

Automating the Fact-checking task Challenges and Directions

Dr. Diego Esteves

Farfetch, Portugal SDA Research, Germany diegoesteves@gmail.com

07.05.2020

me.

- Professional Experience
 - +/- 17 years professional experience (8 w/ data, 9 w/ eng)
 - Principal DS @Farfetch.com, Portugal
 - Research Scientist@SDA, Germany
 - Data Analyst@BTG Pactual, Brazil
 - ...
- Academic
 - PhD in CS (Bonn Universitat)
 - MSc in Eng. (Instituto Militar de Engenharia IME)
 - MBA (Universidade Federal do Rio de Janeiro UFRJ)

https://www.linkedin.com/in/diegoestevesde/

Research Group

Dr. Diego Esteves - SDA Research

SMART

DATA ANALYTICS

Portugal – May, 7th - 2020

3

"Today we have fake sites,

reinforcing opinions with certain

algorithms, and we have to

learn to deal with them "

bots, trolls - things that

regenerate themselves,

Motivation

The Rise of Fake News: A Global Threat

BUZZFEED NEWS: ELECTION CONTENT ENGAGEMENT

The #top1 fake news against Jair Bolsonaro, had 596k engagements, a number bigger than all his #top10 real news

The New York Eimes

Fake News Is Poisoning Brazilian Politics. WhatsApp Can Stop It.

By Cristina Tardáguila, Fabrício Benevenuto and Pablo Ortellado Ms. Tardáguila, Mr. Benevenuto and Mr. Ortellado are the authors of a new report on misinformation in Brazil

A report found 3 out of the 5 most shared stories on Facebook were false as the **Dilma Rousseff impeachment** process intensified

Swami Brahmachitta 🏊 @SwamiBrahmachit

Every Rs2000 currency note is embedded with a NGC(Nano GPS Chip) which can b tracked. Plz do a Google search abt NGC. It's #BlackMoney proof

rahul thakur @rkt197861 Replying to @SwamiBrahmachit wat about new 2000/- note .. it will nullify removal of 1000/- and make it er to carry cash 💲 can u explain !! e١ ۲ Nov 8, 2016 · Orissa, India 0 Q 44 people are talking about this >

Dr. Diego Esteves - SDA Research

Fake News: How do they proliferate?

- ✓ Someone attempting to steal information/money
- ✓ Satirists who want to either make a point or entertain you
- Poor or untrained journalists (i.e., people who do not follow journalistic standards of ethics)
- ✓ Partisans who want to influence political beliefs and policy makers
- ✓ According to Vosoughi et al. (2018), falsehood is diffusing <u>faster</u> and in <u>larger scale</u> than the truth itself.

Fake News: How are they classified?

Disinformation

• intentionally false, spread deliberately

✓ Misinformation

• unintentionally false

✓ Clickbait

exaggerating information and under-delivering it

✓ Satire

• unintentional false for humorous purposes

✓ Biased Reporting

• reporting only some of the facts to serve an agenda

Fake News: Dealing with in real life The BRATS Method

Research Problem

Can the fact-checking task be automatized?

Automated Fact-checking Frameworks

Evidence Extraction

- Document Selection
- Source Trustworthiness (*)
- Sentence Selection
- Claim Classification

FactBench

WSDM 2017 Triple Scoring

Research Questions & Contributions

RQ1

Can images along with news improve the performance of the named entity recognition models on noisy text?

Named-entity recognition (NER) is a subtask of information extraction aiming to locate **named entities** in natural language documents:

S = Diego Esteves lives in Porto, Portugal.

RQ1 Contribution

A Named Entity Recognition Framework for Noisy Data

Contribution 1

Can images along with news improve	
the performance of the named entity recognition models on noisy tex	xt?

- Lexical, Shape and Orthographic features
- Gazetteers

RO1

SOTA high performance in formal domains (easily 0.90 F1)

Stanford CoreNLP 3.9.2 (updated	
 Text to annotate — Diego Esteves lives in Porto, Portugal. 	
– Annotations – named entities × Named Entity Recognition:	
PERSON CITY COUNTRY 1 Diego Esteves lives in Porto , Portugal .	

Stanford CoreNLP 3.9.2 (updated 2018-11

Paris Hilton was once the toast of the town and perhaps on

Can images along with news improve the performance of the named entity recognition models on noisy text?

