

Patterns of Enterprise Application Architecture
By Martin Fowler, David Rice, Matthew Foemmel, Edward
Hieatt, Robert Mee, Randy Stafford

Publisher : Addison Wesley
Pub Date : November 05, 2002
ISBN : 0-321-12742-0
Pages : 560

http://www.informit.com/safari/author_bio.asp@ISBN=0321127420
http://www.informit.com/safari/author_bio.asp@ISBN=0321127420
http://www.informit.com/safari/author_bio.asp@ISBN=0321127420
http://www.informit.com/safari/author_bio.asp@ISBN=0321127420
http://www.informit.com/safari/author_bio.asp@ISBN=0321127420
http://www.informit.com/safari/author_bio.asp@ISBN=0321127420
http://www.informit.com/safari/author_bio.asp@ISBN=0321127420

 Table of Contents

 Copyright
 The Addison-Wesley Signature Series
 Preface
 Who This Book Is For
 Acknowledgments
 Colophon

 Introduction
 Architecture
 Enterprise Applications
 Kinds of Enterprise Application
 Thinking About Performance
 Patterns

 Part 1. The Narratives
 Chapter 1. Layering
 The Evolution of Layers in Enterprise Applications
 The Three Principal Layers
 Choosing Where to Run Your Layers

 Chapter 2. Organizing Domain Logic
 Making a Choice
 Service Layer

 Chapter 3. Mapping to Relational Databases
 Architectural Patterns
 The Behavioral Problem
 Reading in Data
 Structural Mapping Patterns
 Building the Mapping
 Using Metadata
 Database Connections
 Some Miscellaneous Points
 Further Reading

 Chapter 4. Web Presentation
 View Patterns
 Input Controller Patterns
 Further Reading

 Chapter 5. Concurrency
 Concurrency Problems
 Execution Contexts
 Isolation and Immutability
 Optimistic and Pessimistic Concurrency Control
 Transactions
 Patterns for Offline Concurrency Control
 Application Server Concurrency
 Further Reading

 Chapter 6. Session State
 The Value of Statelessness

 Session State

 Chapter 7. Distribution Strategies
 The Allure of Distributed Objects
 Remote and Local Interfaces
 Where You Have to Distribute
 Working with the Distribution Boundary
 Interfaces for Distribution

 Chapter 8. Putting It All Together
 Starting with the Domain Layer
 Down to the Data Source Layer
 Some Technology-Specific Advice
 Other Layering Schemes

 Part 2. The Patterns
 Chapter 9. Domain Logic Patterns
 Transaction Script
 Domain Model
 Table Module
 Service Layer

 Chapter 10. Data Source Architectural Patterns
 Table Data Gateway
 Row Data Gateway
 Active Record
 Data Mapper

 Chapter 11. Object-Relational Behavioral Patterns
 Unit of Work
 Identity Map
 Lazy Load

 Chapter 12. Object-Relational Structural Patterns
 Identity Field
 Foreign Key Mapping
 Association Table Mapping
 Dependent Mapping
 Embedded Value
 Serialized LOB
 Single Table Inheritance
 Class Table Inheritance
 Concrete Table Inheritance
 Inheritance Mappers

 Chapter 13. Object-Relational Metadata Mapping Patterns
 Metadata Mapping
 Query Object
 Repository

 Chapter 14. Web Presentation Patterns
 Model View Controller
 Page Controller
 Front Controller
 Template View

 Transform View
 Two Step View
 Application Controller

 Chapter 15. Distribution Patterns
 Remote Facade
 Data Transfer Object

 Chapter 16. Offline Concurrency Patterns
 Optimistic Offline Lock
 Pessimistic Offline Lock
 Coarse-Grained Lock
 Implicit Lock

 Chapter 17. Session State Patterns
 Client Session State
 Server Session State
 Database Session State

 Chapter 18. Base Patterns
 Gateway
 Mapper
 Layer Supertype
 Separated Interface
 Registry
 Value Object
 Money
 Special Case
 Plugin
 Service Stub
 Record Set

 References

Preface

In the spring of 1999 I flew to Chicago to consult on a project being done by ThoughtWorks, a small but
rapidly growing application development company. The project was one of those ambitious enterprise
application projects: a back-end leasing system. Essentially it deals with everything that happens to a lease
after you've signed on the dotted line: sending out bills, handling someone upgrading one of the assets on the
lease, chasing people who don't pay their bills on time, and figuring out what happens when someone returns
the assets early. That doesn't sound too bad until you realize that leasing agreements are infinitely varied and
horrendously complicated. The business "logic" rarely fits any logical pattern, because, after all, it's written by
business people to capture business, where odd small variations can make all the difference in winning a deal.
Each of those little victories adds yet more complexity to the system.

That's the kind of thing that gets me excited: how to take all that complexity and come up with a system of
objects that can make the problem more tractable. Indeed, I believe that the primary benefit of objects is in
making complex logic tractable. Developing a good Domain Model (116) for a complex business problem is
difficult but wonderfully satisfying.

Yet that's not the end of the problem. Our domain model had to be persisted to a database, and, like many
projects, we were using a relational database. We also had to connect this model to a user interface, provide
support to allow remote applications to use our software, and integrate our software with third-party packages.
All of this on a new technology called J2EE, which nobody in the world had any real experience in using.

Even though this technology was new, we did have the benefit of experience. I'd been doing this kind of thing
for ages with C++, Smalltalk, and CORBA. Many of the ThoughtWorkers had a lot of experience with Forte.
We already had the key architectural ideas in our heads, and we just had to figure out how to apply them to
J2EE. Looking back on it three years later, the design is not perfect but it has stood the test of time pretty
damn well.

That's the kind of situation this book was written for. Over the years I've seen many enterprise application
projects. These projects often contain similar design ideas that have proven effective in dealing with the
inevitable complexity that enterprise applications possess. This book is a starting point to capture these design
ideas as patterns.

The book is organized in two parts, with the first part a set of narrative chapters on a number of important
topics in the design of enterprise applications. These chapters introduce various problems in the architecture of
enterprise applications and their solutions. However, they don't go into much detail on these solutions. The
details of the solutions are in the second part, organized as patterns. These patterns are a reference, and I don't
expect you to read them cover to cover. My intention is that you read the narrative chapters in Part 1 from start
to finish to get a broad picture of what the book covers; then you dip into the patterns chapters of Part 2 as
your interest and needs drive you. Thus, the book is a short narrative book and a longer reference book
combined into one.

This is a book on enterprise application design. Enterprise applications are about the display, manipulation,
and storage of large amounts of often complex data and the support or automation of business processes with
that data. Examples include reservation systems, financial systems, supply chain systems, and many others that

run modern business. Enterprise applications have their own particular challenges and solutions, and they are
different from embedded systems, control systems, telecoms, or desktop productivity software. Thus, if you
work in these other fields, there's nothing really in this book for you (unless you want to get a feel for what
enterprise applications are like.) For a general book on software architecture, I'd recommend [POSA].

There are many architectural issues in building enterprise applications. I'm afraid this book can't be a
comprehensive guide to them. In building software I'm a great believer in iterative development. At the heart
of iterative development is the notion that you should deliver software as soon as you have something useful to
the user, even if it's not complete. Although there are many differences between writing a book and writing
software, this notion is one that I think the two share. That said, this book is an incomplete but (I trust) useful
compendium of advice on enterprise application architecture. The primary topics I talk about are

• Layering of enterprise applications
• Structuring domain (business) logic
• Structuring a Web user interface
• Linking in-memory modules (particularly objects) to a relational database
• Handling session state in stateless environments
• Principles of distribution

The list of things I don't talk about is rather longer. I really fancied writing about organizing validation,
incorporating messaging and asynchronous communication, security, error handling, clustering, application
integration, architectural refactoring, structuring rich-client user interfaces, among other topics. However,
because of space and time constraints and lack of cogitation, you won't find them in this book. I can only hope
to see some patterns for this work in the near future. Perhaps I'll do a second volume someday and get into
these topics, or maybe someone else will fill these and other gaps.

Of these, message-based communication is a particularly big issue. People who are integrating multiple
applications are increasingly making use of asynchronous message-based communication approaches. There's
much to be said for using them within an application as well.

This book is not intended to be specific for any particular software platform. I first came across these patterns
while working with Smalltalk, C++, and CORBA in the late '80s and early '90s. In the late '90s I started to do
extensive work in Java and found that these patterns applied well to both early Java/CORBA systems and later
J2EE-based work. More recently I've been doing some initial work with Microsoft's .NET platform and find
the patterns apply again. My ThoughtWorks colleagues have also introduced their experiences, particularly
with Forte. I can't claim generality across all platforms that have ever been or will be used for enterprise
applications, but so far these patterns have shown enough recurrence to be useful.

I have provided code examples for most of the patterns. My choice of language for them is based on what I
think most readers are likely to be able to read and understand. Java is a good choice here. Anyone who can
read C or C++ can read Java, yet Java is much less complex than C++. Essentially most C++ programmers can
read Java but not vice versa. I'm an object bigot, so I inevitably lean to an OO language. As a result, most of
the code examples are in Java. As I was working on the book, Microsoft started stabilizing its .NET
environment, and its C# language has most of the same properties as Java for an author. So I did some of the
code examples in C# as well, although that introduced some risk since developers don't have much experience
with .NET and so the idioms for using it well are less mature. Both are C-based languages, so if you can read
one you should be able to read both, even if you aren't deeply into that language or platform. My aim was to
use a language that the largest amount of software developers can read, even if it's not their primary or
preferred language. (My apologies to those who like Smalltalk, Delphi, Visual Basic, Perl, Python, Ruby,
COBOL, or any other language. I know you think you know a better language than Java or C#. All I can say is

I do, too!)

The examples are there for inspiration and explanation of the ideas in the patterns. They aren't canned
solutions; in all cases you'll need to do a fair bit of work to fit them into your application. Patterns are useful
starting points, but they are not destinations.

Who This Book Is For

I've written this book for programmers, designers, and architects who are building enterprise applications and
who want to improve either their understanding of architectural issues or their communication about them.

I'm assuming that most of my readers will fall into two groups: those with modest needs who are looking to
build their own software and readers with more demanding needs who will be using a tool. For those of
modest needs, my intention is that these patterns should get you started. In many areas you'll need more than
the patterns will give you, but I'll provide you more of a headstart in this field than I got. For tool users I hope
this book will give you some idea of what's happening under the hood and also help you choose which of the
tool-supported patterns to use. Using, say, an object-relational mapping tool still means that you have to make
decisions about how to map certain situations. Reading the patterns should give you some guidance in making
the choices.

There is a third category; those with demanding needs who want to build their own software. The first thing I'd
say here is to look carefully at using tools. I've seen more than one project get sucked into a long exercise at
building frameworks, which wasn't what the project was really about. If you're still convinced, go ahead.
Remember in this case that many of the code examples in this book are deliberately simplified to help
understanding, and you'll find you'll need to do a lot tweaking to handle the greater demands you face.

Since patterns are common solutions to recurring problems, there's a good chance that you have already come
across some of them. If you've been working in enterprise applications for a while, you may well know most
of them. I'm not claiming to present anything new in this book. Indeed, I claim the opposite—this is a book of
(for our industry) old ideas. If you're new to this field, I hope the book will help you learn about these
techniques. If you're familiar with the techniques, I hope the book will help you communicate and teach them
to others. An important part of patterns is trying to build a common vocabulary, so you can say that this class
is a Remote Facade (388) and other designers will know what you mean.

Acknowledgments

As with any book, what's written here has a great deal to do with the many people who have worked with me
in various ways over the years. Lots of people have helped in lots of ways. Often I don't recall important things
people said that went into this book, but I can acknowledge those contributions I do remember.

I'll start with my contributors. David Rice, a colleague of mine at ThoughtWorks, has made a huge
contribution—a good tenth of the book. As we worked hard to hit the deadline (while he was also supporting a
client), we had several late-night instant message conversations where he confessed to finally seeing why
writing a book is both so hard and so compulsive.

Matt Foemmel is another ThoughtWorker, and although the Arctic will need air conditioning before he writes
prose for fun, he's been a great contributor of code examples (as well as a very succinct critic of the book.) I
was pleased that Randy Stafford contributed Service Layer (133) as he's been such a strong advocate for it. I'd
also like to thank Edward Hieatt and Rob Mee for their contribution, which arose from Rob's noticing a gap
while he was doing his review of the text. He became my favorite reviewer: Not only does he notice
something missing, he helps write a section to fix it!

As usual, I owe more than I can say to my first-class panel of official reviewers:

John Brewer

Rob Mee

Kyle Brown

Gerard Meszarios

Jens Coldewey

Dirk Riehle

John Crupi

Randy Stafford

Leonard Fenster

David Siegel

Alan Knight

Kai Yu

I could almost list the ThoughtWorks telephone directory here, for so many of my colleagues have helped this
project by talking over their designs and experiences with me. Many patterns formed in my mind because I
had the opportunity to talk with the many talented designers we have, so I have little choice but to thank the
whole company.

Kyle Brown, Rachel Reinitz, and Bobby Woolf have gone out of their way to have long and detailed review
sessions with me in North Carolina. Their fine-tooth comb has injected all sorts of wisdom, not including this

particularly heinous mixed metaphor. In particular I've enjoyed several long telephone calls with Kyle that
contributed more than I can list.

Early in 2000 I prepared a talk for Java One with Alan Knight and Kai Yu that was the earliest genesis of this
material. As well as thanking them for their help in that, I should also thank Josh Mackenzie, Rebecca Parsons,
and Dave Rice for helping me refine these talks, and the ideas, later on. Jim Newkirk did a great deal in
helping me get used to the new world of .NET.

I've learned a lot from the many people working in this field with whom I've had good conversations and
collaborations. In particular I'd like to thank Colleen Roe, David Muirhead, and Randy Stafford for sharing
their work on the Foodsmart example system at Gemstone. I've also had great conversations at the Crested
Butte workshop that Bruce Eckel has hosted and must thank all the people who attended that event in the last
couple of years. Joshua Kerievsky didn't have time to do a full review, but he was an excellent patterns
consultant.

As usual, I had the remarkable help of the UIUC reading group with their unique brand of no-holds-barred
audio reviews. My thanks to: Ariel Gertzenstein, Bosko Zivaljevic , Brad Jones, Brian Foote, Brian Marick,
Federico Balaguer, Joseph Yoder, John Brant, Mike Hewner, Ralph Johnson, and Weerasak Witthawaskul.

Dragos Manolescu, an ex-UIUC hitman, got his own group together to give me feedback. My thanks to
Muhammad Anan, Brian Doyle, Emad Ghosheh, Glenn Graessle, Daniel Hein, Prabhaharan
Kumarakulasingam, Joe Quint, John Reinke, Kevin Reynolds, Sripriya Srinivasan, and Tirumala Vaddiraju.

Kent Beck has given me more good ideas than I can remember. But I do remember that he came up with the
name for Special Case (496). Jim Odell was responsible for getting me into the world of consulting, teaching,
and writing—no acknowledgment will ever do his help justice.

As I was writing this book, I put drafts on the Web. During this time many people sent me e-mails pointing out
problems, asking questions, or talking about alternatives. These people include Michael Banks, Mark
Bernstein, Graham Berrisford, Bjorn Beskow, Bryan Boreham, Sean Broadley, Peris Brodsky, Paul Campbell,
Chester Chen, John Coakley, Bob Corrick, Pascal Costanza, Andy Czerwonka, Martin Diehl, Daniel Drasin,
Juan Gomez Duaso, Don Dwiggins, Peter Foreman, Russell Freeman, Peter Gassmann, Jason Gorman, Dan
Green, Lars Gregori, Rick Hansen, Tobin Harris, Russel Healey, Christian Heller, Richard Henderson, Kyle
Hermenean, Carsten Heyl, Akira Hirasawa, Eric Kaun, Kirk Knoernschild, Jesper Ladegaard, Chris Lopez,
Paolo Marino, Jeremy Miller, Ivan Mitrovic, Thomas Neumann, Judy Obee, Paolo Parovel, Trevor Pinkney,
Tomas Restrepo, Joel Rieder, Matthew Roberts, Stefan Roock, Ken Rosha, Andy Schneider, Alexandre
Semenov, Stan Silvert, Geoff Soutter, Volker Termath, Christopher Thames, Volker Turau, Knut Wannheden,
Marc Wallace, Stefan Wenig, Brad Wiemerslage, Mark Windholtz, Michael Yoon.

There are many others who gave input whose names I either never knew or can't remember, but my thanks is
no less heartfelt.

My biggest thanks is, as ever, to my wife Cindy, whose company I appreciate much more than anyone can
appreciate this book.

Colophon

This is the first book that I wrote using XML and related technologies. The master text was written as a series
of XML documents using trusty TextPad. I also used a home-grown DTD. While I was working I used XSLT
to generate the web pages for the HTML site. For the diagrams I relied on my old friend Visio using Pavel
Hruby's wonderful UML templates (much better than those that come with the tool. I have a link on my Web
site if you want them.) I wrote a small program that automatically imported the code examples into the output,
which saved me from the usual nightmare of code cut and paste. For my first draft I tried XSL-FO with
Apache FOP. At the time it wasn't quite up to the job, so for later work I wrote scripts in XSLT and Ruby to
import the text into FrameMaker.

I used several open source tools while working on this book—in particular, JUnit, NUnit, ant, Xerces, Xalan,
Tomcat, Jboss, Ruby, and Hsql. My thanks to the many developers of these tools. There was also a long list of
commercial tools. In particular, I relied on Visual Studio for .NET and on IntelliJ's wonderful Idea—the first
IDE that's excited me since Smalltalk—for Java.

The book was acquired for Addison Wesley by Mike Hendrickson who, assisted by Ross Venables, has
supervised its publication. I started work on the manuscript in November 2000 and released the final draft to
production in June 2002. As I write this, the book is due for release in November 2002 at OOPSLA.

Sarah Weaver was the production editor, coordinating the editing, composition, proofreading, indexing, and
production of final files. Dianne Wood was the copy editor, carrying out the tricky job of cleaning up my
English without introducing any untoward refinement. Kim Arney Mulcahy composed the book into the
design you see here, cleaned up the diagrams, set the text in Sabon, and prepared the final Framemaker files
for the printer. The text design is based on the format we used for Refactoring. Cheryl Ferguson proofread the
pages and ferreted out any errors that had slipped through the cracks. Irv Hershman prepared the index.

