
Languages and
Software Language

Engineering

Lecture 2: Languages
by Prof. Vasco Amaral

2022/2023

In the previous lecture...

We discussed models (and
metamodels)

Now we need to have a clear notion
of what a valid model is and what
does it means

What is a
modelling
language?

A modelling language defines a set of models that can be used for modelling
purposes. It’s definition consists of:

● Syntax, how they are perceived (how the models look like)
● Semantics, what each of its models means
● Pragmatics, how the models are used according to their purpose

Concrete Syntax

Describes the concrete
representation of the models and is
used by humans to uses senses
(eyes, ear,...) to read, understand,
and create models. The concrete
syntax must be sufficiently formal to
be procesible by tools.

Abstract Syntax

Contains the essential information
of a model, disregarding all details
of the concrete syntax that do not
contribute to the model’s purpose. It
is particularly interesting for use by
software tools (e.g.
interoperability).

Concrete Syntax
(CS)

We can have distinct CS for
identical languages for different

purposes

Visualized (more common):

● Graphical (or diagrammatic)
● Textual
● Variations

○ Graphs,trees,tabular, ASCII or XML
textual forms

We can consider other senses like
ear (sound) and touch (gestures)
although uncommon

The choice of adequate CS for the
target users is essential for its
adoption (therefore we will study
usability issues later on)

Textual Concrete Syntax
● Well established theories and tools, including grammars and parser

generators (e.g. ANTLR)
● Relies on underlying alphabet like ASCII or Unicode as basis
● Groups the characters available in two phases:

○ Lexical terms like keywords (e.g. begin, end), operators, numbers or
names

○ Full sentences using a grammar
● The editing tool can add (as part of the concrete syntax) highlighting, fonts,

tab (etc) to ease reading
● These languages are usually agnostic to white spaces (real spaces,

tabulators and line breaks)

Textual Concrete Syntax
Usually described using a EBNF grammar

Example

Textual Concrete Syntax
With XML
Grammar is defined using XML Schema Definition (or XSD)

Not considered Human readable for elaborated data structures (significant
effort to interpret essential information in between tags…

Usually needs a tree browser to enable the user to view and manipulate

Graphical Concrete Syntax (Box and lines
diagrams)

● Typically use both dimensions on paper or screen
● Usually augmented with text fragments to enhance essential information
● Use as elements:

○ Boxes (several possible shapes, including use of icons)
○ Lines (several shapes, styles, colors)
○ Compartments

UML sequence diagrams use special form of lines (lifelines, that have a
beginning and no end)

Typically we abstract from the layout and size (as spaces in the textual
languages)

Graphical Concrete Syntax (Tabular)
It is a special form of graphical notation for regularly
Structured situations where adjacency helps to compact
the model
It is often useful to number rows and columns and
possibly provide a visualiser with scrolling and zooming
functionalities

Graphical Concrete Syntax: Trees
It is often relatively easy to define a spanning trees
over graph structures

XML is usually manipulated this way

Abstract Syntax
Of textual languages

Textual languages typically are
defined using grammars and use
trees as their internal
representation

Sometimes optimizations,
rearrangements or extensions are
made to allow efficient storage and
retrieval of information from the
AST (e.g. resolution of names)

But can also use metamodels to
describe the possible set of
models.

(we will see examples with Xtext)

Abstract Syntax
Of Graphical languages

Usually defined using a
metamodeling approach

Metamodels (Class Diagram like)
are used to describe the graph
structures behind the boxes and
lines that are visible in the concrete
syntax of the model

As observed in UML, class
diagrams allow for structures that
might be illegal structures, wrong
combinations of attributes, etc.

Well formedness rules(constraints)
in OCL like languages are used

Relating Concrete Syntax and Abstract Syntax

In the case of Textual languages the grammar describes both

In the case of graphical languages, first we have the metamodel for the
abstract syntax and then we can map the elements to several distinct
concrete syntaxes (which is not possible with the textual languages)

Semantics of a
Modelling
Language

Being sure about the consistent
meaning (to avoid
misinterpretation)

Captures the essential information of its
models in the form of explicitly defined

● Syntactic domain
○ that describes the well-formed models

● Semantic domain
○ that captures all essential information

that the model can describe

● Semantic mapping
○ that relates the syntactic constructs of

the models to the semantic domain

Semantics of a
Modelling
Language

Defined using

● Denotational Semantics
○ describes what a model means, typically with

mathematical constructs without talking about
how the meaning is achieved

● Operational Semantics
○ maps the input model to some executable code.

Having this we can, for instance, run a simulation

● Axiomatic Semantics
○ defines the meaning of the language constructs

in terms of assertions. Thus there may be
aspects of the executions that are ignored.

Denotational
Semantics

Defined using

● Set of models - L
○ Let L be the set of models in their syntactic shape

● Semantic Domain - S
○ Let S be the Semantic Domain that precisely

defines the set of mathematical entities
representing what we want to describe

● Semantic Mapping - M
○ M is a mathematical function that relates one

model of our modelling language with its
meaning:

○ M: L -> S

Software
Language
Engineer

One task of a language engineer is
to develop languages that make the
job of creating software easier.

Another task is to create a language
that will support the language
end-user (also known as domain
expert) efficiently and effectively.

Software
Language

Engineering
SLE is the application of a
systematic, disciplined and
quantifiable approach to the
development, usage, and
maintenance of software
languages.

The
Model-Driven

way

MD*

Taken from Master thesis of David Ameller (supervised by Xavier Franch)

MD*

Taken from Master thesis of David Ameller (supervised by Xavier Franch)

• MBE – Model-Based Engineering
• Process in which software models play an important role although they

are not necessarily the key artifacts of the development (i.e. they do
NOT “drive” the process)

• MDE – Model-Driven Engineering
• Goes beyond of the pure development activities and encompasses

other model-based tasks of a complete software engineering process
(e.g. the model-based evolution the system or the model-driven
reverse engineering of a legacy system).