S = Paris Hilton was once the toast of the town and perhaps one of Hollywood's most famous socialites.

What if small variations are applied? e.q., S = paris hilton?

RO1

What about non-english names? *e.q.*, *S* = *diego* ?

Stanford CoreNLP 3.9.2 (updated 2018-11-29)	Named Entity Recognition:
- Text to annotate - paris hilton was once the toast of the town and perhaps or	ORGANIZATION PAST REF 1 Paris Hilton was once the toast of the town and perhaps
- Annotations - named entities × Named Entity Recognition:	Stanford CoreNLP 3.9.2
1 paris hilton was once the toast of the town and perhaps	— Text to annotate — diego
	— Annotations — named entities ×
	Named Entity Recognition:

1 diego

RQ1

Can images along with news improve the performance of the named entity recognition models on noisy text?

- Look-up strategies and standard local features struggle on noisy data
- F1 0.20 and 0.60

 [Ritter et al. 2011]
 [Derczynski et al., 2015]
 [Esteves et al., 2017]
 [Qi Zhang et al., 2018]

'2m', '2ma', '2mar', '2mara', '2maro', '2marrow', '2mor', '2mora', '2moro', '2morow', '2morr', '2morro', '2morrow', '2moz', '2mr', '2mro', '2mrrw', '2mrw', '2mw', 'tmmrw', 'tmo', 'tmoro', 'tmorrow', 'tmoz', 'tmr', 'tmro', 'tmrow', 'tmrrow', 'tmrrw', 'tmrw', 'tmrww', 'tmrow', 'tomaro', 'tomarow', 'tomarro', 'tomarrow', 'tommoro', 'tommorow', 'tommorrow', 'tommoro', 'tommorow', 'tomorrow', 'tommoro', 'tommorow', 'tomorrow', 'tomoro', 'tommorow', 'tomorrw', 'tomoro', 'tommorow', 'tomorrw', 'tomoro', 'tommorow', 'tomorrw', 'tomoz', 'tomrw', 'tomorro', 'tomorrw', 'tomoz', 'tomrw', 'tomz'

- Joint clustering to minimise the gap between world knowledge and KBs
- Basic idea:
 - Correlation between images and entities
 - Correlation between search textual results and entities
- Combination of text and image features with simple decision trees-based models
- Majority voting committee

Object detection

RO1

SIFT (Scale Invariant Feature Transform): image descriptor extraction BoF: clustering of feature histograms (k-means)

- o Image ~ histogram of visual words frequencies
- o Some image groups are related to certain named entities
- Classifiers: Unsupervised + Supervised learning

Training datasets

- o LOC: Scene 13
- o PER: Caltech 101 Object Categories
- o ORG: METU

NER Images Candidates (number of trained models)

LOC Building, Suburb, Street, City, Country, Mountain, Highway, Forest, Coast and Map (10) ORG Company Logo (1) PER Human Face (1)

Can images along with news improve the performance of the named entity recognition models on noisy text?

Text Analytics

RO1

Features: term frequency-Inverse document frequency (TF-IDF) Classifier: bag-of-words based Training dataset: 15K DBpedia instances annotated with PER, ORG and LOC classes

Dr. Diego Esteves - SDA Research

Heuristic-based DT

RO1

$$\mathsf{M}_{\mathsf{i}} = \{j, t, ng_{pos}, C_{loc}, C_{per}, C_{org}, C_{dist}, C_{plc}, T_{loc}, T_{per}, T_{org}, T_{dist}\}$$

for each sentence *i* and token *t* in position *j*

- $ng_{pos}^{}$ = n-gram of POS tag $C_k, T_k^{}$ = total objects found by classifier for class k
- $C_{dist}^{\kappa}, T_{dist}^{\kappa}$ = distance b/w two top predictions C_{plc}^{κ} = sum of all predictions by all LOC classifiers

Dr. Diego Esteves - SDA Research

Dr. Diego Esteves - SDA Research

Named Entity Recognition for

Can images along the performance of the named ent

Advantages

- CV module makes the approach language agnost
- Each text snipped is automatically translated (en
- Very simple algorithms (DT) performing really we SOTA)
- NO Gazetteers!

Disadvantages

- Still NOT achieving similar to SOTA in formal dom
- Do **<u>NOT</u> scale** well!