 About the Cover Picture

During the couple of years I spent writing this book a more significant construction project was going on in
Boston. The Leonard P. Zakim Bunker Hill Bridge (try fitting that name on a road sign) will replace the ugly
double-decker that now carries Interstate 93 over the Charles River. The Zakim bridge is a cable-stayed
bridge, a style that hasn't been widely used in the U.S. so far, but is very popular in Europe. The Zakim bridge
isn't particularly long, but it is the world's widest cable-stayed bridge and also the first U.S. cable-stayed
bridge to have an asymmetric design. It's a very beautiful bridge, but that doesn't stop me from teasing Cindy
about Henry Petroski's conjecture that we are due for a major failure in a cable-stayed bridge soon.

Martin Fowler, Melrose, Massachusetts, August 2002
http://martinfowler.com

http://martinfowler.com/default.htm

Introduction

In case you haven't realized it, building computer systems is hard. As the complexity of the system gets
greater, the task of building the software gets exponentially harder. As in any profession, we can progress only
by learning, both from our mistakes and from our successes. This book represents some of this learning written
in a form that I hope will help you to learn these lessons quicker than I did, or to communicate to others more
effectively than I did before I boiled these patterns down.

In this introduction I want to set the scope of the book and provide some of the background that will underpin
its ideas.

Architecture

The software industry delights in taking words and stretching them into a myriad of subtly contradictory
meanings. One of the biggest sufferers is "architecture." I tend to look at "architecture" as one of those
impressive-sounding words, used primarily to indicate that we're talking something that's important. But I'm
pragmatic enough not to let my cynicism get in the way of attracting people to my book. :-)

"Architecture" is a term that lots of people try to define, with little agreement. There are two common
elements: One is the highest-level breakdown of a system into its parts; the other, decisions that are hard to
change. It's also increasingly realized that there isn't just one way to state a system's architecture; rather, there
are multiple architectures in a system, and the view of what is architecturally significant is one that can change
over a system's lifetime.

From time to time Ralph Johnson has a truly remarkable posting on a mailing list, and he did one on
architecture just as I was finishing the draft of this book. In this posting he brought out the point that
architecture is a subjective thing, a shared understanding of a system's design by the expert developers on a
project. Commonly this shared understanding is in the form of the major components of the system and how
they interact. It's also about decisions, in that it's the decisions that developers wish they could get right early
on because they're perceived as hard to change. The subjectivity comes in here as well because, if you find that
something is easier to change than you once thought, then it's no longer architectural. In the end architecture
boils down to the important stuff—whatever that is.

In this book I present my perception of the major parts of an enterprise application and of the decisions I wish
I could get right early on. The architectural pattern I like the most is that of layers, which I describe more
in Chapter 1. This book is thus about how you decompose an enterprise application into layers and how these
layers work together. Most nontrivial enterprise applications use a layered architecture of some form, but in
some situations other approaches, such as pipes and filters, are valuable. I don't go into those situations,
focusing instead on the context of a layered architecture because it's the most widely useful.

Some of the patterns in this book can reasonably be called architectural, in that they represent significant

decisions about these parts; others are more about design and help you to realize that architecture. I don't make
any strong attempt to separate the two, since what is architectural or not is so subjective.

Enterprise Applications

Lots of people write computer software, and we call all of it software development. However, there are distinct
kinds of software out there, each of which has its own challenges and complexities. This comes out when I talk
with some of my friends in the telecom field. In some ways enterprise applications are much easier than
telecoms software—we don't have very hard multithreading problems, and we don't have hardware and
software integration. But in other ways it's much tougher. Enterprise applications often have complex data—
and lots of it—to work on, together with business rules that fail all tests of logical reasoning. Although some
techniques and patterns are relevant for all kinds of software, many are relevant for only one particular branch.

In my career I've concentrated on enterprise applications, so my patterns here are all about that. (Other terms
for enterprise applications include "information systems" or, for those with a long memory, "data processing.")
But what do I mean by the term "enterprise application"? I can't give a precise definition, but I can give some
indication of my meaning.

I'll start with examples. Enterprise applications include payroll, patient records, shipping tracking, cost
analysis, credit scoring, insurance, supply chain, accounting, customer service, and foreign exchange trading.
Enterprise applications don't include automobile fuel injection, word processors, elevator controllers, chemical
plant controllers, telephone switches, operating systems, compilers, and games.

Enterprise applications usually involve persistent data. The data is persistent because it needs to be around
between multiple runs of the program—indeed, it usually needs to persist for several years. Also during this
time there will be many changes in the programs that use it. It will often outlast the hardware that originally
created much of it, and outlast operating systems and compilers. During that time there'll be many changes to
the structure of the data in order to store new pieces of information without disturbing the old pieces. Even if
there's a fundamental change and the company installs a completely new application to handle a job, the data
has to be migrated to the new application.

There's usually a lot of data—a moderate system will have over 1 GB of data organized in tens of millions of
records—so much that managing it is a major part of the system. Older systems used indexed file structures
such as IBM's VSAM and ISAM. Modern systems usually use databases, mostly relational databases. The
design and feeding of these databases has turned into a subprofession of its own.

Usually many people access data concurrently. For many systems this may be less than a hundred people, but
for Web-based systems that talk over the Internet this goes up by orders of magnitude. With so many people
there are definite issues in ensuring that all of them can access the system properly. But even without that
many people, there are still problems in making sure that two people don't access the same data at the same
time in a way that causes errors. Transaction manager tools handle some of this burden, but often it's
impossible to hide this from application developers.

With so much data, there's usually a lot of user interface screens to handle it. It's not unusual to have hundreds
of distinct screens. Users of enterprise applications vary from occasional to regular, and normally they will
have little technical expertise. Thus, the data has to be presented lots of different ways for different purposes.

Systems often have a lot of batch processing, which is easy to forget when focusing on use cases that stress
user interaction.

Enterprise applications rarely live on an island. Usually they need to integrate with other enterprise
applications scattered around the enterprise. The various systems are built at different times with different
technologies, and even the collaboration mechanisms will be different: COBOL data files, CORBA,
messaging systems. Every so often the enterprise will try to integrate its different systems using a common
communication technology. Of course, it hardly ever finishes the job, so there are several different unified
integration schemes in place at once. This gets even worse as businesses seek to integrate with their business
partners as well.

Even if a company unifies the technology for integration, they run into problems with differences in business
process and conceptual dissonance with the data. One division of the company may think a customer is
someone with whom it has a current agreement; another division also counts those that had a contract but don't
any longer; another counts product sales but not service sales. That may sound easy to sort out, but when you
have hundreds of records in which every field can have a subtly different meaning, the sheer size of the
problem becomes a challenge—even if the only person who knows what the field really means is still with the
company. (And, of course, all of this changes without warning.) As a result, data has to be constantly read,
munged, and written in all sorts of different syntactic and semantic formats.

Then there's the matter of what comes under the term "business logic." I find this a curious term because there
are few things that are less logical than business logic. When you build an operating system you strive to keep
the whole thing logical. But business rules are just given to you, and without major political effort there's
nothing you can do to change them. You have to deal with a haphazard array of strange conditions that often
interact with each other in surprising ways. Of course, they got that way for a reason: Some salesman
negotiated to have a certain yearly payment two days later than usual because that fit with his customer's
accounting cycle and thus won a couple of million dollars in business. A few thousand of these one-off special
cases is what leads to the complex business "illogic" that makes business software so difficult. In this situation
you have to organize the business logic as effectively as you can, because the only certain thing is that the
logic will change over time.

For some people the term "enterprise application" implies a large system. However, it's important to remember
that not all enterprise applications are large, even though they can provide a lot of value to the enterprise.
Many people assume that, since small systems aren't large, they aren't worth bothering with, and to some
degree there's merit here. If a small system fails, it usually makes less noise than a big system. Still, I think
such thinking tends to shortchange the cumulative effect of many small projects. If you can do things that
improve small projects, then that cumulative effect can be very significant on an enterprise, particularly since
small projects often have disproportionate value. Indeed, one of the best things you can do is turn a large
project into a small one by simplifying its architecture and process.

Kinds of Enterprise Application

When we discuss how to design enterprise applications, and what patterns to use, it's important to realize that
enterprise applications are all different and that different problems lead to different ways of doing things. I
have a set of alarm bells that go off when people say, "Always do this." For me much of the challenge (and
interest) in design is in knowing about alternatives and judging the trade-offs of using one alternative over
another. There is a large space of alternatives to choose from, but here I'll pick three points on this very big
plane.

Consider a B2C (business to customer) online retailer: People browse and—with luck and a shopping cart—
buy. For such a system we need to be able to handle a very high volume of users, so our solution needs to be
not only reasonably efficient in terms of resources used but also scalable so that you can increase the load by
adding more hardware. The domain logic for such an application can be pretty straightforward: order
capturing, some relatively simple pricing and shipping calculations, and shipment notification. We want
anyone to be able access the system easily, so that implies a pretty generic Web presentation that can be used
with the widest possible range of browsers. Data source includes a database for holding orders and perhaps
some communication with an inventory system to help with availability and delivery information.

Contrast this with a system that automates the processing of leasing agreements. In some ways this is a much
simpler system than the B2C retailer's because there are many fewer users—no more than a hundred or so at
one time. Where it's more complicated is in the business logic. Calculating monthly bills on a lease, handling
events such as early returns and late payments, and validating data as a lease is booked are all complicated
tasks, since much of the leasing industry's competition comes in the form of little variations over deals done in
the past. A complex business domain such as this is challenging because the rules are so arbitrary.

Such a system also has more complexity in the user interface (UI). At the least this means a much more
involved HTML interface with more, and more complex, screens. Often these systems have UI demands that
lead users to want a more sophisticated presentation than a HTML front end allows, so a more conventional
rich-client interface is needed. A more complex user interaction also leads to more complicated transaction
behavior: Booking a lease may take an hour or two, during which time the user is in a logical transaction. We
also see a complex database schema with perhaps two hundred tables and connections to packages for asset
valuation and pricing.

A third example point is a simple expense-tracking system for a small company. Such a system has few users
and simple logic and can easily be made accessible across the company with an HTML presentation. The only
data source is a few tables in a database. As simple as it is, a system like this is not devoid of a challenge. You
have to build it very quickly and you have to bear in mind that it may grow as people want to calculate
reimbursement checks, feed them into the payroll system, understand tax implications, provide reports for the
CFO, tie into airline reservation Web services, and so on. Trying to use the architecture for either of the other
two example systems will slow down the development of this one. If a system has business benefits (as all
enterprise applications should), delaying those benefits costs money. However, you don't want to make
decisions now that will hamper future growth. But if you add flexibility now and get it wrong, the complexity
added for flexibility's sake may actually make it harder to evolve in the future and may delay deployment and
thus delay the benefit. Although such systems may be small, most enterprises have a lot of them so the
cumulative effect of an inappropriate architecture can be significant.

Each of these three enterprise application examples has difficulties, and they are different difficulties. As a
result you can't come up with a single architecture that will be right for all three. Choosing an architecture
means that you have to understand the particular problems of your system and choose an appropriate design
based on that understanding. That's why in this book I don't give a single solution for your enterprise needs.
Instead, many of the patterns are about choices and alternatives. Even when you choose a particular pattern,
you'll have to modify it to meet your demands. You can't build enterprise software without thinking, and all
any book can do is give you more information to base your decisions on.

If this applies to patterns, it also applies to tools. Although it obviously makes sense to pick as small a set of
tools as you can to develop applications, you also have to recognize that different tools are best for different
purposes. Beware of using a tool that is really suited for a different kind of application—it may hinder more
than help.

Thinking About Performance

Many architectural decisions are about performance. For most performance issues I prefer to get a system up
and running, instrument it, and then use a disciplined optimization process based on measurement. However,
some architectural decisions affect performance in a way that's difficult to fix with later optimization. And
even when it is easy to fix, people involved in the project worry about these decisions early.

It's always difficult to talk about performance in a book such as this. The reason that it's so difficult is that any
advice about performance should not be treated as fact until it's measured on your configuration. Too often I've
seen designs used or rejected because of performance considerations, which turn out to be bogus once
somebody actually does some measurements on the real setup used for the application.

I give a few guidelines in this book, including minimizing remote calls, which has been good performance
advice for quite a while. Even so, you should verify every tip by measuring on your application. Similarly
there are several occasions where code examples in this book sacrifice performance for understandability.
Again it's up to you to apply the optimizations for your environment. Whenever you do a performance
optimization, however, you must measure both before and after, otherwise, you may just be making your code
harder to read.

There's an important corollary to this: A significant change in configuration may invalidate any facts about
performance. Thus, if you upgrade to a new version of your virtual machine, hardware, database, or almost
anything else, you must redo your performance optimizations and make sure they're still helping. In many
cases a new configuration can change things. Indeed, you may find that an optimization you did in the past to
improve performance actually hurts performance in the new environment.

Another problem with talking about performance is the fact that many terms are used in an inconsistent way.
The most noted victim of this is "scalability," which is regularly used to mean half a dozen different things.
Here are the terms I use.

Response time is the amount of time it takes for the system to process a request from the outside. This may be
a UI action, such as pressing a button, or a server API call.

Responsiveness is about how quickly the system acknowledges a request as opposed to processing it. This is
important in many systems because users may become frustrated if a system has low responsiveness, even if
its response time is good. If your system waits during the whole request, then your responsiveness and
response time are the same. However, if you indicate that you've received the request before you complete,
then your responsiveness is better. Providing a progress bar during a file copy improves the responsiveness of
your user interface, even though it doesn't improve response time.

Latency is the minimum time required to get any form of response, even if the work to be done is nonexistent.
It's usually the big issue in remote systems. If I ask a program to do nothing, but to tell me when it's done
doing nothing, then I should get an almost instantaneous response if the program runs on my laptop. However,
if the program runs on a remote computer, I may get a few seconds just because of the time taken for the
request and response to make their way across the wire. As an application developer, I can usually do nothing

to improve latency. Latency is also the reason why you should minimize remote calls.

Throughput is how much stuff you can do in a given amount of time. If you're timing the copying of a file,
throughput might be measured in bytes per second. For enterprise applications a typical measure is
transactions per second (tps), but the problem is that this depends on the complexity of your transaction. For
your particular system you should pick a common set of transactions.

In this terminology performance is either throughput or response time—whichever matters more to you. It can
sometimes be difficult to talk about performance when a technique improves throughput but decreases
response time, so it's best to use the more precise term. From a user's perspective responsiveness may be more
important than response time, so improving responsiveness at a cost of response time or throughput will
increase performance.

Load is a statement of how much stress a system is under, which might be measured in how many users are
currently connected to it. The load is usually a context for some other measurement, such as a response time.
Thus, you may say that the response time for some request is 0.5 seconds with 10 users and 2 seconds with 20
users.

Load sensitivity is an expression of how the response time varies with the load. Let's say that system A has a
response time of 0.5 seconds for 10 through 20 users and system B has a response time of 0.2 seconds for 10
users that rises to 2 seconds for 20 users. In this case system A has a lower load sensitivity than system B. We
might also use the term degradation to say that system B degrades more than system A.

Efficiency is performance divided by resources. A system that gets 30 tps on two CPUs is more efficient than
a system that gets 40 tps on four identical CPUs.

The capacity of a system is an indication of maximum effective throughput or load. This might be an absolute
maximum or a point at which the performance dips below an acceptable threshold.

Scalability is a measure of how adding resources (usually hardware) affects performance. A scalable system is
one that allows you to add hardware and get a commensurate performance improvement, such as doubling
how many servers you have to double your throughput. Vertical scalability, or scaling up, means adding more
power to a single server, such as more memory. Horizontal scalability, or scaling out, means adding more
servers.

The problem here is that design decisions don't affect all of these performance factors equally. Say we have
two software systems running on a server: Swordfish's capacity is 20 tps while Camel's capacity is 40 tps.
Which has better performance? Which is more scalable? We can't answer the scalability question from this
data, and we can only say that Camel is more efficient on a single server. If we add another server, we notice
that swordfish now handles 35 tps and camel handles 50 tps. Camel's capacity is still better, but Swordfish
looks like it may scale out better. If we continue adding servers we'll discover that Swordfish gets 15 tps per
extra server and Camel gets 10. Given this data we can say that Swordfish has better horizontal scalability,
even though Camel is more efficient for less than five servers.

When building enterprise systems, it often makes sense to build for hardware scalability rather than capacity or
even efficiency. Scalability gives you the option of better performance if you need it. Scalability can also be
easier to do. Often designers do complicated things that improve the capacity on a particular hardware

platform when it might actually be cheaper to buy more hardware. If Camel has a greater cost than Swordfish,
and that greater cost is equivalent to a couple of servers, then Swordfish ends up being cheaper even if you
only need 40 tps. It's fashionable to complain about having to rely on better hardware to make our software run
properly, and I join this choir whenever I have to upgrade my laptop just to handle the latest version of Word.
But newer hardware is often cheaper than making software run on less powerful systems. Similarly, adding
more servers is often cheaper than adding more programmers—providing that a system is scalable.

Patterns

Patterns have been around for a long time, so part of me doesn't want to regurgitate their history yet another
time. Still, this is an opportunity for me to provide my view of patterns and what makes them a worthwhile
approach to describing design.

There's no generally accepted definition of a pattern, but perhaps the best place to start is Christopher
Alexander, an inspiration for many pattern enthusiasts: "Each pattern describes a problem which occurs over
and over again in our environment, and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever doing it the same way twice" [Alexander et
al.]. Alexander is an architect, so he was talking about buildings, but the definition works pretty nicely for
software as well. The focus of the pattern is a particular solution, one that's both common and effective in
dealing with one or more recurring problems. Another way of looking at it is that a pattern is a chunk of advice
and the art of creating patterns is to divide up many pieces of advice into relatively independent chunks so that
you can refer to them and discuss them more or less separately.

