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Latency

• All processors face latency


• Accessing data takes some amount of time


• The further away the information is from the processor, the longer the wait


• Local registers are faster than main memory


• Different architectures deal with latency in different ways
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Latency

• CPUs have low core count and chip area can be occupied with large 
caches, circuits for speculative execution (branch prediction), instruction 
reordering, register renaming and cache pre-fetching.


• GPUs have a very large number of processor cores (in the thousands) 
working together as a very wide stream processor - ordered sets of similar 
data are processed in turn. Vertices or pixels are handled in a massively 
parallel fashion, with near to no interdependency, in a setting that aims for 
throughput. The higher core count and less sophisticated control logic 
leads to higher latency for each shader core.
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3.1. Data-Parallel Architectures 33

mad mad mad mad

mul mul mul mul

txr txr txr txr

cmp cmp cmp cmp

emt emt emt emt

madmadmadmad

mulmulmulmul

txrtxrtxrtxr

cmpcmpcmpcmp

emtemtemtemt

tim
e

shader processors

warps

mad mad mad mad

mul mul mul mul

txr txr txr txr

mad mad mad mad

mul mul mul mul

txr txr txr txr

stall & swap

stall & swap

stall & swap

cmp cmp cmp cmp

emt emt emt emt

finish & swap

finish & swap cmp cmp cmp cmp

emt emt emt emt

cmpcmpcmpcmp

emtemtemtemt

cmpcmpcmpcmp

emtemtemtemt

madmadmadmad

mulmulmulmul

txrtxrtxrtxr

madmadmadmad

mulmulmulmul

txrtxrtxrtxr

fragment/threadprogram: mad mul txr cmp emt

Figure 3.1. Simplified shader execution example. A triangle’s fragments, called threads, are gathered
into warps. Each warp is shown as four threads but have 32 threads in reality. The shader program
to be executed is five instructions long. The set of four GPU shader processors executes these
instructions for the first warp until a stall condition is detected on the “txr” command, which needs
time to fetch its data. The second warp is swapped in and the shader program’s first three instructions
are applied to it, until a stall is again detected. After the third warp is swapped in and stalls, execution
continues by swapping in the first warp and continuing execution. If its “txr” command’s data are
not yet returned at this point, execution truly stalls until these data are available. Each warp finishes
in turn.

Data-Parallel Architectures
• Threads are grouped in warps (wavefronts)


• Each thread has input memory and registers


• Warps execute the same instruction in lock-step mode 
(SIMD)


• When a thread/warp stalls, it is swapped out. No data 
needs to be copied!


• Threads that have started are named “in flight” 
(resident)


• The number of resident threads (occupancy) depends 
on the number of registers used by the shader program


• High occupancy promotes low latency


• Thread divergence (branching) reduces efficiency
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GPU Pipeline Overview

34 3. The Graphics Processing Unit
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Figure 3.2. GPU implementation of the rendering pipeline. The stages are color coded according
to the degree of user control over their operation. Green stages are fully programmable. Dashed
lines show optional stages. Yellow stages are configurable but not programmable, e.g., various blend
modes can be set for the merge stage. Blue stages are completely fixed in their function.

3.2 GPU Pipeline Overview
The GPU implements the conceptual geometry processing, rasterization, and pixel
processing pipeline stages described in Chapter 2. These are divided into several
hardware stages with varying degrees of configurability or programmability. Figure 3.2
shows the various stages color coded according to how programmable or configurable
they are. Note that these physical stages are split up somewhat differently than the
functional stages presented in Chapter 2.

We describe here the logical model of the GPU, the one that is exposed to you as
a programmer by an API. As Chapters 18 and 23 discuss, the implementation of this
logical pipeline, the physical model, is up to the hardware vendor. A stage that is
fixed-function in the logical model may be executed on the GPU by adding commands
to an adjacent programmable stage. A single program in the pipeline may be split into
elements executed by separate sub-units, or be executed by a separate pass entirely.
The logical model can help you reason about what affects performance, but it should
not be mistaken for the way the GPU actually implements the pipeline.

