worten

CUSTOMER DATA

The KEY to unlock Customer VALUE

Paula Figueiredo 8 Abril 2021 pcmestre@worten.pt

AGENDA

Introduction

How do we collect data?

What do we do?

How do we use data?

Online Da<u>ta</u>

KNOWING OUR CUSTOMERS

In other contexts, where businesses are smaller and local, business owners know their customers:

- Their product/brand preferences
- Financial availability
- Family structure
- Other aspects from their lives that could influence their choices

WHAT DO CUSTOMERS

WANT?

Simplicity

Convenience

Save **Time** and **Money**

Feel unique

....

OUR VISION

TO BE A DIGITAL RETAILER WITH PHYSICAL STORES AND A HUMAN TOUCH

ONE ONGOING CONVERSATION

Effortless interactions, which may flow over different moments and different channels

Each interaction must flow from the last as if it was an **uninterrupted** conversation

DATA ANALYSIS

Transforming data into knowledge

То

Create a 360° view of customers.

CUSTOMER - CENTRIC CULTURE

CUSTOMER DATA (FROM DIFFERENT SOURCES)

THERE ARE MANY OPPORTUNITIES

TO COLLECT RELEVANT DATA

WHAT DO WE DO?

CUSTOMER VALUE MANAGEMENT

Analyze and understand customer segments

- customer's lifecycle
- Share gathered insights with the company

WELCOM

DIRECT MANAGEMENT

SMS AND NEWSLETTERS COMMUNICATION

CAMPAIGN MANAGEMENT DIRECT MARKETING

SMS AND NEWSLETTERS COMMUNICATION

VALUE PRODUCT LIFECYCLE PURCHASE CHANNEL

HOW DO WE **USE** DATA?

DATA ANALYSIS

They should be integrated so that they maximize the return (value) they bring to a company

AI & MACHINE LEARNING

FREQUENCY & BASKET VALUE PREDICTION

Identifying customers moves between purchases allows us to:

> Predict **how much** and **what** the customer will purchase in the future

> > Identify and incentivize customer behavior

worten

SPORADIC

To have a consistent and simple customer description we defined several

approaches to customer segmentation. These are 3 of them:

- Value/Frequency Segments: based on order frequency and average basket value;
- Product Interest Segments: based on the types of product the customers buy;
- **Trend Segments**: a classification of customer activity/recency;

CUSTOMER SEGMENTATION Value/Frequency

The Value/Frequency segment is computed by a **k-medoids** algorithm – a 'k-means' but where the cluster centroids have to be part of the sample.

This process runs on these variables:

- Average Yearly Order Frequency (# Orders)
- Average Basket Value (€)

The resulting clusters are the following:

- Casual: a customer with low frequency and basket value
- Sporadic: a customer with high basket value
- Regular: a customer with high frequency

A high frequency and high basket value cluster didn't show up because the basket value tends to decrease with frequency since it essentially is computed as Avg Basket Value = $\frac{Total Value}{Order Frequency}$

Value/Frequency

A look into the three segments for a sample of 20.000 customers

Migrating **Casual** customers to higher segments is very much of interest as the smaller **Sporadic** and **Regular** segments make up more than 80% of the value spent by all customers. This means creating a relationship where the customers trust us with their high value purchases and frequently visit our stores.

Product Interest

To measure customer interest for product categories we divided our products into 14 categories:

- Big appliances
- Small appliances
- Telecom
- TV
- IT
- Audio
- Services
- Accessories
- Tickets
- Gaming
- Entertainment
- Photography
- Outdoors
- Marketplace Only

We found that interests would be skewed to be higher for expensive items like big appliances if we focused on value and higher for cheap things like accessories if we focused on number of items bought.

To balance this, for customer U we compute the interest for a certain category C as follows:

Interest = (% of items U bought that belong to C) × (% of value spent by U that belongs to C)

Then we apply a k-means algorithm on this 14dimensional space.

