Web Search and Data Mining

Computer Science MSc Course João Magalhães

How to search Web information?

- Textual and visual data can communicate a wide variety of information that are critical for several decision processes.
- Temporal and spatial structure adds organization and usability to information.
- Non-structured data (language and vision) puts a heavy complexity burden on standard data structures.

Course plan

Web Mining and Search		
Week	# Lecture	In-class labs
05/mar/20	1 Introduction	1 Lab setup
12/mar/20	2 Web data representation	2 Data representations
19/mar/20	3 Web-graph analysis	3 Project
26/mar/20	4 Recommendation algorithms	4 Project
02/abr/20	5 Learning vision data representations	5 Project checkpoint
09/abr/20	6 Natural language representations	6 Project
16/abr/20	7 Case studies ECIR	7 Case studies ECIR
23/abr/20	8 Named Entities and Knowledge Graph	8 Project
30/abr/20	9 Multimodal representations	9 Project
07/mai/20	10 Locality sensitive hashing	10 Project checkpoint
14/mai/20	11 Visual Question Answering	11 Project
21/mai/20	12 Paper summary	12 Project
28/mai/20	13 Paper summary	13 Project
04/jun/20	14 Revisions	14 Project
11/jun/20	Test	Project submission

Web data

Links

Preferences

Images/videos

Classification, detection, linking

Collaborative filtering

Large-scale search data structures

Web data based search

Online shopping

Medical domain

Course grading

- 40% theoretical part (1 test or 1 exam)
- 50% for a 3 parts project
 - Submission 1
 - Submission 2
 - 100% Final submission
- 10% case study presentation
- Groups of 3 students, maximum 8 groups
- Additional rules:
 - Minimum grade on the labs or theory: 9
 - You may use one sided A4 sheet handwritten by you with your notes
 - It must be handed at the end of the test.

Project grading

- Scoring:
 - Implement. correctness
 - Results analysis 30%
 - Critical discussion
- Report:
 - Maximum of 8 pages.
 - No cover page.
 - Must include graphs, tables, etc.

- Report organization:
 - Introduction
 - Algorithms

30%

40%

- Implementation
- Evaluation
 - Dataset description
 - Baselines
 - Results analysis
- Critical discussion
- References

Case studies

- 1. Crowd Knowledge Enhanced Multimodal Conversational Assistant in Travel Domain
- 2. TweetFit: Fusing Multiple Social Media and Sensor Data for Wellness Profile Learning
- 3. Knowledge-aware **Multimodal Dialogue** Systems
- 4. Multi-modal Knowledge-aware Hierarchical Attention Network for Explainable Medical Question Answering
- 5. DeFacto Temporal and Multilingual Deep Fact Validation
- 6. Modeling **Temporal Evidence** from External Web Collections
- 7. Ranking **News-Quality** Multimedia
- 8. Crowdsourcing facial expressions for affective-interaction

References

- Slides and articles provided during classes.
- Books:

Jure Leskovec, Anand Rajaraman, Jeff Ullman, "Mining of Massive Datasets", Cambridge University Press, 2011.

http://www.mmds.org/

Aston Zhang, Zachary Lipton, Mu Li, and Alex Smola, "Dive into Deep Learning" <u>http://d2l.ai/</u>