The vertex shader is a fully programmable stage that is used to implement the
geometry processing stage. The geometry shader is a fully programmable stage that
operates on the vertices of a primitive (point, line, or triangle). It can be used to
perform per-primitive shading operations, to destroy primitives, or to create new ones.
The tessellation stage and geometry shader are both optional, and not all GPUs
support them, especially on mobile devices.

The clipping, triangle setup, and triangle traversal stages are implemented by
fixed-function hardware. Screen mapping is affected by window and viewport set-
tings, internally forming a simple scale and repositioning. The pixel shader stage is
fully programmable. Although the merger stage is not programmable, it is highly con-
figurable and can be set to perform a wide variety of operations. It implements the
“merging” functional stage, in charge of modifying the color, z-buffer, blend, stencil,
and any other output-related buffers. The pixel shader execution together with the
merger stage form the conceptual pixel processing stage presented in Chapter 2.

Over time, the GPU pipeline has evolved away from hard-coded operation and
toward increasing flexibility and control. The introduction of programmable shader
stages was the most important step in this evolution. The next section describes the
features common to the various programmable stages.

Fully Programmable

Configurable

Fixed

Optional

Geometry 
Processing

Input: vertices of a primitive.  
Per primitive operations 

(shading, destruction, creation)

Affected by window and 
viewport. Simple Scale and 

Translation operation

Compute color of each pixel: 
lighting, texture mapping, bump 

mapping, etc.

Combines fragment color with 
screen colors, visibility test, 
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The Programmable Shader Stage
• Modern shader programs use a unified shader design


• Vertex, pixel, geometry and tessellation shaders share a common programming model


• The same instruction set is used - Unified shader architecture


• A pool of identical shader cores is allocated to different parts of the pipeline as seen fit


• A mesh with finer triangles will need more vertex shaders than a mesh with larger ones.


• A unified shader architecture can do load balancing while a fixed pool distribution cannot


• Shaders are programmed with C-like shading languages (HLSL, GLSL)


• HLSL can be compiled to intermediate language (IL or DXIL) and stored. Upon execution the 
graphics driver translates this IL to the specific instruction set of the hardware.
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The Programmable Shader Stage
• Basic data types: 32-bit single-precision floating point scalars and vectors


• Modern GPUs also support 32-bit integers and 64-bit floats


• Floating point vectors typically contain positions (xyzw) normals, colors 
(rgba), matrix rows, texture coordinates (uvwq)


• The language model also supports aggregate data types (structures, 
arrays and matrices)


• A draw call to the API, to draw a group of similar primitives sets the 
machinery in motion
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36 3. The Graphics Processing Unit
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Figure 3.3. Unified virtual machine architecture and register layout, under Shader Model 4.0. The
maximum available number is indicated next to each resource. Three numbers separated by slashes
refer to the limits for vertex, geometry, and pixel shaders (from left to right).

or pixel, so there is a natural limit as to how many are needed. The uniform inputs are
stored once and reused across all the vertices or pixels in the draw call. The virtual
machine also has general-purpose temporary registers, which are used for scratch space.
All types of registers can be array-indexed using integer values in temporary registers.
The inputs and outputs of the shader virtual machine can be seen in Figure 3.3.

Operations that are common in graphics computations are efficiently executed on
modern GPUs. Shading languages expose the most common of these operations (such
as additions and multiplications) via operators such as * and +. The rest are exposed
through intrinsic functions, e.g., atan(), sqrt(), log(), and many others, optimized
for the GPU. Functions also exist for more complex operations, such as vector nor-
malization and reflection, the cross product, and matrix transpose and determinant
computations.

The term flow control refers to the use of branching instructions to change the
flow of code execution. Instructions related to flow control are used to implement
high-level language constructs such as “if” and “case” statements, as well as various
types of loops. Shaders support two types of flow control. Static flow control branches
are based on the values of uniform inputs. This means that the flow of the code is
constant over the draw call. The primary benefit of static flow control is to allow the
same shader to be used in a variety of different situations (e.g., a varying numbers of
lights). There is no thread divergence, since all invocations take the same code path.
Dynamic flow control is based on the values of varying inputs, meaning that each

The Programmable Shader Stage
• Each programmable shader stage has two types of input:


• Uniform inputs (remain constant throughout the draw 
call)


• Varying inputs (coming from vertex data or from 
rasterization)


• Input and output register are fewer than constant and 
temporary registers.


