
Sequence Models
RNNs, GRU, LSTMs and

applications to image captioning and summarization.

Web Data Mining and Search

1

From static data to sequence data

• There are many domains where data samples have a
dynamic or unknown size.

• CNNs and traditional multi-layer networks cope well with
fixed-size input and output.

• However, there are many domains where
• Input data is a sequence

• Output is a sequence

2

Sequence problems: trend analysis

3

Sequence problems: stock markets

Dot.com
subprime

COVID-19

4

Sequence problems: Machine translation

• Translating a sentence from one language to another
language.

5

Sequence problems: Sentiment analysis

• Detection of excitement, depression, frustration, etc.

Majumder, Navonil, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander Gelbukh, and Erik Cambria.
"Dialoguernn: An attentive rnn for emotion detection in conversations." AAAI 2019.
Tang, Duyu, Bing Qin, and Ting Liu. "Aspect level sentiment classification with deep memory network." arXiv 2016. 6

Usually, data is not

Independent and Identically Distributed (IID).

7

There are several possible architectures

8

Web data sequence modeling tasks

A person riding a

motorbike on dirt road

RNNs are awesome.

Positive

Image

Captioning

Sentiment

Analysis

Input Output

9

Web data sequence modeling tasks

Happy birthday!

Machine

Translation

Conversational

search

Chinese

Input Output

Find me nearby restaurant Of what type of food?

I found these ones: ….

Tell me more about the 2nd Sure! Here you are ….

10

Auto regressive models

• In auto-regressive models the current output depends on
the current input and a limited span of past inputs.

𝑜𝑡 = 𝑝 𝑥𝑡 |𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝜏

𝑜𝑡−2

𝑥𝑡−2

𝑜𝑡−1

𝑥𝑡−1

𝑜𝑡

𝑥𝑡

11

Latent auto regressive models

• In latent auto-regressive models, the model depends on the
current input and a hidden state, capturing the past inputs:

𝑜𝑡 =∼ 𝑝 𝑥𝑡|𝑥𝑡−1, ℎ𝑡

𝑜𝑡−2

𝑥𝑡−2

ℎ𝑡−2

𝑜𝑡−1

𝑥𝑡−1

ℎ𝑡−1

𝑜𝑡

𝑥𝑡

ℎ𝑡

Output predictions

Inputs

Hidden states

12

Hidden state

• The hidden state:
• is propagated from state to state, and

• it works as a memory to help decisions in later parts of the sequence.

13

Feedforward

Output predictions

Inputs

States

𝑥1

ℎ0

14

Feedforward

𝑜1

𝑥1

ℎ1

Output predictions

Inputs

States
ℎ0

15

Feedforward

𝑜1

𝑥1

ℎ1

𝑥2

Output predictions

Inputs

States
ℎ0

16

Feedforward

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

Output predictions

Inputs

States
ℎ0

17

Feedforward

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑥3

Output predictions

Inputs

States
ℎ0

18

Feedforward

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

Output predictions

Inputs

States
ℎ0

19

Feedforward

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Output predictions

Inputs

States
ℎ0

20

Parameter sharing

• There is only one RNN that runs through the sequence

• It has only one set of parameters

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Output predictions

Inputs

States
ℎ0

𝑊∗

21

𝑊∗

Training loss

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 Output ground truth

Output predictions

Inputs

States

Parameters matrix

Loss function

ℎ0

22

𝑊∗

Backpropagation

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 Output ground truth

Output predictions

Inputs

States

Parameters matrix

Loss function

ℎ0

23

∑𝐿∗

Parameters update

Types of RNNs

• Recurrent Neural Networks

• Gated Recurrent Neural Network

• Long-term Short-Term Memory

• All three types of RNNs, try to tackle the memory problem of RNNs,
also known as vanishing or exploding gradient problem.

• There are many variations of each one of these three types of RNNs.

24

Elman’s Recurrent Neural Network

• Elman’s Recurrent Neural Network (RNN) processes
sequences of data by processing each step t.

• The RNN unit is a recurrent function.

• The goal is to predict the
output y at each step t.

ℎ𝑡−1

𝑜𝑡

𝑥𝑡

ℎ𝑡

𝐿𝑡

𝑦𝑡

RNN

25

Elman’s Recurrent Neural Network

• The RNN unit preserves information from:
• previous state ℎ𝑡−1;
• current input data input 𝑥𝑡.

