
Stream Processing

Lecture 04

2022/2023

Table of Contents

• Stream processing ecosystem
– Apache Flume

– Apache Kafka

– AWS Stream Processing Ecosystem

2

Table of Contents

• Stream processing ecosystem
– Apache Flume

– Apache Kafka

– AWS Stream Processing Ecosystem

3

Apache Flume: Motivation

• In many application scenarios, data comes
from multiple sources and needs to be
conveniently prepared before processing…
– e.g. logging information needs to be ingested into

HDFS, before map reduce jobs can process
them…

• Most processing systems rely on external tools
that perform the necessary adaptation before
data is processed

4

Flume: What is it?

• Flume is a system for collecting, aggregating,
and moving large amounts of data.
– it has a simple and flexible architecture based on

streaming data flows;

– it is robust and fault tolerant, with tunable
reliability mechanisms and recovery mechanisms.

5

Flume: Architecture (1)

• Core Concepts
– event - unit of data flow having a byte payload

and an optional set of string attributes.

6

Flume: Architecture (2)
– flume agent - a (JVM) process that hosts the

components through which events flow from an
external source to the target destination.

7

channel

source sink
hdfs

flume agent

webserver

spark

Flume: Architecture (3)
– sources - acquire events produced by external

sources like a set of web servers.

8

channel

sink

flume agent

hdfs

spark

source

webserver

Flume: Architecture (4)
– sources - acquire events produced by external

sources like a set of web servers.
• an agent can aggregate the input of multiple sources

9

channel

sink

flume agent

hdfs

spark

webserver

webserver

webserver

source

sink

flume agent

Flume: Architecture (5)
– channels - move events around

• the type determines the delivery guarantees

• reliable channels may not respect order

1
0

 channel

hdfs

spark

webserver

webserver

webserver

source

flume agent

sink

Flume: Architecture (6)
– sinks - output events to external consumers

• an agent can feed multiple external consumers, using
multiple sinks

11

 channel

hdfs

spark

source

webserver

webserver

webserver

flume agent

sink

Flume: Architecture (7)
– agents - can have more complex topologies, with

multiple sources, channels and skinks
• agents can also be chained together

12

 channel
hdfs

spark

 channel sink

source

webserver

webserver

webserver

Flume: Architecture (8)
– agents - can have more complex topologies, with

multiple sources, channels and skinks
• agents can also be chained together

13

Flume: Programming

• A Flume agent is programmed via a
configuration file
– the file describes its topology in terms of sources,

sinks, channels and how they connect together

– for each component (sink, source, channel) the file
also describes its parameters, in particular type

– There’s a library of sources, sinks and channels
that can be used

14

Example: Sink to Kafka
• Using Flume to ingest a stream from a test

source into Kafka

15

flume agent

Seq
Source

Kafka
Sink

MemChannel Kafka

Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
Describe/configure the source
a1.sources.r1.type = seq

Describe/configure the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = mytopic
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.k1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
Describe/configure the source
a1.sources.r1.type = seq

Describe/configure the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = mytopic
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.k1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

Define the name of the
components. e.g. there
will be a source r1.

Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
Describe/configure the source
a1.sources.r1.type = seq

Describe/configure the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = mytopic
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.k1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

Simple source that
generates sequential
events (1,2,3,...)

Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
Describe/configure the source
a1.sources.r1.type = seq

Describe/configure the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = mytopic
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.k1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

Sink to send event –
Kafka in this case.

Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
Describe/configure the source
a1.sources.r1.type = seq

Describe/configure the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = mytopic
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.k1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

Simple internal
memory-based
event-queue.

Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
Describe/configure the source
a1.sources.r1.type = seq

Describe/configure the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = mytopic
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.k1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

Connects the sources
and sinks to the channel.

pause

Table of Contents

• Stream processing ecosystem
– Apache Flume

– Apache Kafka

– AWS Stream Processing Ecosystem

23

Publish/subscribe

A form of indirect communication:

- senders (publishers) do not address messages
to specific receivers (subscribers).

- messages are relayed to subscribers (if any)
that have shown interest in particular classes
of messages (topics) or messages with
particular contents (cotent-routing)

Publish/subscribe concepts

• Data producers are decoupled from data consumers
– Publishers don’t know who the consumers are and vice versa
– Publishers and subscribers may exist at different times

• A queue can provide durable storage of messages for some length
of time

• A message can be consumed from the queue [0..n] times
– No requirement that a message is delivered exactly once or at least

once

• 1:n relationship between publishers and subscribers
– “Fan-out” effect
– A single message need not be delivered to all subscribers

Kafka: What is it?

• Apache Kafka is a topic based
publish-subscribe messaging system
– In the context of distributed processing, it is often

used to ingest data streams into a stream
processing system

26

Kafka: What is it?

• Apache Kafka is a topic based
publish-subscribe messaging system
– Mediates and decouples interactions between

event producers and the consumers
• Producers send events to Brokers (Kafka Servers)

• Consumers receive events via the Brokers

• Don’t need to know each other directly or execute at
the same time

27

Kafka: Architecture

• Producer API to produce a streams or records

• Consumer API to consume a stream of records

28

Kafka: Architecture

• Broker server: Kafka server that runs in a Kafka Cluster.
Brokers form a cluster. Cluster consists on many Kafka
Brokers on many servers.