• Efficient operations: *, /, intrinsic functions atan(), sqrt(), 
log(), vector normalization, reflection, dot and cross 
products, matrix transpose and determinants.


• 2 types of flow control: static (based on the values of 
uniform variables) and dynamic (based on varying inputs)


• Static flow control has no thread divergence, while 
dynamic flow control may have serious costs in 
performance.

Unified shader model 4.0 architecture and register layout
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3.4. The Evolution of Programmable Shading and APIs 37

fragment can execute the code differently. This is much more powerful than static
flow control but can cost performance, especially if the code flow changes erratically
between shader invocations.

3.4 The Evolution of Programmable Shading and APIs
The idea of a framework for programmable shading dates back to 1984 with Cook’s
shade trees [287]. A simple shader and its corresponding shade tree are shown in
Figure 3.4. The RenderMan Shading Language [63, 1804] was developed from this
idea in the late 1980s. It is still used today for film production rendering, along with
other evolving specifications, such as the Open Shading Language (OSL) project [608].

Consumer-level graphics hardware was first successfully introduced by 3dfx In-
teractive on October 1, 1996. See Figure 3.5 for a timeline from this year. Their
Voodoo graphics card’s ability to render the game Quake with high quality and perfor-
mance led to its quick adoption. This hardware implemented a fixed-function pipeline
throughout. Before GPUs supported programmable shaders natively, there were sev-
eral attempts to implement programmable shading operations in real time via multiple
rendering passes. The Quake III: Arena scripting language was the first widespread

*

*

+

*

specular
functionweight of

specular
component

ambient

normal view surface
roughness

weight of
ambient

component

copper
color

final color
float ka=0.5, ks=0.5;
float roughness=0.1;
float intensity;
color copper=(0.8,0.3,0.1);
intensity = ka*ambient() +
  ks*specular(normal,view,roughness);
final_color = intensity*copper;

Figure 3.4. Shade tree for a simple copper shader, and its corresponding shader language program.
(After Cook [287].)

The Evolution of Programmable Shading and APIs

• Cook’s shade trees [1984] were the first 
programable framework for shading


• RenderMan’s shading language adopted the 
idea in the late 1980s. It is still used today 
for movie production


• OpenShadingLanguage is also inspired in 
this idea and is used in several products 
(Blender/Cycles, Sony Imageworks/Arnold, 
appleseed, V-Ray, …)

https://github.com/AcademySoftwareFoundation/OpenShadingLanguage
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Figure 3.5. A timeline of some API and graphics hardware releases.

commercial success in this area in 1999. As mentioned at the beginning of the chap-
ter, NVIDIA’s GeForce256 was the first hardware to be called a GPU, but it was not
programmable. However, it was configurable.

In early 2001, NVIDIA’s GeForce 3 was the first GPU to support programmable
vertex shaders [1049], exposed through DirectX 8.0 and extensions to OpenGL. These
shaders were programmed in an assembly-like language that was converted by the
drivers into microcode on the fly. Pixel shaders were also included in DirectX 8.0, but
pixel shaders fell short of actual programmability—the limited “programs” supported
were converted into texture blending states by the driver, which in turn wired together
hardware “register combiners.” These “programs” were not only limited in length
(12 instructions or less) but also lacked important functionality. Dependent texture
reads and floating point data were identified by Peercy et al. [1363] as crucial to true
programmability, from their study of RenderMan.