Portugal – May, 7th - 2020

Dr. Diego Esteves - SDA Research

Can images along with news improve the performance of the named entity recognition models on noisy text?

- DT + HORUS
- CRF + HORUS
- B-LSTM + CRF + HORUS
- B-LSTM + CNN + CRF + HORUS
- Char + B-LSTM + CRF + HORUS

mare

HORUSZ

$\mathcal{F} = (\mathcal{TX} \cup \mathcal{CV} \cup \mathcal{TX}_{cnn} \cup \mathcal{CV}_{cnn} \cup \mathcal{TX}_{emb} \cup \mathcal{TX}_{stats} \cup \mathcal{B} \cup \mathcal{S})$

Dr. Diego Esteves - SDA Research

RO1

RO1

Can images along with news improve the performance of the named entity recognition models on noisy text?

Cfg ⁴ Features	Cfg Features	Cfg Features	Cfg Features
cfg01 Scfg02 S + TX (TF-IDF+SVM)cfg03 S + CV (SIFT+K-means+SVM)cfg04 S + TX + CV [15]cfg05 S + Lemmacfg06 S + Lemma + TXcfg07 S + Lemma + CVcfg08 S + Lemma + TX + CVHORUS 1.1	$\begin{array}{c c} cfg09 \mid \mathcal{S} + Brown \ 64M \ c320 \\ cfg10 \mid \mathcal{S} + Brown \ 64M \ c640 \ (\mathcal{B}_{best}) \\ cfg11 \mid \mathcal{S} + Brown \ 500M \ c1000 \\ cfg12 \mid \mathcal{S} + Lemma + Brown \ 64M \ c320 \\ cfg13 \mid \mathcal{S} + Lemma + Brown \ 64M \ c640 \\ cfg14 \mid \mathcal{S} + Lemma + Brown \ 500M \ c1000 \\ cfg15 \mid \mathcal{S} + \mathcal{B}_{best} + \mathcal{CV} \\ cfg16 \mid \mathcal{S} + \mathcal{B}_{best} + \mathcal{TX} \\ cfg17 \mid \mathcal{S} + \mathcal{B}_{best} + \mathcal{CV} + \mathcal{TX} \\ \end{array}$	$\begin{array}{c} {\rm cfg18} \ S+{\cal CV}_{cnn} \\ {\rm cfg19} \ S+{\cal TX}_{cnn} \\ {\rm cfg20} \ S+{\cal TX}_{emb} \\ {\rm cfg21} \ S+{\cal TX}_{stats} \\ {\rm cfg22} \ S+{\cal TX}_{cnn}+{\cal TX} \\ {\rm cfg23} \ S+{\cal TX}_{cnn}+{\cal TX}+{\cal TX}_{e} \\ {\rm +}{\cal TX}_{stats} \\ {\rm cfg24} \ S+{\cal TX}_{cnn}+{\cal CV}_{cnn} \\ {\rm cfg25} \ S+{\cal TX}_{cnn}+{\cal CV}_{cnn} \\ {\rm cfg26} \ S+{\cal CV}_{cnn}+{\cal CV} \\ {\rm cfg27} \ S+{\cal CV}_{cnn}+{\cal CV}+{\cal TX} \\ {\rm cfg28} \ S+{\cal CV}_{cnn}+{\cal CV}+{\cal TX}_{cnn} \\ {\rm +}{\cal TX} \\ {\rm cfg29} \ S+{\cal CV}_{cnn}+{\cal CV}+{\cal TX}_{cnn} \\ {\rm +}{\cal TX} \\ {\rm cfg29} \ S+{\cal CV}_{cnn}+{\cal CV}+{\cal TX}_{cnn} \\ {\rm +}{\cal TX}+{\cal TX}_{emb}+{\cal TX}_{stat} \end{array}$	cfg30 =18+ B_{best} cfg31 =19+ B_{best} cfg32 =20+ B_{best} cfg33 =21+ B_{best} cfg34 =22+ B_{best} cfg36 =24+ B_{best} cfg37 =25+ B_{best} cfg38 =26+ B_{best} cfg39 =27+ B_{best} cfg40 =28+ B_{be} cfg41 =2 e^{-1}
24 Portugal – May, 7th - 2020		Dr. Diego Est	eves - SDA Researc

