Word Embeddings

Word2vec, skip-grams, Diachronic Embeddings, Applications.

Web Data Mining and Search

Slides from Transactions on ACL: Omer Levy, Yoav Goldberg, Ido Dagan, Improving Distributional Similarity with Lessons Learned from Word Embeddings, Bar-Ilan University, Israel https://levyomer.wordpress.com/2015/03/30/improving-distributional-similarity-with-lessons-learned-from-word-embeddings/

How to represent a word?

dog	1	[1	0	0	0	0	0	0	0	0	0]
cat	2	[0	1	0	0	0	0	0	0	0	0]
person	3	[0	0	1	0	0	0	0	0	0	0]

Vector space model

- In the vector space model, each dimension corresponds to a term.
- The dimensionality V of the space corresponds to the size of the vocabulary.

- Each word is represented by a V dimensional vector, where only the dimension corresponding to that word is non-zero.
- Hence, each document is represented by the frequency of its terms.

How to represent a word?

dog	1	[1	0	0	0	0	0	0	0	0	0]
cat	2	[0	1	0	0	0	0	0	0	0	0]
person	3	[0	0	1	0	0	0	0	0	0	0]

- **Problem**: distance between words using one-hot encodings always the same
- Idea: Instead of one-hot-encoding use a histogram of commonly cooccurring words.

Distributional Semantics

	75	S	dow	<i>(</i> 0	Ise	nted		sd	or		
person	[5	5	1	5	0	2	5	5	0	0]
cat	[5	4	1	4	2	0	3	4	0	3]
dog	[5	5	0	5	0	0	5	5	0	2]

This vocabulary can be extremely large

Distributional Semantics

- How similar is pizza to pasta?
- How related is **pizza** to **Italy**?
- **Representing words as vectors** allows easy computation of similarity and relatedness.

Approaches for Representing Words

Distributional Semantics (*Count***)**

- Used since the 90's
- Sparse word-context PMI/PPMI matrix
- Decomposed with SVD

Word Embeddings (*Predict*)

- Inspired by deep learning
- word2vec (Mikolov et al., 2013)
- GloVe (Pennington et al., 2014)

Underlying Theory: The Distributional Hypothesis (Harris, '54; Firth, '57)

"Similar words occur in similar contexts"

Approaches for Representing Words

Both approaches:

- Rely on the same linguistic theory
- Use the **same data**
- Are mathematically related
 - "Neural Word Embedding as Implicit Matrix Factorization" (NIPS 2014)
- How come word embeddings are so much better?
 - "Don't Count, Predict!" (Baroni et al., ACL 2014)
- More than meets the eye...

Word Embeddings with Word2Vec

Algorithms

(objective + training method)

- Skip Grams + Negative Sampling
- CBOW + Hierarchical Softmax
- Noise Contrastive Estimation
- GloVe

...

Hyperparameters

(preprocessing, smoothing, etc.)

- Subsampling
- Dynamic Context Windows
- Context Distribution Smoothing
- Adding Context Vectors

• ...

What is word2vec?

- word2vec is **not** a single algorithm
- It is a **software package** for representing words as vectors, containing:
 - Two distinct models
 - CBoW
 - Skip-Gram
 - Various training methods
 - Negative Sampling
 - Hierarchical Softmax
 - A rich preprocessing pipeline
 - Dynamic Context Windows
 - Subsampling
 - Deleting Rare Words

What is word2vec?

- word2vec is **not** a single algorithm
- It is a **software package** for representing words as vectors, containing:

(SG)

- Two distinct models
 - CBoW
 - Skip-Gram
- Various training methods
 - Negative Sampling (NS)
 - Hierarchical Softmax
- A rich preprocessing pipeline
 - Dynamic Context Windows (DCW)
 - Subsampling
 - Deleting Rare Words

Marco saw a furry little cat hiding in the tree.

Marco saw a furry little cat hiding in the tree.

Marco saw a furry little cat hiding in the tree.

Marco saw a furry little cat hiding in the tree.

