
Stream Processing

Lecture 3

2022/2023

Table of Contents

• Structured Streaming Programming
– Fundamentals
– Programming Model

2

(Unstructured) Spark Streaming

• Interface
– Discretized stream, with each mini-batch

composed of RDDs
• RDD: distributed collections.
• RDDs manipulated through transformation operators

(e.g., map, filter, reduce, etc.).

• Execution
–Mini-batch of RDDs evaluated periodically.

3

Goals for Spark SQL

1. Support relational processing both within Spark
programs and on external data sources using a
programmer-friendly API.

2. Provide high performance using established DBMS
optimization techniques.

3. Easily support new data sources, including semi-
structured data and external databases amenable
to query federation.

4. Enable extension with advanced analytics
algorithms such as graph processing and machine
learning. 4

SparkSQL Architecture

5

Spark SQL

Resilient Distributed Datasets

Spark

JDBC Console User Programs
(Java, Scala, Python)

Catalyst Optimizer

DataFrame API

Figure 1: Interfaces to Spark SQL, and interaction with Spark.

3.1 DataFrame API

The main abstraction in Spark SQL’s API is a DataFrame, a dis-
tributed collection of rows with a homogeneous schema. A DataFrame
is equivalent to a table in a relational database, and can also be
manipulated in similar ways to the “native” distributed collections
in Spark (RDDs).1 Unlike RDDs, DataFrames keep track of their
schema and support various relational operations that lead to more
optimized execution.

DataFrames can be constructed from tables in a system cata-
log (based on external data sources) or from existing RDDs of
native Java/Python objects (Section 3.5). Once constructed, they
can be manipulated with various relational operators, such as where
and groupBy, which take expressions in a domain-specific language
(DSL) similar to data frames in R and Python [32, 30]. Each
DataFrame can also be viewed as an RDD of Row objects, allowing
users to call procedural Spark APIs such as map.2

Finally, unlike traditional data frame APIs, Spark DataFrames
are lazy, in that each DataFrame object represents a logical plan to
compute a dataset, but no execution occurs until the user calls a spe-
cial “output operation” such as save. This enables rich optimization
across all operations that were used to build the DataFrame.

To illustrate, the Scala code below defines a DataFrame from a
table in Hive, derives another based on it, and prints a result:

ctx = new HiveContext()
users = ctx.table("users")
young = users.where(users("age") < 21)
println(young.count())

In this code, users and young are DataFrames. The snippet
users("age") < 21 is an expression in the data frame DSL, which
is captured as an abstract syntax tree rather than representing a
Scala function as in the traditional Spark API. Finally, each DataFrame
simply represents a logical plan (i.e., read the users table and filter
for age < 21). When the user calls count, which is an output opera-
tion, Spark SQL builds a physical plan to compute the final result.
This might include optimizations such as only scanning the “age”
column of the data if its storage format is columnar, or even using
an index in the data source to count the matching rows.

We next cover the details of the DataFrame API.

3.2 Data Model

Spark SQL uses a nested data model based on Hive [19] for ta-
bles and DataFrames. It supports all major SQL data types, includ-
ing boolean, integer, double, decimal, string, date, and timestamp,
1We chose the name DataFrame because it is similar to structured data li-
braries in R and Python, and designed our API to resemble those.
2These Row objects are constructed on the fly and do not necessarily rep-
resent the internal storage format of the data, which is typically columnar.

as well as complex (i.e., non-atomic) data types: structs, arrays,
maps and unions. Complex data types can also be nested together
to create more powerful types. Unlike many traditional DBMSes,
Spark SQL provides first-class support for complex data types in
the query language and the API. In addition, Spark SQL also sup-
ports user-defined types, as described in Section 4.4.2.

Using this type system, we have been able to accurately model
data from a variety of sources and formats, including Hive, rela-
tional databases, JSON, and native objects in Java/Scala/Python.