• The RNN unit is a recurrent function:

ℎ𝑡 = 𝜙 𝑊ℎℎ 𝑊𝑥ℎ ⋅
ℎ𝑡−1
𝑥𝑡

+ 𝑏ℎ

• W𝑥ℎ and Wℎℎ are the RNN parameters matrix
• The output at each step t is:

𝑜𝑡 = ℎ𝑡 ⋅ 𝑊ℎ𝑞 + 𝑏𝑞

ℎ𝑡−1

𝑥𝑡

𝑥𝑡

ℎ𝑡ℎ𝑡−1

𝑜𝑡

26

State and output are too tightly connected

• In Elman’s RNN the output and the state are derived from the
same variable.

• A unit’s state should give more emphasis to the current data or
the previous state.

• State passing mechanism should be able to control the amount of
information from data and/or previous state that is encoded in a
state
• A better approach is to make a stronger separation between state and

output.

• GRUs and LSTMs are the best examples of such idea.

27

Gated Recurrent Unit: Old state information

• Introduces a reset memory and update state functions

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡

28

Gated Recurrent Unit: New candidate state

• Introduces a reset memory and update state functions

• Computes a candidate hidden state

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
𝑅𝑡⨀ ℎ𝑡−1

𝑥𝑡

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡

29

Gated Recurrent Unit

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
𝑅𝑡⨀ ℎ𝑡−1

𝑥𝑡

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

ℎ𝑡 = 𝑍𝑡⨀ ෨ℎ𝑡+ 1 − 𝑍𝑡 ⨀ ℎ𝑡−1

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡

• The new hidden state is a mixture of the candidate hidden
state and the previous hidden state.

30

Gated Recurrent Unit

• The reset gate controls the information that is
deleted from the previous state:

• The update gate controls the information that is
preserved from the previous state:

• The output is computed from the cell memory:
y𝑡 = 𝑔𝑦 𝑐𝑡

ℎ𝑡−1

𝑜𝑡

𝑥𝑡

ℎ𝑡

𝐿𝑡

𝑦𝑡

GRU

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
𝑅𝑡⨀ ℎ𝑡−1

𝑥𝑡

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

ℎ𝑡 = 𝑍𝑡⨀ ෨ℎ𝑡+ 1 − 𝑍𝑡 ⨀ ℎ𝑡−1

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡

31

Long-Short Term Memory

• Key idea 1: Separate state from memory.
• This allows to better preserve memory from past states and still

generate the correct output from the hidden state.

• Key idea 2: Put the memory along an uninterrupted path.
• It avoids the vanishing gradient problem and lets information

propagate backwards.

ℎ𝑡−2

𝑜𝑡

𝑥𝑡

LSTM

𝑐𝑡−2

ℎ𝑡−1

𝑐𝑡−1

𝑜𝑡

𝑥𝑡

LSTM ℎ𝑡

𝑐𝑡

ℎ𝑡−3

𝑐𝑡−3

𝑜𝑡

𝑥𝑡

LSTM

32

Long-Short Term Memory

• Similarly to the GRU, there are several
gates to control the information flow.

𝐹𝑡 = 𝜎 𝑊𝑓 ⋅
ℎ𝑡−1
𝑥𝑡

𝐼𝑡 = 𝜎 𝑊𝑖 ⋅
ℎ𝑡−1
𝑥𝑡

ෝ𝑐𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
ℎ𝑡−1
𝑥𝑡

33

LSTM – Memory output
𝐹𝑡 = 𝜎 𝑊𝑓 ⋅

ℎ𝑡−1
𝑥𝑡

𝐼𝑡 = 𝜎 𝑊𝑖 ⋅
ℎ𝑡−1
𝑥𝑡

ෝ𝑐𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
ℎ𝑡−1
𝑥𝑡

𝑐𝑡 = 𝐼𝑡⨀ෞ𝑐𝑡 + 𝐹𝑡⨀ 𝑐𝑡−1

• The memory flows along an uninterrupted
path.