A key part of patterns is that they're rooted in practice. You find patterns by looking at what people do,
observing things that work, and then looking for the "core of the solution." It isn't an easy process, but once
you've found some good patterns they become a valuable thing. For me their value lies in being able to create
a book that serves as a reference. You don't need to read all of this book, or all of any patterns book, to find it
useful. You just need to read enough to have a sense of what the patterns are, what problems they solve, and
how they solve them. You don't need to know all the details but just enough so that if you run into one of the
problems you can find the pattern in the book. Only then do you need to really understand the pattern in depth.

Once you need the pattern, you have to figure out how to apply it to your circumstances. A key thing about
patterns is that you can never just apply the solution blindly, which is why pattern tools have been such
miserable failures. I like to say that patterns are "half baked," meaning that you always have to finish them off
in the oven of your own project. Every time I use a pattern I tweak it a little here and a little there. You see the
same solution many times over, but it's never exactly the same.

Each pattern is relatively independent, but patterns aren't isolated from each other. Often one pattern leads to
another or one occurs only if another is around. Thus, you'll usually only see Class Table Inheritance (285) if
there's a Domain Model (116) in your design. The boundaries between the patterns are naturally fuzzy, but I've
tried to make each pattern as self-standing as I can. If someone says "Use a Unit of Work (184)," you can look
it up and see how to apply it without having to read the entire book.

If you're an experienced designer of enterprise applications, you'll probably find that most of these patterns are
familiar to you. I hope you won't be too disappointed (I did try to warn you in the Preface). Patterns aren't
original ideas; they're very much observations of what happens in the field. As a result, we pattern authors
don't say we "invented" a pattern but rather that we "discovered" one. Our role is to note the common solution,

look for its core, and then write down the resulting pattern. For an experienced designer, the value of the
pattern is not that it gives you a new idea; the value lies in helping you communicate your idea. If you and
your colleagues all know what a Remote Facade (388) is, you can communicate a lot by saying, "This class is
a Remote Facade." It also allows you to say to someone newer, "Use a Data Transfer Object for this," and they
can come to this book to look it up. The result is that patterns create a vocabulary about design, which is why
naming is such an important issue.

While most of these patterns are truly for enterprise applications, those in the base patterns chapter (Chapter
18) are more general and localized. I include them because I refer to them in discussions of the enterprise
application patterns.

 The Structure of the Patterns

Every author has to choose his pattern form. Some base their forms on a classic patterns book such as
[Alexander et al.], [Gang of Four], or [POSA]. Others make up their own. I've long wrestled with what makes
the best form. On the one hand I don't want something as small as the GOF form; on the other hand I need to
have sections that support a reference book. So this is what I've used for this book.

The first item is the name of the pattern. Pattern names are crucial, because part of the purpose of patterns is to
create a vocabulary that allows designers to communicate more effectively. Thus, if I tell you my Web server
is built around a Front Controller (344) and a Transform View (361) and you know these patterns, you have a
very clear idea of my web server's architecture.

Next are two items that go together: the intent and the sketch. The intent sums up the pattern in a sentence or
two; the sketch is a visual representation of the pattern, often but not always a UML diagram. The idea is to
create a brief reminder of what the pattern is about so you can quickly recall it. If you already "have the
pattern," meaning that you know the solution even if you don't know the name, then the intent and the sketch
should be all you need to know what the pattern is.

The next section describes a motivating problem for the pattern. This may not be the only problem that the
pattern solves, but it's one that I think best motivates the pattern.

How It Works describes the solution. In here I put a discussion of implementation issues and variations that
I've come across. The discussion is as independent as possible of any particular platform—where there are
platform-specific sections I've indented them so you can see them and easily skip over them. Where useful I've
put in UML diagrams to help explain them.

When to Use It describes when the pattern should be used. Here I talk about the trade-offs that make you select
this solution compared to others. Many of the patterns in this book are alternatives; such Page Controller (333)
and Front Controller (344). Few patterns are always the right choice, so whenever I find a pattern I always ask
myself, "When would I not use this?" That question often leads me to alternative patterns.

The Further Reading section points you to other discussions of this pattern. This isn't a comprehensive
bibliography. I've limited my references to pieces that I think are important in helping you understand the
pattern, so I've eliminated any discussion that I don't think adds much to what I've written and of course I've
eliminated discussions of patterns I haven't read. I also haven't mentioned items that I think are going to be
hard to find, or unstable Web links that I fear may disappear by the time you read this book.

I like to add one or more examples. Each one is a simple example of the pattern in use, illustrated with some
code in Java or C#. I chose those languages because they seem to be languages that the largest number of
professional programmers can read. It's absolutely essential to understand that the example is not the pattern.
When you use the pattern, it won't look exactly like this example so don't treat it as some kind of glorified
macro. I've deliberately kept the example as simple as possible so you can see the pattern in as clear a form as
I can imagine. All sorts of issues are ignored that will become important when you use it, but these will be
particular to your own environment. This is why you always have to tweak the pattern.

One of the consequences of this is that I've worked hard to keep each example as simple as I can, while still
illustrating its core message. Thus, I've often chosen an example that's simple and explicit, rather than one that
demonstrates how a pattern works with the many wrinkles required in a production system. It's a tricky
balance between simple and simplistic, but it's also true that too many realistic yet peripheral issues can make
it harder to understand the key points of a pattern.

This is also why I've gone for simple independent examples instead of a connected running examples.
Independent examples are easier to understand in isolation, but give less guidance on how you put them
together. A connected example shows how things fit together, but it's hard to understand any one pattern
without understanding all the others involved in the example. While in theory it's possible to produce
examples that are connected yet understandable independently, doing so is very hard—or at least too hard for
me—so I chose the independent route.

The code in the examples is written with a focus on making the ideas understandable. As a result several
things fall aside—in particular, error handling, which I don't pay much attention to since I haven't developed
any patterns in this area yet. They are there purely to illustrate the pattern. They are not intended to show how
to model any particular business problem.

For these reasons the code isn't downloadable from my Web site. Each code example in this book is
surrounded with too much scaffolding to simplify the basic ideas so they're worth anything in a production
setting.

Not all the sections appear in all the patterns. If I couldn't think of a good example or motivation text, I left it
out.

 Limitations of These Patterns

As I indicated in the Preface, this collection of patterns is by no means a comprehensive guide to enterprise
application development. My test for this book is not whether it's complete but merely if it's useful. The field
is too big for one mind, let alone one book.

The patterns here are all ones that I've seen in the field, but I'm not going to claim I completely understand all
of their ramifications and interrelationships. This book reflects my current understanding, and that
understanding has developed as I've been writing the book. I expect it will continue to evolve long after this
book has turned into paper. One certainty of software development is that it never stands still.

As you consider using the patterns, never forget that they're a starting point, not a final destination. There's no
way that any author can see all the many variations that software projects have. I've written these patterns to
help provide a beginning, so you can read about lessons that I, and the people I've observed, have learned from

doing and struggling. You'll have your own struggles on top of these. Always remember that every pattern is
incomplete and that you have the responsibility, and the fun, of completing it in the context of your own
system.

Part 1: The Narratives

Chapter 1. Layering

Chapter 2. Organizing Domain Logic

Chapter 3. Mapping to Relational Databases

Chapter 4. Web Presentation

Chapter 5. Concurrency

Chapter 6. Session State

Chapter 7. Distribution Strategies

Chapter 8. Putting It All Together

Chapter 1. Layering

Layering is one of the most common techniques that software designers use to break apart a complicated
software system. You see it in machine architectures, where layers descend from a programming language
with operating system calls into device drivers and CPU instruction sets, and into logic gates inside chips.
Networking has FTP layered on top of TCP, which is on top of IP, which is on top of ethernet.

When thinking of a system in terms of layers, you imagine the principal subsystems in the software arranged
in some form of layer cake, where each layer rests on a lower layer. In this scheme the higher layer uses
various services defined by the lower layer, but the lower layer is unaware of the higher layer. Furthermore,
each layer usually hides its lower layers from the layers above, so layer 4 uses the services of layer 3, which
uses the services of layer 2, but layer 4 is unaware of layer 2. (Not all layering architectures are opaque like
this, but most are—or rather most are mostly opaque.

Breaking down a system into layers has a number of important benefits.

• You can understand a single layer as a coherent whole without knowing much about the other layers.
You can understand how to build an FTP service on top of TCP without knowing the details of how
ethernet works.

• You can substitute layers with alternative implementations of the same basic services. An FTP service
can run without change over ethernet, PPP, or whatever a cable company uses.

• You minimize dependencies between layers. If the cable company changes its physical transmission
system, providing they make IP work, we don't have to alter our FTP service.

• Layers make good places for standardization. TCP and IP are standards because they define how their
layers should operate.

• Once you have a layer built, you can use it for many higher-level services. Thus, TCP/IP is used by
FTP, telnet, SSH, and HTTP. Otherwise, all of these higher-level protocols would have to write their
own lower-level protocols.

Layering is an important technique, but there are downsides.

• Layers encapsulate some, but not all, things well. As a result you sometimes get cascading changes.
The classic example of this in a layered enterprise application is adding a field that needs to display on
the UI, must be in the database, and thus must be added to every layer in between.

• Extra layers can harm performance. At every layer things typically need to be transformed from one
representation to another. However, the encapsulation of an underlying function often gives you
efficiency gains that more than compensate. A layer that controls transactions can be optimized and
will then make everything faster.

But the hardest part of a layered architecture is deciding what layers to have and what the responsibility of
each layer should be.

The Evolution of Layers in Enterprise Applications

Although I'm too young to have done any work in the early days of batch systems, I don't sense that people
thought much of layers in those days. You wrote a program that manipulated some form of files (ISAM,
VSAM, etc.), and that was your application. No layers need apply.

The notion of layers became more apparent in the '90s with the rise of client–server systems. These were two-
layer systems: The client held the user interface and other application code, and the server was usually a
relational database. Common client tools were VB, Powerbuilder, and Delphi. These made it particularly easy
to build data-intensive applications, as they had UI widgets that were aware of SQL. Thus you could build a
screen by dragging controls onto a design area and then using property sheets to connect the controls to the
database.

If the application was all about the display and simple update of relational data, then these client–server
systems worked very well. The problem came with domain logic: business rules, validations, calculations, and
the like. Usually people would write these on the client, but this was awkward and usually done by embedding
the logic directly into the UI screens. As the domain logic got more complex, this code became very difficult
to work with. Furthermore, embedding logic in screens made it easy to duplicate code, which meant that
simple changes resulted in hunting down similar code in many screens.

An alternative was to put the domain logic in the database as stored procedures. However, stored procedures
gave limited structuring mechanisms, which again led to awkward code. Also, many people liked relational
databases because SQL was a standard that would allow them to change their database vendor. Despite the fact
that few people actually did this, many liked having the option to change vendors without too high a porting
cost. Because they are all proprietary, stored procedures removed that option.

At the same time that client–server was gaining popularity, the object-oriented world was rising. The object
community had an answer to the problem of domain logic: Move to a three-layer system. In this approach you
have a presentation layer for your UI, a domain layer for your domain logic, and a data source. This way you
could move all of that intricate domain logic out of the UI and put it into a layer where you could structure it
properly with objects.

Despite this, the object bandwagon made little headway. The truth was that many systems were simple, or at
least started that way. And although the three-layer approach had many benefits, the tooling for client–server
was compelling if your problem was simple. The client–server tools also were difficult, or even impossible, to
use in a three-layer configuration.

I think the seismic shock here was the rise of the Web. Suddenly people wanted to deploy client–server
applications with a Web browser. However, if all your business logic was buried in a rich client, then all your
business logic needed to be redone to have a Web interface. A well-designed three-layer system could just add
a new presentation layer and be done with it. Furthermore, with Java we saw an unashamedly object-oriented
language hit the mainstream. The tools that appeared to build Web pages were much less tied to SQL and thus
more amenable to a third layer.

When people discuss layering, there's often some confusion over the terms layer and tier. Often the two are
used as synonyms, but most people see tier as implying a physical separation. Client–server systems are often
described as two-tier systems, and the separation is physical: The client is a desktop and the server is a server.
I use layer to stress that you don't have to run the layers on different machines. A distinct layer of domain logic
often runs on either a desktop or the database server. In this situation you have two nodes but three distinct
layers. With a local database I can run all three layers on a single laptop, but there will still be three distinct
layers.

The Three Principal Layers

For this book I'm centering my discussion around an architecture of three primary layers: presentation,
domain, and data source. (I'm following the names used in [Brown et al.]). Table 1.1 summarizes these layers.

Presentation logic is about how to handle the interaction between the user and the software. This can be as
simple as a command-line or text-based menu system, but these days it's more likely to be a rich-client
graphics UI or an HTML-based browser UI. (In this book I use rich client to mean a Windows/Swing/fat-client
UI, as opposed to an HTML browser.) The primary responsibilities of the presentation layer are to display
information to the user and to interpret commands from the user into actions upon the domain and data source.

Table 1.1. Three Principal Layers
Layer Responsibilities
Presentation Provision of services, display of information (e.g., in Windows or HTML, handling of user

request (mouse clicks, keyboard hits), HTTP requests, command-line invocations, batch API)
Domain Logic that is the real point of the system
Data Source Communication with databases, messaging systems, transaction managers, other packages

Data source logic is about communicating with other systems that carry out tasks on behalf of the application.
These can be transaction monitors, other applications, messaging systems, and so forth. For most enterprise
applications the biggest piece of data source logic is a database that is primarily responsible for storing
persistent data.

The remaining piece is the domain logic, also referred to as business logic. This is the work that this
application needs to do for the domain you're working with. It involves calculations based on inputs and stored
data, validation of any data that comes in from the presentation, and figuring out exactly what data source
logic to dispatch, depending on commands received from the presentation.

Sometimes the layers are arranged so that the domain layer completely hides the data source from the
presentation. More often, however, the presentation accesses the data store directly. While this is less pure, it
tends to work better in practice. The presentation may interpret a command from the user, use the data source
to pull the relevant data out of the database, and then let the domain logic manipulate that data before
presenting it on the glass.

A single application can often have multiple packages of each of these three subject areas. An application
designed to be manipulated not only by end users through a rich-client interface but also through a command
line would have two presentations: one for the rich-client interface and one for the command line. Multiple
data source components may be present for different databases, but would be particularly for communication
with existing packages. Even the domain may be broken into distinct areas relatively separate from each other.
Certain data source packages may only be used by certain domain packages.

So far I've talked about a user. This naturally raises the question of what happens when there is no a human
being driving the software. This could be something new and fashionable like a Web service or something
mundane and useful like a batch process. In the latter case the user is the client program. At this point it

becomes apparent that there is a lot of similarity between the presentation and data source layers in that they
both are about connection to the outside world. This is the logic behind Alistair Cockburn's Hexagonal
Architecture pattern [wiki], which visualizes any system as a core surrounded by interfaces to external
systems. In Hexagonal Architecture everything external is fundamentally an outside interface, and thus it's a
symmetrical view rather than my asymmetric layering scheme.

I find this asymmetry useful, however, because I think there is a good distinction to be made between an
interface that you provide as a service to others and your use of someone else's service. Driving down to the
core, this is the real distinction I make between presentation and data source. Presentation is an external
interface for a service your system offers to someone else, whether it be a complex human or a simple remote
program. Data source is the interface to things that are providing a service to you. I find it beneficial to think
about these differently because the difference in clients alters the way you think about the service.

Although we can identify the three common responsibility layers of presentation, domain, and data source for
every enterprise application, how you separate them depends on how complex the application is. A simple
script to pull data from a database and display it in a Web page may all be one procedure. I would still
endeavor to separate the three layers, but in that case I might do it only by placing the behavior of each layer in
separate subroutines. As the system gets more complex, I would break the three layers into separate classes.
As complexity increased I would divide the classes into separate packages. My general advice is to choose the
most appropriate form of separation for your problem but make sure you do some kind of separation—at least
at the subroutine level.

Together with the separation, there's also a steady rule about dependencies: The domain and data source
should never be dependent on the presentation. That is, there should be no subroutine call from the domain or
data source code into the presentation code. This rule makes it easier to substitute different presentations on
the same foundation and makes it easier to modify the presentation without serious ramifications deeper down.
The relationship between the domain and the data source is more complex and depends upon the architectural
patterns used for the data source.

One of the hardest parts of working with domain logic seems to be that people often find it difficult to
recognize what is domain logic and what is other forms of logic. An informal test I like is to imagine adding a
radically different layer to an application, such as a command-line interface to a Web application. If there's any
functionality you have to duplicate in order to do this, that's a sign of where domain logic has leaked into the
presentation. Similarly, do you have to duplicate logic to replace a relational database with an XML file?

A good example of this is a system I was told about that contained a list of products in which all the products
that sold over 10 percent more than they did the previous month were colored in red. To do this the developers
placed logic in the presentation layer that compared this month's sales to last month's sales and if the
difference was more than 10 percent, they set the color to red.

The trouble is that that's putting domain logic into the presentation. To properly separate the layers you need a
method in the domain layer to indicate if a product has improving sales. This method does the comparison
between the two months and returns a Boolean value. The presentation layer then simply calls this Boolean
method and, if true, highlights the product in red. That way the process is broken into its two parts: deciding
whether there is something highlightable and choosing how to highlight.

I'm uneasy with being overly dogmatic about this. When reviewing this book, Alan Knight commented that he
was "torn between whether just putting that into the UI is the first step on a slippery slope to hell or a perfectly
reasonable thing to do that only a dogmatic purist would object to." The reason we are uneasy is because it's

both!

Choosing Where to Run Your Layers

For most of this book I will be talking about logical layers—that is, dividing a system into separate pieces to
reduce the coupling between different parts of a system. Separation between layers is useful even if the layers
are all running on one physical machine. However, there are places where the physical structure of a system
makes a difference.

For most IS applications the decision is whether to run processing on a client, on a desktop machine, or on a
server.

Often the simplest case is to run everything on servers. An HTML front end that uses a Web browser is a good
way to do this. The great advantage of running on the server is that everything is easy to upgrade and fix
because it's in a limited amount of places. You don't have to worry about deployment to many desktops and
keeping them all in sync with the server. You don't have to worry about compatibilities with other desktop
software.