3.3 DataFrame Operations

Users can perform relational operations on DataFrames using a
domain-specific language (DSL) similar to R data frames [32] and
Python Pandas [30]. DataFrames support all common relational
operators, including projection (select), filter (where), join, and
aggregations (groupBy). These operators all take expression ob-
jects in a limited DSL that lets Spark capture the structure of the
expression. For example, the following code computes the number
of female employees in each department.

employees
.join(dept, employees("deptId") === dept("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept("name"))
.agg(count("name"))

Here, employees is a DataFrame, and employees("deptId") is
an expression representing the deptId column. Expression ob-
jects have many operators that return new expressions, including
the usual comparison operators (e.g., === for equality test, > for
greater than) and arithmetic ones (+, -, etc). They also support ag-
gregates, such as count("name"). All of these operators build up an
abstract syntax tree (AST) of the expression, which is then passed
to Catalyst for optimization. This is unlike the native Spark API
that takes functions containing arbitrary Scala/Java/Python code,
which are then opaque to the runtime engine. For a detailed listing
of the API, we refer readers to Spark’s official documentation [6].

Apart from the relational DSL, DataFrames can be registered as
temporary tables in the system catalog and queried using SQL. The
code below shows an example:

users.where(users("age") < 21)
.registerTempTable("young")

ctx.sql("SELECT count(*), avg(age) FROM young")

SQL is sometimes convenient for computing multiple aggregates
concisely, and also allows programs to expose datasets through JD-
BC/ODBC. The DataFrames registered in the catalog are still un-
materialized views, so that optimizations can happen across SQL
and the original DataFrame expressions. However, DataFrames can
also be materialized, as we discuss in Section 3.6.

3.4 DataFrames versus Relational Query Languages

While on the surface, DataFrames provide the same operations as
relational query languages like SQL and Pig [29], we found that
they can be significantly easier for users to work with thanks to
their integration in a full programming language. For example,
users can break up their code into Scala, Java or Python functions
that pass DataFrames between them to build a logical plan, and
will still benefit from optimizations across the whole plan when
they run an output operation. Likewise, developers can use control
structures like if statements and loops to structure their work. One
user said that the DataFrame API is “concise and declarative like
SQL, except I can name intermediate results,” referring to how it is
easier to structure computations and debug intermediate steps.

To simplify programming in DataFrames, we also made API an-
alyze logical plans eagerly (i.e., to identify whether the column

Spark DataFrames

• DataFrames are distributed collections of data
that is grouped into named columns.

• DataFrames can be seen as RDDs with a schema
that names the fields of the underlying tuples.

• How to create a DataFrame:
– Import data from a file: JSON, CSV, parquet, etc.;
– Import data from other systems: SQL DBs, Hive;
– Convert a RDD into a DataFrame by supplying a

suitable schema.

6

DataFrame Operations

• DataFrames provide a DSL for executing
relational operations, as available in
frameworks like Python Pandas.

• Some operations:
– select(cols)
– filter(condition)
– join(RDD, on, how)
– groupBy(cols)
– sort(cols,)

7

Spark : DataFrame advantages

• Spark programs based on DataFrames are
more readable due to its higher-level API.

• API close to relational operators of SQL.
• Some common programming patterns are

exposed as high-level operations on
DataFrames, also leading to shorter programs.

8

Pause

Structured Streaming

• Key idea is to treat a live data stream as a
table that is being continuously appended.
– Similar to the batch processing model.

• Express streaming computation as a standard
batch-like query as on a static table, and Spark
runs it as an incremental query on
the unbounded input table.

Data stream model

Start Spark Structured Streaming
from pyspark.sql import SparkSession
from pyspark.sql.functions import explode
from pyspark.sql.functions import split

spark = SparkSession \
.builder \
.appName("StructuredWebLogExample") \
.getOrCreate()

query = ... \ # some query definition
.start()

query.awaitTermination(20)
query.stop()

Start Spark Structured Streaming
from pyspark.sql import SparkSession
from pyspark.sql.functions import explode
from pyspark.sql.functions import split

spark = SparkSession \
.builder \
.appName("StructuredWebLogExample") \
.getOrCreate()

query = ... \ # some query definition
.start()

query.awaitTermination(20)
query.stop()

Create a representation of a Spark session.