34

LSTM – Output gate
𝐹𝑡 = 𝜎 𝑊𝑓 ⋅

ℎ𝑡−1
𝑥𝑡

𝐼𝑡 = 𝜎 𝑊𝑖 ⋅
ℎ𝑡−1
𝑥𝑡

ෝ𝑐𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
ℎ𝑡−1
𝑥𝑡

𝑐𝑡 = 𝐼𝑡⨀ෞ𝑐𝑡 + 𝐹𝑡⨀ 𝑐𝑡−1

𝑂𝑡 = 𝜎 𝑊𝑜 ⋅
ℎ𝑡−1
𝑥𝑡

35

LSTM – State output
𝐹𝑡 = 𝜎 𝑊𝑓 ⋅

ℎ𝑡−1
𝑥𝑡

𝐼𝑡 = 𝜎 𝑊𝑖 ⋅
ℎ𝑡−1
𝑥𝑡

ෝ𝑐𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
ℎ𝑡−1
𝑥𝑡

𝑐𝑡 = 𝐼𝑡⨀ෞ𝑐𝑡 + 𝐹𝑡⨀ 𝑐𝑡−1

𝑂𝑡 = 𝜎 𝑊𝑜 ⋅
ℎ𝑡−1
𝑥𝑡

h𝑡 = tanh 𝑐𝑡 ⨀𝑂𝑡

The new state will be a combination of the memory t
and the relevant part of data at t and state t-1

36

Long Short-Term Memory

ℎ𝑡−1

𝑜𝑡

𝑥𝑡

𝐿𝑡

𝑦𝑡

LSTM
𝑐𝑡−1

ℎ𝑡

𝑐𝑡

𝐹𝑡 = 𝜎 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

𝐼𝑡 = 𝜎 𝑊𝑐 ⋅
ℎ𝑡−1
𝑥𝑡

ෝ𝑐𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑓 ⋅
ℎ𝑡−1
𝑥𝑡

𝑐𝑡 = 𝐼𝑡 ∗ ෝ𝑐𝑡 + 𝐹𝑡 ∗ 𝑐𝑡−1

𝑂𝑡 = 𝜎 𝑊𝑓 ⋅
ℎ𝑡−1
𝑥𝑡

h𝑡 = tanh 𝑐𝑡 ∗ 𝑂𝑡

Memory output

Hidden state output

37

Any type of RNN can be used in any sequence
task

38

Encoder-decoder

• The encoder-decoder is a design pattern.

• The encoder’s role is to encode the inputs into state, which
often contains several tensors.

• Then the state is passed into the decoder to generate the
outputs.

39

Encoder-decoder

• The encoder and the decoder can have different architectures.

• In image captioning the encoder is a CNN and the decoder is an
RNN.

40

Image captioning example

This layer captures a good
high level embedding of the

image semantic content.

41

Image captioning example

𝑥1

ℎ0
CNN

<START>

42

Image captioning example

𝑜1

𝑥1

ℎ1ℎ0
CNN

<START>

A

43

Image captioning example

𝑜1

𝑥1

ℎ1

𝑥2

ℎ0
CNN

<START> A

A

44

Image captioning example

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2ℎ0
CNN

<START> A

A straw

45

Image captioning example

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑥3

ℎ0
CNN

<START> A straw

A straw

46

Image captioning example

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3ℎ0
CNN

<START> A straw

A straw hat

47

Image captioning example

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4ℎ0
CNN

<START> A straw hat

<END>A straw hat

48

Image captioning examples

49

Image captioning (bad) examples

50

Sequence to sequence

• The sequence to sequence (seq2seq) model is based on the
encoder-decoder architecture to generate a sequence
output for a sequence input

• Both the encoder and the decoder use RNNs to handle
sequence inputs of variable length.

• The hidden state of the encoder is used directly to initialize
the decoder hidden state.

51

Sequence to sequence

• Sequence to sequence models are a special case of encoder-
decoder architectures.

• The hidden state of the encoder is used directly to initialize
the decoder hidden state to pass information from the
encoder to the decoder.