The general argument in favor of running on a client turns on responsiveness or disconnected operation. Any
logic that runs on the server needs a server roundtrip to respond to anything the user does. If the user wants to
fiddle with things and see immediate feedback, that roundtrip gets in the way. It also needs a network
connection to run. The network may like to be everywhere, but as I type this it isn't at 31,000 feet. It may be
everywhere soon, but there are people who want to do work now without waiting for wireless coverage to
reach Dead End Creek. Disconnected operation brings particular challenges, and I'm afraid I decided to put
those out of the scope of this book.

With those general forces in place, we can look at the options layer by layer. The data source pretty much
always runs only on servers. The exception is where you might duplicate server functionality onto a suitably
powerful client, usually when you want disconnected operation. In this case changes to the data source on the
disconnected client need to be synchronized with the server. As I mentioned earlier, I decided to leave those
issues to another day—or another author.

The decision of where to run the presentation depends mostly on what kind of user interface you want.
Running a rich client pretty much means running the presentation on the client. Running a Web interface
pretty much means running on the server. There are exceptions—for one, remote operation of client software
(such as X servers in the Unix world) running a Web server on the desktop—but these exceptions are rare.

If you're building a B2C system, you have no choice. Any Tom, Dick, or Harriet can be connecting to your
servers and you don't want to turn anyone away because they insist on doing their online shopping with a
TRS-80. In this case you do all processing on the server and offer up HTML for the browser to deal with. Your
limitation with the HTML option is that every bit of decision making needs a roundtrip from the client to the
server, and that can hurt responsiveness. You can reduce some of the lag with browser scripting and
downloadable applets, but they reduce your browser compatibility and tend to add other headaches. The more
pure HTML you can go, the easier life is.

That ease of life is appealing even if every one of your desktops is lovingly hand-built by your IS department.
Keeping clients up to date and avoiding compatibility errors with other software are problems even simple
rich-client systems have.

The primary reason that people want a rich-client presentation is that some tasks are complicated for users to
do and, to have a usable application, they'll need more than what a Web GUI can give. Increasingly, however,
people are getting used to ways to make Web front ends more usable, and that reduces the need for a rich
client presentation. As I write this I'm very much in favor of the Web presentation if you can and the rich
client if you must.

This leaves us with the domain logic. You can run business logic all on the server or all on the client, or you
can split it. Again, all on the server is the best choice for ease of maintenance. The demand to move it to the
client is for either responsiveness or disconnected use.

If you have to run some logic on the client, you can consider running all of it there—at least that way it's all in
one place. Usually this goes hand in hand with a rich client—running a Web server on a client machine isn't
going to help responsiveness much, although it can be a way to deal with disconnected operation. In this case
you can still keep your domain logic in separate modules from the presentation, with either a Transaction
Script (110) or a Domain Model (116). The problem with putting all the domain logic on the client is that you
have more to upgrade and maintain.

Splitting across both the desktop and the server sounds like the worst of both worlds because you don't know
where any piece of logic may be. The main reason to do it is that you have only a small amount of domain
logic that needs to run on the client. The trick then is to isolate this piece of logic in a self-contained module
that isn't dependent on any other part of the system. That way you can run that module on the client or the
server. This will require a good bit of annoying jiggery-pokery, but it's a good way of doing the job.

Once you've chosen your processing nodes, you should try to keep all the code in a single process, either on
one node or copied on several nodes in a cluster. Don't try to separate the layers into discrete processes unless
you absolutely have to. Doing that will both degrade performance and add complexity, as you have to add
things like Remote Facades (388) and Data Transfer Objects (401).

It's important to remember that many of these things are what Jens Coldewey refers to as complexity
boosters—distribution, explicit multithreading, paradigm chasms (such as object/relational), multiplatform
development, and extreme performance requirements (such as more than 100 transactions per second). All of
these carry a high cost. Certainly there are times when you have to do it, but never forget that each one carries
a charge both in development and in on-going maintenance.

Chapter 2. Organizing Domain Logic

In organizing domain logic I've separated it into three primary patterns: Transaction Script (110), Domain
Model (116), and Table Module (125).

The simplest approach to storing domain logic is the Transaction Script (110). A Transaction Script (110) is
essentially a procedure that takes the input from the presentation, processes it with validations and
calculations, stores data in the database, and invokes any operations from other systems. It then replies with
more data to the presentation, perhaps doing more calculation to help organize and format the reply. The
fundamental organization is of a single procedure for each action that a user might want to do. Hence, we can
think of this pattern as being a script for an action, or business transaction. It doesn't have to be a single inline
procedure of code. Pieces get separated into subroutines, and these subroutines can be shared between
different Transaction Scripts (110). However, the driving force is still that of a procedure for each action, so a
retailing system might have Transaction Scripts (110) for checkout, for adding something to the shopping cart,
for displaying delivery status, and so on.

A Transaction Script (110) offers several advantages:

• It's a simple procedural model that most developers understand.
• It works well with a simple data source layer using Row Data Gateway (152) or Table Data Gateway

(144).
• It's obvious how to set the transaction boundaries: Start with opening a transaction and end with

closing it. It's easy for tools to do this behind the scenes.

Sadly, there are also plenty of disadvantages, which tend to appear as the complexity of the domain logic
increases. Often there will be duplicated code as several transactions need to do similar things. Some of this
can be dealt with by factoring out common subroutines, but even so much of the duplication is tricky to
remove and harder to spot. The resulting application can end up being quite a tangled web of routines without
a clear structure.

Of course, complex logic is where objects come in, and the object-oriented way to handle this problem is with
a Domain Model (116). With a Domain Model (116) we build a model of our domain which, at least on a first
approximation, is organized primarily around the nouns in the domain. Thus, a leasing system would have
classes for lease, asset, and so forth. The logic for handling validations and calculations would be placed into
this domain model, so shipment object might contain the logic to calculate the shipping charge for a delivery.
There might still be routines for calculating a bill, but such a procedure would quickly delegate to a Domain
Model (116) method.

Using a Domain Model (116) as opposed to a Transaction Script (110) is the essence of the paradigm shift that
object-oriented people talk about so much. Rather than one routine having all the logic for a user action, each
object takes a part of the logic that's relevant to it. If you're not used to a Domain Model (116), learning to
work with one can be very frustrating as you rush from object to object trying to find where the behavior is.

It's hard to capture the essence of the difference between the two patterns with a simple example, but in the

discussions of the patterns I've tried to do that by building a simple piece of domain logic both ways. The
easiest way to see the difference is to look at sequence diagrams for the two approaches (Figures 2.1 and 2.2).
The essential problem is that different kinds of product have different algorithms for recognizing revenue on a
given contract (see Chapter 9, page 109, for more background). The calculation method has to determine what
kind of product a given contract is for, apply the correct algorithm, and then create revenue recognition objects
to capture the results of the calculation. (For simplicity I'm ignoring the database interaction issues.)

Figure 2.1. A Transaction Script's (110) way of calculating revenue recognitions.

Figure 2.2. A Domain Model's (116) way of calculating revenue recognitions.

In Figure 2.1, Transaction Script's (110) method does all the work. The underlying objects are just Table Data
Gateways (144), and all they do is pass data to the transaction script.

In contrast, Figure 2.2 shows multiple objects, each forwarding part of the behavior to another until a strateg
object creates the results.

The value of a

y

Domain Model (116) lies in the fact that once you've gotten used to things, there are many
chniques that allow you to handle increasingly complex logte ic in a well-organized way. As we get more and

re algorithms for calculating revenue recognition, we can add these by adding new recognition strategy mo
objects. With Transaction Script (110) we're adding more conditions to the conditional logic of the script.
Once your mind is as warped to objects as mine is, you'll find you prefer a Domain Model (116) even in fairl
simple cases.

y

e costs of a Domain Model

Th (116) come from the complexity of using it and the complexity of your data

urce layer. It takes time for people new to rich object models to get used to a rich Domain Modelso (116).

Often developers may need to spend several months working on a project that uses this pattern before
paradigms are shifted. However, when you're used to

their
Domain Model (116) you're usually infected for life and

it becomes easy to work with in the future—that's how object bigots like me are made. However, a significant
minority of developers seem to be unable to make the shift.

Even once you've made the shift, you still have to deal with the database mapping. The richer your

Domain
Model (116), the more complex your mapping to a relational database (usually with Data Mapper (165)). A

phisticated data source layer is much like a fixed cost—it takes a fair amount of money (if you buy) or time
 you build) to get a good one, but once you have it you can do a lot with it.

There's a third choice for structuring domain logic, Table Module

so
(if

 (125). At very first blush the Table
Module (125) looks like a Domain Model (116) since both have classes for contracts, products, and revenue

ognitions. The vital difference is that a Domain Modelrec (116) has one instance of contract for each contract
in the database whereas a Table Module (125) has only one instance. A Table Module (125) is designed to
work with a Record Set (508). Thus, the client of a contract Table Module (125) will first issue queries
database to form a

to the
Record Set (508) and will create a contract object and pass it the Record Set (508) a

argument. The client can then invoke operations on the contract to do various things (
s an

Figure 2.3). If it w
do something to an individual contr

ants to
act, it must pass in an ID.

Figure 2.3. Calculating revenue recognitions with a Table Module (125).

A Table Module (125) is in many ways a middle ground between a Transaction Script (110) and a Domain
Model (116). Organizing the domain logic around tables rather than straight procedures provides more
structure and makes it easier to find and remove duplication. However, you can't use a number of the
techniques that a Domain Model (116) uses for finer grained structure of the logic, such as inheritance,
strategies, and other OO patterns.

The biggest advantage of a Table Module (125) is how it fits into the rest of the architecture. Many GUI
environments are built to work on the results of a SQL query organized in a Record Set (508). Since a Table
Module (125) also works on a Record Set (508), you can easily run a query, manipulate the results in the Table
Module (125), and pass the manipulated data to the GUI for display. You can also use the Table Module (1
on the way back

25)
 for further validations and calculations. A number of platforms, particularly Microsoft's COM

d .NET, use this style of development. an

Making a Choice

So, how do you choose between the three patterns? It's not an easy choice, and it very much depends on ho
complex your domain logic is.

w
Figure 2.4 is one of those nonscientific graphs that really irritate me in

PowerPoint presentations because they have utterly unquantified axes. However, it helps to visualize my sen
of how the three compare. With simple domain logic the

se
delDomain Mo (116) is less attractive because the

st of understanding it and the complexity of the data source add a lot of effort to developing it that won't be
id back. Nevertheless, as the complexity of the domain logic increases, the other approaches tend to hit a

.

co
pa
wall where adding more features becomes exponentially more difficult.

Figure 2.4. A sense of the relationships between complexity and effort for different domain logic styles

Your problem, of course, is to figure out where on that x axis your application lies. The good news is that I can

 that you should use a Domain Modelsay (116) whenever the complexity of your domain logic is greater than
2. The bad news is that nobody knows how to measure the complexity of domain logic. In practice, then, all 7.4

you can do is find some experienced people who can do an initial analysis of the requirements and make a
judgment call.

There are some factors that alter the curves a bit. A team that's familiar with Domain Model (116) will lower

e initial cost of using this pattern. It won't lower it to same starting point ath s the others because of the data
urce complexity. Still, the better the team is, the more I'm inclined to use a Domain Modelso (116).

The attractiveness of a Table Module (125) depends very much on the support for a common Record Set (508)

ucture in your environment. If you have an environment like .NET or Visual Studio, wstr here lots of tools
rk around a Record Setwo (508), then that makes a Table Module (125) much more attractive. Indeed, I don't

see a reason to use Transaction Scripts (110) in a .NET environment. However, if there's no special tooling
for

Record Sets (508), I wouldn't bother with Table Module (125).

Once you've made it, your decision isn't completely cast in stone, but it is more tricky to change. So it's wor
some upfront thought to decide which way to go. If you find you went the wrong way, then, if you star

th
ted

th Transaction Scriptwi (110), don't hesitate to refactor toward Domain Model (116). If you started
th Domain Modelwi (116), however, going to Transaction Script (110) is usually less worthwhile unless you

can simplify your data source layer.

These three patterns are not mutually exclusive choices. Indeed, it's quite common to use Transaction
Script (110) for some of the domain logic and Table Module (125) or Domain Model (116) for the rest.

Service Layer

A common approach in handling domain logic is to split the domain layer in two. A Service Layer (133) is
placed over an underlying Domain Model (116) or Table Module (125). Usually you only get this with
a Domain Model (116) or Table Module (125) since a domain layer that uses only Transaction Script (110)
isn't complex enough to warrant a separate layer. The presentation logic interacts with the domain purely
through the Service Layer (133), which acts as an API for the application.

As well as providing a clear API, the Service Layer (133) is also a good spot to place such things as
transaction control and security. This gives you a simple model of taking each method in the Service
Layer (133) and describing its transactional and security characteristics. A separate properties file is a common
choice for this, but .NET's attributes provide a nice way of doing it directly in the code.

When you see a Service Layer (133), a key decision is how much behavior to put in it. The minimal case is to
make the Service Layer (133) a facade so that all of the real behavior is in underlying objects and all
the Service Layer (133) does is forward calls on the facade to lower-level objects. In that case the Service
Layer (133) provides an API that's easier to use because it's typically oriented around use cases. It also makes
a convenient point for adding transactional wrappers and security checks.

At the other extreme, most business logic is placed in Transaction Scripts (110) inside the Service Layer (133).
The underlying domain objects are very simple; if it's a Domain Model (116) it will be one-to-one with the
database and you can thus use a simpler data source layer such as Active Record (160).

Midway between these alternatives is a more even mix of behavior: the controller-entity style. This name
comes from a common practice influenced heavily by [Jacobson et al.]. The point here is to have logic that's
particular to a single transaction or use case placed in Transaction Scripts (110), which are commonly referred
to as controllers or services. These are different controllers to the input controller in Model View
Controller (330) or Application Controller (379) that we'll meet later, so I use the term use-case controller.
Behavior that's used in more than one use case goes on the domain objects, which are called entities.

Although the controller-entity approach is a common one, it's not one that I've ever liked much. The use case
controllers, like any Transaction Script (110), tend to encourage duplicate code. My view is that, if you decide
to use a Domain Model (116) at all, you really should go whole hog and make it dominant. The one exception
to this is if you've started with a design that uses Transaction Script (110) with Row Data Gateway (152). Then
it makes sense to move duplicated behavior to the Row Data Gateways (152), which will turn them into a
simple Domain Model (116) using Active Record (160). However, I wouldn't start that way. I would only do
that to improve a design that's showing cracks.

I'm saying not that you should never have service objects that contain business logic, but that yo
necessarily make a fixed layer of them. Procedural service objects can sometimes be a very usef

ctor logic, but I tend to use them as needed rather than as an architectural layer.

u shouldn't
ul way to

 fa

My preference is thus to have the thinnest Service Layer (133) you can, if you even need one. My usual
approach is to assume that I don't need one and only add it if it seems that the application needs it. However, I
know many good designers who always use a Service Layer (133) with a fair bit of logic, so feel free to ignore
me on this one. Randy Stafford has had a lot of success with a rich

Service Layer (133), which is why I aske

him to write the
d

ice LayerServ (133) pattern for this book.

Chapter 3. Mapping to Relational Databases

The role of the data source layer is to communicate with the various pieces of infrastructure that an application
needs to do its job. A dominant part of this problem is talking to a database, which, for the majority of systems
built today, means a relational database. Certainly there's still a lot of data in older data storage formats, such
as mainframe ISAM and VSAM files, but most people building systems today worry about working with a
relational database.

One the biggest reasons for the success of relational databases is the presence of SQL, a mostly standard
language for database communication. Although SQL is full of annoying and comp

hancements, its core syntax is common and well understood.
licated vendor-specific

en

Architectural Patterns

by how you design your

main logic.

s a result, have problems defining effective queries and
mmands. Although various techniques e st for embedding SQL in a programming language, they're all
mewhat awkward. It would be better to access data using mechanisms that fit in with the application

e

The first set of patterns comprises the architectural patterns, which drive the way in which the domain logic
talks to the database. The choice you make here is far-reaching for your design and thus difficult to refactor, so
it's one that you should pay some attention to. It's also a choice that's strongly affected
do

Despite SQL's widespread use in enterprise software, there are still pitfalls in using it. Many application
developers don't understand SQL well and, a

xico
so
development langauge. Database administrations (DBAs) also like to get at the SQL that accesses a table so
that they can understand how best to tune it and how to arrange indexes.

For these reasons, it's wise to separate SQL access from the domain logic and place it in separate classes. A
good way of organizing these classes is to base them on the table structure of the database so that you have on

ss per database table. These classes then form a Gatewaycla (466) to the table. The rest of the application
needs to know nothing about SQL, and all the SQL tha cesses the database is easy to find. Developers who
sp

There are two main ways in which you can use a Gate a

t ac
ecialize in the database have a clear place to go.

w y (466). The most obvious is to have an instance of it
 each row that's returned by a query (Figure 3.1for). This ow Data Gateway R (152) is an approach that

naturally fits an object-oriented way of thinking about the data.

Figure 3.1. A Row Data Gateway (152) has one instance per row returned by a query.

Many environments provide a Record Set (508)—that is, a generic data structure of tables and rows that
mimics the tabular nature of a database. Because a Record Set (508) is a generic data structure, environments
can use it in many parts of an application. It's quite common for GUI tools to have controls that work with
a Record Set (508). If you use a Record Set (508), you only need a single class for each table in the database.
This Table Data Gateway (144) (see Figure 3.2) provides methods to query the database that return a Record
Set (508).

Figure 3.2. A Table Data Gateway (144) has one instance per table.

ful.

Even for simple applications I tend to use one of the gateway patterns. A glance at my Ruby and Python
scripts will confirm this. I find the clear separation of SQL and domain logic to be very help

The fact that Table Data Gateway (144) fits very nicely with Record Set (508) makes it the obvious choice if

u are using Table Moduleyo (125). It's think about organizing stored procedures.
any designers like to do all of their database access through stored procedures rather than through explicit

 also a pattern you can use to
M
SQL. In this case you can think of the collection of stored procedures as defining a Table Data Gateway (144
for a table. I would still have an in-memory

)
Table Data Gateway (144) to wrap the calls to the stored

procedures, since that keeps the mechanics of the stored procedure call encapsulated.

