In this
case, just updates the
count associated with
each word.

public void cleanup() {
System.out.printin("--- FINAL COUNTS ---");
for (Map.Entry<String, Count> e : counts.entrySet())
System.out.printin(e.getKey() + " : " + e.getValue());

Defines what to do
when finishing. In this
case, just dump to the
console.

—c

Report
Bolt

NetSpout spout = new NetSpout();

SplitLineBolt splitBolt = new SplitLineBolt();
WordCountBolt countBolt = new WordCountBolt();
ReportBolt reportBolt = new ReportBolt();

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“net-spout”, spout);
// NetSpout --> SplitLineBolt
builder.setBolt("split-bolt", splitBolt).shuffleGrouping(“net-spout”);
// SplitLineBolt --> WordCountBolt
builder.setBolt("count-bolt", countBolt).fieldsGrouping("split-bolt", new Fields("word"));
// WordCountBolt --> ReportBolt
builder.setBolt("report-bolt", reportBolt).globalGrouping("count-bolt");
Config config = new Config();
LocalCluster cluster = new LocalCluster();
cluster.submitTopology(TOPOLOGY_NAME, new Config(), builder.createTopology());

Report
Bolt

NetSpout spout = new NetSpout();
SplitLineBolt splitBolt = new SplitLineBolt();
WordCountBolt countBolt = new WordCountBolt();

ReportBolt reportBolt = new ReportBolt();)

elements. In this case,
TopologyBuilder builder = new TopologyBuilder(); lines are shuffled by

builder.setSpout(“net-spout”, spout); the split line bolts.

// NetSpout --> SplitLineBolt
builder.setBolt("split-bolt", splitBolt).shuffleGrouping(“net-spout”);

// SplitLineBolt --> WordCountBolt

builder.setBolt("count-bolt", countBolt).fieldsGrouping("split-bolt", new Fields("word"));
// WordCountBolt --> ReportBolt

builder.setBolt("report-bolt", reportBolt).globalGrouping("count-bolt");

Config config = new Config();

LocalCluster cluster = new LocalCluster();

cluster.submitTopology(TOPOLOGY_NAME, new Config(), builder.createTopology());

Net Spout

NetSpout spout = new NetSpout();

SplitLineBolt splitBolt = new SplitLineBolt();
WordCountBolt countBolt = new WordCountBolt();
ReportBolt reportBolt = new ReportBolt();

Report
Bolt

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(“net-spout”, spout);
// NetSpout --> SplitLineBolt

builder.setBolt("split-bolt", splitBolt).shuffleGrouping(“net-spout”);

Defines how to connect
elements. In this case,
all tuples with the same
word go to the same
bolt.

// SplitLineBolt --> WordCountBolt

builder.setBolt("count-bolt", countBolt).fieldsGrouping("split-bolt",

new Fields("word"));

// WordCountBolt --> ReportBolt

builder.setBolt("report-bolt", reportBolt).globalGrouping("count-bolt");

Config config = new Config();
LocalCluster cluster = new LocalCluster();

cluster.submitTopology(TOPOLOGY_ NAME, new Config(), builder.createTopology());

Net Spout

NetSpout spout = new NetSpout();

SplitLineBolt splitBolt = new SplitLineBolt();
WordCountBolt countBolt = new WordCountBolt();
ReportBolt reportBolt = new ReportBolt();

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(“net-spout”, spout);

// NetSpout --> SplitLineBolt Defines how to connect
builder.setBolt("split-bolt", splitBolt).shuffleGrouping(“net-spout”)] alements. In this case,

// SplitLineBolt --> WordCountBolt all tuples are sent to a
builder.setBolt("count-bolt", countBolt).fieldsGrouping("split-bolt",| single bolt.

// WordCountBolt --> ReportBolt
builder.setBolt("report-bolt", reportBolt).globalGrouping("count-bolt");

Config config = new Config();
LocalCluster cluster = new LocalCluster();
cluster.submitTopology(TOPOLOGY_NAME, new Config(), builder.createTopology());

Trident

* A high-level abstraction for doing realtime
computing on top of Storm
— (much like Apache Pig is for MapReduce)

— extends Storm with primitives for doing stateful,
incremental processing on top of any
database or persistence store

— exactly-once semantics, under failures

Trident : execution

* Trident topologies compile to efficient
Storm topologies

— the goal is to avoid unnecessary network
shuffles (i.e., moving data around)

Table of Contents

* Continuous processing
— Apache Storm
— Spark Streaming
— Apache Flink

pause

Continuous mode in Spark Streaming

* Continuous processing is an experimental
streaming execution mode that enables low (~1
ms) end-to-end latency with at-least-once, no
fault-tolerance guarantees.

e Supported operation (> v. 2.4.5):

— Only projections (select, map, flatMap, mapPartitions,
etc.) and selections (where, filter, etc.) are supported.