Nam	ned Entity Recognition for Noise at 520	IART TA IALYTICS DATA TO KNOWLEDGE
RQ1	Can images alo 10 ⁻¹⁸³ Can images alo 10 ⁻¹⁸³ thore the performance of the named by read and the performance of the performance of the named by read and the performance of the	
	Dataset Decision Trees Random Forest CRF 3-LSTM B-LSTM B-LSTM [20] [21] [23] [30]	
	$\texttt{cfg} \longrightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	Ritter P 0.48 +2% +4% 0.51 +1% +24% 0.73 +5% +7% 0.77 +1% -3% 0.81 -5% -5% R 0.49 +1% +3% 0.48 -1% -2% 0.58 -8% -2% 0.63 +5% +5% 0.59 +5% +4% 0.62 +3% +5% F 0.49 +1% +3% 0.49 +4% +7% 0.58 +2% +7% 0.63 +5% +5% 0.59 +5% +4% 0.62 +3% +5%	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$ \mathbf{WNUT-16} \begin{vmatrix} \mathbf{P} & 0.49 & +1\% & +6\% & 0.52 & +14\% & +23\% & 0.72 & +7\% & +9\% & 0.72 & -4\% & -2\% & 0.77 & -3\% & -3\% & 0.78 & -4\% & -6\% \\ \mathbf{R} & 0.50 & +1\% & +6\% & 0.48 & +0\% & +2\% & 0.48 & -1\% & +6\% & 0.69 & +0\% & +1\% & 0.65 & +2\% & +2\% & 0.66 & +2\% & +2\% \\ \mathbf{F} & 0.49 & +1\% & +6\% & 0.50 & +5\% & +10\% & 0.56 & +2\% & +8\% & 0.69 & -1\% & +0\% & 0.09 & +0\% & +0\% & 0.71 & -1\% & -2\% \\ \end{vmatrix}$	
	$ \mathbf{WNUT-17} \begin{vmatrix} \mathbf{P} & 0.44 & +3\% & +7\% & 0.47 & +13\% & +24\% & 0.76 & +2\% & +1\% & 0.76 & -2\% & -2\% & 0.76 & +0\% & -2\% & 0.77 & -3\% & -3\% \\ \mathbf{R} & 0.45 & +4\% & +6\% & 0.44 & +3\% & +4\% & 0.50 & +0\% & +5\% & 0.63 & +1\% & +1\% & 0.64 & +0\% & +1\% & 0.62 & +1\% & +1\% \\ \mathbf{F} & 0.44 & +4\% & +6\% & 0.45 & +6\% & +12\% & 0.60 & +0\% & +4\% & 0.67 & +0\% & +0\% & 0.69 & +0\% & -1\% & 0.67 & +0\% & -1\% \\ \end{vmatrix} $	52.0

Can images along with news improve the performance of the named entity recognition models on noisy text?

Contributions made:

RO1

- Novel NER Architecture based on Images and News (**NO Gazetteer!**)
- Language Agnostic NER Framework for Noisy Data (English and Portuguese)
- Improved Recall for NNs, but at cost of precision
- Great improvement for CRF-based models; results comparable to SOTA NNs

RO₂

How to compute a credibility score for a given information source?

How credible a given website is?

"A credible web page is one whose information one can accept as the truth without needing to look elsewhere". [Olteanu et al., 2013; Waweret al., 2014]

Alternatives

- 1. PageRank (shutdown) and Alexa (paid)
- 2. Existing data is too small/do not scale! Manual annotation is costly [Haas and Unkel, 2017].
- 3. Theoretical research or confidential data (e.g., mouse movement, time spent, etc..) in a restricted simulation environment (e.g., Google and Microsoft) [Liu et al. (2015)]
- Open-source work = f(q, S) [Nakamura et al. 2007] or likert [Olteanu et al. (2013), 4. Wawer et al. (2014)]

RO2 Contribution

An algorithm to calculate the Likert Score for a given source

Contribution 2

RQ2

Cre (ex	edibility: Likert Sca periment configurat	ale ions)		
5-c	lass	3-с	lass	2-c	lass
1	very non-credible	1	low	1	low
2	non-credible	2	neutral	2	high
3	neutral	3	high		
4	credible				
5	very credible				

Features	Type of features (e.g.)	Advantages	Drawbacks
Content-based	Textual, Appearance and Meta-information	Mostly textual features, which are easy to extract	Experiments show that they are not effective enough to generalize
Social-based	Social and General Popularity, Page Rank and Alexa	Mostly based on (private) user-content information, which is - in its essence - more reliable	Data is not freely available to the community

RQ2

How to compute a credibility score for a given information source?

