Multimedia Computing

Nuno Correia http://ctp.di.fct.unl.pt/~nmc nmc@fct.unl.pt FCT/UNL, 2021/2022

1

7	Types ar	nd Form	ats
🗆 .txt	🛛 .bmp	□ .snd	□.cdr
🗆 .ps	🛛 .au	🛛 .mov	🗆 .fli
□ .tex	🛛 .wav	🛛 .avi	🗆 .tbk
□ .doc	🛛 .mid	🛛 .ra	□ .voc
🛛 .html	□ .mp3	□ .dcr	🗆 .qt
🗆 .jpg	🛛 .mpg	🛛 .pcd	□.wad
□ .gif	□ .m2v	□ .xls	🛛 .asf
□ .tiff	🛛 .dat	🛛 .rle	🗆 .dcr
🛛 .pbm	🛛 .ifo	🛛 .pdf	□.enc
🛛 .ppm	🛛 .vob	□ .aiff	🛛 .png

Static and Dynamic Information

Multimedia information can be:

- Static: doesn't change over time (e.g., text, graphics)
- Dynamic: time dependent (e.g., animation)
- Continuous: Sequence (stream) of samples with time stamps (e.g., video, audio). Also dynamic with additional storage, transmission and synchronization requirements.

2.9		
Attributes	Quality	Bytes/sec
11025 Hz, 8bits, mono	Reasonable for voice	11025
11025 Hz, 8bits, stereo	Reasonable in stereo	22050
11025 Hz, 16bits, mono	Reasonable with little noise	22050
11025 Hz, 16bits, stereo	Reasonable in stereo, less noise	44100
22050 Hz, 8bits, mono	Good for music and simple sounds	22050
22050 Hz, 8bits, stereo	Good in stereo	44100
22050 Hz, 16bits, mono	Very good, less noise	44100
22050 Hz, 16bits, stereo	Very good in stereo, less noise	88200
44100 Hz, 8bits, mono	High, all types of sound	44100
44100 Hz, 8bits, stereo	High, in stereo	88200
44100 Hz, 16bits, mono	Excellent, less noise	88200
44100 Hz, 16bits, stereo	Excellent in stereo (CD), no noise	176400

Encoded Bytes Decoded Bytes 05 10 10 10 10 10 10 00 05 23 65 34 56 45 23 65 34 56 45 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 00 04 46 57 68 79 46 57 68 79
Encoded BytesDecoded Bytes05 1010 10 10 10 1000 05 23 65 34 56 4523 65 34 56 450A 0A0A 0A 0A 0A 0A 0A 0A 0A 0A 0A00 04 46 57 68 7946 57 68 79
05 1010 10 10 10 1000 05 23 65 34 56 4523 65 34 56 450A 0A0A 0A 0A 0A 0A 0A 0A 0A 0A 0A00 04 46 57 68 7946 57 68 79
00 05 23 65 34 56 45 23 65 34 56 45 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 00 04 46 57 68 79 46 57 68 79
OA OA OA OA OA OA OA OA OA OA OA OA OA O0 04 46 57 68 79 46 57 68 79
00 04 46 57 68 79 46 57 68 79

(Color Table	
Byte #	Content	
1	Red intensity for color index 0	
2	Green intensity for color index 0	
3	Blue intensity for color index 0	
4	Red intensity for color index 1	
5	Green intensity for color index 1	
6	Blue intensity for color index 1	

JPEG takes advantage of the limitations of the human visual system, including the difficulty to distinguish details

 Even more relevant for color images
 An image that changes a lot in a few pixels has a high spatial frequency
 Images are represented in the spatial frequency domain. The "rate" of change in x and y is calculated and a new "image" is generated with the coefficients that represent this change
 The coefficients that represent small changes (low frequency) are preserved. The smaller coefficients, corresponding to the larger values, are divided by integer values, and will turn into zero (quantization).
 The JPEG quality can be changed by changing the values that are used in the division (quantization table)

