
Eugene Syriani

Model Transformation
Adapted from the Slides by Prof. Eugene Syriani

Model Transformations

Motivation

Model Transformations

Motivation
Suppose I ask you to provide a software that converts

any E-R diagram into a UML class diagram,
how would you achieve that?

Tiago
Realce

Model Transformations

Motivation
• Assumptions in E-R:

– Entities & relations can contain attributes

– Attributes can be of type:
NUM, CHAR, TIMESTAMP, BIT

– An entity may have one or more primary attributes

– Relations relate 1-* or *-* entities

– IS-A relationship between entities can be used

• Assumptions in UML CD:
– Classes, associations, attributes, and inheritance can be used

– Attributes may be of any type

– OCL constraints may be defined

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

The “programming” solution
• Write a program that takes as input a .ER file

and outputs a .UML file
• What are the issues?

– What if the ER file is a diagram? in XML format? Probably end up limiting
input from a specific tool only

– Similarly in UML, should I output a diagram (in Dia or Visio)? In XMI? In
code (Java, C#)?

– How do I organize my program?
▪ Requires knowledge from both domains
▪ Need a loader (from input file)
▪ Need some kind of visitor to traverse the model, probably graph-like data

structure
▪ Need to encode a “transformer”
▪ Need to develop a UML printer

• Not an easy task after all…

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

The “modeling” way
Describe a meta-model of ER

– Define concepts and concrete visual syntax

– Generate an editor

Describe a meta-model of UML

Define a transformation T: MMER → MMUML

– This is done in the form of rules with pre/post-conditions

▪ describes “what to transform” instead of “how to transform”

• Code is automatically generated from the transformation model
to a transformation instance that produces the result

• Some model transformation languages give you a bi-directional
solution for free!

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Pros & Cons

+ Programming techniques are well-proven, it is a reliable
solution

Defined at the level of the code

Evolution, extension and maintenance more tedious

More likely to make errors

Incoherent abstraction mismatch between
• The in/output artifacts: they represent designs models

• The transformation between them: which is pure code

Programming solution

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Pros & Cons

+ In/output & transformation models are all defined at the same
level of abstraction, in the same domain:
• No need to add an extra “programmer” resource to the project

+ Much faster solution thanks to rule-based approach &
automatic code synthesis

+ Alteration of the transformation process are automatically
reflected in the final software product

+ You get a modeling environment for ER & UML for free!
• No need to read from external non-standard tool anymore

Younger technology, few people understand it & master it,
many challenges still need to be solved

Modeling solution

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Pros & Cons

• Typically encounter the same problems in modeling as in
programing solutions

• The difference is that you can find the problems more easily, fix
them very quickly and re-deploy the solution automatically

• Developer not required to be in programmers: who defines the
requirements can develop the solution

• The bottom line is that you save time, reduce the cost, fulfill the
entire scope, and deliver a high-quality product

In practice

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

So what are we doing here?

• It seems that Model-based Design is the “Holy Grail” of
software engineering

• Well, the devil is in the details…

• We will explore
– what model transformations are

– and how to design some

Model Transformations

What is Model
Transformation?

Tiago
Realce

Model Transformations

Definition

A model transformation is the
automatic manipulation of input models

to produce output models,
that conforms to a specification

and has a specific intent.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Where should MT be specified and
executed?

specification

execution

Tiago
Realce

Tiago
Realce

Model Transformations

Terminology

Model Transformations

Model transformation approaches
• Model-to-text
– Visitor-based: traverse the model in an object-oriented framework

– Template-based: target syntax with meta-code to access source model

• Model-to-Model
– Direct manipulation: access to the API of M3 and modify the models

directly

– Operational: similar to direct manipulation but at the model-level (OCL)

– Rule-based
▪ Graph transformation: implements directly the theory of graph transformation,

where models are represented as typed, attributed, labelled, graphs in category
theory. It is a declarative way of describing operations on models.

▪ Relational: declarative describing mathematical relations. It defines constraints
relating source and target elements that need to be solved. They are naturally
multi-directional, but in-place transformation is harder to achieve

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Typical use cases of
Model Transformation

Model Transformations

Model transformation intent classification

Tiago
Realce

Model Transformations

Refinement category

Groups intents that produce a more precise model by
reducing design choices and ambiguities with respect to a

target platform.

