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Perceptron: general formulation

• Binary classification:

• Input: Vectors x(j) and labels y(j)

• Vectors x(j)  are real valued where 𝒙 𝟐 = 𝟏

• Goal: Find vector  w = (w1, w2 ,... , wd )

• Each wi is a real number 
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𝑧 = 𝑤0 + 𝑤1𝑥1 + …+ 𝑤𝑛𝑥𝑛

ො𝑦 = 𝑓 𝑧 = ቊ
+1 , 𝑖𝑓 𝑧 ≥ 0

−1 , 𝑖𝑓 𝑧 < 0



• The perceptron was initially 
proposed with the step function.

• Historically, other activation 
functions have been studied.

• The perceptron with the sigmoid activation function 
corresponds to the logistic regression model.

Activation functions
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Activation functions

Step function Sigmoid tanh RELU



Multi-layer classifiers

• Multi-layer classifiers allow to learn non-linear relations, i.e. complex
relationships such as exclusive-OR.

• Usually one to two hidden layers produce the best results.

• Trained with the back-propagation algorithm
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Simple back propagation
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Traditional neural network architectures

• Traditionally, neural networks receive input features that are 
extracted from data (text, images, etc.) and are task independent.

• This creates a bottleneck: only so much can you learn from those task
independente features.
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feature
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Low-level data representations

• Deep architectures were introduced to learn data representations
that were better suited to each task.

• Deep architectures look at the most basic data element, i.e., an
image pixel or a text character, to learn new data representations.
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Convolution filters

• A convolution filter applies a kernel to the all image by performing 
the convolution operation.
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ℎ ∗ 𝐴 = 𝑔(𝑥, 𝑦) = 

𝑗=−𝑀

𝑀



𝑖=−𝑀

𝑀

ℎ 𝑖, 𝑗 ⋅ 𝐴 𝑥 + 𝑖, 𝑦 + 𝑗

ℎ 𝑖, 𝑗 =
1 0 1
0 1 0
1 0 1



Low-pass convolution filters

• The low-pass convolution filter applies a 
gaussian filter to the input image.

• The Gaussian filter is approximated by a kernel
with a given width.

• Example:
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𝐴 𝑥, 𝑦 =

255 255 0 0
255 255 0 0
255 255 0 0
255 255 0 0
255 255 0 0

𝑔 𝑥, 𝑦 =

255 191 64 0
255 191 64 0
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255 191 64 0
255 191 64 0

Input image Output image



Example
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High-pass convolution filters

• High pass filters aim to detect the image edges

• Different kernels are used to detect such
edges at diferent scales and orientations.
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ℎ𝑣 𝑖, 𝑗 =
1 0 −1
1 0 −1
1 0 −1

ℎℎ 𝑖, 𝑗 =
1 1 1
0 0 0
−1 −1 −1

𝑔ℎ 𝑥, 𝑦 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

𝑔𝑣 𝑥, 𝑦 =

0 255 255 0
0 255 255 0
0 255 255 0
0 255 255 0
0 255 255 0

𝐴 𝑥, 𝑦 =

255 255 0 0
255 255 0 0
255 255 0 0
255 255 0 0
255 255 0 0

Input image
Output image after 

applying horizontal filter

Output image after 
applying vertical filter



Example
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ℎ𝑣 𝑖, 𝑗 =
1 0 −1
1 0 −1
1 0 −1

ℎℎ 𝑖, 𝑗 =
1 1 1
0 0 0
−1 −1 −1



Convolution filter kernels

There are many diferent convolution filter kernels 
that were studied over decades in the past.

Can we learn the convolution kernels?

Yes, we can!

Gabor
Haar DCT
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Convolutional Networks

• Scale up neural networks to process very large images / video 
sequences
• Sparse connections

• Parameter sharing

• Automatically generalize across spatial translations of inputs

• Applicable to any input that is laid out on a grid (1-D, 2-D, 3-D, …)
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Convolutional Network Components

Figure 9.7
16



2D Convolution

Figure 9.1
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Types of connectivity
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1 -1Kernel:

a,b,c,d=?

a,b=?