Shaders at this time did not allow for flow control (branching), so conditionals
had to be emulated by computing both terms and selecting or interpolating between
the results. DirectX defined the concept of a Shader Model (SM) to distinguish hard-
ware with different shader capabilities. The year 2002 saw the release of DirectX
9.0 including Shader Model 2.0, which featured truly programmable vertex and pixel
shaders. Similar functionality was also exposed under OpenGL using various exten-
sions. Support for arbitrary dependent texture reads and storage of 16-bit float-
ing point values was added, finally completing the set of requirements identified by
Peercy et al. Limits on shader resources such as instructions, textures, and regis-
ters were increased, so shaders became capable of more complex effects. Support for
flow control was also added. The growing length and complexity of shaders made
the assembly programming model increasingly cumbersome. Fortunately, DirectX 9.0

The Evolution of Programmable Shading and APIs

• Consumer level accelerated 3D graphics started with 3dfx VoodooGraphics Card 
[1996] (daughter card)


• First real programmable GPUs with DirectX 8.0 Vertex shading abilities written in 
assembly language. Still no branching and limited data types


• DirectX 9.0 [2002] programmable vertex and pixel shaders. Addition of texture 
reads, writing floating point values, static flow control and a shading language 
HLSL. OpenGL came up with GLSL


• Shader Model 3.0 added dynamic flow control and texture lookups in vertex 
shaders. More resources available to shaders (registers, shader length)


• DirectX 10.0 introduced SM 4.0 with geometry shaders, stream output and a 
unified shader model


• DirectX 11.0 + SM 5.0 introduced the tessellation shader and the compute 
shader (General Purpose GPU Computing)


• Mantle API [2013] intended to strip the graphics driver overhead and put the 
control in the developer, leading to a very low level API and better CPU 
multiprocessor support (Metal and Vulkan followed)


• DirectX 12 is an API redesign and also incorporates this low level API idea. No 
new functionality is exposed from previous 11.3 release


• Mobile device support is achieved through OpenGL ES lineage of releases + 
Metal (On Apple devices)
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42 3. The Graphics Processing Unit

3.5 The Vertex Shader
The vertex shader is the first stage in the functional pipeline shown in Figure 3.2.
While this is the first stage directly under programmer control, it is worth noting that
some data manipulation happens before this stage. In what DirectX calls the input
assembler [175, 530, 1208], several streams of data can be woven together to form
the sets of vertices and primitives sent down the pipeline. For example, an object
could be represented by one array of positions and one array of colors. The input
assembler would create this object’s triangles (or lines or points) by creating vertices
with positions and colors. A second object could use the same array of positions
(along with a different model transform matrix) and a different array of colors for its
representation. Data representation is discussed in detail in Section 16.4.5. There is
also support in the input assembler to perform instancing. This allows an object to
be drawn several times with some varying data per instance, all with a single draw
call. The use of instancing is covered in Section 18.4.2.

A triangle mesh is represented by a set of vertices, each associated with a specific
position on the model surface. Besides position, there are other optional properties
associated with each vertex, such as a color or texture coordinates. Surface normals are
defined at mesh vertices as well, which may seem like an odd choice. Mathematically,
each triangle has a well-defined surface normal, and it may seem to make more sense
to use the triangle’s normal directly for shading. However, when rendering, triangle
meshes are often used to represent an underlying curved surface, and vertex normals
are used to represent the orientation of this surface, rather than that of the triangle
mesh itself. Section 16.3.4 will discuss methods to compute vertex normals. Figure 3.7
shows side views of two triangle meshes that represent curved surfaces, one smooth
and one with a sharp crease.

The vertex shader is the first stage to process the triangle mesh. The data describ-
ing what triangles are formed is unavailable to the vertex shader. As its name implies,
it deals exclusively with the incoming vertices. The vertex shader provides a way

Figure 3.7. Side views of triangle meshes (in black, with vertex normals) representing curved surfaces
(in red). On the left smoothed vertex normals are used to represent a smooth surface. On the right
the middle vertex has been duplicated and given two normals, representing a crease.

The Vertex Shader
• It is the first programmable stage but some data manipulations 

takes place before (feed the shaders with data from buffers and 
constant registers


• Meshes are represented by a set of vertices, each with a specific 
position on the model surface. Vertex data may also include color, 
texture coordinates and surface normals (among others)


• The vertex shader processes the vertices of the mesh but without 
knowledge of the actual triangles in it


• From the set of inputs of each vertex, the shader has to output a 
final vertex position, along with data to be Interpolated across the 
primitive


• Typical behavior is to go from model space to clip space (Model + 
View + Projection transformation)


•  It cannot create nor destroy vertices and vertices are processed in 
an independent way