• Refinement

• Synthesis
– Serialization

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Refinement
• Transform from a higher level specification (e.g., PIM) to a

lower level description (e.g., PSM)

• Adds precision to models

• M1 refines M2 if M1 can answer all questions that M2 can

• Typically M1 contains at least the same information as M2

PhoneApps DSM of a conference registration mobile application Representation of the model in AndroidAppScreens

PhoneApps DSL To Statecharts

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Synthesis
• Refinement where the output is an executable artifact

expressed in a well-defined language format (typically
textual)

• Model-to-code generation: transformation that produces
source code in a target programming language

• Refinement often precedes synthesis

Statecharts to Python Compiler

if e == 0: # event “e"
if table[1] and self.isInState(1) and self.testCondition(3):
if (scheduler == self or scheduler == None) and table[1]:

self.runActionCode(4) # output action(s1)
self.runExitActionsForStates(-1)
self.clearEnteredStates()
self.changeState(1, 0)
self.runEnterActionsForStates(self.StatesEntered, 1)
self.applyMask(DigitalWatchStatechart.OrthogonalTable[1], table)
handled = 1

if table[0] and self.isInState(0) and self.testCondition(4):
if (scheduler == self or scheduler == None) and table[0]:

self.runActionCode(5) # output action(s2)
self.runExitActionsForStates(-1)
self.clearEnteredStates()
self.changeState(0, 0)
self.runEnterActionsForStates(self.StatesEntered, 1)
self.applyMask(DigitalWatchStatechart.OrthogonalTable

[0], table)
handled = 1

s

1

s

2

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Serialization
• Special case of synthesis

• Goal is to store the model on some medium

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xmi=http://www.omg.org/XMI
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns=“ml">
 <xsd:import namespace="http://www.omg.org/XMI"
 schemaLocation="XMI.xsd"/>
 <xsd:complexType name="Media">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="title" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="Media" type=“ml:Media"/>
 <xsd:complexType name="CD">
 <xsd:attribute name="title" type="xsd:string"/>
 <xsd:attribute name="artist" type="xsd:string"/>
 <xsd:attribute name="num_tracs" type="xsd:int"/>
 </xsd:complexType>
 <xsd:element name="CD" type=“ml:CD"/>
</xsd:schema>

Ecore model to XMI

http://www.omg.org/XMI
Tiago
Realce

Model Transformations

Model-to-Text transformation
• Generate text automatically from models

– Executable text

▪ source code language
▪ serialization

– Documentation

▪ HTML
▪ Javadoc

– Readable artifact

▪ Latex
▪ Mass mailing letter

– Any textual artifact…

• We will focus on source code generation, but the techniques are
similar for the others as well

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Preliminary assumptions
• Meta-model/abstract syntax already exists

• Transformations involving the meta-model always exist
– No side effects!

• The framework has a context where models are read, and
the resulting code can be executed
– Code generator must generate code that adheres to the context as

well

Model Transformations

Template-based code generation

• Static parts
– Text that will appear “as is” in the output

– White space and formatting is preserved

• Dynamic parts
– Executed content

– Meta-code to access information from source model to select part
of the model

Templates

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Templates

Model Transformations

Template + Filtering

Model Transformations

Code generation with XSLT
Model Template

Generated code

Model Transformations

Template + Metamodel

Model Transformations

Code generation with Xpand
Model

Generated code

Template

Model Transformations

Abstraction category

Inverse of refinement category.
Groups intents where some information of a model is

aggregated or discarded to simplify the model and
emphasize specific information.

• Abstraction

• Restrictive Query

• Reverse Engineering

• Approximation

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Abstraction
• Inverse of refinement

• Hides some information while revealing other

• If M1 refines M2 then M2 is an abstraction of M1

DFA to NFA

Non-deterministic state automata (NFA)Deterministic state automata (DFA)

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Abstraction (Continued)
• A view of a model that is not a sub-model, but an

aggregation of some of its information is also a abstraction

Example:

“Find all actors who played together in at least 3 movies and
assign the average rating to each clique” outputs a view of a
model representing a subset of IMDB represented as a
graph composed of strongly connected components with
the ratings aggregating individual ratings.

Tiago
Realce

Model Transformations

Restrictive Query
• A query requests some information about a model and returns

that information in the form of a proper sub-model or a view

• A view is a projection of (a sub-set of) of the properties of M

• Restrictive query is a special case of abstraction where the result
is a sub-model of the input model

– Any subsequent aggregation or restructuring of the resulting sub-model
is an abstraction

• Example: “Get all the leaves of a tree”

• Tool support: EMF INC-Query

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Reverse Engineering
• Inverse of synthesis

• Example:

UML class diagrams can be generated from Java code with
Fujaba

Tiago
Realce

Tiago
Realce

Model Transformations

Approximation
• M1 approximates M2 if M1 is equivalent to M2 up to a

certain margin of error

• M1 preserves more properties of M2 as the error decreases

• Margin of error typically based on a distance measure
between models

Fast Fourrier
Transform
approximates a
Fourrier
Transform

Tiago
Realce

Tiago
Realce

Tiago
Realce

QUESTION
Model Transformations

Convert a class diagram to XMI in order to store the model in the
cloud.