- Word2vec models the distribution of words and context words.
- The model will maximize the log-likelihood:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j} | w_t)$$

Softmax: words vs context words

• The $p(w_t|w_{t-1})$ is formalized as the softmax:

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}{}^{\top}v_{w_I}\right)}{\sum_{w=1}^{W}\exp\left(v'_w{}^{\top}v_{w_I}\right)}$$

where each word is represented by a vector $v_{w_*} = [v_{w_*} \dots v_{w_*}]$, thus rendering the argument of the softmax function:

Stochastic Gradient Descent

- But Corpus may have 40B tokens and windows
- You would wait a very long time before making a single update!
- Very bad idea for pretty much all neural nets!
- Instead: We will update parameters after each window t
 → Stochastic gradient descent (SGD)

$$v_{w_o}^{new} = v_{w_o}^{old} - \alpha \nabla_{v_{w_o}} p(w_o | w_I, D)$$

$$v_{w_I}^{new} = v_{w_I}^{old} - \alpha \nabla_{v_{w_I}} p(w_o | w_I, D)$$

Word vectors

- SGNS finds a vector \vec{w} for each word w in our vocabulary V_W
- Each such vector has d latent dimensions (e.g. d = 100)
- Effectively, it learns a matrix W whose rows represent V_W
- Key point: it also learns a similar auxiliary matrix *C* of context vectors
- In fact, each word has two embeddings

Positive Samples + Negative Sampling

• Maximiz • <i>c</i> was	ve: $\sigma(\vec{w} \cdot \vec{c})$ observed with <i>w</i>	• Minimize: $\sigma(\vec{w} \cdot \vec{c}')$ • c' was hallucinated with w					
<u>words</u>	<u>contexts</u>	<u>words</u>	<u>contexts</u>				
cat	furry	cat	Australia				
cat	little	cat	cyber				
cat	hiding	cat	the				
cat	in	cat	1985				

Exercise: How the $\vec{w} \cdot \vec{c}$ be for these words?

Hyperparameters

• Preprocessing

- Dynamic Context Windows
- Subsampling
- Deleting Rare Words

Association Metric

- Shifted PMI
- Context Distribution Smoothing

(word2vec)

(SGNS)

Dynamic Context Windows

Marco saw a furry little cat hiding in the tree.

Dynamic Context Windows

saw a furry little cat hiding in the tree

Dynamic Context Windows

saw a furry little cat hiding in the tree

word2vec:	$\frac{1}{4}$	$\frac{2}{4}$	<u>3</u> 4	$\frac{4}{4}$		$\frac{4}{4}$	$\frac{3}{4}$	$\frac{2}{4}$	$\frac{1}{4}$
GloVe:	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{1}$		$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$
Aggressive:	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{1}$		$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$

The Word-Space Model (Sahlgren, 2006)

Context Distribution Smoothing

- SGNS samples $c' \sim P$ to form negative (w, c') examples
- Our analysis assumes P is the unigram distribution $P(c) = \frac{\#c}{\sum_{c' \in V_C} \#c'}$
- In practice, it's a **smoothed** unigram distribution

$$P^{0.75}(c) = \frac{(\#c)^{0.75}}{\sum_{c' \in V_c} (\#c')^{0.75}}$$

• This little change makes a big difference.

Slides from: Christopher Manning, Distributed word representations for IR, Stanford University, USA

Linear Relationships in word2vec

These representations are *very good* at encoding similarity and dimensions of similarity!

 Analogies testing dimensions of similarity can be solved quite well just by doing vector subtraction in the embedding space
 Syntactically

•
$$x_{apple} - x_{apples} \approx x_{car} - x_{cars} \approx x_{family} - x_{families}$$

- Similarly for verb and adjective morphological forms Semantically (Semeval 2012 task 2)
- $x_{shirt} x_{clothing} \approx x_{chair} x_{furniture}$
- $x_{king} x_{man} \approx x_{queen} x_{woman}$

Word Analogies

Test for linear relationships, examined by Mikolov et al.

Slides from: Christopher Manning, Distributed word representations for IR, Stafford University, USA5

Word embeddings and CNNs for sentence classification

Kim, Yoon. "Convolutional Neural Networks for Sentence Classification." *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. 2014.