If you're using Domain Model (116), some further options come into play. Certainly you can use a Row Data
Gateway (152) or a Table Data Gateway (144) with a Domain Model (116). For my taste, however, that can
either too much indirection or not enough.

In simple applications the

 be

Domain Model (116) is an uncomplicated structure that actually corresponds pretty
sely to the database structure, with one domain class per database table. Such domain objects often have
ly moderately complex business logic. In this case it makes sense to have each domain object be responsible

clo
on
for loading and saving from the database, which is Active Record (160) (see Figure 3.3). Another way to think

of the Active Record (160) is that you start with a Row Data Gateway (152) and then add domain logic to
class, particularly when you see repetitive code in multiple

the
Transaction Scripts (110).

Figure 3.3. In the Active Record (160) a customer domain object knows how to interact with databas
tables.

e

ndIn this ki of situation the added indirection of a Gateway (466) doesn't provide a great deal of value. As the
main logic gets more complicated and you begin moving toward a rich Domain Modeldo (116), the simple

approach of an Active Record (160) starts to break down. The one-to-one match of domain classes to tables
starts to fail as you factor domain logic into smaller classes. Relational databases don't handle inheri
becomes difficult to use strategies [

tance, so it
Gang of Four] and other neat OO patterns. As the domain logic gets feisty,

you want to be able to test it without having to talk to the database all the time.

direction as your All of these forces push you to in' Domain Model (116) gets richer. In this case
 Gatewaythe (466) can solve some problems, but it still leaves you with the Domain Model (116) coupled to

the schema of the database. As a result there's some transformation from the fields of the Gateway (466) to the
fields of the domain objects, and this transformation complicates your domain objects.

A better route is to isolate the Domain Model (116) from the database completely, by making your indirection
layer entirely responsible for the mapping between domain objects and database tables. This Data
Mapper (165) (see Figure 3.4) handles all of the loading and storing between the database and the Domain
Model (116) and allows both to vary independently. It's the most complicated of the database mapping
architectures, but its benefit is complete isolation of the two layers.

Figure 3.4. A Data Mapper (165) insulates the domain objects and the database from each other.

I don't recommend using a Gateway (466) as the primary persistence mechanism for a Domain Model (116). If
the domain logic is simple and you have a close correspondence between classes and tables, Active
Record (160) is the simple way to go. If you have something more complicated, Data Mapper (165) is what
you need.

These patterns aren't entirely mutually exclusive. In much of this discussion we're thinking of the primary

persistence mechanism, by which we mean how you save the data in some kind of in-memory model to the
database. For that you'll pick one of these patterns; you don't want to mix them because that ends up getting
very messy. Even if you're using

Data Mapper (165) as your primary persistence mechanism, however, you

may use a data Gateway (466) to wrap tables or services that are being treated as external interfaces.

ch is of course how SQL thinks of them too. The same syntax is used for
erying views as for query g tables.

e of the problems with using views and queries in this way is that it can lead to inconsistencies that may
t

 your developers.

In my discussion of these ideas, both here and in the patterns themselves, I tend to use the word "table."
However, most of these techniques can apply equally well to views, queries encapsulated through stored
procedures, and commonly used dynamic queries. Sadly, there isn't a widely used term for
table/view/query/stored procedure, so I use "table" because it represents a tabular data structure. I usually think
of views as virtual tables, whi

inqu

Updating obviously is more complicated with views and queries, as you can't always update a view directly
but instead have to manipulate the tables that underlie it. In this case encapsulating the view/query with an
appropriate pattern is a very good way to implement that update logic in one place, which makes using the
views both simpler and more reliable.

On
surprise developers who don't understand how a view is formed. They may perform updates on two differen
structures, both of which update the same underlying tables where the second update overwrites an update
made by the first. Providing that the update logic does proper validation, you shouldn't get inconsistent data
this way, but you may surprise

I should also mention the simplest way of persisting even the most complex Domain Model (116). During the
early days of objects many people realized that there was a fundamental "impedance mismatch" betwee
objects and relations. Thus, there followed a spate of effort on object-oriented databases, which essentially
brought the OO paradigm to disk storage. With an OO database you don't have to worry about mapping. You
work with a large structure of interconnected objects, and the database figures out when to move objects on
off disks. Also, you can use transactions to group together updates and permit sharing of the data store. To
programmers this seems like an infinite amount of transactional memory that's transparently backed by disk
storage.

n

or

n't seen any conclusive data comparing the performance of OO against that of relational
tems.)

 database, you should seriously consider buying an O/R mapping tool if you have

The chief advantage of OO databases is that they improve productivity. Although I'm not aware of any
controlled tests, anecdotal observations put the effort of mapping to a relational database at around a third of
programming effort—a cost that continues during maintenance.

Most projects don't use OO databases, however. The primary reason against them is risk. Relational databases
are a well-understood and proven technology backed by big vendors who have been around a long time. SQL
provides a relatively standard interface for all sorts of tools. (If you're concerned about performance, all I can
say is that I have
sys

Even if you can't use an OO
a Domain Model (116). While the patterns in this book will tell you a lot about how to build a Data
Mapper (165), it's still a complicated endeavor. Tool vendors have spent many years working on this problem,

 commercial O/R mapping tools are much more sophisticated than anything that can reasonably be done by and
hand. While the tools aren't cheap, you have to compare their price with the considerable cost of writing and
maintaining such a layer yourself.

 There are moves to provide an OO-database-style layer that can work with relational databases. JDO is such a

beast in the Java world, but it's still too early to tell how they'll work out. I haven't had enough experience with

re of these patterns. Good O/R tools give you a
 of options in mapping to a database, and these patterns will help you understand when to use the different
oices. Don't assume that a tool makes all the effort go away. It makes a big dent, but you'll still find that

them to draw any conclusions for this book.

Even if you do buy a tool, however, it's a good idea to be awa
lot
ch
using and tuning an O/R tool takes a small but significant chunk of work.

he Behavioral ProblemT

When people talk about O/R mapping, they usually focus on the structural aspects—how you relate tables to
objects. However, I've found that the hardest part of the exercise is its architectural and behavioral aspects. I've
already talke

d about the main architectural approaches; the next thing to think about is the behavioral problem.

. At first
ht this doesn't seem to be much of a problem. A customer object can have load and save methods that do

That behavioral problem is how to get the various objects to load and save themselves to the database
sig
this task. Indeed, with Active Record (160) this is an obvious route to take.

If you load a bunch of objects into memory and modify them, you have to keep track of which ones you've
modified and make sure to write all of them back out to the database. If you only load a couple of records, thi
is easy. As you load more and more objects it gets to be more of an exercise, particularly when you create
some rows and modify others since you'll need the keys from the created rows before you can modify the rows

s

t refer to them. This is a slightly tricky problem to solve.

ad while you're working on them. Otherwise, you could have inconsistent
d invalid data in your objects. This is the issue of concurrency, which is a very tricky problem to solve; we'll

tha

As you read objects and modify them, you have to ensure that the database state you're working with stays
consistent. If you read some objects, it's important to ensure that the reading is isolated so that no other process
changes any of the objects you've re
an
talk about this in Chapter 5.

A pattern that's essential to solving both of these problems is Unit of Work (184). A Unit of Work (184) keeps

it processing in one place. Unit of Work

track of all objects read from the database, together with all objects modified in any way. It also handles how
updates are made to the database. Instead of the application programmer invoking explicit save methods, the
programmer tells the unit of work to commit. That unit of work then sequences all of the appropriate behavior
to the database, putting all of the complex comm (184) is an essential

ttern whenever the behavioral interactions with the database become awkward. pa

A good way of thinking about Unit of Work (184) is as an object that acts as the controller of the database
mapping. Without a Unit of Work (184), typically the domain layer acts as the controller; deciding when to
read and write to the database. The Unit of Work (184) results from factoring the database mapping controller
behavior into its own object.

As you load objects, you have to be wary about loading the same one twice. If you do that, you'll have two in-

memory objects that correspond to a single data
onfusing. To deal with this you need to keep a

base row. Update them both, and everything gets very
 record of every row you read in an Identity Mapc (195). Each

e you read in some data, you check the Identity Maptim (195) first to make sure that you don't already have it.
the data is already loaded, you can return a second reference to it. That way any updates will be properly If

coordinated. As a benefit you may also be able to avoid a database call since the Identity Map (195) also
doubles as a cache for the database. Don't forget, however, that the primary purpose of an Identity Map (195)
is to maintain correct identities, not to boost performance.

If you're using a Domain Model (116), you'll usually arrange things so that linked objects are loaded together

uch a way that a read for an order object loads its associated customer object. However, with many objects
nected together any read of any object can pull an enormous object graph out of the database. To avoid

ata

in s
nco

such inefficiencies you need to reduce what you bring back yet still keep the door open to pull back more d
if you need it later on. Lazy Load (200) relies on having a placeholder for a reference to an object. There are
several variations on the theme, but all of them have the object reference modified so that, instead of pointing
to the real object, it marks a placeholder. Only if you try to follow the link does the real object get pulled in
from the database. Using

Lazy Load (200) at suitable points, you can bring back just enough from the databa
with each call.

se

Reading in Data

here you put the finder methods depends on the interfacing pattern used. If your database interaction classes
are table based-that is, you have one instance of the class per table in the database—then you can combine the
finder methods w you have one
interaction class per row in the database—this doesn't work.

With row-based classes you can make the find operations static, but doing so will stop you from making the
database operations substitutable. This means that you can't swap out the database for testing purposes
with Service Stub

When reading in data I like to think of the methods as finders that wrap SQL select statements with a method-
structured interface. Thus, you might have methods such as find(id) or findForCustomer(customer). Clearly
these methods can get pretty unwieldy if you have 23 different clauses in your select statements, but these are,
thankfully, rare.

W

ith the inserts and updates. If your interaction classes are row based—that is,

 (504). To avoid this problem the best approach is to have separate finder objects. Each
finder class has many methods that encapsulate a SQL query. When you execute the query, the finder object
returns a collection of the appropriate row-based objects.

One thing to watch for with finder methods is that they work on the database state, not the object state. If you
issue a query against the database to find all people within a club, remember that any person objects you've
added to the club in memory won't get picked up by the query. As a result it's usually wise to do queries at the
beginning.

When reading in data, performance issues can often loom large. This leads to a few rules of thumb.

Try to pull back multiple rows at once. In particular, never do repeated queries on the same table to get
multiple rows. It's almost always better to pull back too much data than too little (although you have to be
wary of locking too many rows with pessimistic concurrency control). Therefore, consider a situation where

you need to get 50 people that you can identify by a primary key in your domain model, but you can only
construct a query such that you get 200 people, from which you'll do some further logic to isolate the 50 yo
need. It's usually better to use one query that brings back unnecessary rows than to issue 50 individual queri

Another way to avoid going to the database more than on

u
es.

ce is to use joins so that you can pull multiple tables
ck with a single query. The resulting record set looks odd but can really speed things up. In this case you

may have a Gateway
ba

 (466) that has data from multiple d tables, or a Data Mapper joine (165) that loads several
domain objects wi

wever, if you're using joins, bear in mind that database ized to handle up to three or four joins per

e. These things involve clustering commonly referenced data
ether, careful use of indexes, and the data se's ability to cache in memory. These are outside the scope of

this book but inside the scope of a good DBA.

In all cases you should profile your application with your specific database and data. General rules can guide
your thinking, but your particular circumstances will always have their own variations. Database systems and
application servers often have sophisticated caching schemes, and there's no way I can predict what will
happen for your application. For every rule of thumb I've used, I've heard of surprising exceptions, so set aside
time to do performance profiling and tuning.

th a single call.

Ho s are optim
query. Beyond that, performance suffers, although you can restore a good bit of this with cached views.

Many optimizations are possible in the databas

batog

Structural Mapping Patterns

When people talk about object-relational mapping, mostly what they mean is these kinds of structural mapping
patterns, which you use when mapping between in-memory objects and database tables. These patterns aren't

ually relevant or Table Data Gatewayus f (144), but you may use a few of them if you use Row Data
Gateway (152) or Active Record (160). You'll probably need to use all of them for Data Mapper (165).

 Mapping Relationships

The central issue here is the different way in which objects and relations handle links, which leads to two

blems. First there's a difference in representation. Objects handle links by storing references that are held
le

r can't have a
ltivalued field.

pro
by the runtime of either memory-managed environments or memory addresses. Relational databases hand
links by forming a key into another table. Second, objects can easily use collections to handle multiple
references from a single field, while normalization forces all relation links to be single valued. This leads to
reversals of the data structure between objects and tables. An order object naturally has a collection of line
item objects that don't need any reference back to the order. However, the table structure is the other way
around—the line item must include a foreign key reference to the order since the orde
mu

The way to handle the representation problem is to keep the relational identity of each object as an Identity
Field (216) in the object, and to look up these values to map back and forth between the object references a
the relational keys. It's a tedious process but not that difficult once you understand the basic technique. When
you read objects from the disk you use an

nd

Identity Map (195) as a lookup table from relational keys to objects.
Each time you come across a foreign key in the table, you use Foreign Key Mapping (236) (see Figure 3.5) to

wire up the appropriate inter-object reference. If you don't have the key in the Identity Map (195), you need to
her go to the database to get it or use a Lazy Load (200). Each time you save an object, you save it into the

 with the right key. Any inter-object reference is replaced with the target object's ID field.
eit
row

Figure 3.5. Use a Foreign Key Mapping (236) to map a single-valued field.

On this foundation the collection handling requires a more complex version of Foreign Key Mapping (236)
(see Figure 3.6). If an object has a collection, you need to issue another query to find all the rows that link
the ID of the source object (or you can now avoid the query with

to
Lazy Load (200)). Each object that come

back gets created and added to the collection. Saving the collection involves saving each object in it and
making sure it has a foreign key to the source object. This gets messy, especially when you have to detect
objects added or removed from the collection. This can get repetitive when you get the hang of it, which is
why some form of metadata-based approach becomes an obvious move for larger systems (I'll elaborate on
that later). If the collection objects ar

s

en't used outside the scope of the collection's owner, you can
e Dependent Mappingus (262) to simplify the mapping.

Figure 3.6. Use a Foreign Key Mapping

 (236) to map a collection field.

A different case comes up with a many-to-many relationship, which has a collection on both ends. An example
is a person having many skills and each skill knowing the people who use it. Relational databases can't handle

this directly, so you use an Association Table Mapping (248) (see Figure 3.7) to create a new relational table
just to handle the many-to-many association.

Figure 3.7. Use an Association Table Mapping (248) to map a many-to-many association.

ot to
s

 the database that cause transactions to roll back too often.

When you're working with collections, a common gotcha is to rely on the ordering within the collection. In
OO languages it's common to use ordered collections such as lists and arrays—indeed, it often makes testing
easier. Nevertheless, it's very difficult to maintain an arbitrarily ordered collection when saved to a relational
database. For this reason it's worth considering using unordered sets for storing collections. Another option is
to decide on a sort order whenever you do a collection query, although that can be quite expensive.

In some cases referential integrity can make updates more complex. Modern systems allow you to defer
referential integrity checking to the end of the transaction. If you have this capability, there's no reason n
use it. Otherwise, the database will check on every write. In this case you have to be careful to do your update
in the right order. How to do this is out of the scope of this book, but one technique is to do a topological sort
of your updates. Another is to hardcode which tables get written in which order. This can sometimes reduce

eadlock problems insided

Identity Field (216) is used for inter-object references that turn into foreign keys, but not all object
relationships need to be persisted that way. Small Value Objects (486), such as date ranges and money objects
learly shouldn't be represented as their own table in the database. Insteac d, take all the fields of the Value

Object (486) and embed them into the linked object as a Embedded Value (268). Since Value Objects (486)
have value semantics, you can happily create them each time you get a read and you don't need to bother with
an Identity Map (195). Writing them out is also easy—just dereference the object and spit out its fields into the
owning table.

You can do this kind of thing on a larger scale by taking a whole cluster of objects and saving them as a single

lumn in a table as a Serialized LOBco (272). LOB stands for "Large OBject," which can be either binary
n

f

(BLOB) textual (CLOB—Character Large OBject). Serializing a clump of objects as an XML document is a
obvious route to take for a hierarchic object structure. This way you can grab a whole bunch of small linked
objects in a single read. Often databases perform poorly with small highly interconnected objects—where you
spend a lot of time making many small database calls. Hierarchic structures such as org charts and bills o
materials are where a Serialized LOB (272) can save a lot of database roundtrips.

The downside is that SQL isn't aware of what's happening, so you can't make portable queries against the data

ucture. Again, XML may come to the rescue here, allowing you to embed XPath query expressions within str

SQL calls, although the embedding is largely nonstandard at the moment. As a result Serialized LOB (272) is
st used when you don't want to query for the parts of the stored structure.

ally a Serialized LOB

be

Usu (272) is best for a relatively isolated group of objects that make part of an

lication. If you use it too much, it ends up turning your database into little more than a transactional file

heritance

In t a rts tree, which relational
system traditionally do poorly. There's another kind of hierarchy that causes relational headaches: a class

rarchy linked by inheritance. Since there's no standard way to do inheritance in SQL, we again have a

app
system.

 In

he bove hierarchies I'm talking about compositional hierarchies, such as a pa

hie
mapping to perform. For any inheritance structure there are basically three options. You can have a one table
for all the classes in the hierarchy: Single Table Inheritance (278) (see Figure 3.8); one table for each con
class:

crete
Concrete Table Inheritance (293) (see Figure 3.9); or one table per class in the hierarchy; Class Table

Inheritance (285) (see Figure 3.10).

Figure 3.8. Single Table Inheritance (278) uses one table to store all the classes in a hierarchy.

Figure 3.9. Concrete Table Inheritance (293) uses one table to store each concrete class in a hierarchy.

Figure 3.10. Class Table Inheritance (285) uses one table for each class in a hierarchy.

The trade-offs are all between duplication of data structure and speed of access. Class Table Inheritance (2
is the simplest relationship between the classes and the tables, but it needs multiple joins to load a single
object, which usually reduces performance.