• The driver can decide how many GPU processors to allocate to 
process a stream of vertices
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https://skinning.org/direct-methods-slides.pdf
https://www.codinblack.com/vertex-manipulation-using-shader-graph-in-unity3d/
https://alteredqualia.com/three/examples/webgl_terrain_dynamic.html
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type

input
patch

transformed
patch
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mesh

generated
points
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TFs, & constants

Figure 3.9. The tessellation stage. The hull shader takes in a patch defined by control points. It
sends the tessellation factors (TFs) and type to the fixed-function tessellator. The control point
set is transformed as desired by the hull shader and sent on to the domain shader, along with TFs
and related patch constants. The tessellator creates the set of vertices along with their barycentric
coordinates. These are then processed by the domain shader, producing the triangle mesh (control
points shown for reference).

patch description, adding or removing control points as desired. The hull shader out-
puts its set of control points, along with the tessellation control data, to the domain
shader. See Figure 3.9.

The tessellator is a fixed-function stage in the pipeline, only used with tessellation
shaders. It has the task of adding several new vertices for the domain shader to pro-
cess. The hull shader sends the tessellator information about what type of tessellation
surface is desired: triangle, quadrilateral, or isoline. Isolines are sets of line strips,
sometimes used for hair rendering [1954]. The other important values sent by the hull
shader are the tessellation factors (tessellation levels in OpenGL). These are of two
types: inner and outer edge. The two inner factors determine how much tessellation
occurs inside the triangle or quadrilateral. The outer factors determine how much
each exterior edge is split (Section 17.6). An example of increasing tessellation factors
is shown in Figure 3.10. By allowing separate controls, we can have adjacent curved
surfaces’ edges match in tessellation, regardless of how the interiors are tessellated.
Matching edges avoids cracks or other shading artifacts where patches meet. The ver-
tices are assigned barycentric coordinates (Section 22.8), which are values that specify
a relative location for each point on the desired surface.

The hull shader always outputs a patch, a set of control point locations. However, it
can signal that a patch is to be discarded by sending the tessellator an outer tessellation
level of zero or less (or not-a-number, NaN). Otherwise, the tessellator generates a
mesh and sends it to the domain shader. The control points for the curved surface
from the hull shader are used by each invocation of the domain shader to compute the

The Tessellation Stage
• Suitable to render curved surfaces


• Processes a patch (control mesh) and generates 
a more refined mesh


• Less stress on the bus between CPU and GPU


• Level of detail can vary depending on actual 
needs


• Comprises 3 stages:


• Hull shader/Tessellation control shader


• Tessellator/Primitive generator (fixed function)


• Domain shader/Tessellation evaluation shader
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The Tessellation Stage

http://web.engr.oregonstate.edu/~mjb/cs519/Handouts/tessellation.1pp.pdf
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3.7. The Geometry Shader 47

Figure 3.12. Geometry shader input for a geometry shader program is of some single type: point,
line segment, triangle. The two rightmost primitives include vertices adjacent to the line and triangle
objects. More elaborate patch types are possible.

3.7 The Geometry Shader
The geometry shader can turn primitives into other primitives, something the tes-
sellation stage cannot do. For example, a triangle mesh could be transformed to a
wireframe view by having each triangle create line edges. Alternately, the lines could
be replaced by quadrilaterals facing the viewer, so making a wireframe rendering with
thicker edges [1492]. The geometry shader was added to the hardware-accelerated
graphics pipeline with the release of DirectX 10, in late 2006. It is located after the
tessellation shader in the pipeline, and its use is optional. While a required part of
Shader Model 4.0, it is not used in earlier shader models. OpenGL 3.2 and OpenGL
ES 3.2 support this type of shader as well.

The input to the geometry shader is a single object and its associated vertices. The
object typically consists of triangles in a strip, a line segment, or simply a point. Ex-
tended primitives can be defined and processed by the geometry shader. In particular,
three additional vertices outside of a triangle can be passed in, and the two adjacent
vertices on a polyline can be used. See Figure 3.12. With DirectX 11 and Shader
Model 5.0, you can pass in more elaborate patches, with up to 32 control points. That
said, the tessellation stage is more efficient for patch generation [175].

