Stream Processing

Lecture 1

2022/2023

Table of Contents

- Introduction
- Big data frameworks: map-reduce
- Big data stream processing intro

The need for stream processing

- Applications dealing with continuously flowing data, from geographically distributed sources, at unpredictable rates, that need to obtain timely responses to complex queries
 - Wireless sensor networks
 - Financial tickers
 - Fraud detection
 - Traffic management
 - Logistics systems, etc...

Why is this different?

- The concepts of timeliness and flow processing are crucial for justifying the need for a new class of systems
- Traditional DBMSs:
 - Require data to be (persistently) stored and indexed before it can be processed
 - Mostly designed to process data only when explicitly asked by the users,
 i.e., asynchronously with respect to its arrival
- Example: Detecting fire in a building by using temperature and smoke sensors
 - A fire alert has to be notified as soon as the relevant data becomes available
 - There is no need to store sensor readings if they are not relevant to fire
 - The relevant data can be discarded as soon as the fire is detected, if it does not have any extrinsic value to the fire detection application.

Dynamic Data Example

- Using a sensor network measuring temperature and smoke, for fire alerts
 - We want data to be processed continuously for detecting the fire prone conditions, and not only when users query
 - We don't want to store all the measurements, especially those that have nothing to do with fire conditions.
 - Even those that alert for fire, are only needed until the fire alert is emitted; after that we may discard them
- Implementing this in a system designed for static data (e.g. a DBMS) is not adequate

Tools for processing streams

- Complex event processing
- Stream processing systems
- Time-series databases

Complex event processing

- CEP typically:
 - Goal: more oriented towards detecting patterns of events
 - Use high-level declarative language like SQL, or a graphical user interface
 - CEP engine performs the required matching, emitting event when the pattern is detected
 - Roots: publish-subscribe messaging systems; continuous queries in database systems

Stream processing systems

- Stream processing typically:
 - Goal: more oriented towards producing aggregations and statistical metrics
 - Moving from low-level interfaces to declarative languages
 - Roots: modern stream processing systems derive from Big data parallel processing frameworks

Time-series databases

- Time-series databases typically:
 - Goal: monitor the operation of machines, processes, etc.
 - Moving to declarative languages

• Roots: special purpose monitoring software, continuous query databases

Distributed Stream Processing Systems

- Why distributed stream processing systems?
 - Scalability
 - Impossible to process all events in a single machine
 - Provide fault-tolerance
 - Need to tolerate server failures
 - Latency
 - Need to provide results fast, in a timely manner
 - Data is distributed
 - E.g.: processing sensor data

Roadmap for the first part of the course

- Intro to big data frameworks
- Stream processing systems
 - Non-structured programming
 - Structured programming and SQL
 - Continuous streaming
- Stream processing ecosystem and IoT
- Storage for streamable data

Table of Contents

- Introduction
- Big data frameworks: map-reduce
- Big data stream processing intro

Google's MapReduce: summary

- "a programming model and an associated implementation for processing large datasets"
- "runs on a large cluster of commodity machines ... a typical ... computation processes many terabytes of data on thousands of machines"
- "a new abstraction that allows us to expresses simple computations we were trying to perform but hides the messy details of parallelization, fault-tolerance, data-distribution and load-balancing in a library"

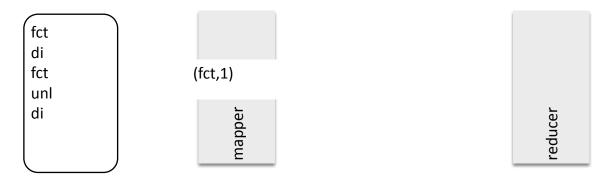
Programming model

- Sequence of map and reduce stages
- Map: processes input (files); emit tuples
- Reduce: process tuples grouped by key; Emit tuples