Sparse connectivity viewed from below

Sparse
connections
due to small
convolution
kernel

Dense
connections

Figure 9.2
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Sparse connectivity viewed from above

Sparse
connections
due to small
convolution
kernel

Dense
connections

Figure 9.3
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Parameter Sharing

Convolution shares the same 
parameters across all spatial 
locations

Traditional matrix multiplication does 
not share any parameters

Figure 9.5
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Convolution with Stride

Figure 9.12
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Exercise: draw the NN of this convolution
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Convolutional Network Components

Figure 9.7
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Softmax

• The softmax function was quite popular as the activation
function of neural networks.

• It is diferentiable in all points
• It is convenient from a mathematical point of view

• It can easily saturate for high values of inputs
• Prevents passing information

between layers
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Rectified linear unit (ReLU)

• Rectified linear activation:

• Brings several advantages over traditional softmax for hidden
layers:
• Never saturates, i.e. never

looses information between layers

• Gradient is constant, 
i.e. faster training

• Forces sparsity, thus removes 
contribution from noisy units

𝑔 𝑧 = max 0, 𝑧
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Convolutional Network Components

Figure 9.7
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Pooling layers
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Max Pooling and Invariance to Translation

Figure 9.8
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Pooling with Downsampling

Figure 9.10
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Convolutional Network Components

Figure 9.7
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Learning deep data representations
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• Deep learning architectures stack multiple layers of 
convolutions.

• These architecures learn hierarchies of data 
representations

• Traditionally, training neural networks with many 
layers did not produce good results.
• Some of the many hidden layers would force the model 

to get stuck in a local minima.



ImageNet competition

• A total of 1.43 million images 
annotated with 1.000 object classes

• The goal is to annotated a test sample 
and be as accurate as possible.

• Human error is 5.1%

• Great impact in advancing the state of
the art.
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http://image-net.org/explore.php

http://image-net.org/explore.php


Examples of CNN architectures
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Output neurons 
correspond to 
ImageNet concepts



Gabor-like Learned Kernels

Figure 9.19 35



Gabor-like Learned Kernels

Figure 9.18 36



Example for 
face detection

Low level CNN kernels

Mid level CNN kernels

High level CNN kernels
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Features are translation invariant

38



High-level features are composed of low-level
features
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Example for multiple classes

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2011). Unsupervised learning of hierarchical 

representations with convolutional deep belief networks. Communications of the ACM, 54(10), 95-103.
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Mid-level 
Conv Kernels

High-level 
Conv Kernels



AlexNet

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional 
neural networks. In Advances in neural information processing systems (pp. 1097-1105). 41



VGG 16 architecture

VGG16
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Output neurons 
correspond to 
ImageNet concepts

Output neurons 
correspond to 
ImageNet concepts



Example

43

Output neurons 
correspond to 

ImageNet concepts



Visualizing VGG16

https://github.com/yosuah/vgg_deconv_vis

High level neuron from the fifth convolution block
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https://github.com/yosuah/vgg_deconv_vis


Other major architectures

• Spatial Transducer Net: input size scales with output size, all layers 
are convolutional

• All Convolutional Net: no pooling layers, just use strided convolution 
to shrink representation size

• Inception: complicated architecture designed to achieve high 
accuracy with low computational cost

• ResNet: blocks of layers with same spatial size, with each layer’s 
output added to the same buffer that is repeatedly updated. Very 
many updates = very deep net, but without vanishing gradient.
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Residual Networks
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He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
https://arxiv.org/pdf/1512.03385.pdf



ImageNet Challenge top-5 error

Improved CNNs Shallow classifiers

Groundbreaking discovery
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Summary and readings

• Learning data representations
• Convolution operation

• ReLU activation

• Pooling

• Residual Networks

• Understand visual data representations:
• low-level layers, mid-level layers and high-level layers 

• Bibliography:
• http://d2l.ai/chapter_convolutional-neural-networks/index.html

• http://d2l.ai/chapter_convolutional-modern/index.html
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http://d2l.ai/chapter_convolutional-modern/index.html
http://d2l.ai/chapter_convolutional-modern/index.html