85)

Concrete Table Inheritance (293) avoids the joins, allowing you
pull a single object from one table, but it's brittle to changes. With any change to a superclass you have to
remember to alter all the tables (and the mapping code). Altering the hierarchy itself can cause even bigger

anges. Also, the lack of a super

class table can make key management awkward and get in the way of
erential integrity, although it does reduce lock contention on the superclass table. In some databases Single

ch
ref
Table Inheritance (278)'s biggest downside is wasted space, since each row has to have columns for all
possible subtypes and this leads to empty columns. However, many databases do a very good job of
compressing wasted table space. Another problem with Single Table Inheritance (278) is its size, making it a
bottleneck for accesses. Its great advantage is that it puts all the stuff in one place, which makes modification

sier and avoids joins.ea

d

The three options aren't mutually exclusive, and in one hierarchy you can mix patterns. For instance, you coul
have several classes pulled together with Single Table Inheritance (278) and use Class Table Inheritance (285)

 a few unusual cases. Of course, mixing patterns adds complexity.for

There's no clearcut winner here. You
s with all the rest of these patterns.

 need to take into account your own circumstances and preferences, much
 My first choice tends to be Single Table Inheritancea (278), as it's easy to

and is resilient to many refactorings. I tend to use the other two as needed to help solve the inevitable issues
th irrelevant and wasted columns. Often the best is to talk to the DBAs; they often have good advice as to

do
wi
the sort of access that makes the most sense for the database.

All the examples just described, and in the patterns, use single inheritance. Although multiple inheritance is
becoming less fashionable these days and most languages are increasingly avoiding it, the issue still appears in
O/R mapping when you use interfaces, as in Java and .NET. The patterns here don't go into this topic
specifically, but essentially you cope with multiple inheritance using variations of the trio of inheritance
patterns. Single Table Inheritance (278) puts all superclasses and interfaces into the one big table, Class Table
Inheritance (285) makes a separate table for each interface and superclass, and Concrete Table
Inheritance (293) includes all interfaces and superclasses in each concrete table.

• You have to map to an existing schema, but changes to it are negotiable.

Building the Mapping

When you map to a relational database, there are essentially three situations that you encounter:

• You choose the schema yourself.
• You have to map to an existing schema, which can't be changed.

The simplest case is where you're doing the schema yourself and have little to moderate complexity in your

omain logic, resulting in a d Transaction Script (110) or Table Module (125) design. In this case you can
sign the tables around the data using classic database design techniques. Use a Row Data Gatewayde (152)

or Table Data Gateway (144) to pull the SQL away from the domain logic.

If you're using a Domain Model (116), you should beware of a design that looks like a database design. In
ase build your

 this
c Domain Model (116) without regard to the database so that you can best simplify the domain

ic. Treat the database design as a way of persisting the objects' data. Data Mapperlog (165) gives you the most
flexibility here, but it's more complex. If a database design isomorphic to the Domain Model (116) makes
sense, you might consider an Active Record (160) instead.

Although building the model first is a reasonable way of thinking about it, this advice only applies wit
iterative cycles. Spending six months building a database

hin short
-free Domain Model (116) and then deciding to

rsist it once you're done is highly risky. The danger is that the resulting design will have crippling
on,

pe
performance problems that take too much refactoring to fix. Instead, build up the database with each iterati
of no more than six weeks in length and preferably fewer. That way you'll get rapid and continuous feedback
about how your database interactions work in practice. Within any particular task you should think about
the Domain Model (116) first, but integrate each piece of Domain Model (116) in the database as you go.

When the schema's already there, your choices are similar but the process is slightly different. With simple
domain logic you build Row Data Gateway (152) or Table Data Gateway (144) classes that mimic the
database, and layer domain logic on top of that. With more complex domain logic you'll need a Domain
Model (116), which is highly unlikely to match the database design. Therefore, gradually build up the Domain

Model (116) and include Data Mappers (165) to persist the data to the existing database.

 Double Mapping

Occasionally I run into situations where the same kind of data needs to be pulled from more than one source.

 XML messages, CICS transactions,
d relational tables.

ical data store schema to the actual physical data store schema. This second step contains the differences.

ould use it when you have
ilar but annoyingly different physical data stores. Treat the mapping from the logical data store to the

There may be multiple databases that hold the same data but have small differences in the schema because of
some copy and paste reuse. (In this situation the amount of annoyance is inversely proportional to the amount
of the difference.) Another possibility is using different mechanisms, storing the data sometimes in a database
and sometimes in messages. You may want to pull similar data from both
an

The simplest option is to have multiple mapping layers, one for each data source. However, if data is very
similar this can lead to a lot of duplication. In this situation you might consider a two-step mapping scheme.
The first step converts data from the in-memory schema to a logical data store schema. The logical data store
schema is designed to maximize the similarities in the data source formats. The second step maps from the
log

The extra step only pays for itself when you have many commonalities, so you sh
sim
physical data store as a Gateway (466) and use any of the mapping techniques to map from the application
logic to the logical data store.

aUsing Metad ta

With simple and repetitive mapping this can lead to
de that's simple and repetitive—and repetitive code is a sign of something wrong with the design. There's

viors with inheritance and delegation—good, honest OO
Metadata Mapping

this book most of my examples use handwritten code. In
co
much you can do by factoring out common beha
practices—but there's also a more sophisticated approach using (306).

tadata Mapping

Me (306) is based on boiling down the mapping into a metadata file that details how columns

"custID", targetTable =

in the database map to fields in objects. The point of this is that once you have the metadata you can avoid the
repetitive code by using either code generation or reflective programming.

Using metadata buys you a lot of expressiveness from a little metadata. One line of metadata can say
something like

<field name = customer targetClass = "Customer", dbColumn =
 "customers"
werBound = "1" upperBound = "1" setter = "loadCustomer"/>

er the

hen you use Metadata Mapping

lo

From that you can define the read and write code, automatically generate ad hoc joins, do all of the SQL,
enforce the multiplicity of the relationship, and even do fancy things like computing write orders und
presence of referential integrity. This is why commercial O/R mapping tools tend to use metadata.

W (306) you have the necessary foundation to build queries in terms of in-

memory objects. A Query Object (316) allows you to build your queries in terms of in-memory objects and
data in such a way that developers don't need to know either SQL or the details of the relational schema.
The Query Object (316) can then use the Metadata Mapping (306) to translate expressions based on object

lds into the appropriate SQL. fie

Take this far enough and you can form a Repository (322) that largely hides the database from view. Any
queries to the database can be made as Query Objects (316) against a Repository (322), and developers can't

l whether the objects were retrieved from memory or from the database. Repositorytel (322) works well with
h Domain Modelric (116) systems.

se I think
 handwrite them for your

p ication, you'll be able to figure out how to use metadata to make matters easier.

tions

 opened before you can execute commands
ainst the database. Indeed, usually you need an explicit connection to create and execute a command. The
ole time you execute the command this same connection must be open. Queries return a Record Set

Despite the many advantages of metadata, in this book I've focused on handwritten examples becau
they're easier to understand first. Once you get the hang of the patterns and can
a pl

atabase ConnecD

Most database interfaces rely on some kind of database connection object to act as the link between
application code and the database. Typically a connection must be
ag
wh (508).
Some interfaces provide for disconnected Record Sets (508), which can be manipulated after the connection is
closed. Other interfaces provide only connected Record Sets (508), implying that the connection must remain
open while the

Record Set (508) is manipulated. If you're running inside a transaction, usually the transaction

ound to a particular connection and the connection must remain open while it is taking place.

In many environments it's expensive to create a connection, which makes it worthwhile to create a connection
pool. In this situation developers request a connection from the pool and release it when they're done, instead
of creating and closing the connection. Most platforms these days give you pooling, so you'll rarely have to do
it yourself. If you do have to do it yourself, first check to see if pooling actually does help performance.
Increasingly environments make it quicker to create a new connection so there's no need to pool.

Environments that give you pooling often put it behind an interface that looks like creating a new connection.
That way you don't know whether you're getting a brand new connection or one allocated from a pool. That's a
good thing, as the choice to pool or not is properly encapsulated. Similarly, closing the connection may not
actually close it but just return it to the pool for someone else to use. In this discussion I'll use "open" and
"close," which you can substitute for "getting" from the pool and "releasing" back to the pool.

Expensive to create or not, connections need management. Since they're expensive resources to manage, they
must be closed as soon as you're done using them. Furthermore, if you're using a transaction, usually you need
to ensure that every command inside a particular transaction goes with the same connection.

The most common advice is to get a connection explicitly, using a call to a pool or connection manager, and
then supply it to each database command you want to make. Once you're done with the connection, close it.
This advice leads to a couple of issues: making sure you have the connection everywhere you need it and
ensuring that you don't forget to close it at the end.

is b

To ensure that you have a connection where you need it there are two choices. One is to pass the connection

he connection gets added to all sorts of method
od five layers down the call stack. Of course,

around as an explicit parameter. The problem with this is that t
calls where its only purpose is to be passed to some other meth

is is the situation to bring out Registryth (480). Since you don't want multiple threads using the same
nection, you'll want a thread-scoped Registrycon (480).

nning inside
ransaction and the closing will usually cause the transaction to roll back.

nsure
me

s
agement scheme that's used for memory and so it's both convenient and familiar. The problem is

t the clos of the connection only happens when the garbage collector actually reclaims the memory, and
s can be quite a bit later than when the connection lost its last reference. As a result unreferenced

h

ce connections are so tied to transactions, a good way to manage them is to tie them to a transaction. Open
onnection when you begin a transaction, and close it when you commit or roll back. Have the transaction

If you're half as forgetful as I am, explicit closing isn't such a good idea. It's just too easy to forget to do it
when you should. You also can't close the connection with every command because you may be ru
a t

Like a connection, memory is a resource that needs to be freed up when you're not using it. Modern
environments these days provide automatic memory management and garbage collection, so one way to e
that connections are closed is to use the garbage collector. In this approach either the connection itself or so
object that refers to it closes the connection during garbage collection. The good thing about this is that it use
the same man

e tha
thi
connections may sit around a while before they're closed. Whether this is a problem or not depends very muc
on your specific environment.

On the whole I don't like relying on garbage collection. Other schemes—even explicit closing—are better.
Still, garbage collection makes a good backup in case the regular scheme fails. After all, it's better to have the
connections close eventually than to have them hanging around forever.

Sin
a c
know what connection it's using so you can ignore the connection completely and just deal with the
transaction. Since the transaction's completion has a visible effect, it's easier to remember to commit it and to
spot if you forget. A Unit of Work (184) makes a natural fit to manage both the transaction and the connection

.

you do things outside of a transaction, such as reading immutable data, you use a fresh connection for each
mmand. Pooling can deal with any issues in creating short-lived connections.

If
co

If you're using a disconnected Record Set (508), you can open a connection to put the data in the record set

d close it while you manipulate the Record Setan (508) data. Then, when you're done with the data, you can
en a new connection, and transaction, to write the data out. If you do this, you'll need to worry about the op

data being changed while the Record Set (508) was being manipulated. This is a topic I'll talk about wit
concurrency control.

The specifics of connection management are very much a feature of your dat

h

abase interaction software, so the
ategy you use is often dictated by your environment. str

Some Miscellaneous Points

You'll notice that some of the code examples use select statements in the form select * from while others use
med columns. Using select * can have serious problems in some database drivers, which break if a new

column is added or a column is reordered. Although m modern environments don't suffer from this, it's not

clearer to read; however, colum bably won't make much
difference given the time for the SQL call. As usual, m sure to be sure.

close to
f

na
ore

wise to use select * if you're using positional indices to get information from columns, as a column reorder
will break code. It's okay to use column name indices with a select *, and indeed column name indices are

n name indices may be slower, although that pro
ea

If you do use column number indices, you need to make sure that the accesses to the result set are very
the definition of the SQL statement so they don't get out of sync if the columns are reordered. Consequently, i
you're using Table Data Gateway (144), you should use column name indices as the result set is used by every
piece of code that runs a find operation on the gateway. As a result it's usually worth having simple
create/read/update/delete test cases for each database mapping structure you use. This will help catch cases
when your SQL gets out of sync with your code.

It's always worth making the effort to use static SQL that can be precompiled, rather than dynamic SQL that

bility to batch multiple SQL queries into a single database call. I haven't
ne that for these examples, but it's certainly a tactic you should use in production code. How you do it varies
th the platform.

has to be compiled each time. Most platforms give you a mechanism for precompiling SQL. A good rule of
thumb is to avoid using string concatenation to put together SQL queries.

Many environments give you the a
do
wi

For connections in these examples, I just conjure them up with a call to a "DB" object, which is
a Registry (480). How you get a connection will depend on your environment so you'll substitute this with
whatever you need to do. I haven't involved transactions in any of the patterns other than those on
concurrency. Again, you'll need to mix in whatever your environment needs.

Further Reading

Object-relational mapping is a fact of life for most people, so it's no surprise that there's been a lot written on
the subject. The surprise is that there isn't a single coherent, complete, and up-to-date book, which is why I've
devoted so much of this one to this tricky yet interesting subject.

tabase mapping is that there's a lot of ideas out there to steal from. The most victimized

The nice thing about da

tellectual banks are [Brown and Whitenackin], [Ambler], [Yoder], and [Keller and Coldewey]. I'd certainly
e you to have a good surf through this material to supplement the patterns in this book. urg

Chapter 4. Web Presentation

One of the biggest changes to enterprise applications in the last few years has been the rise of Web-browser-
based user interfaces. They bring with them a lot of advantages: no client software to install, a common UI
approach, and easy universal access. Also, many environments make it easy to build a Web app.

Preparing a Web app begins with the server software itself. Usually this has some form of configuration file
that indicates which URLs are to be handled by which programs. Often a single Web server can handle many
kinds of programs. These programs may be dynamic and can be added to a server by placing them in an

propriate directory. The Web server's job is to interpret the URL of a request and hand over control to a
eb server program. There are two main forms of structuring a program in a Web server: as a script or as a

or methods to handle the HTTP call. Examples include
I scripts and Java servlets. The program text can do pretty much anything a program can do, and the script

can be broken down into subroutines, and can create and use other services. It gets data from the Web page by
examining the HTTP request object, w ents it does this by regular expression
searching of the request string—Perl's ease of doing this makes it a popular choice for CGI scripts. Other
platforms, such as Java servlets, do this parsing for the programmer, which allows the programmer to access
the information from the request through a keyword interface. This at least means less regular expressions to
mess with. The output of the Web server is another string—the response—which the script can write to using
the usual write stream operations in the language.

Writing an HTML response through stream commands is uncomfortable for programmers, and nearly
impossible for nonprogrammers, who would otherwise be comfortable preparing HTML pages. This has led to
the idea of server pages, where the program is structured around the returning text page. You write the return
page in HTML and insert into the HTML scriptlets of code to execute at certain points. Examples of this
approach include PHP, ASP, and JSP.

The server page approach works well when there's little processing of the response, such as "Show me the
details of album # 1234." Things get a lot more messy when you have to make decisions based on the input,
such as different display formats for classical and jazz albums.

Because the script style works best for interpreting the request and the server page style works best for

matting a response, there's the obvious option to use a script for request interpretation and a server page for

ap
W
server page.

The script form is a program, usually with functions
CG

hich is a string. In some environm

for
response formatting. This separation is in fact an old idea that first surfaced in user interfaces with the
pattern Model View Controller (330). Combine it with the essential notion that nonpresentation logic should
be factored out and we have a ver

y good fit for the concepts of this pattern.

Model View Controller

 (330) (see Figure 4.1) is a widely referenced pattern but one that's often
misunderstood. Indeed, before Web apps appeared on the scene, most presentations of Model View
Controller (330) I sat through would get it wrong. A m in reason for the confusion was the use of the word

ntroller." Controller is used in a number of different contexts, and I've usually found it used in a different
a

"co
way to that described in Model View Controller (330). As a result I prefer to use the term input controller for
the controller in Model View Controller (330).

gure 4.1. A broad-brush picture of how the model, view, and input controller roles work toFi gether in a
eb server. The controller handles the request, gets the model to do the domain logic, and then W gets the

view to create a response based on the model.

A request comes in to an input controller, which pulls information off the request. It then forwards the
business logic to an appropriate model object. The model object talks to the data source and does everything
indicated by the request as well as gather information for the response. When it's done it returns control to the

ut controller, which looks at the results and decides which view is needed to display the response. It then inp
passes control, together with the response data, to the view. The input controller's handoff to the view often
isn't always a straight call but often involves forwarding with the data placed in an agreed place on some form
of HTTP session object that's shared between the input controller and the view.

The first, and most important, reason for applying Model View Controller (330) is to ensure that the mod
are completely separa

els
ted from the Web presentation. This makes it easier to modify the presentation as well as

sier to add additional presentations later. Putting the processing into separate Transaction Scriptea (110)
Domain Modelor (116) objects will make it easier to test them as well.This is particularly important if you're
ing a server page as your view.

this point we come to a second use of the word "controller." A lot of user-interface designs separate the
sentation objects from the domain objects with an intermediate layer of Application Controller

us

At

epr (379)
objects. The purpose of an Application Controller (379) is to handle the flow of an application, deciding whic
screens should appear in which order. It may appear as part of the presentation layer, or you can think of it as
separate layer that mediates between the presentation and domain layers.

h
 a

Application Controllers (379) may b
written to be independent of any particular presentation, in which case they can be reused between

sentations. This works well if you have different presentations with the same basic flow and navigation,

e

s best to give different presentations a different flow.

Not all systems need an Application Controller

pre
although often it'

 (379). They're useful if your system has a lot of logic about the
order of screens and the navigation between them. They're also useful if you haven't got a simple mapping
between your pages and the actions on the domain. But if someone can pretty much see any screen in any
order, you'll probably have little need for an Application Controller (379). A good test is this: If the machine is
in control of the screen flow, you need an Application Controller (379); if the user is in control, you don't.

iew PatternsV

On the view side there are three patterns to think about: Transform View (361), Template View (350),

d Two Step Viewan (365). These give rise to essentially two choices: whether to use Transform View (361)
Template Viewor (350), and whether either of them uses one stage or a Two Step View (365). The basic

patterns for Transform View (361) and Template View (350) are single stage. Two Step View (365) is
variation you can apply to either.