Input: Class diagram
Output: XML document

QUESTION
Model Transformations

➢ Serialization

Convert a class diagram to XMI in order to store the model in the
cloud.

Input: Class diagram
Output: XML document

QUESTION
Model Transformations

Extract the class hierarchy from a class diagram, with single
inheritance, in the form of a directed tree.

Input: Class diagram
Output: Tree

QUESTION
Model Transformations

➢ Abstraction

Extract the class hierarchy from a class diagram, with single
inheritance, in the form of a directed tree.

Input: Class diagram
Output: Tree

QUESTION
Model Transformations

Augment a class diagram by adding navigability, role names,
attribute types, method return and parameter types.

Input: Class diagram
Output: Class diagram

QUESTION
Model Transformations

➢ Refinement

Augment a class diagram by adding navigability, role names,
attribute types, method return and parameter types.

Input: Class diagram
Output: Class diagram

QUESTION
Model Transformations

Extract the classes with no super-class from a class diagram.
Input: Class diagram

Output: Class diagram

QUESTION
Model Transformations

➢ Restrictive Query

Extract the classes with no super-class from a class diagram.
Input: Class diagram

Output: Class diagram

QUESTION
Model Transformations

Generate JavaDocs from a class diagram.
Input: Class diagram

Output: HTML document

QUESTION
Model Transformations

➢ Synthesis

Generate JavaDocs from a class diagram.
Input: Class diagram

Output: HTML document

Model Transformations

Semantic Definition category

Groups intents whose purpose is to define the semantics of
a modeling language.

• Translational Semantics

• Simulation

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Translational Semantics
• Gives the meaning of a model in a source language in

terms of the concepts of another target language

• Typically used to capture the semantics of new DSLs

Model
TransformationMeta-Model

Language

Semantic
Mapping

Concrete
Syntax

Abstract
Syntax

Semantic
Domain

Syntax Semantics

Syntax
Mapping

Pragmatics

Tiago
Realce

Tiago
Realce

Model Transformations

Translational Semantics
• Example: Causal Block Diagram’s semantics expressed as

Ordinary Differential Equations

UML activity diagrams to Petri nets

Model Transformations

Simulation
• Defines the operational semantics of a modeling language

that updates the state of the system modeled

• The source and target meta-models are identical

• The target model is an “updated” version of the source
model: no new model is created

• Simulation updates the abstract syntax, which may trigger
modifications in the concrete syntax

Petri net simulator

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Graph transformation for simulation
• Models are considered as directed, typed, attributed

graphs

• Transformations on such graphs are considered as graph
rewritings

• Features:
– Declarative paradigm

– Rules defined as pre- and post-conditions

• Tools: MoTif, Henshin, GReAT

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Metamodel of Pacman

Model Transformations

Graph transformation rule

Model Transformations

Rule-based graph transformation

If there exists an occurrence of L in G then replace it with R

Transformation
rule

Input model

Model Transformations

Mechanics of rule application
•

Model Transformations

Operational semantics

Model Transformations

Negative application conditions
Non-applicable rule

Model Transformations

Negative application conditions
Applicable rule

Model Transformations

Scheduling of the rules

Model Transformations

Simulation of a model

pacmanDie

pacmanEat

isThereFoodLeft

ghostMoveLeft

ghostMoveRight

ghostMoveUp

ghostMoveDown

pacmanMoveLeft

pacmanMoveRight

pacmanMoveUp

pacmanMoveDown

Model Transformations

Language Translation Category

Groups intents that define a translation between two
modeling languages.