— Aggregations are not supported.

Continuous mode in Spark Streaming

spark \

.readStream \

format("kafka") \

.option("kafka.bootstrap.servers"\
"host1:port1,host2:port2") \

.option("subscribe", "topic1") \

Joad() \

.selectExpr("CAST(key AS STRING)"\
"CAST(value AS STRING)") \

.writeStream \

format("kafka") \

.option("kafka.bootstrap.servers”, \

"host1:port1,host2:port2") \

.option("topic", "topic1") \ Only change necessary
trigger(continuous="1 second") \ to the e

1 second is the
start()

checkpointing interval.

Table of Contents

* Continuous processing
— Apache Storm

— Spark Straming
— Apache Flink

Apache Flink

Stateful Computations over Data Streams

Apache Flink

* In many cases, data can be seen as a stream of events. We
can identify two dimensions:

* Bounded vs. unbounded streams:
— Bounded streams have a defined start and end; size is limited.

— Unbounded streams have a start but no defined end; it is not
possible to wait for all input data to arrive.

* Real-time vs. recorded streams:
— Real-time refers to processing the stream as it is generated.
— Recorded refers to persisting the stream before processing it.

Apache Flink (2)

e Batch processing corresponds to processing a
bounded recorded stream.

— Can be processed by ingesting all data before
performing any computations;

— Ordered ingestion is not required, as a bounded
dataset can always be sorted.

e Stream processing corresponds to processing an
unbounded real-time stream.
— Do not terminate and provide data as it is generated;
— Must be continuously processed;
— It is not possible to wait for all input data to arrive.

Apache Flink (2)

* Apache Flink is an open source platform for
distributed stream processing.

Transactions ~

Logs

10T

>
>

Clicks

(Real-time)
Events

- (nm—

.- EEE—

Database,
File System,
KV-Store

Event-driven Streaming Stream & Batch
Applications Pipelines Analytics

@9 én

®4

k\

Resources | Storage
(K8s, Yarn, Mesos, ...) | (HDFS, S3, NFS, ...)

—
— (I

Application

Event Log

Database,
File System,
KV-Store

Programming model: abstraction

e Stream is a (potentially never-ending) flow of
data records

* Transformation is an operation that takes one
or more streams as input, and produces one
or more output streams as a result.

Programming model: execution

* Programs are mapped to streaming
dataflows, consisting of streams and
transformation operators.

e Each dataflow starts with one or
more sources and ends in one or more sinks.

* The dataflows resemble arbitrary directed
acyclic graphs (DAGs).

DataStream<String> lines = env.addSource (

new FlinkxKafkxaConsumer<>(..)):;

DataStream<Event> events = lines.map((line) =-> parse(line));

DataStream<Statistics> stats = events

.keyBy ("id")

.timeWindow (Time.seconds (10))

.apply (new MyWindowAggregationFunction());

stats.addSink (new RollingSink(path));

Source Transformation Sink
Operator Operators Operator

v \

- keyBy()/
Source map() - window()/ SR Sink
apply()
Stream
J
|

Streaming Dataflow

}

F

—

Source

Transformation

Transformation

Sink

Parallel dataflows

* During execution, a stream has one or
more stream partitions, and each operator has
one or more operator subtasks.

* The operator subtasks are independent and
execute in different threads/machines.

 The number of operator subtasks is
the parallelism of the operator. The parallelism of
a stream is always that of its producing operator.
Different operators of the same program may
have different levels of parallelism.

Parallel dataflows (cont.)

« Communication between operators
— One-to-one
— Redistributing

keyBy()/

Source map() - window()/ Sink
apply()
Operator Stream v
r / “ " & Y
keyBy()/
Source map() i window()/
[1] (1] i apply()
‘ i
Operator Stream Sink
Subtask Partition (1]
‘ 1
1 keyBy()/
Source map() i window()/
2] 2] apg}r()

parallelism = 2

N\

parallelism = 1

Streaming Dataflow
(condensed view)

Streaming Dataflow
(parallelized view)

Concepts: streams

* Flink can handle any kind of stream.

e Bounded and unbounded streams: Streams
can be unbounded or bounded, i.e.,
fixed-sized data sets.