Product Interest – Cluster Centroids

Big appliances

Telecom

Home

Accessories

Trend

To add to the information given by the value/frequency segments and the product interest segments, we classify the customers according to their activity based on the last 24 months with these labels:

Segment	12 to 24 months ago	Last 12 months
New	Unregistered	First Purchase!
Recent	First purchase!	
Escaping	Active (made purchases)	Inactive (no purchases)
Regained	Inactive	Active
Lost	Inactive	Inactive
Stable	Active	Active (same Value/Frequency Segment as the other period)
Rising	Active	Active (stronger V/F segment)*
Declining	Active	Active (weaker V/F segment)*
		* Casual < Sporadic < Regular

In the end these approaches together form a simple but accurate description of the customer's history

Customer	Value/Frequency	Product Interest	Trend
#001	Sporadic	Gaming	New
#002	Regular	Home	Recent
#003	Casual	Accessories	Stable
#004	Sporadic	Big Appliances	Regained
#005	Inactive	Telecom	Lost

NEXT BASKET PREDICTION

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset I: Number of baskets containing all items in I
 - (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s, then sets of items that appear in at least s baskets are called frequent itemsets

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of {Beer, Bread} = 2

NEXT BASKET PREDICTION

Association Rules

Association Rules:

If-then rules about the contents of baskets

- $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain j"
- In practice there are many rules, want to find significant/interesting ones!
- **Confidence** of this association rule is the probability of *j* given $I = \{i_1, ..., i_k\}$

$$\operatorname{conf}(I \to j) = \frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}$$

PREDICTION_

Average Yearly Order Frequency - 1.71

Average Number of Distinct Products per Transaction – 1.45

PREDICTIONS USING STANDARD METHODS ARE VERY DIFFICULT TO OBTAIN

(PROJECTS & ANALYTICS)

STATISTICAL MODELS DEVELOPMENT AND AI

PURCHASE PROPENSITY PROFILING RECOMMENDATION

Some implemented/studied approaches:

- Collaborative Filtering
- Sequential Collaborative Filtering (several variations)
- TransRec (He, Kang, McAuley 2017)
- Item2vec (Barkan, Koenigstein 2017)
- FPMC (Rendle, Freudenthaler, Schmidt-Thieme 2010)

Software used: SAS, R, Python.

Item2Vec Embeddings Visualization in Tensorflow

Sequential Collaborative Filtering (item-to-item)

Purchase History

User	Date	ltem
#001	1	А
#001	2	В
#001	2	С
#001	3	D
#002	1	С
#002	2	А
#002	2	D

Similarity(i1,i2) = $\frac{\text{#users that bought i2 after buying i1}}{\sqrt{\text{# users that bought i1}} \times \sqrt{\text{#users that bought i2}}}$

Similarity Matrix

	Α	В	С	D
A	-	0.707	0.5	0.5
В	0	-	0	0.707
С	0.5	0	-	1
D	0	0	0	-

This approach was found to capture the customers' general interests relatively better than others.

It generates recommended items based on the customer's **full purchase history.**

Consecutive Collaborative Filtering (item-to-item)

Purchase History

User	Date	Item
#001	1	А
#001	2	В
#001	2	С
#001	3	D
#002	1	С
#002	2	А
#002	2	D

Similarity(i1,i2) = $\frac{\#users \ that \ bought \ i1 \ and \ i2 \ in \ consecutive \ transactions \ (i1 \ first)}{\sqrt{\#users \ that \ bought \ i1} \times \sqrt{\#users \ that \ bought \ i2}}$

Similarity Matrix

	Α	В	С	D
А	-	0.707	0.5	0
В	0	-	0	0.707
С	0.5	0	-	1
D	0	0	0	-

This approach was found to capture the customers' **recent trends** relatively better than others.

It generates recommended items based on the customer's **latest order**.

BEST RESULTS SO FAR

Consecutive CF (to capture recent trend)

Sequential CF (to capture general interest)

Ensemble Algorithm: Combined Similarities between Customers and Items from both models. *hit* @10 = 34.8% for Regular Customers

CAMPAIGN RESPONSE PREDICTION

STUDYING CUSTOMERS' HISTORICAL RESPONSE TO CAMPAIGNS

Predict future response results to target the right customers

Maximize incremental sales

Maximize customer satisfaction

PERSONALIZATION

	worten
s u o d n	SAMSUNG Galaxy S21 Series 5G Temos uma ofert Damos-te 50€ ou 100€ para comprares o teu Gal Só até 21 de fevereiro
000	Galaxy S21
nalized	
0	50€ de desconto com o código
e r s	CÓDIGO
\cap	COMPRA IÁ

Galaxy S21

worten

CÓDIGO

COMPRA JÁ

100€ de desconto com o código

CÓDIGO

COMPRA JÁ

Cross-sell newsletters

O que estás à procura?