• Translation

• Migration

Model Transformations

Translation
• Maps concepts of a model in a source language to

concepts of another target language, while translating the
semantics of the former in terms of the latter

• Similar to translational semantics, but the source language
already has a semantics

Class diagram to RDBMS

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Migration
• Transforms models written in one language into models

written in another language or a modified version of it,
while keeping the models at the same level of abstraction

• Evolution to new version

Enterprise Java Beans 3.0Enterprise Java Beans 2.0

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4634773&tag=1
Tiago
Realce

Tiago
Realce
Não mapeia só conceitos, migra o modelo inteiro

Model Transformations

Model-to-model transformation for
translation

• Declarative paradigm

• Rules defined as non-destructing pre- and post-conditions
– Source pattern to be matched in the source model

– Target pattern to be created/updated in the target model for each
match during rule application

• Typically models are represented in Ecore

• Input model is read-only

• Output model is write-only

• Tools: ATL, ETL, QVT-R

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Tree to list example

Tree meta-model List meta-model

Model Transformations

Transformation in ATL:
Root and leaves mapping

Model Transformations

Helper functions

Model Transformations

Execution semantics
Apply entry-point called rules, invoke other rules if
specified

Evaluate standard rules guards

Create the target elements for every match with
traceability links

ATL resolve algorithm evaluates all bindings: initializations

Apply lazy rules, execute action blocks

Apply end-point called rules

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Execution of a declarative rule in ATL
Find all possible matches in the source model
Create elements specified in the target pattern on a target model
Initialize attributes and links of the newly created elements
Create traceability links from the elements in the source model
matched by the source pattern to the created elements in the target
model

There are 3 types of declarative rules:
5. Standard rules: applied once for each match
6. Lazy rules: applied as many times for each match as referred to by

other rules
7. Unique lazy: same as lazy rules but re-use the target elements they

created when applied multiple times

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Constraint Satisfaction Category

Groups intents that output models given a set of constraints.

• Model Generation

• Model Finding

Tiago
Realce

Tiago
Realce

Model Transformations

Model Generation
• Automatically produce possible correct instances of a

metamodel

• Very useful for testing model transformations by
generating input test models to verify the correctness of a
transformation

Class diagram meta-model

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Model Finding
• Searches for models that satisfy given constraints

– Several models are generated according to a set of rules and
evaluated to check whether they satisfy some constraints

– If not, a backtracking mechanism reverses some of the applied
rules to find another model

• Typically used in design-space exploration to help decide
which solution to choose

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5457773
Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Analysis (Category)
• Model transformation that implements analysis algorithm

of varying complexities
– Dead code detection

– Rule inapplicability detection

– Model checking of temporal formulae over models

Reachability
analysis of
Petri nets

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Editing Category

Groups intents that manipulate a model directly.

• Model Editing

• Optimization

• Model Refactoring

• Normalization
– Canonicalization

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Model Editing
• Simple operations on a model (CRUD operations):

– Add an element to the model;

– Remove an element from the model;

– Update an element’s properties;

– Access an element or its properties;

– Navigate through the elements.

• Atomic or bulk operations

• Considered a model transformation when the system is
completely and explicitly modeled

• Tool support: any model editor that models CRUD
operations (AToMPM)

Tiago
Realce

Tiago
Realce

Model Transformations

Optimization
• Special kind of model edition

• Aims at improving certain operational qualities models
– e.g., Scaleability, efficiency

• Example: Automatic application of design patterns on
models

N-ary to binary association

Tiago
Realce

Model Transformations

Model Refactoring
• Special kind of model edition

• Restructure the model to improve certain internal quality
characteristics without changing its observable behavior
– Understandability, modifiability, reusability, modularity,

adaptability

Compose states into composite states

http://link.springer.com/chapter/10.1007/3-540-28554-7_9
Tiago
Realce

Model Transformations

Normalization
• Special kind of model edition to decrease syntactic

complexity of models: simplification

• Translate complex language constructs into more primitive
language constructs

Flatten OR- and AND-states into states and transitions

http://link.springer.com/article/10.1007/s10270-006-0027-7
Tiago
Realce

Model Transformations

Canonicalization
• Special kind of normalization where models are

normalized in a unique form

• Useful to compare equality of models

Planar semi-developed formula to planar developed formula of ethanol

http://www.jot.fm/issues/issue_2007_10/paper10.pdf
Tiago
Realce

Model Transformations

Model Visualization category

Groups intents that deal with the relation between the
abstract and concrete syntax of a modeling a language.