I'll start with the choice between

 a

Template View (350) and Transform View (361). Template View (350)
allows you write the presentation in the structure of the page and embed markers into the page to indicate
where dynamic content needs to go. Quite a few popular platforms are based on this pattern, many of which

 the server pages technologies (ASP, JSP, PHP) that allow you to put a full programming language into the
t

e Transform View

are
page. This clearly provides a lot of power and flexibility; sadly, it also leads to very messy code that's difficul
to maintain. As a result if you use server page technology you must be very disciplined to keep programming
logic out of the page structure, often by using a helper object.

Th (361) uses a transform style of program. The usual example is XSLT. This can be very

ective if you're working with domain data that's in XML format or can easily be converted to it. An input

 View

eff
controller picks the appropriate XSLT stylesheet and applies it to XML gleaned from the model.

If you use procedural scripts as your view, you can write the code in the style of either Transform (361)

Template Viewor (350) or in some interesting mix of the two. I've noticed that most scripts follow one of
se two patterns as their main form.the

The second decision is whether to be single stage (see Figure 4.2) or to use Two Step View (365). A single-

ge view mostly has one view component for each screen in the application. The view takes domain oriented
ta and renders it in HTML. I say "mostly" because similar logical screens may share views. Even so, most o

sta
da f
the time you can think of it as one view per screen.

Figure 4.2. A single-stage view.

A two-stage view (Figure 4.3) breaks this process into two stages, producing a logical screen from the domain
data and then rendering it in HTML. There's one first-stage view for each screen but only one second-stage
view for the whole application.

Figure 4.3. A two-stage view.

The advantage of the Two Step View (365) is that it puts the decision of what HTML to use in a single place
This makes global changes to the HTML easy since there's only one object to alter in order to alter every
screen on the site. Of course, you only get that advantage if your logical presentation stays the same, so it

.

works best with sites where different screens use the same basic layout. Highly design intensive sites won't be
able to come up with a good logical screen structure.

o Step ViewTw (365) works even better if you have a Web application where its services are being used by
ltiple front-end customers, such as multiple airlines fronting the same basic reservation system. Within the

In
mu
limits of the logical screen, each front end can have a different appearance by using a different second stage.
a similar way you can use a Two Step View (365) to handle different output devices, with separate secon
stages for a regular Web browser and for a palmtop. Again, the limitation is that you can have the two share a
common logical screen, which may not be possible if the UIs are very different, such as in a browser and a cell
phone.

d

Input Controller Patterns

There are two patterns for the input controller. The most common is an input controller object for every page
on your Web site. In the simplest case this Page Controller (333) can be a server page itself, combining the
roles of view and input controller. In many implementations it makes things easier to split the input controller
into a separate object. The input controller can then create appropriate models to do the processing and
instantiate a view to return the result. Often you'll find that there isn't quite a one-to-one relationship
between

Page Controllers (333) and views. A more precise thought is that you have a Page Controller (333)
 each action, where an action is a button or link. Most of the time the actions correspond to pages, but for

occasionally they don't—such as a link that may go to a couple of different pages depending some condition.

With any input controller there are two responsibilities—handling the HTTP request and deciding what to do
with it—and it often makes sense to separate them. A server page can handle the request, delegating a separate
helper object to decide what to do with it. Front Controller (344) goes further in this separation by having only
one object handling all requests. This single handler interprets the URL to figure out what kind of request it's
dealing with and creates a separate object to process it. In this way you can centralize all HTTP handling

thin a single object, avoiding the need to reconfigure the Web server whenever you change the action

urther Reading

vide a chapter or two on good server designs, although these are
en buried in the technological descriptions. An excellent discussion of Java Web design is Chapter 9

wi
structure of the site.

F

Most books on Web server technologies pro
oft of

own et al.[Br]. The best source for further patterns is [Alur et al.]; most of these patterns can be used in non-
Java situations. I stole the terminology on separating input and application controllers from [Knight and Dai].

Chapter 5. Concurrency

by Martin Fowler and David Rice

Concurrency is one of the most tricky aspects of software development. Whenever you have multiple
processes or threads manipulating the same data, you run into concurrency problems. Just thinking about
concurrency is hard since it's difficult to enumerate the possible scenarios that can get you into trouble.
Whatever you do, there always seems to be something you miss. Furthermore, concurrency is hard to test
We're great fans of a large body of automated tests acting as a foundation for software development, but it
hard to get tests to give us the security we need for

for.
's

concurrency problems.

e of the great ironies of enterprise application development is that few branches of software development
s can get away with a naive view
t helps avoid many of the most

ky aspects of concurrency in an enterprise application. As long as you do all your data manipulation within
ansaction, nothing really bad will happen to you.

dly, this doesn't mean we can ignore concurrency problems completely, for the primary reason that many
eractions with a system can't be placed within a single database transaction. This forces us to manage

ch of it for you.

for handling offline concurrency and say our brief words on application server concurrency.

ery familiar

On
use concurrency more yet worry about it less. The reason enterprise developer
of concurrency is transaction managers. Transactions provide a framework tha
tric

ra t

Sa
int
concurrency in situations where data spans transactions. The term we use is offline concurrency, that is,
concurrency control for data that's manipulated during multiple database transactions.

The second area where concurrency rears its ugly head for enterprise developers is application servers—
supporting multiple threads in an application server system. We've spent much less time on this because
dealing with it is much simpler. Indeed, you can use server platforms that take care of mu

Sadly, to understand these issues, you need to understand at least some of the general concurrency concepts.
So we begin this chapter by going over these issues. We don't pretend that this chapter is a general treatment
of concurrency in software development—for that we'd need at least a complete book. What this chapter does
is introduce concurrency issues for enterprise application development. Once we've done that we'll introduce
the patterns

In much of this chapter we'll illustrate the ideas with examples from an area that we hope you are v
with—the source code control systems used by teams to coordinate changes to a code base. We do this
because it's relatively easy to understand as well as well as familiar. After all, if you aren't familiar with source
code control systems, you really shouldn't be developing enterprise applications.

re the
ly problems of

Concurrency Problems

We'll start by going through the essential problems of concurrency. We call them essential because they'
fundamental problems that concurrency control systems try to prevent. They aren't the on

concurrency, because the control mechanisms often create a new set of problems in their solutions! However,
y do focus on the essential point of concurrency control.

David alters the
dateImportantParameter method in the same file. David starts and finishes his a
ickly that, even though he starts after Martin, he finishes before him. This is unfortunate. When Martin read

id

 inconsistent read occurs when you read two things that are correct pieces of information but not correct at
ow how many classes are in the concurrency package, which contains

 subpackages for locking and multiphase. Martin looks in the locking package and sees seven classes. At
 point he gets a phone call from Roy on some abstruse question. While Martin's answering the phone,

in

nteen afterward. Either answer would have been correct, even if not current, but fifteen was never correct.
is problem is called an inconsistent read because the data that Martin read was inconsistent.

do

out correctness; you also have to worry about liveness: how much concurrent activity can go on. Often

 we think of these as the basic ones. To solve them
 use various control mechanisms. Alas, there's no free lunch. The solutions introduce problems of their own,

u

the

Lost updates are the simplest idea to understand. Say Martin edits a file to make some changes to the
checkConcurrency method—a task that takes a few minutes. While he's doing this

lteration very quickly, so up
qu
the file it didn't include David's update, so when Martin writes the file it writes over the version that Dav
updated and David's update is lost forever.

An
the same time. Say Martin wishes to kn
two

isth
David finishes dealing with that pesky bug in the four-phase lock code and adds two classes to the locking
package and three classes to the five that were in the multiphase package. His phone call over, Martin looks
the multiphase package to see how many classes there are and sees eight, producing a grand total of fifteen.

Sadly, fifteen classes was never the right answer. The correct answer was twelve before David's update and

esev
Th

Both of these problems cause a failure of correctness (or safety), and they result in incorrect behavior that
would not have occurred without two people trying to work with the same data at the same time. However, if
correctness were the only issue, these problems wouldn't be that serious. After all, we can arrange things so
that only one of us can work the data at one time. While this helps with correctness, it reduces the ability to

ngs concurrently. The essential problem of any concurrent programming is that it's not enough to worry thi
ab
people need to sacrifice some correctness to gain more liveness, depending on the seriousness and likelihood
of the failures and the need for people to work on their data concurrently.

ese aren't all the problems you get with concurrency, butTh
we
although these problems are less serious than the basic ones. Still, this does bring up an important point: If yo
can tolerate the problems, you can avoid any form of concurrency control. This is rare, but occasionally you

d circumstances that permit it.fin

Execution Contexts

Whenever processing occurs in a system, it occurs in some context and usually in more than one. There's no
standard terminology for execution contexts, so here we'll define the

 ones that we're assuming in this book.

From the perspective of interacting with the outside world, two important contexts are the request and the
session. A request corresponds to a single call from the outside world which the software works on and for
which it optionally sends back a response. During a request the processing is largely in the server's court and
the client is assumed to wait for a response. Some protocols allow the client to interrupt a request before it gets

a response, but this is fairly rare. More often a client may issue another request that may interfere with one it
just sent. So a client may ask to place an order and then issue a separate request to cancel that order. From the
client's view the two requests may be obviously connected, but depending on your protocol that may not be so

vious to the server.

ession is a long-running interaction between a client and a server. It may consists of a single request, but

s

lication sees both requests and sessions from two angles, as the server
m the client and as the client to other systems. Thus, you'll often see multiple sessions: HTTP sessions from

ht
e

eads usually share memory, and such sharing leads to concurrency problems. Some environments allow you

time. Since processes are
perly isolated from each other, this would help reduce concurrency conflicts. Currently we don't know of

st,

e request

 the
 database (a system transaction) or from the user to an application (a business transaction).

e'll dig into these terms more later on.

ion and Immutability

.

ncurrency problems occur when more than one active agent, such as a process or thread, has access to the
e piece of data. One way to deal with this is isolation: Partition the data so that any piece of it can only be

e agent. Processes work like this in operating system memory: The operating system
lusively to a single process, and only that process can read or write the data linked to it.

ilarly you find file locks in many popular productivity applications. If Martin opens a file, nobody else can
n it. They may be allowed to open a read-only copy of the file as it was when Martin started, but they can't

ob

 sA
more commonly it consists of a series of requests that the user regards as a consistent logical sequence.
Commonly a session will begin with a user logging in and doing various bits of work that may involve issuing
queries and one or more business transactions (to be discussed shortly). At the end of the session the user log
out, or he may just go away and assume that the system interprets that as logging out.

rver software in an enterprise appSe
fro
the client and database sessions with various databases.

Two important terms from operating systems are processes and threads. A process is a, usually heavyweight,
execution context that provides a lot of isolation for the internal data it works on. A thread is a lighter-weig
active agent that's set up so that multiple threads can operate in a single process. People like threads becaus

y support multiple requests within a single process—which is good utilization of resources. However, the
thr
to control what data a thread may access, allowing you to have isolated threads that don't share memory.

The difficulty with execution contexts comes when they don't line up as well as we might like. In theory each

sion would have an exclusive relationship with a process for its whole lifeses
pro
any server tools that allow you to work this way. A close alternative is to start a new process for each reque
which was the common mode for early Perl Web systems. People tend to avoid that now because starting
processes tie up a lot of resources, but it's quite common for systems to have a process handle only on

a time—and that can save many concurrency headaches.at

When you're dealing with databases there's another important context—a transaction. Transactions pull
together several requests that the client wants treated as if they were a single request. They can occur from

plication to theap
W

Isolat

The problems of concurrency have been around for a while, and software people have come up with various
solutions. For enterprise applications two solutions are particularly important: isolation and immutability

Co
sam
accessed by one activ
allocates memory exc
Sim

eop

change it and they don't get to see the file between his changes.

Isolation is a vital technique because it reduces the chance of errors. Too often we've seen people get

mselves into trouble because they use a technique that forces everyone to worry about concurrency all the
e. With isolation you arrange things so that the programs enters an isolated zone, within which you don't

t of many systems is data modification. But by identifying some data as immutable, or at least
mutable almost all the time, we can relax our concurrency concerns for it and share it widely. Another
tion is to separate applications that are only reading data, and have them use copied data sources, from

the
tim
have to worry about concurrency. Good concurrency design is thus to find ways of creating such zones and to
ensure that as much programming as possible is done in one of them.

You only get concurrency problems if the data you're sharing can be modified. So one way to avoid
concurrency conflicts is to recognize immutable data. Obviously we can't make all data immutable, as the
whole poin
im
op
which we can then relax all concurrency controls.

Optimistic and Pessimistic Concurrency Control

ms there are two forms of
ncurrency control that we can use: optimistic and pessimistic.

Let's su
locking k
in his w this
point th
Martin' rejected and it's up to him to figure out how to deal with the situation. With pessimistic
loc g t,
David c artin is finished with it and commits his changes.

A g d
is about conflict prevention. As it turns out real source code control systems can use either type, although these
days most source code developers prefer to work with optimistic locks. (There is a reasonable argument that

s that optimistic locking isn't really locking, but we find the terminology too convenient, and widespread,

ake much better progress, because the lock is only held during the commit.
e problem with them is what happens when you get a conflict. Essentially everybody after David's commit

ficult to automerge, so often all you can do is throw away everything and start again.

What happens when we have mutable data that we can't isolate? In broad ter
co

ppose that Martin and David both want to edit the Customer file at the same time. With optimistic
 both of them can make a copy of the file and edit it freely. If David is the first to finish, he can chec
ork without trouble. The concurrency control kicks in when Martin tries to commit his changes. At
e source code control system detects a conflict between Martin's changes and David's changes.
s commit is

kin whoever checks out the file first prevents anyone else from editing it. So if Martin is first to check ou
an't work with the file until M

oo way of thinking about this is that an optimistic lock is about conflict detection while a pessimistic lock

say
to ignore.)

Both approaches have their pros and cons. The problem with the pessimistic lock is that it reduces
concurrency. While Martin is working on a file he locks it, so everybody else has to wait. If you've worked
with pessimistic source code control mechanisms, you know how frustrating this can be. With enterprise data
it's often worse because, if someone is editing data, nobody else is allowed to read it, let alone edit it.

timistic locks allow people to mOp
Th
has to check out the version of the file that David checked in, figure out how to merge their changes with
David's changes, and then check in a newer version. With source code this happens not to be too difficult.
Indeed, in many cases the source code control system can automatically do the merge for you, and even when

an't automerge, tools can make it much easier to see the differences. But business data is usually too it c
dif

The essence of the choice between optimistic and pessimistic locks is the frequency and severity of conflicts.

conflicts are sufficiently rare, or if the consequences are no big deal, you should usually pick optimistic
ks because they give you better concurrency and are usually easier to implement. However, if the results of

mind.

reventing Inconsistent Reads

h as updating your files from the trunk before you check

essence this is the inconsistent read problem, and it's often easy to miss because most people tend to focus

ta

timistic locks usually base their conflict detection on some kind of version marker on the data. This can be
imestamp or a sequential counter. To detect lost updates the system checks the version marker of your

ntrolling access to every bit of data that's read often causes unnecessary problems due to conflicts or waits

portant. The
ficulty is that this requires some careful analysis of what it's used for. A zip code in a customer's address
y seem innocuous, but, if a tax calculation is based on where somebody lives, that address has to be

data
 kind of timestamp or immutable label, and the database returns the data as it was according to that

e or label. Very few databases have anything like this, but developers often come across this in source code
ntrol systems. The problem is that the data source needs to provide a full temporal history of changes, which

If
loc
a conflict are painful for users, you'll need to use a pessimistic technique instead.

Neither of these approaches is exactly free of problems. Indeed, by using them you can easily introduce
problems that cause almost as much trouble as the basic concurrency problems that you're trying to solve in
the first place. We'll leave a detailed discussion of these ramifications to a proper book on concurrency, but
here are a few highlights to bear in

 P

Consider this situation. Martin edits the Customer class, which makes calls on the Order class. Meanwhile
David edits the Order class and changes the interface. David compiles and checks in; Martin then compiles
and checks in. Now the shared code is broken because Martin didn't realize that the Order class was altered
underneath him. Some source code control systems will spot this inconsistent read, but others require some
kind of manual discipline to enforce consistency, suc
in.

In
on lost updates as the essential problem in concurrency. Pessimistic locks have a well-worn way of dealing
with this problem through read and write locks. To read data you need a read (or shared) lock; to write da
you need a write (or exclusive) lock. Many people can have read locks on the data at one time, but if anyone
has a read lock nobody can get a write lock. Conversely, once somebody has a write lock, then nobody else
can have any lock. With this system you can avoid inconsistent reads with pessimistic locks.

Op
a t
update with the version marker of the shared data. If they're the same, the system allows the update and
updates the version marker.

Detecting an inconsistent read is essentially similar: In this case every bit of data that was read also needs to
have its version marker compared with the shared data. Any differences indicate a conflict.

Co
on data that doesn't actually matter that much. You can reduce this burden by separating out data you've used
from data you've merely read. With a pick list of products it doesn't matter if a new product appears in it after
you start your changes. But a list of charges that you're summarizing for a bill may be more im
dif
ma
controlled for concurrency. As you can see, figuring out what you need to control and what you don't is an
involved exercise whichever form of concurrency control you use.

Another way to deal with inconsistent read problems is to use Temporal Reads. These prefix each read of
with some
tim
co

takes time and space to process. This is reasonable for source code but both more difficult and more expens
for databases. You may need to provide this capability for specific areas of your domain logic: see [

ive
Snodgrass]

and [

Fowler TP] for ideas on how to do that.

 Deadlocks

A particular problem with pessimistic techniques is deadlock. Say Martin starts editing the Customer file and

ere are various techniques you can use to deal with deadlocks. One is to have software that can detect a
deadlock when it occur and his locks so the

rogress. Deadloc very difficult and causes pain for victims. A roach
a time limit. Once you hit that limit you lose your locks and your work—essentially

. Timeouts are easier to implement than a deadlock detection mechanism, but if anyone
hile some people will be victimized when there actually is no deadlock pre

meouts and detection deal with a deadlock when it occurs, other approaches try to stop deadlocks occurring
all. Deadlocks essentially occur when people who already have locks try to get more (or to upgrade from

w everybody gets locks. An example might be to always get locks on files in
habetical order. This way, once David had a lock on the Order file, he can't try to get a lock on the

already has one, Martin automatically
t it's simple to implement. And in many cases such a scheme

rks just fine.

et

d some chain of events you didn't
nsider. As a result we prefer very simple and conservative schemes for enterprise application development.

y may cause unnecessary victims, but that's usually much better than the consequences of missing a

David starts editing the Order file. David realizes that to complete his task he needs to edit the Customer file
too, but Martin has a lock on it so he has to wait. Then Martin realizes he has to edit the Order file, which
David has locked. They are now deadlocked—neither can make progress until the other completes. Described
like this, deadlocks sound easy to prevent, but they can occur with many people involved in a complex chain,
and that makes them more tricky.