• ZooKeeper: Coordinates the brokers/cluster topology:
configuration information and leadership election for Broker
Topic Partition Leaders (optional in recent versions)

29

Kafka: Key Facts

• Kafka is implemented as distributed commit log
– offers event persistency, backed by the filesystem

– fault-tolerance and high-availability due to replication

– high throughput via partitioning

30

• Kafka can interface directly with many
stream-processing engines, such as Spark
Streaming, Storm and Flink

Kafka: Usage Scenario

31

Kafka: records and topics

• Records are immutable and have a key
(optional), value and timestamp

• A topic is a stream of records (“/orders”,
“/user-signups”), feed name
– Topics stored on disk

– Topics broken up in partitions and segments (parts
of Topic Log)

Kafka record retention

• Kafka cluster retains all published records
– Time based – configurable retention period

– Size based – configurable based on size

– Compaction – keeps latest record given key

• E.g.: retention policy of three days or two
weeks or a month

• An event is available for consumption until
discarded by time, size or compaction

Kafka messaging

Message processing

• Producers write to and Consumers read from
Topic(s)

• Producer(s) append Records at end of Topic log
• Consumers read from Kafka at their own cadence

– Each Consumer (Consumer Group) tracks offset from
where they left off reading

• Partitions can be distributed on different
machines in a cluster
– High performance with horizontal scalability; and

failover with replication

Message processing

• Producers write to and Consumers read from Topic(s)

• Producer(s) append Records at the end of Topic log

V1 V2

append(v3)

Kafkaappend(v4)

Message processing

• Producers write to and Consumers read from Topic(s)

• Producer(s) append Records at end of Topic log.
Records are totally ordered (within a given partition).

V1 V2 v3 v4

append(v3)

Kafkaappend(v4)

Message processing

• Consumers read from Kafka at their own cadence
– Each Consumer (Consumer Group) tracks the offset from where they

left off reading

• Partitions can be distributed on different machines in a cluster
– High performance with horizontal scalability and failover with

replication

V1 V2 v3 v4

Kafka

Topic partitions

• Topics are broken up into partitions
– Key of record determines which partition will be used

– Partitions can be replicated to multiple brokers

• Partitions are used to scale Kafka across many
servers

• Partitions are used to facilitate parallel producers
and consumers
– Records are consumed in parallel up to the number of

partitions

Topic partitions

Topic partitions: order

• Order is maintained only in a single partition
– Partition is an ordered, immutable sequence of

records that is continually appended to

• Records in partitions are assigned sequential
id number called the offset

• The offset identifies each record within the
partition

Kafka Producers and Partitions

• Producers send records to topics
• Producer picks which partition to send record

to per topic
– Can be done in a round-robin
– Can be based on priority
– Typically based on key of record
– Kafka default partitioner for Java uses hash of keys

to choose partitions, or a round-robin strategy if
no key

Kafka Consumers

• Consumers are grouped into a Consumer Group
– A consumer group has a unique id
– Each consumer group maintains its own offset
– There might be multiple consumer groups

• A Record is delivered to one Consumer in a
Consumer Group

• Each consumer in consumer groups takes records
and only one consumer in group gets the same
record
– Consumers in Consumer Group load balance record

consumption

Kafka Consumers (cont.)

• Kafka divides partitions over consumers in a Consumer
Group
– Each Consumer is the exclusive consumer of a "fair share"

of partitions
• Consumer management is handled by Kafka, with one

server becoming the group coordinator
– assigns partitions when new members arrive – there is, at

most, one consumer per partition
– or reassign partitions when group members leave or topic

changes
• When Consumer group is created, offset set according

to reset policy of topic

Consumer fault tolerance

• Consumers notify broker when it successfully
processed a record
– Broker advances offset

• If Consumer fails before sending commit offset to
Kafka broker
– different Consumer can continue from the last

committed offset
– some Kafka records could be reprocessed

• At least once behavior
• Message processing should be idempotent

Log offsets

• "Log end offset" is the offset of the last record
written to log partition and where Producers write
to next

• "High watermark" is the offset of the last record
successfully replicated to all partitions followers

• Consumer only reads up to “high watermark”.
Consumer cannot read un-replicated data

Example

Partition replication

• Each partition has one leader server and zero or
more follower servers

• The leader handles all reads and writes of Records
for partition

• Writes to partition are replicated to followers
using a primary backup protocol

• A follower that is in-sync is called an ISR (in-sync
replica)
– If a partition leader fails, one ISR is chosen as new

leader

Kafka ecosystem

APIs

KSQL

• KSQL is a streaming SQL engine for Kafka

• KSQL uses Kafka Streams to run the user
queries

KSQL data model

• KSQL provide a relational data model with a
schema

• Message values in a topic should conform to
the schema associated with the topic

• The schema has typed columns
– Primitive data types supported include BOOLEAN,

INTEGER, BIGINT, DOUBLE and VARCHAR along
with the complex types of ARRAY, MAP and
STRUCT

KSQL data model (cont.)