Olá %%First Name%%

Obrigado por comprares o teu iPhone na Worten. Descobre agora como podes tirar o melhor proveito dele!

Desfruta ao máximo do teu novo iPhone

MARKETING

SEAD Search Engine Optimization

SERP

Search

Engine

Result

Page

Based on KeyWords

Q Tudo	🗷 Compras	Notícias	🖬 Imagens	Vídeos	: Mais	Definições	Ferr	ament
Cerca de	40 700 000 resu	ultados (0,46 se	gundos)					
www.wort	en pt > black-frid	lav 🔻	F	Ranki	ng			
Black F	Friday 2021	Portugal -	Os Melho	res Desco	ontos I V	Norten.pt		
Os melho	res descontos B	Black Friday 20	21 vão estar er	m Worten.pt! N	Marca na a	igenda o dia 2	26	
						<u> </u>		
de Noverr	nbro de 2021. At	é lá descobre a	s nossas Pron	noções em				
de Noverr Quantas i	nbro de 2021. At unidades do mes	é lá descobre a smo artigo poss	as nossas Pron so adquirir?	noções em			~	
de Noverr Quantas u Qual o pra	nbro de 2021. At unidades do mes azo de entrega p	é lá descobre a smo artigo poss para artigos ado	as nossas Pron so adquirir? quiridos durante	ioções em e a Black Frida	ay?		~ ~	
de Noverr Quantas u Qual o pra Quantos o	nbro de 2021. At unidades do mes azo de entrega p dias tenho para p	é lá descobre a smo artigo poss para artigos ado pagar uma enco	as nossas Pron so adquirir? quiridos durante omenda feita ei	toções em e a Black Frida m worten.pt du	ay? urante a Bi	lack Friday?	~ ~	

A **Black Friday** 2020 em Portugal na FNAC já vai chegar e os descontos vão ser épicos ?? Este de novembro espreita as melhores **promoções** na FNAC!

www.timeout.pt > lisboa > compras > as-melhores-prom... *

Todas as promoções da Black Friday 2020 - Time Out Lisboa

23/11/2020 — As melhores **promoções** da **Black Friday**. Um dia (ou três) de saldos fora da época e a tempo do Natal? Aponte tudo, listámos-lhe as melhores ...

mediamarkt.pt > pages > black-friday 💌

Google

Black Friday 2020 em Portugal é na MediaMarkt

Black Friday em Portugal é na MediaMarkt! Aproveita e planeia as tuas compras de Natal com os melhores descontos de artigos em promoção em grandes ...

MARKETING

Google Search Console

MARKETING

CTR – Click Through Rate

MARKETING

Algorithms are frequently changed and not completely known, so constant optimization is required.

MARKETING

Google Analytics

The continuous optimization strategy aims at increasing relevant KPIs, such as PageViews, PageSessions and Avg Sessions

Search Engine Advertising

A look on the Web Advertising providers' side of the problem...

Performance-based Advertising

- Introduced by Overture around 2000
 - Advertisers bid on search keywords
 - When someone searches for that keyword, the highest bidder's ad is shown
 - Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002
 - Called Adwords

SEARCH ENGINE MARKETING

A look on the Web Advertising providers' side of the problem...

Web 2.0

- Performance-based advertising works!
 - Multi-billion-dollar industry

Interesting problem: What ads to show for a given query?

Web

GEICO Car Insurance. Get an auto insurance quote and save today ...

GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company. www.geico.com/ - 21k - Sep 22, 2005 - Cached - Similar pages

Auto Insurance - Buy Auto Insurance Contact Us - Make a Payment More results from www.geico.com »

Geico, Google Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords. www.clickz.com/news/article.php/3547356 - 44k - Cached - Similar pages

Google and GEICO settle AdWords dispute | The Register

Google and car insurance firm GEICO have settled a trade mark dispute over ... Car insurance firm GEICO sued both Google and Yahool subsidiary Overture in ... www.theregister.co.uk/2005/09/09/google_geico_settlement/ - 21k - Cached - Similar pages

GEICO v. Google

... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ... www.consumeraffairs.com/news04/geico google.html - 19k - Cached - Similar pages

Results 1 - 10 of about 2,230,000 for geico. (0.04 secc

Sponsored Links

<u>Great Car Insurance Rates</u> Simplify Buying Insurance at Safeco See Your Rate with an Instant Quote www.Safeco.com

Free Insurance Quotes Fill out one simple form to get multiple quotes from local agents. www.HometownQuotes.com

5 Free Quotes. 1 Form. Get 5 Free Quotes In Minutes! You Have Nothing To Lose. It's Free sayyessoftware.com/Insurance Missouri

SEARCH ENGINE MARKETING

Adwords Problem

Given:

- 1. A set of bids by advertisers for search queries
- 2. A click-through rate for each advertiser-query pair
- 3. A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
 - 1. The size of the set is no larger than the limit on the number of ads per query
 - Each advertiser has bid on the search query
 - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon

SEARCH ENGINE MARKETING

Adwords Problem

- A stream of queries arrives at the search engine: q₁, q₂, ...
- Several advertisers bid on each query
- When query *q_i* arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
 - Simple solution: Instead of raw bids, use the "expected revenue per click" (i.e., Bid*CTR)

Adwords Problem

Advertiser	Bid	CTR	Bid * CTR
Α	\$1.00	1%	1 cent
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
		Click through rate	Expected revenue

Advertiser	Bid	CTR	Bid * CTR
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
Α	\$1.00	1%	1 cent

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Adwords Problem Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
 - Advertiser 1 bids \$2, click probability = 0.1
 - Advertiser 2 bids \$1, click probability = 0.5
 - Clickthrough rate (CTR) is measured historically
 - Very hard problem: Exploration vs. exploitation
 Exploit: Should we keep showing an ad for which we have good estimates of click-through rate
 or

Explore: Shall we show a brand new ad to get a better sense of its click-through rate

There are several algorithms used to solve this proble:

- Greedy Algorithm
- Balanced Algorithm

•

ATTRIBUTION MODELS

In the Last Interaction attribution model, the last touchpoint—in this case, the *Direct* channel—would receive 100% of the credit for the sale.

In the Last Non-Direct Click attribution model, all direct traffic is ignored, and 100% of the credit for the sale goes to the last channel that the customer clicked through from before converting—in this case, the *Email* channel.

In the Last AdWords Click attribution model, the last AdWords click—in this case, the first and only click to the *Paid Search* channel —would receive 100% of the credit for the sale.

In the **First Interaction** attribution model, the first touchpoint—in this case, the *Paid Search* channel—would receive 100% of the credit for the sale.

In the **Linear** attribution model, each touchpoint in the conversion path—in this case the *Paid Search, Social Network, Email*, and *Direct* channels—would share equal credit (25% each) for the sale.

In the **Time Decay** attribution model, the touchpoints closest in time to the sale or conversion get most of the credit. In this particular sale, the *Direct* and *Email* channels would receive the most credit because the customer interacted with them within a few hours of conversion. The *Social Network* channel would receive less credit than either the *Direct* or *Email* channels. Since the *Paid Search* interaction occurred one week earlier, this channel would receive significantly less credit.

In the **Position Based** attribution model, 40% credit is assigned to each the first and last interaction, and the remaining 20% credit is distributed evenly to the middle interactions. In this example, the *Paid Search* and *Direct* channels would each receive 40% credit, while the *Social Network* and *Email* channels would each receive 10% credit.

Used to model customer behaviour and understand what drives visits and conversions.

ATTRIBUTION MODELS

A continuous optimization problem...

BIG DATA

PAGEVIEWS

FAVOURITES & BANNER CLICKS

BEHAVIOURAL SHIFT

PANDEMIC CONTEXT ACCELERATED eCOMMERCE GROWTH NEW DIGITAL CHANNELS & AI TOOLS

QUESTIONS?

-000

10

10

COLO:

TON

worten