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The need for stream processing

• Applications dealing with continuously flowing 
data, from geographically distributed sources, 
at unpredictable rates, that need to obtain 
timely responses to complex queries
– Wireless sensor networks
– Financial tickers
– Fraud detection
– Traffic management
– Logistics systems, etc...



Why is this different?

• The concepts of timeliness and flow processing are crucial for 
justifying the need for a new class of systems

• Traditional DBMSs:
– Require data to be (persistently) stored and indexed before it can be 

processed
– Mostly designed to process data only when explicitly asked by the users, 

i.e., asynchronously with respect to its arrival
• Example: Detecting fire in a building by using temperature and 

smoke sensors
– A fire alert has to be notified as soon as the relevant data becomes 

available
– There is no need to store sensor readings if they are not relevant to fire

• The relevant data can be discarded as soon as the fire is detected, if it does not 
have any extrinsic value to the fire detection application.



Dynamic Data Example 

• Using a sensor network measuring temperature and 
smoke, for fire alerts 
– We want data to be processed continuously for detecting 

the fire prone conditions, and not only when users query 
– We don’t want to store all the measurements, especially 

those that have nothing to do with fire conditions. 
– Even those that alert for fire, are only needed until the fire 

alert is emitted; after that we may discard them 

• Implementing this in a system designed for static 
data (e.g. a DBMS) is not adequate 



Tools for processing streams 

• Complex event processing

• Stream processing systems

• Time-series databases



Complex event processing

• CEP typically:
– Goal: more oriented towards detecting patterns of 

events

– Use high-level declarative language like SQL, or a 
graphical user interface

– CEP engine performs the required matching, 
emitting event when the pattern is detected

– Roots: publish-subscribe messaging systems; 
continuous queries in database systems



Stream processing systems

• Stream processing typically:
– Goal: more oriented towards producing 

aggregations and statistical metrics

– Moving from low-level interfaces to declarative 
languages

– Roots: modern stream processing systems derive 
from Big data parallel processing frameworks



Time-series databases

• Time-series databases typically:
– Goal: monitor the operation of machines, 

processes, etc.

– Moving to declarative languages

• Roots: special purpose monitoring software, 
continuous query databases



Distributed Stream Processing Systems

• Why distributed stream processing systems?
– Scalability

• Impossible to process all events in a single machine

– Provide fault-tolerance
• Need to tolerate server failures

– Latency
• Need to provide results fast, in a timely manner

– Data is distributed
• E.g.: processing sensor data



Roadmap for the first part of the 
course

• Intro to big data frameworks

• Stream processing systems
– Non-structured programming

– Structured programming and SQL

– Continuous streaming

• Stream processing ecosystem and IoT

• Storage for streamable data
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Google’s MapReduce: summary

•  "a programming model and an associated 
implementation for processing large datasets"

• "runs on a large cluster of commodity machines …  a 
typical … computation processes many terabytes of 
data on thousands of machines"

• "a new abstraction that allows us to expresses simple 
computations we were trying to perform but hides the 
messy details of parallelization, fault-tolerance, 
data-distribution and load-balancing in a library"
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Programming model
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• Sequence of map and reduce stages

• Map: processes input (files); emit tuples

• Reduce: process tuples grouped by key; Emit tuples



Programming model... working
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• Example: count the number of times each 

word appears in a document (or documents)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));



Programming model… working
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map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
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Programming model is not everything

• Programming model is simple, but…
• …how to run computations efficiently?
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Map-reduce execution model

20



Map-reduce execution model
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1.input files 
divided into splits

2. mappers 
process splits in 
parallel

3. intermediate results 
saved in multiple files by 
key range

4. reducers sort intermediate 
files before processing values for 
each key



Limitations of map-reduce

• Scalable, but slow
– Data stored on disk after each step

• Low-level programming
– Simple programming model with no abstractions 

for helping writing programs

• Batch processing model not adequate for 
some applications
– Need stream processing
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Big Data / Batch processing

• All data known at the time of processing

• Goal: Execute computation over data and produce result

• Problem: what if new data arrives continuously, and new 
results should be computed continuously?
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Examples of Big Streaming Data
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Producing information on
traffic, based on information
collected from users’
mobile phones



Big Streaming Data

• Can we use (batch) big data processing tools?
– Save data as it arrives

– Execute computation periodically - e.g. every hour

– Problems?

– Long delay for results, computation not incremental, …
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Big Streaming Data: requirements

• Need to process data as it arrives (or at most 
with a very small delay)

• Need to be able to process data from multiple 
sources

• Need to tolerate faults
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Two processing models (1)

• Continuous
– Each tuple processed as it arrives

– Processing system may keep state for executing window 
computations and incremental computations
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Two processing models (2)

• Mini-batches
– Tuples received for each X ms grouped in a mini-batch

– Process mini-batches

– Processing system may keep state for executing window computations 
and incremental computations
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Stream processing: some issues

• Semantics
– Reasoning about time

– Joining multiple streams

• Performance
– Latency

– Fault tolerance

– Sampling



Reasoning about time

• Stream processing often need to deal with 
time, but notion is tricky.
– e.g.: compute X over the last five minutes. What 

does it mean?



Reasoning about time: event time

• Use the time of the event. Problems?

• Delay to start processing
– Delays of event propagation

– Have to deal with stragglers
• Ignore straggler events

• Issue correction of results

– Have to deal with failures



Reasoning about time: process time

• Use the time the event reached the stream 
processing system. Problems?

• Combine events from different time periods
– Delays of event propagation

– Fault tolerance



Joining multiple streams

• Often needs to join events from multiple streams
– e.g., in a website, associate search query with click on 

search.

• Stream-stream join
– Need to be able to join an event with an event in the 

past

• Stream-table join
– Store data in a table; join stream with data in a table



Stream processing: some issues

• Semantics
– Reasoning about time

– Joining multiple streams

• Performance
– Latency

– Fault tolerance

– Determinism

– Sampling



Latency in stream processing

• Some applications impose real time or bounded 
latency constraints on processing

• Results need to be produced at a rate compatible 
with the ingress rate

• Effects of fault-tolerance should be transient (and 
perceived as jitter, rather than accumulate).

• Partitioning can speed up computations, via 
parallelism, but can lead to some stragglers.
– Not easy to anticipate. May be too late upon detection
– Sensitive to input / improper partitioning
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Fault tolerance in stream processing

• Batch processing
– In worst case, can tolerate faults by re-computing 

everything

• Stream processing
– Not usually feasible to replay the stream(s) from 

the very beginning

– Implies some form of periodic checkpointing (or 
replication)
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Determinism in stream processing

• Redundant processing is useful in some 
scenarios…
– Can provide fault tolerance;

– Mitigate the impact of stragglers in latency.

• Processing the same stream twice should yield 
the same stream of results. 

• Algorithm should not depend on factors 
external to the data
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Sampling in stream processing

• Execute processing over a fraction of the data. 
Why is this acceptable?

• For high ingress data rates, sampling may be 
employed to meet desired processing latency

• Sampling is not straightforward and impacts 
on the accuracy and interpretation of the 
processing results
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Systems for stream processing

• Continuous processing
– Apache Storm

• Open sourced by Twitter
• API: proprietary, SQL-like

– Apache Flink
• API: proprietary, table-based, SQL-like

• Mini-batch processing
– Spark streaming

• API: proprietary, table-based, SQL-like
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