• MDD – Model-Driven Development
• Development paradigm that uses models and transformation (which

also have models) as the primary artifact of the development process.
Usually, in MDD, the implementation is (semi)automatically generated
from the models.

• MDA – Model-Driven Architecture
• OMG’s particular vision of MDD and thus relies on the use of OMG

standards.

Software
In Programming (Wirth):

Algorithms + Data Structures = Programs

In MDE:

Models + Transformations = Software

Model-Driven
Roadmap

The model as a
central artefact

System
Model Simulate

Execute

Code
Synthesis

Analyze
Proof of

correctness

Conformance
Verification

Performance
metrics

Optimize

...

Document

Refactor

MDE Coverage

MDE Coverage

Problem Domain - field or area of
expertise where to solve a problem

Domain Model - Conceptual
problem of the problem domain

Technical spaces- specific working
contexts for specification,
implementation and deployment of
applications

General purpose

General Purpose

Specific Purpose

DSLs and GPLs

DS(M)Ls

E.g. HTML, Logo, VHDL,
Mathematica, SQL

GP(M)Ls

E.g. UML, Petri-nets, Statecharts
(Examples)

Tiago
Realce

SLE
Process
(as systematic)

Ankica Barisic, Vasco Amaral, Miguel Goulão:
Usability driven DSL development with USE-ME. Computer Languages, Systems & Structures 51: 118-157 (2018)

MDE
Adoption

MDE
Adoption

Languages and
Software Language

Engineering

Lecture 3: Relevant definitions and
Metamodelling with Eclipse

by Prof. Vasco Amaral
2019/2020

Modelling
Languages

DS(M)Ls

E.g. HTML, Logo, VHDL,
Mathematica, SQL

GP(M)Ls

E.g. UML, Petri-nets, Statecharts

Tiago
Realce

InstanceOf vs.
ConformsTo

Conformance is between
models

Instantiation is between model
elements

Tiago
Realce

Tiago
Realce

Tiago
Realce

Model
Conformance
A model is valid in a given

language if...

A model conforms to a given
metamodel if each model element is an
instance of a metamodel element. Then
a model is valid with respect to the
language represented by the
metamodel.

Tiago
Realce

Tiago
Realce

Meta-language
A model is valid in a given

language if...

Is a language dedicated to language
modelling, i.e., for defining metamodels

MDE’s
meta-languages

MDE approaches leverages the
object-oriented paradigm and most
of the meta-languages are
derivatives of UML’s class diagram
(we can also find ER like diagrams),
often extended with related
languages such as Object
Constraint Language (OCL)

Modelling
workbenches

A language workbench provides a set of
tools and meta-languages supporting
the development and evolution of a
language and its associated tooling,
including design, implementation,
deployment, evolution, reuse, and
maintenance.

The term was coined in 2005 by Martin Fowler. Examples of workbenches are: JetBrains MPS, Metacase’s
MetaEdit, EMF, AtomPM, Microsoft Visualization and Modelling SDK

Tiago
Realce

Tiago
Realce

Meta Circularity
Use of a metamodel to model its own
shape.All concepts available in a
language can be modelled using the
language itself.

Example EBNF can model any kind of textual language, including itself, not being a threat to EBNF’s usability
or precision

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Abstract Syntax
Metamodelling

approach

Tiago
Realce

Tiago
Realce

Tiago
Realce

SLE
Process
(as systematic)

Ankica Barisic, Vasco Amaral, Miguel Goulão:
Usability driven DSL development with USE-ME. Computer Languages, Systems & Structures 51: 118-157 (2018)

The language has to empower its user…
or he will end up using something else

What strategies
are available to

us?

Constructive approaches:
- Our own expertise and common sense
- Usability heuristics such as the
“Physics of notations”

Evaluation-based approaches:
- “Traditional” usability evaluations
- User monitoring while using the DSML

Meta-Object
Facility (MOF)

Modelling formalism standardized by
OMG to specify concepts and
relationships between these concepts
for a particular domain. MOF can be
used for Domain Modelling and to
describe the abstract syntax of a
corresponding DSML

Tiago
Realce

Tiago
Realce

Meta-Object
Facility (MOF)

Excerpt of MOF 2.0

Allows specifying concepts of a given domain in a
package.
Package contains Classes, Properties, and
relationships
Property can be an attribute or a reference to other
class
Attribute is typed by enumeration or primitive type
such as Boolean, String, integer, Real or Unlimited
Natural

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Object-Oriented

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Eclipse Modelling
Framework (EMF)

EMF is a Modelling framework in
the Eclipse workbench.Has tools
such as reflective editors, XML
serialization of models, uniform
way to access models from Java

ECORE
EMF meta-language (implementation

of MOF)

Some remarks:

To avoid confusion in eclipse (for instance with
the underlying Java elements) Ecore has
prefixed all concepts with an E.

EMF is not tied with Eclipse as any java
application with the EMF runtime jars in its
classpath can use the project to manipulate
models

Generic Ecore
Metamodel

Eclipse

Tiago
Realce

EMF

Tiago
Realce

Tiago
Realce

Tiago
Realce

EMF

Tiago
Realce

EMF

EMF
Three Ecore Model

Perspectives:
Java API

EMF
Three Ecore Model

Perspectives:
Diagram

EMF
Three Ecore Model

Perspectives:
Diagram

EMF
Three Ecore Model

Perspectives:
XML

Thank you!
Contact: vma@fct.unl.pt