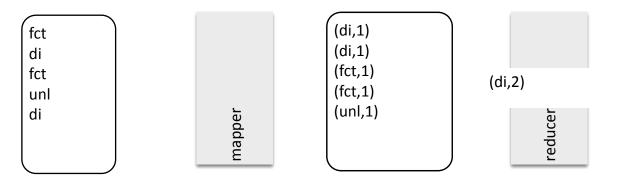
• Example: count the number of times each word appears in a document (or documents)

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

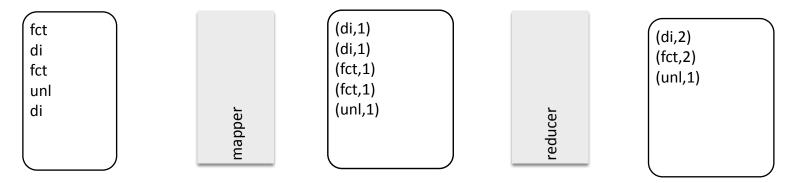


<pre>map(String key, String value): // key: document name // value: document contents for each word w in value: EmitIntermediate(w, "1");</pre>	
<pre>reduce(String key, Iterator values): // key: a word // values: a list of counts int result = 0; for each v in values: result += ParseInt(v); Emit(AsString(result));</pre>	



map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));



map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:

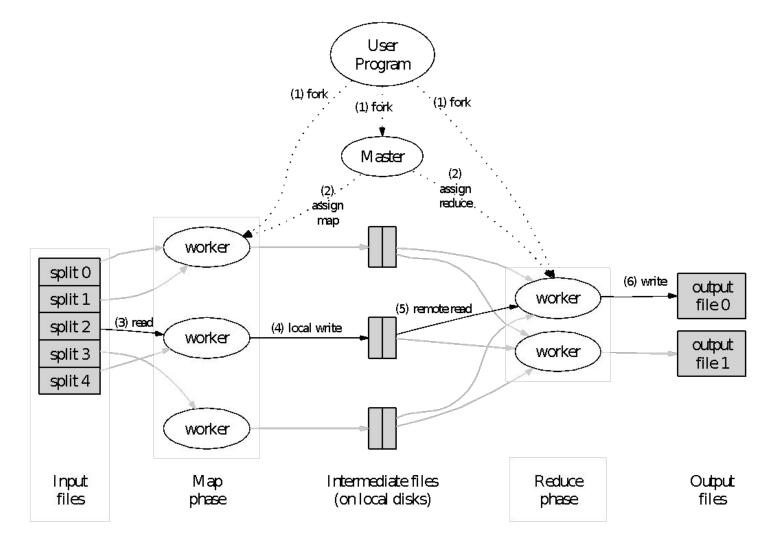
result += ParseInt(v);

Emit(AsString(result));

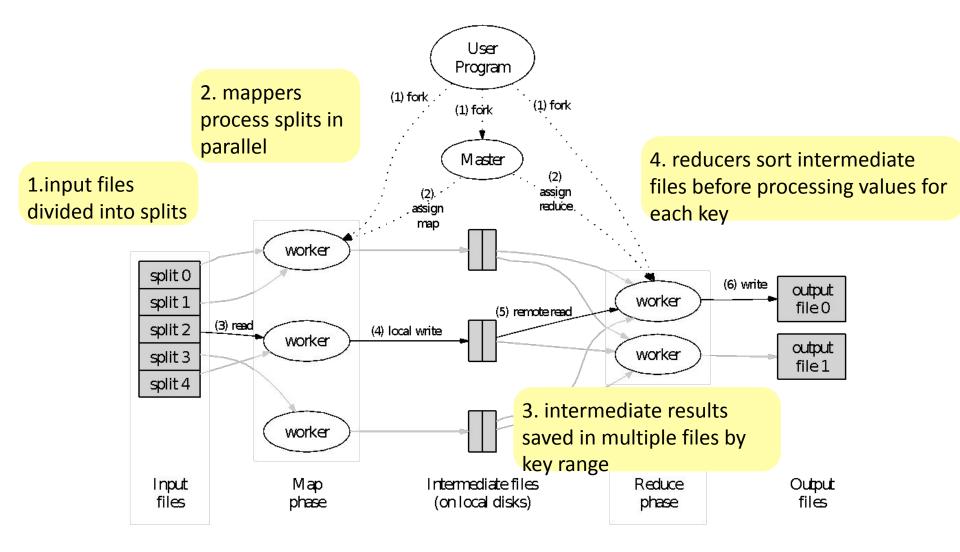
Programming model is not everything

- Programming model is simple, but...
- ...how to run computations efficiently?