Results

- Movie reviews (MR)
- Sentiment analysis (SST-1, SST-2, Sub)
- TREC Question Answering (TREC)
- Customer reviews (CR)
- Opinion polarity (MPQA)

Data	c	l	N	V	$ V_{pre} $	Test
MR	2	20	10662	18765	16448	CV
SST-1	5	18	11855	17836	16262	2210
SST-2	2	19	9613	16185	14838	1821
Subj	2	23	10000	21323	17913	CV
TREC	6	10	5952	9592	9125	500
CR	2	19	3775	5340	5046	CV
MPQA	2	3	10606	6246	6083	CV

Results

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	—	_	—	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	—	—	—	_
RNTN (Socher et al., 2013)	_	45.7	85.4	—	—	—	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	—	93.0	—	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	—	—	—	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	—	—	—	—	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	—	—	—	—	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	—	93.2	—	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	—	93.6	—	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	—	93.4	—	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	—	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	—	—	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	—	—	—	82.7	—
SVM_S (Silva et al., 2011)	_	_	_	_	95.0	_	_

Diachronic word embeddings for studying language change!

Hamilton, William L., Jure Leskovec, and Dan Jurafsky. "Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change." In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1489-1501. 2016.

Visualizing changes

Project 300 dimensions down into 2

~30 million books, 1850-1990, Google Books data

Embeddings reflect cultural bias

- Ask "Paris : France :: Tokyo : x"
 - x = Japan
- Ask "father : doctor :: mother : x"
 - x = nurse
- Ask "man : computer programmer :: woman : x"
 - x = homemaker

Embeddings as a window onto history

- The cosine similarity of embeddings for decade X for occupations (like teacher) to male vs female names
 - Is correlated with the actual percentage of women teachers in decade X
- Embeddings for competence adjectives are biased toward men
 - Smart, wise, brilliant, intelligent, resourceful, thoughtful, logical, etc.
- This bias is slowly decreasing

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, *115*(16), E3635–E3644

Change in linguistic framing 1910-1990

Change in association of Chinese names with adjectives framed as "othering" (*barbaric, monstrous, bizarre*)

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, *115*(16), E3635–E3644

Changes in framing: adjectives associated with Chinese

1910	1950	
Irresponsible	Disorganized	Inhibited
Envious	Outrageous	Passive
Barbaric	Pompous	Dissolute
Aggressive	Unstable	Haughty
Transparent	Effeminate	Complacent
Monstrous	Unprincipled	Forceful
Hateful	Venomous	Fixed
Cruel	Disobedient	Active
Greedy	Predatory	Sensitive
Bizarre	Boisterous	Hearty

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, *115*(16), E3635–E3644

Summary: Embed all the things!

- Lots of applications wherever knowing word context or similarity helps prediction:
 - Synonym handling in search, Document aboutness, Ad serving, ...
- Fundamental to all other NLP tasks:
 - Language models: from spelling correction to email response
 - Machine translation
 - Sentiment analysis
 - ...
- Readings:
 - Dan Jurafsky and James H. Martin, Speech and Language Processing (3rd ed. draft), Chapter 6 https://web.stanford.edu/~jurafsky/slp3/6.pdf

Paper references

- Word2Vec: Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." *Advances in neural information processing systems*. 2013.
 - Omer Levy, Yoav Goldberg, Ido Dagan, Improving Distributional Similarity with Lessons Learned from Word Embeddings, Transactions of ACL, 2015
- **FastTex:** Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov. "Enriching word vectors with subword information." *Transactions of the Association for Computational Linguistics* 5 (2017): 135-146.
- **CNN:** Kim, Yoon. "Convolutional Neural Networks for Sentence Classification." Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.
- **Diachronic:** Hamilton, William L., Jure Leskovec, and Dan Jurafsky. "Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change." In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1489-1501. 2016.
- **Biases:** Garg, Nikhil, Londa Schiebinger, Dan Jurafsky, and James Zou. "Word embeddings quantify 100 years of gender and ethnic stereotypes." Proceedings of the National Academy of Sciences 115, no. 16 (2018).