- Content-based (25)
 - Text (20)
 - Appearance (4)
 - Meta-information (1)
- Social-based (12):
 - Social Popularity (9)
 - General Popularity (1)
 - Link structure (2)

Research is still very contradictory!

NO!

Appearance is not important! Most significant are Social-based (12) and some of Text (20)! [Olteanu et al., 2013, Dong et al., 2015]

YES!

Appearance is very important [Fogg et al.,2003; Shah et al., 2015; Haas and Unkel, 2017].

RQ2 How

- Similarly to the concept "Bag-of-Words" we introduce a concept we named "Bag-of-Tags".
- We expect to capture not only **visual features**, but also **hidden patterns** in the source code.
- We also explore different lexical features (e.g., Vader Lexicon)

RQ2

- Microsoft Dataset [Schwarz and Morris, 2011]
 •aprx. 1000 URLs
- Content Credibility Corpus (C3) [Kakol et al., 2017]
 - •15.750 evaluations of 5.543 URLs from
 - •2.041 participants

How to compute a credibility score for a given information source?

Features

RQ2

- 1. Web Archive "Freshness"
- 2. Domain (enc)
- 3. Authority (enc)
- 4. Outbound Links $\sum_{n=1}^{P} \phi(w_c)$
- 5. Text Category $\sum_{s=1}^{w_s} \gamma(s) \gamma(w_t)$
- 6. (5) LexRank
- 7. (5) Latent Semantic A.
- 8. Readability Metrics [Si and Callam, 2001]
- 9. SPAM $\psi(w_b)^\frown \psi(w_t)$

 $f_{arc}(w) = \left(\left[\frac{1}{\log(\Delta_b \times \Delta_e)} + \log(\Delta_a) + \frac{1}{\Delta_u} \right] \right) \times \gamma \qquad w_b: \bigcup_{i=1}^n \varphi(i, w_b)$ "Freshness" 10. Social Tags

11.

- $x = \begin{cases} 1, & \text{if } w \in \mathcal{O} \\ 0, & \text{if } w \notin \mathcal{O} \end{cases}$
- 12. PageRank CommonCrawl
- 13. General Inquirer

OpenSources

- 14. Vader Lexicon
- 15. HTML2Seq (BoT)

(c) HTML2Seq (F1): C3 Corpus 2-classes

(d) HTML2Seq (F1): C3 Corpus 3-classes

RQ2

SMART DATA ANALYTICS FROM DATA TO KNOWLEDGE

TOPI

How to compute a credibility score for a given information sour

Webpage Text Features

Webpage Text Feat

Classifiers

(b) Textual+HTML2Seq (best padding) Features.

(a) Textual Features.

RQ2

How to compute a credibility score for a given information source?

Microsoft	Dataset	-	2-cla	ss		t Dataset	_	3-cla
(Gradient	Boosting, K	= 25)	- 1			Boosting, K	= 75)	
Class	Precision	Recall	F1	F1 SOTA	= 0.745	Precision	Recall	F1
low	0.851	0.588	0.695		low	0.567	0.447	0.500
high	0.752	0.924	0 829		medium	0.467	0.237	0.315
weighted	0.794	0.781	0.772		high	0.714	0.916	0.803
micro	0.781	0.781	0.781	_	weighted	0.626	0.662	0.626
macro	0.801	0.756	0.762		micro	0.662	0.662	0.662
C3 Corpu	S			ĺ	macro	0.583	0.534	0.539
(AdaBoos	t, $K = 75$)				C3 Corpu	15		
Class	Precision	Recall	F1		(AdaBoos	st, $K = 100$)		
low	0.558	0.355	0.434		Class	Precision	Recall	F1
high	0.732	0.862	0.792		low	0.143	0.031	0.051
weighted	0.675	0.695	0.674	1	medium	0.410	0.177	0.247
micro	0.695	0.695	0.695		high	0.701	0.916	0.794
macro	0.645	0.609	0.613		weighted	0.583	0.660	0.598
	1	1	1		micro	0.660	0.660	0.660

 Table 1: Text+HTML2Seq features (2-class): best

 classifier performance

1. 1.