Start Spark Structured Streaming
from pyspark.sql import SparkSession
from pyspark.sql.functions import explode
from pyspark.sql.functions import split

spark = SparkSession \
.builder \
.appName("StructuredWebLogExample") \
.getOrCreate()

query = ... \ # some query definition
.start()

query.awaitTermination(20)
query.stop()

After defining a computation (see later), run start for
start stream processing

Start Spark Structured Streaming
from pyspark.sql import SparkSession
from pyspark.sql.functions import explode
from pyspark.sql.functions import split

spark = SparkSession \
.builder \
.appName("StructuredWebLogExample") \
.getOrCreate()

query = ... \ # some query definition
.start()

query.awaitTermination(20)
query.stop()

Wait for the end of stream for 20 seconds and then
stop.

First example

• Get data from the stream and print the data
frames produced.

Input sources

• File source - Reads files written in a directory
as a stream of data.

• Kafka source - Reads data from Kafka.
• Socket source (for testing) - Reads UTF8 text

data from a socket connection. No fault-
tolerance guarantees.

Connect to a stream

• readStream
• Read a stream.
• For a socket, specify host and port.

Create DataFrame representing the stream of input
lines from connection to logsender 7776
lines = spark.readStream.format("socket") \

.option("host", "logsender") \

.option("port", 7776) \

.load()

Output sinks

• File sink - Stores the output to a directory.
• Kafka sink - Stores the output to one or more

topics in Kafka.
• Console sink (for debugging) - Prints the

output to the console/stdout every time there
is a trigger.

Does not integrate well with Jupyter.

• Foreach sink - Runs arbitrary computation on
the records of the output..

Output modes

• Complete Mode - The entire updated Result
Table will be written to the external storage.

• Append Mode - Only the new rows appended
in the Result Table since the last trigger will be
written to the external storage.

• Update Mode - Only the rows that were
updated in the Result Table since the last
trigger will be written to the external storage.

Execution model (cont.)

Output with foreach

• writeStream
• Write a stream to an output sink, with a given

output mode.

def dumpBatchDF(df, epoch_id):
df.show(20, False)

query = lines \
.writeStream \
.outputMode("append") \
.foreachBatch(dumpBatchDF) \
.start()

Output with foreach

• foreach(function) / foreachBatch(function)
• Specify the function to run for each data

frame created

def dumpBatchDF(df, epoch_id):
df.show(20, False)

query = lines \
.writeStream \
.outputMode("append") \
.foreachBatch(dumpBatchDF) \
.start()

Overall execution model

• Source provides rows that are appended to
the Input Table every trigger interval.

• A query on the input will generate the “Result
Table”.

• Whenever the result table gets updated, the
changes can be sent to an external sink.

First example

• Get data from the stream and print the data
frames produced.

First example

• Get data from the stream and print the data
frames produced.

First example

• Get data from the stream and print the data
frames produced.

Each line leads to a data frame.

Second example

• Get data from the stream.
• List the top-3 IP sources with more accesses.

Create a data frame with a schema

• split
• Used to split a column in multiple value.

sl = split(lines['value'], ' ')
lines = lines \

.withColumn('time',sl.getItem(0).cast("timestamp")) \

.withColumn('IP', sl.getItem(1).cast("string")) \

.withColumn('code', sl.getItem(2).cast("integer")) \

.withColumn('op', sl.getItem(3).cast("string")) \

.withColumn('URL', sl.getItem(4).cast("string")) \

.withColumn('dur', sl.getItem(5).cast("float")) \

.drop('value')

Create a data frame with a schema

• withColumn(col,value)
• Adds a columns to a data frame.