• Animation

• Rendering

• Parsing

Tiago
Realce

Tiago
Realce

Model Transformations

Animation
• Visualization of changes in the abstract syntax

– e.g., from simulation

• Projects the behavior of a model on a specific animation
view

• Operates on the concrete syntax of a model
FSA Animation

Tiago
Realce

Tiago
Realce

Model Transformations

Rendering
• Assigns one or more concrete representations (textual,

graphical) to each abstract syntax element or group of
elements

• Meta-model of concrete syntax must be explicitly defined

• Tool support: AToMPM

Concrete syntax assignment in AToMPM

Tiago
Realce

Tiago
Realce

Model Transformations

Parsing
• Inverse of rendering

• Maps concrete syntax of language back to its abstract
syntax

• Requires meta-model of CS and meta-meta-model of
language

PL/SQL code in CS to its AST

http://link.springer.com/chapter/10.1007/978-3-642-02674-4_7
Tiago
Realce

QUESTION
Model Transformations

➢ Translational Semantics

Map a custom DSML for stop watches into a Statecharts model
in order to define its behavior.

Input: Watch DSM
Output: Statechart

QUESTION
Model Transformations

➢ Simulation

Define the actions performed by a traffic light to transition from
one state to another.

Input: Traffic light model
Output: Traffic light model

QUESTION
Model Transformations

➢ Rendering

Visualize a Statecharts in SCXML into a graphical state machine
model.

Input: XML
Output: State machine DSM

QUESTION
Model Transformations

➢ Animation

Move dots representing vehicles through the map of a city.
Input: City traffic DSM

Output: City traffic DSM

Model Transformations

Model Composition Category

Groups intents that integrate models produced in isolation
into a compound model, where each isolated model

represents a concern that may overlap with any of the other
models.

• Model Merging

• Model Matching

• Model Synchronization

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Model Merging
• Instance of model composition

• Create a new model such that every element from the
union of the input models is present exactly once in the
merged model

Merge two models
of the same meta-model

http://link.springer.com/chapter/10.1007/11787044_12
Tiago
Realce

Tiago
Realce

Model Transformations

Model Matching
• Creates correspondence links between corresponding

entities
– Model weaving

http://link.springer.com/article/10.1007/s10270-008-0094-z
Tiago
Realce

Model Transformations

Model Synchronization
• Integrates models that evolved in isolation and subject to

global consistency constraints

• Change propagation to the integrated models
– Multiple views of a common repository

Repository

Tiago
Realce

Tiago
Realce

Model Transformations

Vocabulary
• Relationship between source & target meta-models

– Endogenous: Source meta-model = Target meta-model

– Exogenous: Source meta-model ≠ Target meta-model

• Relationship between source & target models
– In-place: Transformation executed within the same model

– Out-place: Transformation produces a different model

X X

X X

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Vocabulary
• Horizontal: source and target models reside at the same

abstraction level

• Vertical: source and target models reside at different
abstraction levels

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model Transformations

Model transformation
language features

Model Transformations

Feature-Based Survey of Model
Transformation Approaches

Model Transformations

Rule patterns
• Model fragments

• Using abstract or concrete syntax

• Syntactic separation

MoTif rule

FUJABA compact notation
module Person2Contact;
create OUT: MMb from IN: MMa {

rule Start {
form p: MMa!Person(

p.function = ‘Boss’
)
to c: MMb!Contact(

name <- p.first_name + p.
last_name)
}

ATL rule

Tiago
Realce

Model Transformations

Rule constraints

X

Kermeta operation

operation transform(source:PackageHierarchy): DataBase is
do

result := DataBase.new
trace.initStep(“uml2db”)
source.hierarchy.each{ pkg |

var scm: Schema init Schema.new
scm.name := String.clone(pkg.name)
result.schema.add(scm)
trace.addlink(“uml2db”, “package2schema", pkg, scm)

}
end

top relation PackageToSchema {
domain uml p:Package{name=pn}
domain rdbms s:Schema{name=pn}

}

QVT-Relations rule

Tiago
Realce

Model Transformations

Rule application strategy

Rule Input model

or on this A

Tiago
Realce

QUESTION
Model Transformations

What are the possible outputs of the following rule applied
to the following input model?

Rule Input model

or on this B

Model Transformations

Multi-directional rules

TGG rule

TGG operational rules

Model Transformations

Rule scheduling strategies
Implicit

Rule Input model

Model Transformations

Rule scheduling strategies
Explicit

top relation ClassToTable {
domain uml c:Class {
package = p:Package{},
isPersistent = true,
name = cn
}
domain rdbms t:Table {

schema = s:Schema{},
name = cn,
cols = cl:Column {

name = cn +
‘_tid’,

type = ‘NUMBER’},
pkey = cl

}
when {

PackageToSchema (p,
s);

}
where {

AttributeToColumn (c,
t);

}
}

Model Transformations

Plethora of model transformation languages

GrGen.
NET

Model Transformations