 Table 2: Text+HTML2Seq features (3-class): best

 classifier performance

0.375 0.364

0.418

macro

				5-cl	ass		Þ
Micros	oft D	ataset		1		<u> </u>	1
model	$\mid K$	R^2	RMSE	MAE	F1 SOTA	= 0.763	
SVR	3	0.232	0.861	<u>0.691</u>	.238		
Ridge	3	0.268	0.841	0.683	0.269		
C3 Cor	pus				-		
model	$\mid K$	$\mid R^2$	RMSE	MAE	EVar		
SVR	25	0.096	0.939	0.739	0.102		
Ridge	25	0.133	0.920	0.750	0.134		

Table 3: Text+HTML2Seq: regression measures (5class). Selecting top K lexical features

.. .

RQ2

How to compute a credibility score for a given information source?

FactBench Dataset

FactBe	ench (Sample	e · Hun	Human Annotation)				
label	claims	sites	non-cred	cred			
true	5	96	57	39			
false	5	80	48	32			
-	10	186	105	71			
FactBe	ench (Sample	e · Crec	libility Mode	el)			
label	non-cred	%	cred	%			
true	40	0.81	31	0.79			
false	34	0.70	24	0.75			

Table 5: FactBench Dataset: analyzing the performance of the credibility model in the factchecking task.

How to determine the veracity of a given claim?

Types of claims

- Structured Claims: [dbr:Diego_Esteves; dbo:birthPlace; dbr:Brazil]
- Unstructured Claims: "Diego is Brazilian."

Complexity

- Simple (1 sentence)
- Complex (1+ sentences)

Tasks

RO3

- Verification (true)
- Ranking (1+ claims)
- Plausibility (true)

Claim: Roman Atwood is a content creator. (Supported) Evidence: [wiki/Roman_Atwood] He is best known for his vlogs, where he posts updates about his life on a daily basis.

Claim: Furia is adapted from a short story by Anna Politkovskaya. (**Refuted**) Evidence: [wiki/Furia_(film)] Furia is a 1999 French romantic drama film directed by Alexandre Aja, ..., adapted from the science fiction short story Graffiti by Julio Cortázar.

Claim: Afghanistan is the source of the Kushan dynasty. (NotEnoughInfo)

Fig. 1. Three examples from the FEVER dataset [14].

[A. Soleimani et al. 2019]

RO3

How to determine the veracity of a given claim?

- Diego's birthplace is Brazil
- Diego was born in Brazil
- Diego was born in Rio de Janeiro
- Diego is Brazilian
- 1. **Hard-coded** verbalisation and rules Represents facts about the world (scalability issues)
- 2. **Supervised** models (not optimal accuracy)
- 3. Use **distant supervision** methods (sub-optimal precision)
- 4. **External linguistic** corpora (e.g. lexical databases) to obtain synonym (**not good recall**)

RQ3

How to determine the veracity of a given claim?

 $\gamma(s, p, o, \mathcal{L}) = [\phi(s, l_1) \times \Gamma(p, l_1) \times \phi(o, l_1)] \cup [\phi(s, l_2) \times \Gamma(p, l_2) \times \phi(o, l_2)], \dots, \cup [\phi(s, l_n) \times \Gamma(p, l_n) \times \phi(o, l_n)], \text{ where}$

- (a) $\phi(x, l_i)$ returns a set of *m* labels (x_1, x_2, \dots, x_m) that are similar to the label of the resource x ($s \in S$ and $o \in O$), which is extracted from the rdfs:labels predicate for a given language $l_i \in \mathcal{L}$.
- (b) $\Gamma(p, l_i)$ returns a set of verbalized patterns \mathcal{P} for a given predicate p and a language $l_i \in \mathcal{L}$.

Feature	Definition
is sub	Checks if the document contains subject
is obj	Checks if the document contains object
is pred	Checks if the document contains predicate
dist sub obj Text follows	Distance between subject and object
pred between	Does predicate occur between subject and object
sub relax	Checks whether subject is present in partial form
obj relax	Checks whether object is present in partial form
pred relax	Checks whether predicate is present in partial form
Jaccard distance	Maximum Jaccard coefficient
Cosine similarity	Maximum cosine similarity
Semantic similarity	Similarity score of most semantically similar sentence

RQ3

How to determine the veracity of a given claim?