sl = split(lines['value'], ' ')
lines = lines \

.withColumn('time',sl.getItem(0).cast("timestamp")) \

.withColumn('IP', sl.getItem(1).cast("string")) \

.withColumn('code', sl.getItem(2).cast("integer")) \

.withColumn('op', sl.getItem(3).cast("string")) \

.withColumn('URL', sl.getItem(4).cast("string")) \

.withColumn('dur', sl.getItem(5).cast("float")) \

.drop('value')

Create a data frame with a schema

• drop(col)
• Drops a column.

sl = split(lines['value'], ' ')
lines = lines \

.withColumn('time',sl.getItem(0).cast("timestamp")) \

.withColumn('IP', sl.getItem(1).cast("string")) \

.withColumn('code', sl.getItem(2).cast("integer")) \

.withColumn('op', sl.getItem(3).cast("string")) \

.withColumn('URL', sl.getItem(4).cast("string")) \

.withColumn('dur', sl.getItem(5).cast("float")) \

.drop('value')

Create a data frame with a schema
(alternative)

• select(expr)
• Creates a data frame from other data frame.

lines = lines.select(\
split(lines.value, ' ')[0].alias('time').cast("timestamp"), \
split(lines.value, ' ')[1].alias('IP').cast("string"),\
split(lines.value, ' ')[2].alias('code').cast("integer"),\
split(lines.value, ' ')[3].alias('op').cast("string"),\
split(lines.value, ' ')[4].alias('URL').cast("string"),\
split(lines.value, ' ')[5].alias('dur').cast("float"),\
)

Operation: groupBy

• groupBy(cols)
• Groups the DataFrame using the specified

columns, to run aggregation on them.

query = lines.groupBy('IP') \
.count() \
.orderBy('count',ascending=False) \
.limit(3)

Operation: count

• count()
• Adds a column with the count (for each IP).

query = lines.groupBy('IP') \
.count() \
.orderBy('count',ascending=False) \
.limit(3)

Operation: agg

• agg()
• Execute a general aggregation. E.g.: .agg({"*":
"count"})

query = lines.groupBy('IP') \
.agg(count('*').alias('count')) \
.orderBy('count',ascending=False) \
.limit(3)

Operation: orderBy

• orderBy(cols,ascending=True|False)
• Orders the rows by the given column(s).

query = lines.groupBy('IP') \
.count() \
.orderBy('count',ascending=False) \
.limit(3)

Operation: limit

• limit(num)
• Limits the result count to the number

specified.

query = lines.groupBy('IP') \
.count() \
.orderBy('count',ascending=False) \
.limit(3)

Incremental execution

• Spark Streaming processing:
– reads the latest available data from the input;
– process the data incrementally to update the

result;
– Discards the input data, keeping only minimal data

to update the result.
• No need to maintain running aggregation or

reason about fault-tolerance and data
consistency.

Other example
from pyspark.sql import SparkSession
from pyspark.sql.functions import explode
from pyspark.sql.functions import split

spark = SparkSession \
.builder \
.appName("StructuredNetworkWordCount") \
.getOrCreate()

Example (cont)
Create DataFrame representing the stream of input
lines from connection to localhost:9999
lines = spark.readStream.format("socket") \

.option("host", "localhost").option("port", 9999) \

.load()

Split the lines into words
words = lines.select(explode(split(lines.value, " ")) \

.alias("word"))

Generate running word count
wordCounts = words.groupBy("word").count()

Example (cont)
Start running the query that prints the
running counts to the console
query = wordCounts \

.writeStream \

.outputMode("complete") \

.format("console") \

.start()

query.awaitTermination()

Example (cont)

Pause

Exactly-once semantics

• Exactly-once semantics by combining:
– Replayable sources

• Spark uses checkpointing and write-ahead logs to record the
offset range.