The geometry shader processes this primitive and outputs zero or more vertices,
which are treated as points, polylines, or strips of triangles. Note that no output at
all can be generated by the geometry shader. In this way, a mesh can be selectively
modified by editing vertices, adding new primitives, and removing others.

The geometry shader is designed for modifying incoming data or making a limited
number of copies. For example, one use is to generate six transformed copies of data
to simultaneously render the six faces of a cube map; see Section 10.4.3. It can also be
used to efficiently create cascaded shadow maps for high-quality shadow generation.
Other algorithms that take advantage of the geometry shader include creating variable-
sized particles from point data, extruding fins along silhouettes for fur rendering, and
finding object edges for shadow algorithms. See Figure 3.13 for more examples. These
and other uses are discussed throughout the rest of the book.

DirectX 11 added the ability for the geometry shader to use instancing, where the
geometry shader can be run a set number of times on any given primitive [530, 1971]. In

The Geometry Shader
• The geometry shader can turn primitives 

into other primitives


• Triangle -> lines


• Lines -> quads


• Point -> quad


• Outputs 0+ vertices (treated as points, lines 
os strips of triangles)


• The least used from all the shaders (some 
mobile devices implement it in software as it 
is the more generic one and deviates from 
traditional shader model)

Inputs:

SM 4.0
point, line [+2 points], triangle [+3 points]

SM 5.0

Up to 32 control points 
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https://www.artstation.com/artwork/oA8aqz
http://developer.download.nvidia.com/SDK/10/direct3d/screenshots/samples/Lightning.html
http://www.icare3d.org/codes-and-projects/codes/opengl_geometry_shader_marching_cubes.html
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Stream Output
• SM 4.0 introduced the idea of using the first stages of the 

pipeline as a non-graphical stream processor [rasterization 
can even be turned off]


• Vertex shader [ -> tessellation shader -> geometry shader] -> 
output stream


• The output stream (ordered list of vertices) could be sent 
back through the pipeline (iterative process)


• Stream output works on primitives (not on vertices) and 
outputs floating point values. A triangle will generate 3 
vertices. If input data shares vertices, the share is lost


• Normally it is used with point primitives


• In OpenGL this is called transform feedback since we 
transform vertices and return them to the start of the pipeline


• Primitives are sent to the output in the order they were 
received

https://roystan.net/articles/grass-shader.html
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The Pixel Shader
• The pixel shader is also known as fragment shader (a pixel that is only 

partially covered by the primitive)


• Its primary goal is to compute a final color (and opacity) for the pixel/
fragment (or discard it)


• The pixel shader receives an interpolated z-value (it can be modified 
too)


• interpolated quantities can be perspective corrected (interpolated in 
World Space) or not (interpolated in screen space)


• The pixel shader inputs are the vertex shader outputs after 
interpolation


• Additional inputs are present (screen space position of the fragment, 
which side of the face it belongs to)


• It is possible to output to more than one render target


• World space position, normal, object ids, etc…


• Allow for alternative rendering pipelines such as deferred shading


• Cannot read adjacent pixel data (not directly at least)

https://threejs.org/examples/webgl_clipping.html
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Deferred Shading
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Deferred Shading
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Deferred Shading
• The base idea is to defer or postpone most of the heavy 

rendering tasks to a later stage


• 1st pass: Geometry pass - render all types of geometric 
information (positions, normals, colors, specular values, 
etc.) to separate textures (render targets). This is called 
a G-Buffer (Geometry Buffer)


• 2nd pass: Lighting pass - render a quad filling the 
screen. For each fragment (visibility has already been 
determined), compute the lighting


• Pros: no wasted time computing expensive lighting on 
fragments that will not be visible


• Cons: No alpha blending


• It is possible to combine forward with deferred rendering


• This technique paves the way for rendering hundreds or 
thousands of light sources in a scene! How?

https://learnopengl.com/Advanced-Lighting/Deferred-Shading
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Deferred Shading and lots of lights
• Every light source has a limited radius. From light source 

attenuation term we can compute this radius by choosing a 
suitable lower threshold for  and solve for distance


• Having the lighting stage shader iterate through each light 
source and check for its distance is doable but not very efficient