				IPE(G			
Input Array	132 136 140 144 150 144 150 148	136 140 143 144 152 145 156 145	138 140 144 146 155 146 157 146	140 147 148 145 156 148 156 148	144 140 150 149 150 143 140 156	145 148 152 150 145 158 146 160	147 155 154 153 144 150 156 140	155 156 155 160 140 140 145 145
<mark>Output</mark> Array	172 21 -9 -10 -2 -1 -5 -1	-18 -34 -8 6 -2 -2 -3 -8	15 24 -5 -3 -4 -4 -4	-8 -8 6 4 5 6 5 3	23 -10 -5 -4 -3 -4 6 2	-9 11 4 3 4 3 1	-14 14 3 2 4 2 1 4	19 7 -1 1 6 -1 1 0

The N real numbers $x_{_0^{\prime}}$..., $x_{_{N-1}}$ are transformed into the N real numbers $X_{_0^{\prime}}$..., $X_{_{N-1}}$

			J	PEG	Ì				
Quantization	4	7	10	13	16	19	22	25	
array	7	10	13	16	19	22	25	28	
(Output une (i, i))	10	13	16	19	22	25	28	31	
(Quantum(I,J))	13	16	19	22	25	28	31	34	
	16	19	22	25	28	31	34	37	
	19	22	25	28	31	34	37	40	
	22	25	28	31	34	37	40	43	
	25	28	31	34	37	40	43	46	
	Qua	ntizedC	oefficie	ent(i,j)=	DCT(i,j)/Quan	<mark>tum(i,j</mark>)	
	43	3	2	0	0	0	0	0	
0	3	3	2	0	0	0	0	0	
Coefficients	1	0	0	0	0	0	0	0	
array after	1	0	0	0	0	0	0	0	
quantization	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

$\begin{bmatrix} 6.1917 & -0.3411 \\ 0.2205 & 0.0214 \\ 1.0423 & 0.2214 \\ -0.2340 & -0.0392 \\ 0.2750 & 0.0226 \\ 0.0653 & 0.0428 \\ 0.3169 & 0.0541 \\ -0.2970 & -0.0627 \end{bmatrix}$	$\begin{array}{ccccccc} 1.2418 & 0.1492 & 0.1583 \\ 0.4503 & 0.3947 & -0.7844 \\ -1.0017 & -0.2720 & 0.0789 \\ -0.2617 & -0.2866 & 0.6351 \\ 0.1229 & 0.2183 & -0.2583 \\ -0.4721 & -0.2905 & 0.4745 \\ -0.1033 & -0.0225 & -0.0056 \\ 0.1960 & 0.0644 & -0.1136 \\ \end{array}$		
		8x8	 6.192 ×

DCT Π W Ŵ \mathbb{R}^{n} * ***

MPEG (B Frames)Previous frameCurrent frameFuture frameA = forward predictionB = A = forward predictionB = A = forward predictionB = C = backward predictionOne motionvectorWork of the predictionOne motionvectorvectorWork of the predictionVectorVectorvectorvectorvectorVectorvectorvectorvector

Туре	Feature	Descriptors	Audio	Silence	Silence
Visual	Color	DominantColor		Timbre	InstrumentTimbre
		ScalableColor			HarmonicInstrumentTimbre
		ColorLayout			PercussiveInstrumentTimbre
		ColorStructure		Speech Musical Structure SoundEffects	Phoneme
		GoFGoPColor (extension of ColorStructure)			Articulation
	Texture	HomogeneousTexture			Language
		TextureBrowsing			MelodicContour
		EdgeHistogram			Rhythm
	Shape	RegionShape			Reverberation, Pitch, Contour
		ContourShape	-		Noise
		Shape3D			
	Motion	CameraMotion			
		MotionTrajectory			
		ParametricMotion			
		MotionActivity			

Г