– Idempotent sinks

• Why?
– Failures impact on latency, but do not affect

computation results, namely aggregations.
– Deterministic results

Using SQL

• It is possible to use SQL by registering data
frames as tables

Create a view from a data frame

• createOrReplaceTempView(table)
• Creates or replaces a local temporary view

with this DataFrame.

lines.createOrReplaceTempView("weblog")
query = spark.sql("SELECT IP, count(*) as count FROM
weblog GROUP BY IP ORDER BY count DESC LIMIT 3")

Execute SQL statement

• sql(stmt)
• Executes a SQL statement.

lines.createOrReplaceTempView("weblog")
query = spark.sql("SELECT IP, count(*) as count FROM
weblog GROUP BY IP ORDER BY count DESC LIMIT 3")

Windows

• When executing aggregations, it is possible to
execute computation over windows.

– window aggregations based on event time are
supported…

Define window

• window(value,duration,slide)
• Groups data in a window defined by the value,

for duration time and slide time.

query = lines.groupBy(\
window(lines.time,"30 seconds","10 seconds"),'IP') \
.agg(count('*').alias('count')) \
.orderBy('window','count',ascending=False) \
.limit(3)

Define window

• window(value,duration,slide)
• Groups data in a window defined by the value,

for duration time and slide time.

query = lines.groupBy(\
window(lines.time,"30 seconds","10 seconds"),'IP') \
.agg(count('*').alias('count')) \
.orderBy('window','count',ascending=False) \
.limit(3) The results will have values for different windows.

Can use window to order the results.

Event time (example)
words = ...
streaming DataFrame of schema
{ timestamp: Timestamp, word: String }

Group the data by window and word
and compute the count of each group
windowedCounts = words.groupBy(\

window(words.timestamp, "10 minutes", "5 minutes"), \
words.word

).count()

Event time (example, cont.)

Handling late data

Handling late data (cont.)

• Problem?
– Handling late data requires keeping data for as long

we expect to receive late data…

• Watermarking: define the threshold on how late
the data is expected to be in terms of event time
– Late data within the threshold will be aggregated, but

data later than the threshold will start getting
dropped

Watermarking (example)
words = ...
streaming DataFrame of schema
{ timestamp: Timestamp, word: String }

Group the data by window and word
and compute the count of each group
windowedCounts = words \

.withWatermark("timestamp", "10 minutes") \

.groupBy(\
window(words.timestamp, "10 minutes", "5 minutes"),\
words.word) \

.count()

Watermarking (example)

Watermarking (example)

Join operations

• Supports joining:
– a streaming Dataset/DataFrame with a static

Dataset/DataFrame
– a streaming Dataset/DataFrame with another

streaming Dataset/DataFrame
• The result of the streaming join is generated

incrementally.

Stream-static joins

• Create a static data frame from a file.

Read the countries file
userSchema = StructType().add("IP", "string") \

.add("country", "string")

countries = spark.read.schema(userSchema) \
.csv("countries.csv")

Stream-static joins

• join(df,condition,type)
• Type join with df on condition.

query = query.join(countries,query.IP == countries.IP, \
"inner")

Stream-stream join

• Challenge: at any given point, the view of the
data is incomplete. Need to buffer past input
for matching with new input.

• Solution: use watermarking to guarantee that
data is not buffered forever.

Stream-stream joins
from pyspark.sql.functions import expr

impressions = spark.readStream. ...
clicks = spark.readStream. ...

Apply watermarks on event-time columns
impressionsWithWatermark = impressions.withWatermark("impressionTime",
"2 hours")
clicksWithWatermark = clicks.withWatermark("clickTime", "3 hours")

Join with event-time constraints
impressionsWithWatermark.join(\
clicksWithWatermark, \
expr("""
clickAdId = impressionAdId AND
clickTime >= impressionTime AND
clickTime <= impressionTime + interval 1 hour
""") \

)

Bibliography
• https://spark.apache.org/docs/latest/structured-streaming-programming-

guide.html

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