• It is better to draw spheres located at each light source, with the 
corresponding radius) in the lighting stage (one call per light 
source) and accumulate each light’s contribution


• Two spheres touching each other should not occlude each other 
(depth write disabled)


• Only half of the pixels of a sphere should be considered and 
additive blending should be turned on


• We go from

I

I =
IL

c0 + c1dL + c2
2dL

𝒪(NO × NL) ⇒ 𝒪(NO + NL)

Light with 
intensity IL

, region where 
light contribution is 

relevant 

dL < r

r

, region where 
light contribution is 

residual 

dL > r
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Stencil buffer
• The stencil buffer is a buffer with the same resolution as the 

framebuffer and the depth buffer, and typically with 1 byte per 
pixel.


• Stencil and depth tests control if the pixel is written to the frame 
buffer


• Application defines stencil test(s) and stencil operation(s)


• Possible stencil test functions:


• Always pass


• Always fail


• Less/greater than


• Less/greater or equal than


• Equal


• Not equal


• Possible stencil operation:


• Keep the stencil unchanged


• Replace with 0


• Increment/decrement


• Invert the bits


• Stencil operations are configured independently for these 
situations:


• Stencil test failure


• Depth test failure


• Depth test success


• Stencil tests and operations can be independently set for each 
face side (front/back)
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Deferred Shading and lots of lights (details)
• Render objects as usual into the G-Buffer, including the depth 

buffer data


• Disable writing into the depth buffer


• Disable back face culling


• Set the stencil test to always succeed (we just need the stencil 
operation here)


• Set stencil operation for back facing polys to increment when 
depth test fails; otherwise no change


• Set stencil operation for front facing polys to decrement when 
depth test fails; otherwise no change


• Render sphere for light with null pixel shader


• Finally render the sphere for the light again and set the stencil 
test to pass if different from 0.


• This will also work for several light sources

http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html
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The Merging Stage

• Combines depths and colors of the individual fragments


• Stencil buffer and z-buffer operations occur in this stage


• If a fragment is visible it gets blended with the existing color or replaces it


• Some GPUs allow some merging operations to be performed before the 
pixel shader gets executed (avoid spending time computing colors for 
non visible fragments)
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Alpha Blending

R G B A × ×srcFactor dstFactorblendOp R G B A

R G B A

Incoming fragment frame buffer value

frame buffer value

GL_ZERO 
GL_ONE 

GL_SRC_COLOR 
GL_DST_COLOR 

GL_ONE_MINUS_SRC_COLOR 
GL_ONE_MINUS_DST_COLOR 

GL_SRC_ALPHA 
GL_ONE_MINUS_SRC_ALPHA 

GL_DST_ALPHA 
GL_ONE_MINUS_DST_ALPHA 

GL_SRC_ALPHA_SATURATE 
GL_CONSTANT_COLOR 

GL_ONE_MINUS_CONSTANT_COLOR 
GL_CONSTANT_ALPHA 

GL_ONE_MINUS_CONSTANT_ALPHA

GL_ZERO 
GL_ONE 
GL_SRC_COLOR 
GL_DST_COLOR 
GL_ONE_MINUS_SRC_COLOR 
GL_ONE_MINUS_DST_COLOR 
GL_SRC_ALPHA 
GL_ONE_MINUS_SRC_ALPHA 
GL_DST_ALPHA 
GL_ONE_MINUS_DST_ALPHA 
GL_SRC_ALPHA_SATURATE 
GL_CONSTANT_COLOR 
GL_ONE_MINUS_CONSTANT_COLOR 
GL_CONSTANT_ALPHA 
GL_ONE_MINUS_CONSTANT_ALPHA

GL_ADD 
GL_SUBTRACT 

GL_REVERSE_SUBTRACT 
GL_MIN 
GL_MAX

Over operator (back to front order): AsrcRGBsrc + (1 − Asrc)RGBdst Under operator (front to back order): Cdst = Adst(AsrcCsrc) + Cdst

Adst = 0 + (1 − Asrc)Adst

Cdst = AdstCbg + Cdst
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The Compute Shader
• The GPU can also be used to perform general computations


• Application areas where GPUs are commonly used:


• Financial markets (stock order predictions)


• Neural networks and deep learning


• Physics simulation, particle systems


• Virtual currency


• CUDA (Compute Unified Device Architecture) and OpenCL (Open Computing Language) 
are the most widely used platforms (languages, compilers and libraries) to explore the 
power of the GPUs for general purpose computing.
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The Compute Shader
• The Compute Shader was introduced in DirectX 11


• It is a shader that is not locked to a specific part of the graphics pipeline, is 
invoked by the graphics API and it shares the resources (pool of shader 
processors) used in the pipeline.