Map-reduce execution model



Map-reduce execution model



Limitations of map-reduce

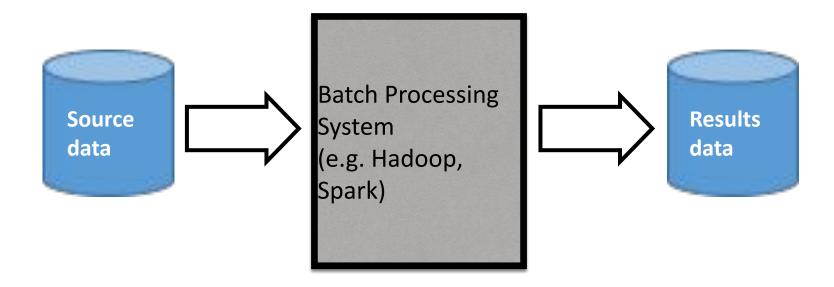
- Scalable, but slow
 - Data stored on disk after each step
- Low-level programming
 - Simple programming model with no abstractions for helping writing programs
- Batch processing model not adequate for some applications
 - Need stream processing

Table of Contents

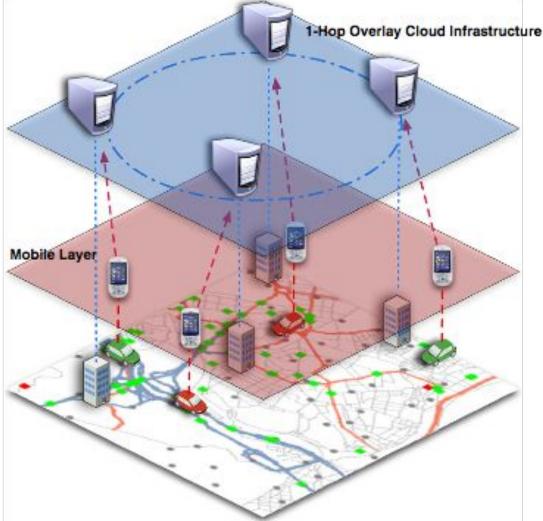
- Introduction
- Big data frameworks: map-reduce
- Big data stream processing intro

Big Data / Batch processing

- All data known at the time of processing
- Goal: Execute computation over data and produce result
- Problem: what if new data arrives continuously, and new results should be computed continuously?



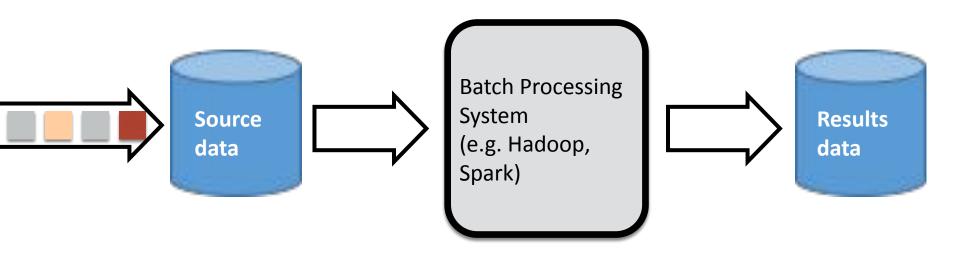
Examples of Big Streaming Data



Producing information on traffic, based on information collected from users' mobile phones

Big Streaming Data

- Can we use (batch) big data processing tools?
 - Save data as it arrives
 - Execute computation periodically e.g. every hour
 - Problems?
 - Long delay for results, computation not incremental, …