			Dor	nain						Range			
	С	Р	R	F_1	AUC	RMSE	_	\mathbf{C}	Р	R	F_1	AUC	RMSE
J48	89.7%	0.898	0.897	0.897	0.904	0.295	1	90.9%	0.909	0.909	0.909	0.954	0.271
SimpleLogistic	89.0%	0.890	0.890	0.890	0.949	0.298		88.0%	0.880	0.880	0.880	0.946	0.301
NaiveBayes	81.2%	0.837	0.812	0.808	0.930	0.415		83.3%	0.852	0.833	0.830	0.933	0.387
SMO	85.4%	0.861	0.854	0.853	0.854	0.382		83.3%	`52	0.833	0.830	0.833	0.409
DomainRange													
			Domai	nRange				TION		Prop	erty		
	С	Р	Domain R	$\operatorname{nRange}{\operatorname{F}_1}$	AUC	RMSE		LISATION	Р	Prop R	$\operatorname{erty}{\operatorname{F}_1}$	AUC	RMSE
J48	C 91.0%	P 0.910	Domain R 0.910	${ m nRange} { m F_1} { m 0.910}$	AUC 0.953	RMSE 0.270	ERB	ALISATION 10.8%	P 0.786	Prop R 0.708	${ m erty} { m F_1} { m 0.687}$	AUC 0.742	RMSE 0.427
J48 SimpleLogistic	C 91.0% 88.9%	P 0.910 0.889	Domain R 0.910 0.889	$\begin{array}{c} \mathrm{nRange} \\ \mathrm{F}_1 \\ 0.910 \\ 0.889 \end{array}$	AUC 0.953 0.950	RMSE 0.270 0.2	ERB	ALISATION 10.8% 64.9%	P 0.786 0.653	Prop R 0.708 0.649	${ m erty} { m F}_1 { m 0.687} { m 0.646}$	AUC 0.742 0.726	RMSE 0.427 0.460
J48 SimpleLogistic NaiveBayes	C 91.0% 88.9% 84.5%	P 0.910 0.889 0.861	Domain R 0.910 0.889 0.845	$\begin{array}{c} n \text{Range} \\ F_1 \\ \hline 0.910 \\ 0.889 \\ 0.843 \end{array}$	AUC 0.953 0.950 0.935	RMSE 0.270 0.2 0.380	ERB	ALISATION 10.8% 64.9% 61.3%	P 0.786 0.653 0.620	Prop R 0.708 0.649 0.613	$\begin{array}{c} \text{erty} \\ F_1 \\ 0.687 \\ 0.646 \\ 0.608 \end{array}$	AUC 0.742 0.726 0.698	RMSE 0.427 0.460 0.488
J48 SimpleLogistic NaiveBayes SMO	C 91.0% 88.9% 84.5% 83.6%	P 0.910 0.889 0.861 0.853	Domais R 0.910 0.889 0.845 0.836	nRange F ₁ 0.910 0.889 0.843 0.834	AUC 0.953 0.950 0.935 0.836	RMSE 0.270 0.21 0.380 0.405	ERB	ALSATION 10.8% 64.9% 61.3% 64.6%	P 0.786 0.653 0.620 0.673	Prop R 0.708 0.649 0.613 0.646	$\begin{array}{c} \text{erty} \\ F_1 \\ 0.687 \\ 0.646 \\ 0.608 \\ 0.632 \end{array}$	AUC 0.742 0.726 0.698 0.646	RMSE 0.427 0.460 0.488 0.595

RQ3

How to determine the veracity of a given claim?