• KSQL can map a topic to a stream or table
• Topic as stream

– Consider the messages as independent and unbounded
sequence of structured values, we interpret the topic as a stream

– Messages have no relation with each other and will be processed
independently.

• Topic as table
– Consider the messages as an evolving set of structured values

where a new message either updates the previous structured
values in the set with the same key, or adds a new structured
values when there is no structured values with the same key

– A table is a state-full entity since we need to keep track of the
latest values for each key

Query language

• Create a stream from a topic

CREATE STREAM pageviews (viewtime BIGINT,
 userid VARCHAR, pageid VARCHAR) WITH
 (KAFKA_TOPIC='pageviews_topic',
 VALUE_FORMAT='JSON');

Query language (cont.)

• Create a table from a topic

CREATE TABLE users (
registertime BIGINT,
gender VARCHAR,
regionid VARCHAR,
userid VARCHAR,
address STRUCT<street VARCHAR, zip INTEGER>

) WITH (
 KAFKA_TOPIC='user_topic',
 VALUE_FORMAT='JSON',
 KEY='userid'

);

Query language (cont.)

• Continuous queries expressed as the creation
of new streams or tables

CREATE STREAM enrichedpageviews AS
 SELECT * FROM pageviews LEFT JOIN
 users ON pageviews.userid = users.userid
 WHERE regionid = 'region 10';

KSQL support for windows

• Records can be grouped in windows.
Currently, KSQL supports three types of
windows:
– Tumbling window which are time-based,

fixed-sized, non-overlapping and gap-less windows
– Hopping window which are time-based,

fixed-sized and overlapping windows
– Session window which are session-based,

dynamically-sized, non-overlapping and
data-driven windows

KSQL Windows

https://docs.ksqldb.io/en/latest/img/ksql-window-aggregation.png

Query language (cont.)

• Continuous queries expressed as the creation
of new streams or tables

CREATE TABLE userviewcount AS
 SELECT userid, count(*)
 FROM pageviews
 WINDOW TUMBLING (SIZE 1 HOUR)
 GROUP BY userid;

Query processing

• A query is processed and transformed into
code that uses the Kafka Stream API

• This process includes query plan optimization

Table of Contents

• Stream processing ecosystem
– Apache Flume

– Apache Kafka

– AWS Stream Processing Ecosystem

63

Streaming Data Scenarios

Amazon Kinesis goals

Amazon (AWS) cloud-based product for
processing big data in real-time:

• Easy to provision, deploy, and manage
• Elastically scalable
• Real-time latencies
• Pay as you go, no up-front costs
• Right services for your specific use cases

Amazon Kinesis Solutions

Amazon Kinesis Streams

Amazon Kinesis Streams

• Amazon Kinesis Data
Streams (KDS) is a massively
scalable and durable
real-time data streaming
service.

• Streams are made of Shards
– A Partition Key is used to

distribute the PUTs across
Shards

– A unique Sequence # is
returned to the Producer for
each Event

Process with Lambda

• Stateless JavaScript & Java
functions run against an
Event Stream

• Functions automatically
invoked against a Shard

• Access to underlying
filesystem for read/write

• Call other Lambda
Functions

Amazon Kinesis Streams

• Elastic operation
– Scale Kinesis streams by splitting or merging

Shards

Amazon Kinesis Firehose

• Amazon Kinesis Data Firehose is used to
reliably ingest streaming data into data stores
and analytics tools.

• It can capture, transform, and load streaming
data into Amazon S3, Amazon Redshift,
Amazon Elasticsearch Service, and Splunk,
enabling near real-time analytics with existing
business intelligence tools and dashboards.

Kinesis Streams vs. Kinesis Firehose

• Amazon Kinesis Streams is for use cases that
require custom processing, per incoming record,
with sub-1 second processing latency, and a
choice of stream processing frameworks.

• Amazon Kinesis Firehose is for use cases that
require zero administration, ability to use existing
analytics tools based on Amazon S3, Amazon
Redshift and Amazon Elasticsearch, and a data
latency of 60 seconds or higher.

Amazon Kinesis Analytics

• Apply SQL on streams: Easily connect to a
Kinesis Stream or Firehose Delivery Stream
and apply SQL skills.

• Build real-time applications: Perform continual
processing on streaming big data with
sub-second processing latencies.

• Easy Scalability : Elastically scales to match
data throughput.

Bibliography

• https://flume.apache.org/releases/content/1.9.0/Flu
meUserGuide.html#
– Architecture

• https://kafka.apache.org/documentation/#design

• https://docs.confluent.io/current/ksql/docs/index.ht
ml
– (These references are too detailed for preparing for tests)

https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html
https://kafka.apache.org/documentation/%23design
https://docs.confluent.io/current/ksql/docs/index.html
https://docs.confluent.io/current/ksql/docs/index.html

Acknowledgments

• Some images from:

• Kai Wähner, KSQL – An Open Source Streaming
Engine for Apache Kafka

• Sites of the systems presented.