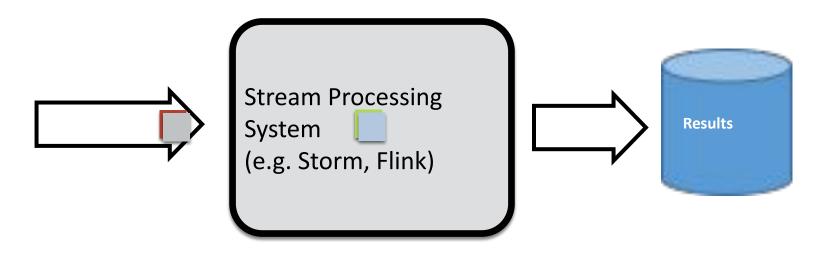


Big Streaming Data: requirements

- Need to process data as it arrives (or at most with a very small delay)
- Need to be able to process data from multiple sources
- Need to tolerate faults

Two processing models (1)

- Continuous
 - Each tuple processed as it arrives
 - Processing system may keep state for executing window computations and incremental computations



Two processing models (2)

- Mini-batches
 - Tuples received for each X ms grouped in a mini-batch
 - Process mini-batches
 - Processing system may keep state for executing window computations and incremental computations

	ream Processing ystem .g. Spark Streaming)		Results
--	--	--	---------

Stream processing: some issues

- Semantics
 - Reasoning about time
 - Joining multiple streams
- Performance
 - Latency
 - Fault tolerance
 - Sampling

Reasoning about time

- Stream processing often need to deal with time, but notion is tricky.
 - e.g.: compute X over the last five minutes. What does it mean?

Reasoning about time: event time

• Use the time of the event. Problems?

- Delay to start processing
 - Delays of event propagation
 - Have to deal with stragglers
 - Ignore straggler events
 - Issue correction of results
 - Have to deal with failures

Reasoning about time: process time

Use the time the event reached the stream processing system. Problems?

- Combine events from different time periods
 - Delays of event propagation
 - Fault tolerance

Joining multiple streams

- Often needs to join events from multiple streams
 - e.g., in a website, associate search query with click on search.
- Stream-stream join
 - Need to be able to join an event with an event in the past
- Stream-table join
 - Store data in a table; join stream with data in a table

Stream processing: some issues

- Semantics
 - Reasoning about time
 - Joining multiple streams

Performance

- Latency
- Fault tolerance
- Determinism
- Sampling

Latency in stream processing

- Some applications impose real time or bounded latency constraints on processing
- Results need to be produced at a rate compatible with the ingress rate
- Effects of fault-tolerance should be transient (and perceived as jitter, rather than accumulate).
- Partitioning can speed up computations, via parallelism, but can lead to some stragglers.
 - Not easy to anticipate. May be too late upon detection
 - Sensitive to input / improper partitioning

Fault tolerance in stream processing

- Batch processing
 - In worst case, can tolerate faults by re-computing everything
- Stream processing
 - Not usually feasible to replay the stream(s) from the very beginning
 - Implies some form of periodic checkpointing (or replication)

Determinism in stream processing

- Redundant processing is useful in some scenarios...
 - Can provide fault tolerance;
 - Mitigate the impact of stragglers in latency.
- Processing the same stream twice should yield the same stream of results.
- Algorithm should not depend on factors external to the data

Sampling in stream processing

- Execute processing over a fraction of the data. Why is this acceptable?
- For high ingress data rates, sampling may be employed to meet desired processing latency
- Sampling is not straightforward and impacts on the accuracy and interpretation of the processing results

Systems for stream processing

- Continuous processing
 - Apache Storm
 - Open sourced by Twitter
 - API: proprietary, SQL-like
 - Apache Flink
 - API: proprietary, table-based, SQL-like
- Mini-batch processing
 - Spark streaming
 - API: proprietary, table-based, SQL-like

Bibliography

• Martin Kleppmann. Designing data-intensive applications. Chapter 11.