52

Feedforward in sequence-to-sequence models

DecoderEncoder

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5ℎ0

𝑜6

𝑥6

ℎ6

Input sequence

Hello world <END> <START>

Predicted output sequence

Olá mundo <END>

53

Encoder and decoder have different parameters

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Predicted output sequence

ℎ0

𝑜6

𝑥6

ℎ6

Input sequence

Hello world <END> <START>

𝑊∗ 𝑊∗

DecoderEncoder

Olá mundo <END>

54

Training with reinjection

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Predicted output sequence

ℎ0

𝑜6

𝑥6

ℎ6

𝐿4 𝐿5 𝐿6

𝑦4 𝑦5 𝑦6

True output sequence

Input sequence

Hello world <END> <START>

Olá mundo <END>

55

Training with teacher forcing

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Predicted output sequence

ℎ0

𝑜6

𝑥6

ℎ6

𝐿4 𝐿5 𝐿6

𝑦4 𝑦5 𝑦6

True output sequence

Input sequence True output sequence

Hello world <END> Olá mundo<START>

Olá mundo <END>

56

Summarization example

57
See, A., Liu, P. J., & Manning, C. D. (2017). Get to the point: Summarization with pointer-generator networks. In ACL.
https://github.com/ymfa/seq2seq-summarizer

Encoder-decoder based summarization

58
See, A., Liu, P. J., & Manning, C. D. (2017). Get to the point: Summarization with pointer-generator networks. In ACL.
https://github.com/ymfa/seq2seq-summarizer

Attention based summarization

59
See, A., Liu, P. J., & Manning, C. D. (2017). Get to the point: Summarization with pointer-generator networks. In ACL.
https://github.com/ymfa/seq2seq-summarizer

Get to the point!

60
See, A., Liu, P. J., & Manning, C. D. (2017). Get to the point: Summarization with pointer-generator networks. In ACL.
https://github.com/ymfa/seq2seq-summarizer

Summary

• Sequence models:
• RNNs can nicely model sequence data.
• GRUs and LSTMs overcome some of the memory limitations.

• Architectures:
• Deep archictures to capture complex interactions
• Bi-direction architectures to capture long-term dependencies
• Encoder-decoder
• Sequence to sequence

• Tasks: machine translation, image captioning, summarization.

• Dive into Deep Learning chapters 8 and 9:
• http://d2l.ai/chapter_recurrent-neural-networks/index.html
• http://d2l.ai/chapter_recurrent-modern/index.html

61

http://d2l.ai/chapter_recurrent-neural-networks/index.html
http://d2l.ai/chapter_recurrent-modern/index.html

Deep RNNs

• Stack multiple layers of LSTMs on top of
each other.

• This results in a mechanism that is
more flexible, due to the combination
of several simple layers.

• In particular, data might be relevant at
different levels of the stack.
• For instance, we might want to keep

high-level data about financial market
conditions (bear or bull market)
available, whereas at a lower level we
only record shorter-term temporal
dynamics.

62

Bidirectional RNNs

• There are many tasks where the prediction is in the middle
of the sequence:
• I am _____

• I am _____ very hungry.

• I am _____ very hungry, I could eat half a pig

• In a bidirectional RNN information
from both ends of the sequence
is used to estimate the output.

63

Web Images Captioning / Description

• Karpathy, A., & Fei-Fei, L. “Deep visual-semantic alignments for
generating image descriptions”. IEEE CVPR 2015.

• Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... &
Bengio, Y. “Show, attend and tell: Neural image caption generation with
visual attention”. ICML 2015.

• https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning

• Yu, J., Li, J., Yu, Z., & Huang, Q. (2019). Multimodal transformer with
multi-view visual representation for image captioning. IEEE Transactions
on Circuits and Systems for Video Technology.

• Herdade, S., Kappeler, A., Boakye, K., & Soares, J., “Image Captioning:
Transforming Objects into Words”. NIPS 2019.

64

https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning

Readings: Machine translation

• Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence
learning with neural networks." In Advances in neural information
processing systems, pp. 3104-3112. 2014.

• Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
"Learning phrase representations using RNN encoder-decoder for
statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

• https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-
sequence-learning-in-keras.html

65

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

Readings: Web Text Summarization

• Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled
sampling for sequence prediction with recurrent neural networks. In
Advances in NIPS.

• Paulus, R., Xiong, C., & Socher, R. (2018). A deep reinforced model for
abstractive summarization. In ICLR.

• See, A., Liu, P. J., & Manning, C. D. (2017). Get to the point:
Summarization with pointer-generator networks. In ACL.

• https://github.com/ymfa/seq2seq-summarizer

66

https://github.com/ymfa/seq2seq-summarizer