• It receives input data, can access buffers (such as textures) for input and output. 
Threads and warps (thread bundles running on a same processing unit) are visible 
in compute shaders


• Each invocation of a compute shader receives a thread index.


• Thread groups offer x- y- and z- coordinates in a grid and share resources among 
threads, such as fast shared memory (typically 32KB in DirectX).
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https://github.com/MauriceGit/Partikel_accelleration_on_GPU
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Compute Shader (Example)
#version 430 core

// Process particles in blocks of 128
layout (local_size_x = 128, local_size_y = 1, local_size_z = 1) in;

layout (std430, binding = 0) buffer PositionBuffer {
vec3 positions[];

};
layout (std430, binding = 1) buffer VelocityBuffer {

vec4 velocities[];
};
layout (binding = 2) buffer AttractorBuffer {

vec4 attractors[];
};
layout (std430, binding = 3) buffer LifeBuffer {

float lifes[];
};
// Delta time
uniform float dt;

highp float rand(vec2 co)
{
    highp float a = 12.9898;
    highp float b = 78.233;
    highp float c = 43758.5453;
    highp float dt= dot(co.xy ,vec2(a,b));
    highp float sn= mod(dt,3.14);
    return fract(sin(sn) * c);
}

float vecLen (vec3 v)
{

return sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
}

vec3 normalize (vec3 v)
{

return v / vecLen(v);
}

vec3 calcForceFor (vec3 forcePoint, vec3 pos)
{

// Force:
float gauss = 10000.0;
float e = 2.71828183;
float k_weak = 1.0;
vec3 dir = forcePoint - pos.xyz;
float g = pow (e, -pow(vecLen(dir), 2) / gauss);
vec3 f = normalize(dir) * k_weak * (1+ mod(rand(dir.xy), 10) - mod(rand(dir.yz), 10)) / 10.0 * g;
return f;

}

void main(void)
{

uint index = gl_GlobalInvocationID.x;

int i;
float newDT = dt * 100.0;

vec3 forcePoint = vec3(0);

for (i = 0; i < 32; i++) {
forcePoint += attractors[i].xyz;

}

// Read the current position and velocity from the buffers
vec4 vel = velocities[index];
vec3 pos = positions[index];
float newW = lifes[index];

float k_v = 1.5;

vec3 f = calcForceFor(forcePoint, pos) + rand(pos.xz)/100.0;

// Velocity:
vec3 v = normalize(vel.xyz + (f * newDT)) * k_v;

// Eine leichte Anziehung richtung Schwerpunkt...
v += (forcePoint-pos) * 0.00005;

// Pos:
vec3 s = pos + v * newDT;

newW -= 0.0001f * newDT;

// If the particle expires, reset it
if (newW <= 0) {

s  = -s + rand(s.xy)*20.0 -rand(s.yz)*20.0;
//v.xyz *= 0.01f;
newW = 0.99f;

}

lifes[index] = newW;
// Store the new position and velocity back into the buffers
positions[index] = s;
velocities[index] = vec4(v,vel.w);

}

Example taken from: https://github.com/MauriceGit/Partikel_accelleration_on_GPU

http://www.apple.com
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Further readings and resources

• Cap. 3 Real Time Rendering - T Akenine-Möller et. Al (adopted book)


• Unity Grass Shader Tutorial - https://roystan.net/articles/grass-shader.html


• Deferred Shading Tutorial - http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html


• Particle System Compute Shader - https://github.com/MauriceGit/Partikel_accelleration_on_GPU

https://roystan.net/articles/grass-shader.html
http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html
http://www.apple.com