* Real-time and recorded streams: All data are
generated as streams. There are two ways to
process the data. Processing it in real-time as
it is generated or persisting the stream to a
storage system and processed it later.

State

* Every non-trivial
streaming application is
stateful.

* Any application that

runs basic business logic AI—I-

needs to remember
events or intermediate
results.

Function

To

Variable
(State)

State (2)

Multiple State Primitives: Flink supports different data types.

Pluggable State Backends: Application state is managed in
and checkpointed by a pluggable state backend.

Exactly-once state consistency: Flink’s checkpointing and
recovery algorithms guarantee the consistency of application
state in case of a failure.

Very Large State: Flink is able to maintain application state of
several terabytes due to its asynchronous and incremental
checkpoint algorithm.

Scalable Applications: Scales stateful applications by
redistributing the state to more or fewer workers.

Local State

e Task state is maintained in memory or, if the

state size exceeds the available memory, in
access-efficient on-disk data structures.

* Hence, tasks perform all computations by

Input
Tasks

Output

In-Memory or
On-Disk State

Logic

£ State

Local State
Access

Logic

£ State

accessing local, often in-memory, state
vielding very low processing latencies.

Lo

gic

G State

Periodic, Asynchronous,
Incremental Snapshots

Durable
? Storage

Local State (2)

* Flink guarantees exactly-once state
consistency in case of failures by periodically
and asynchronously checkpointing the local
state to durable storage.

Fault tolerance

 Combines stream replay and checkpointing.

* A checkpoint is related to a specific point in each
of the input streams along with the corresponding
state for each of the operators.

* A streaming dataflow can be resumed from a
checkpoint while maintaining
consistency (exactly-once processing
semantics) by restoring the state of the operators
and replaying the events from the point of the
checkpoint.

Time

* Processing-time Mode: Applications that
performs computations as triggered by the
wall-clock time of the processing machine.

* Event-time Mode: Applications that process
streams based on timestamps of the events.

— Watermark Support: Flink employs watermarks to
reason about time in event-time applications.

— Late Data Handling: Flink features multiple options to
handle late events, such as rerouting them via side
outputs and updating previously completed results.

Windows

* Windows allow to aggregate events from a
defined time-period.

Time windows
Event

A A A A A
' A'd A' 4 AY4 N A\

: H s s : -
—t : AN : J\ : J \ : J . -
Y Y Y v Event stream

Count(3) Windows

Example

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)

// alternatively:
// env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime)
// env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

val stream: DataStream[MyEvent] = env.addSource(new FlinkKafkaConsumer@9[MyEvent](topic, schema, props))

stream
.keyBy(_.getUser)
.timeWindow(Time.hours(1))
.reduce((a, b) => a.add(b))
.addSink(...)

Layered architecture

e Possible to program using different levels of
abstractions

High-level _
Analytics AP| SQL / Table API (dynamic tables)

Stream- & Batch

. DataStream API (streams, windows)
Data Processing

— Conciseness +

Stateful Event-

. o ProcessFunction (events, state, time)
Driven Applications

+ Expressiveness —

Layered architecture

e Possible to program using different levels of
abstractions (similar to Spark Streaming).

Only API available in Python.

High-level '
<Ana|ytics AP SQL / Table API (dynamic tables)

Stream- & Batch

) DataStream API (streams, windows)
Data Processing

— Conciseneds +

+ Expressivenv

Stateful Event-

. . ProcessFunction (events, state, time)
Driven Applications

Datastream API

* Provides programming abstractions at a level
similar to Spark Core

ProcessFunction

* ProcessFunctions are the most expressive
interfaces.

— Process individual events from input streams or
window

— Fine-grain control over time

— Can arbitrarily modify its state and register timers
that trigger a callback

Bibliography

Apache Flink: Stream and batch processing in a
single engine. P. Carbone, et. al. IEEE Data
Engineering Bulletin. 38.

https://flink.apache.org/
https://storm.apache.org/

Storm @Twitter. Ankit Toshniwal, et. al.
Sigmod’14.

Acknowledgments: some images in this slide deck
are from Flink and Storm sites.

https://flink.apache.org/
https://storm.apache.org/