The DeFacto's score distribution for negative examples (FactBench12 dataset)

{'FAKE', 'REAL'}					
6335					
4244					
2091					
accuracy:	0.893				
accuracy:	0.898				
accuracy:	0.936				
accuracy:	0.936				

agg_rank count label						
said	9.8 5	REAL				
friday	2.66667	3 REAL				
monday	3	3 REAL				
says	8.33333	3 REAL				
дор	4 3	REAL				
tuesday	8.66667	3 REAL				
cruz	2.33333	3 REAL				
conservat	ive 6.666	67 3				
REAL						
slamic	5.33333	3 REAL				

agg_rank count label							
share	5.33333	3 FAKE					
print	7.66667	3 FAKE					
octobe	r 2.66667	3 FAKE					
novem	hor 5 7777						
novenn	Jei J.J.J.J	D D D FARE					
hillary	2 3	FAKE					
hillary article	2 3 4.333333	FAKE 3 FAKE					
hillary article 2016	2 3 4.33333 1.33333	FAKE 3 FAKE 3 FAKE					

Dr. Diego Esteves - SDA Research

Basic AFC Architecture

Fig. 2. SIMPLELSTM model. The inputs are claim and evidence. Both, the evidence and the claim are fed to an embedding layer (common for both) that outputs embedding representation for each word. These embeddings are then passed through LSTM layers. The final output of LSTM, sentvec and claimvec, are merged and fed to the fully connected layer.

Figure 1: The main steps of our approach **DeFactoNLP 1.0**

features which can help in ascertaining the veracity of the claim.

Use these features to perform the final labelling using

a Random Forest classifier. Return the sentences which support

this labelling as evidence.

RQ3	How to determine the vertains of a given claim?									
Ctaim [C_1, C_2, , C_m] →	bit = bit	3 → Lm 4 3 → Lm 4 5 5 6 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	LSTM Layers $L_3 \leftarrow L_2 \leftarrow L_1 \leftarrow \downarrow$ $L_3 \leftarrow L_2 \leftarrow L_1$	evidence [E1,E2,,En]	Dataset FEVER Support FEVER Reject	Classifier XGBoost [32] TE [9] XI-FEATURE RF XI-FEATURE SVM XI-FEATURE MLP SimpleLSTM XGBoost [32] TE [9] XI-FEATURE RF XI-FEATURE SVM	$\begin{array}{c} \text{Accuracy} \\ 0.766 \\ 0.691 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.850 \\ 0.74 \\ 0.548 \\ 0.73 \\ 0.642 \end{array}$	Precision 0.766 0.835 0.76 0.71 0.76 0.834 0.738 0.759 0.73 0.73 0.73	Recall 0.766 0.655 0.83 0.85 0.856 0.856 0.736 0.533 0.81 0.78	
	mplen Metric	DeFactoNLP	Baseline			XI-FEATURE MLP SimpleLSTM	$\begin{array}{c} 0.74 \\ 0.816 \end{array}$	$\begin{array}{c} 0.69 \\ 0.836 \end{array}$	$\begin{array}{c} 0.78\\ 0.811\end{array}$	$\begin{array}{c} 0.73 \\ 0.824 \end{array}$
Co	Label Accuracy	0.5136	0.4884			XGBoost [32] TE [9]	$0.535 \\ 0.418$	$\begin{array}{c} 0.54 \\ 0.372 \end{array}$	$0.534 \\ 0.622$	$\begin{array}{c} 0.539 \\ 0.465 \end{array}$
	Evidence F1	0.4277	0.1826		FEVER 3-class	XI-FEATURE RF XI-FEATURE SVM	$\begin{array}{c} 0.55 \\ 0.55 \end{array}$	$\begin{array}{c} 0.60 \\ 0.54 \end{array}$	$\begin{array}{c} 0.61 \\ 0.56 \end{array}$	$\begin{array}{c} 0.60 \\ 0.53 \end{array}$
	FEVER Score	0.3833	0.2745			XI-FEATURE MLP SimpleLSTM	$0.59 \\ 0.635$	$\begin{array}{c} 0.61 \\ 0.643 \end{array}$	$0.62 \\ 0.620$	$\begin{array}{c} 0.61\\ 0.642\end{array}$

DeFactoNLP 3.0

- BERT + Re-ranking (similar to Soleimani et al.)

Fig. 2. Pointwise sentence retrieval and claim verification (left), Pairwise sentence retrieval (right). Orange boxes indicate the last hidden state of the [CLS] token. (Color figure online)

Projects

DeFacto: Deep Fact Validation

https://github.com/DeFacto

- University of Bonn
- FEUP

Fig. 3: Instantiation of the $Claims \, {\rm model}$ for a claim sourced from Politifact made by Donald Trump on June 6, 2018.

ClaimsKG: A KG of Fact-checked claims

https://data.gesis.org/claimskg/

Thanks

diegoesteves@gmail.com