Th

s. In this case you pick a victim, who has to throw away his work
others can make p k detection is similar app
is to give every lock
becoming a victim
holds locks for a w

sent.

iT
at
read to write locks.) Thus, one way of preventing them is to force people to acquire all their locks at once at
the beginning of their work and then prevent them gaining more.

You can force an order on ho
alp
Customer file because it's earlier in the sequence. At that point he essentially becomes a victim.

You can also make it so that, if Martin tries to acquire a lock and David
becomes a victim. It's a drastic technique, bu
wo

If you're very conservative, you can use multiple schemes. For example, you force everyone to get all their
locks at the beginning, but add a timeout in case something goes wrong. That may seem like using a belt and
braces, but such conservatism is often wise with deadlocks because they are pesky things that are easy to g
wrong.

It's very easy to think you have a deadlock-proof scheme and then fin
co
The
deadlock scenario.

Transactions

The primary tool for handling concurrency in enterprise applications is the transaction. The word "transa
often brings to mind an exchange of money or goods. Walking up to an ATM machine, entering your PIN, and
withdrawing cash is a transaction. Paying the $3 toll at the Golden Gate Bridge is a transaction. Buyi
at the local pub is a transaction.

ction"

ng a beer

t but has a nice pale ale in front of him. The
m value of his assets hasn't changed. It's the same for the pub—pouring free beer would be no way to run a
siness.

ight

st

be both
er.

• Consistency: A system's resources must be in a consistent, noncorrupt state at both the start and the

t

ansactional Resources

cussions of transactions use the term "transactional resource" to mean anything that's transactional—that is,

s are designed to keep transactions as short as
ssible. As a result the general advice is to never make a transaction span multiple requests. A transaction

ans multiple requests is generally known as a long transaction.

Looking at typical financial dealings such as these provides a good definition for the term. First, a transaction
is a bounded sequence of work, with both start and endpoints well defined. An ATM transaction begins when
the card is inserted and ends when cash is delivered or an inadequate balance is discovered. Second, all
participating resources are in a consistent state both when the transaction begins and when the transaction
ends. A man purchasing a beer has a few bucks less in his walle
su
bu

In addition, each transaction must complete on and all-or-nothing basis. The bank can't subtract from an
account holder's balance unless the ATM machine actually delivers the cash. While the human element m
make this last property optional during the above transactions, there is no reason software can't make a
guarantee on this front.

 ACID

Software transactions are often described in terms of the ACID properties:

• Atomicity: Each step in the sequence of actions performed within the boundaries of a transaction mu
complete successfully or all work must roll back. Partial completion is not a transactional concept.
Thus, if Martin is transferring some money from his savings to his checking account and the server
crashes after he's withdrawn the money from his savings, the system behaves as if he never did the
withdrawal. Committing says both things occurred; a roll back says neither occurred. It has to
or neith

completion of a transaction.
• Isolation: The result of an individual transaction must not be visible to any other open transactions

until that transaction commits successfully.
• Durability: Any result of a committed transaction must be made permanent. This translates to "Mus

survive a crash of any sort."

Tr

Most enterprise applications run into transactions in terms of databases. But there are plenty of other things

t can be controlled using transactions, such as message queues, printers, and ATMs. As a result, technical tha
dis
that uses transactions to control concurrency. "Transactional resource" is a bit of a mouthful, so we just use
"database," since that's the most common case. But when we say "database," the same applies for any other
transactional resource.

 handle the greatest throughput, modern transaction systemTo
po
that sp

For
nd

 this reason a common approach is to start a transaction at the beginning of a request and complete it at the
. This request transaction is a nice simple model, and a number of environments make it easy to do

t have any concurrency control until you begin the
nsaction, which leaves you open to inconsistent reads. As a result it's usually not worth doing this unless

le

e

g to the entire table—locking out other transactions. This lock escalation can
ve a serious effect on concurrency, and it's particularly why you shouldn't have some "object" table for data

e
declaratively, by just tagging methods as transactional.

A variation on this is to open a transaction as late as possible. With a late transaction you may do all the reads
outside it and only open it up when you do updates. This has the advantage of minimizing the time spent in a
transaction. If there's a lengthy time lag between the opening of the transaction and the first write, this may
mprove liveness. However, this means that you don'i
rat

you have very heavy contention or you're doing it anyway because of business transactions that span multip
requests (which is the next topic).

When you use transactions, you need be somewhat aware of what exactly is being locked. For many database
actions the transaction system locks the rows involved, which allows multiple transactions to access the sam
table. However, if a transaction locks a lot of rows in a table, then the database has more locks than it can

andle and escalates the lockinh
ah

at the domain's Layer Supertype (475) level. Such a table is a prime candidate for lock escalation, and locking
that table shuts everybody else out of the database.

 Reducing Transaction Isolation for Liveness

It's common to restrict the full protection of transactions so that you can get better liveness. This is particular
the case when it comes to handling isolation. If y

ly
ou have full isolation, you get serializable transactions.

ansactions are serializable if they can be executed concurrently and you get a result that's the same as you
t from some sequence of executing the transactions serially. Thus, if we take our earlier example of Martin

ost transactional systems use the SQL standard which defines four levels of isolation. Serializable is the
ongest level, and each level below allows a particular kind of inconsistent read to enter the picture. We'll

s:

age.

e

h first isolation level below serializable is repeatable read, which allows phantoms. Phantoms occur when
add some elements to a collection and the reader sees only some of them. The case here is that Martin

ks at the files in the locking package and sees seven. David then commits his transaction, after which
t. Hence, Martin gets an incorrect result. Phantoms occur
n but not all of it, and they're always things that are

rted.

Tr
ge
counting his files, serializability guarantees that he gets a result that corresponds to completing his transaction
either entirely before David's transaction starts (twelve) or entirely after David's finishes (seventeen).
Serializability can't guarantee which result, as in this case, but at least it guarantees a correct one.

M
str
explore these with the example of Martin counting files while David modifies them. There are two package
locking and multiphase. Before David's update there are seven files in the locking package and five in the
multiphase package; after his update there are nine in the locking package and eight in the multiphase pack
Martin looks at the locking package and David then updates both; then Martin looks at the multiphase
package.

If the isolation level is serializable, the system guarantees that Martin's answer is either twelve or seventeen,
both of which are correct. Serializability can't guarantee that every run through this scenario will give the sam
result, but it always gets either the number before David's update or the number afterwards.

T e

u yo
ool

Martin looks at the multiphase package and sees eigh
because they are valid for some of Martin's transactio
inse

Next down the list is the isolation level of read committed, which allows unrepeatable reads. Imagine that
Martin looks at a total rather than the actual files. An unrepeatable read allows him to read a total of seven
locking. Next David commits; then he reads a total of eight for multiphase. It's called an unrepeatable read
because, if Martin were to reread the total for the locking package after David committed, he would ge
new number of nine. His original read of s

 for

t the
even can't be repeated after David's update. It's easier for databases

spot unrepeatable reads than phantoms, so the repeatable read gives you more correctness than read
mmitted but less liveness.

 read
 might look

ond kind of error comes if David adds his files but then rolls back
 transaction—in which case Martin sees files that were never really there.

to
co

The lowest level of isolation is read uncommitted, which allows dirty reads. At read uncommitted you can
data that another transaction hasn't actually committed yet. This causes two kinds of errors. Martin
at the locking package when David adds the first of his files but before he adds the second. As a result he sees
eight files in the locking package. The sec
his

Table 5.1. Isolation Levels and the Inconsistent Read Errors They Allow
Isolation Level Dirty Read Unrepeatable Read Phantom
Read Uncommitted Yes Yes Yes
Read Committed No Yes Yes
Repeatable Read No No Yes
Serializable No No No

To be sure of correctness you should always use the serializable isolation level. The problem is that choosing
serializable really messes up the liveness of a system, so much so that you often have to reduce serializability
in order to increase throughput. You have to decide what risks you want take and make your own trade-off of

ors versus performance.

e

 pretty much be taken for granted.
ey work well and are well understood by application developers.

is what we call a business transaction, and that displays the same
ID properties as a system transaction seems a reasonable expectation. If the user cancels before paying the

err

You don't have to use the same isolation level for all transactions, so you should look at each transaction and
decide how to balance liveness versus correctness for it.

 Business and System Transactions

What we've talked about so far, and most of what most people talk about, is what we call system transactions,
or transactions supported by RDBMS systems and transaction monitors. A database transaction is a group of
SQL commands delimited by instructions to begin and end it. If the fourth statement in the transaction results
in an integrity constraint violation, the database must roll back the effects of the first three statements and
notify the caller that the transaction has failed. If all four statements had completed successfully all would
have been made visible to other users at the same time rather than one at a time. RDBMS systems and
application server transaction managers are so commonplace that they can
Th

However, a system transaction has no meaning to the user of a business system. To an online banking system
user a transaction consists of logging in, selecting an account, setting up some bill payments, and finally
clicking the OK button to pay the bills. This
AC
bills, any changes made on previous screens should be canceled. Setting up payments shouldn't result in a
system-visible balance change until the OK button is pressed.

The obvious answer to supporting the ACID properties of a business transaction is to execute the entire
business transaction within a single system transaction. Unfortunately business transactions often take multiple

uests to complete, so using a single system transaction to implement one results in a long system
nsaction. Most transaction systems don't work very efficiently with long transactions.

ng

henever the business
nsaction interacts with a transactional resource, such as a database, that interaction will execute within a
stem transaction in order to maintain the integrity of that resource. However, as you'll read below it's not

omicity and durability are the ACID properties most easily supported for business transactions. Both are
pported by running the commit phase of the business transaction, when the user hits Save within a system
nsaction. Before the session attempts to commit all its changes to the record set, it first opens a system

saction guarantees that the changes will commit as a unit and will be made
ially tricky part here is maintaining an accurate change set during the life of the

iness transaction. If the application uses a Domain Model

req
tra

This doesn't mean that you should never use long transactions. If your database has only modest concurrency
needs, you may well be able to get away with it. And if you can get away with it, we suggest you do it. Using a
long transaction means you avoid a lot of awkward problems. However, the application won't be scalable
because long transactions will turn the database into a major bottleneck. In addition, the refactoring from lo
to short transactions is both complex and not well understood.

For this reason many enterprise applications can't risk long transactions. In this case you have to break the
business transaction down into a series of short transactions. This means that you are left to your own devices
to support the ACID properties of business transactions between system transactions—a problem we call
offline concurrency. System transactions are still very much part of the picture. W
tra
sy
enough to string together a series of system transactions to properly support a business transaction. The
business application must provide a bit of glue between them.

At
su
tra
transaction. The system tran
permanent. The only potent
bus (116), a Unit of Work (184) can track changes

urately. Placing business logic in a Transaction Scriptacc (110) requires a manual tracking of changes, but

The tricky ACID property to enforce with business transactions is isolation. Failures of isolation lead to
failures of consistency. Consistency dictates that a business transaction not leave the record set in an invalid
state. Within a single transaction the application's responsibility in supporting consistency is to enforce all
available business rules. Across multiple transactions the application's responsibility is to ensure that one
session doesn't step all over another session's changes, leaving the record set in the invalid state of having lost
a user's work.

As well as the obvious problems of clashing updates, there are the more subtle problems of inconsistent reads.
When data is read over several system transactions, there's no guarantee that it will be consistent. The different
reads can even introduce data in memory that's sufficiently inconsistent to cause application failures.

Business transactions are closely tied to sessions. In the user's view each session is a sequence of business
transactions (unless they're only reading data), so we usually make the assumption that all business
transactions execute in a single client session. While it's certainly possible to design a system that has multiple
sessions for one business transaction, that's a very good way of getting yourself badly confused—so we'll
assume that you won't do that.

Patterns for Offline Concurrency Control

that's probably not much of a problem as the use of transaction scripts implies rather simple business
transactions.

As much as possible, you should let your transaction

ncurrency control that spans system transactions p
 system deal with concurrency problems. Handling
lonks you firmly in the murky waters of dealing with

currency yourself. This water is full of virtual sharks, jellyfish, piranhas, and other, less friendly creatures.
ortunately, the mismatch between business and system transactions means you sometimes just have to

er that these are techniques you should only use if you have to. If you can make all your business
nsactions fit into a system transaction by ensuring that they fit within a single request, then do that. If you

e

r first choice for handling offline concurrency problems is Optimistic Offline Lock

co
con
Unf
wade in. The patterns that we've provided here are some techniques that we've found helpful in dealing with
concurrency control that spans system transactions.

Rememb
tra
can get away with long transactions by forsaking scalability, then do that. By leaving concurrency control in
the hands of your transaction software you'll avoid a great deal of trouble. These techniques are what you hav
to use when you can't do that. Because of the tricky nature of concurrency, we have to stress again that the
patterns are a starting point, not a destination. We've found them useful, but we don't claim to have found a
cure for all concurrency ills.

Ou (416), which essentially

 the business transactions. We like this as a first choice because it's
he best liveness. The limitation of Optimistic Offline Lock

uses optimistic concurrency control across
n easier approach to program and yields ta (416) is

t you only find out that a business transaction is going to fail when you try to commit it, and in some
cumstances the pain of that late discovery is too much. Users may have put an hour's work into entering

tha
cir
details about a lease, and if you get lots of failures users lose faith in the system. Your alternative
is Pessimistic Offline Lock (426), with which you find out early if you're in trouble but lose out because it's
harder to program and it reduces your liveness.

With either of these approaches you can save considerable complexity by not trying to manage locks on every
object. A

Coarse-Grained Lock (438) allows you to manage the concurrency of a group of objects together

Another way you can make life easier for application developers is to use
.

Implicit Lock (449), which saves
them from having to manage locks

directly. Not only does this save work, it also avoids bugs when people

get—and these bugs are hard to find.

for

A common statement about concurrency is that it's a purely technical decision that can be decided on after
requirements are complete. We disagree. The choice of optimistic or pessimistic controls affects the whole
user experience of the system. An intelligent design of Pessimistic Offline Lock (426) needs a lot of input
about the domain from the users of the system. Similarly domain knowledge is needed to choose good Coarse-
Grained Locks (438).

Futzing with concurrency is one of the most difficult programming tasks. It's very difficult to test concurrent

 code with confidence. Concurrency bugs are hard to reproduce and very difficult to track down. The patterns
we've described have worked for us so far, but this is particularly difficult territory. If you need to go down
this path, it's worth getting some experienced help. At the very least consult the books we mention at the end
of this chapter.

Application Server Concurrency

So far we've talked about concurrency mainly in terms of multiple sessions running against a shared data

source. Another form of concurrency is the process concurrency of the application server itself: How does that
server handle multiple requests concurrently and how does this affect the design of the applicati

on on the

ver? The big difference from the other concurrency issues we've talked about so far is that application
ver concurrency doesn't involve transactions, so working with them means stepping away from the

cy bugs are almost impossible to reproduce—
ulting in a system that works correctly 99 percent of the time but throws random fits. Such software is
redibly frustrating to use and debug, so our policy is to avoid the need for explicit handling of

ith

or to have one process tied to the session that's idle
e een requests. Many early Web systems would start a new Perl process for each request.

cess-per-session is that it uses up a lot resources, since processes are expensive beasties.
ou can pool the processes, such that each one only handles a single request at one time

 can handle multiple requests from different sessions in a sequence. This approach of pooled process-per-
uest will use many fewer processes to support a given number of sessions. Your isolation is almost as good:

t

ms.

t approach,
ch request is handled by a single thread within a process. Since threads use much fewer server resources

e

ir application.

plication developers can mostly ignore multithreaded issues. The usual way to do this is to have the thread
as

ser
ser
relatively controlled transactional world.

Explicit multithreaded programming, with locks and synchronization blocks, is complicated to do well. It's
easy to introduce defects that are very hard to find—concurren
res
inc
synchronization and locks as much as possible. Application developers should almost never have to deal w
these explicit concurrency mechanisms.

The simplest way to handle this is to use process-per-session, where each session runs in its own process. Its
great advantage is that the state of each process is completely isolated from the other processes so application
programmers don't have to worry at all about multithreading. As far as memory isolation goes, it's almost
equally effective to have each request start a new process
b tw

The problem with pro
To be more efficient y
but

qre
You don't have many of the nasty multithreading issues. The main problem over process-per-session is tha
you have to ensure that any resources used to handle a request are released at the end of the request. The
current Apache mod-perl uses this scheme, as do a lot of serious large-scale transaction processing syste

Even process-per-request will need many processes running to handle a reasonable load. You can further

prove throughput by having a single process run multiple threads. With this thread-per-requesim
ea
than a process, you can handle more requests with less hardware this way, so your server is more efficient. Th
problem with using thread-per-request is that there's no isolation between the threads and any thread can touch
any piece of data that it can get access to.

In our view there's a lot to be said for using process-per-request. Although it's less efficient than thread-per-
request, using process-per-request is equally scalable. You also get better robustness—if one thread goes
haywire it can bring down an entire process, so using process-per-request limits the damage. Particularly with
a less experienced team, the reduction of threading headaches (and the time and cost of fixing bugs) is worth
the extra hardware costs. We find that few people actually do any performance testing to assess the relative

sts of thread-per-request and process-per-request for theco

Some environments provide a middle ground of allowing isolated areas of data to be assigned to a single
thread. COM does this with the single-threaded apartment, and J2EE does it with Enterprise Java Beans (and
will in the future with isolates). If your platform has something like this available, it can allow you to have
your cake and eat it—whatever that means.

you use thread-per-request, the most important thing is to create and enter an isolated zone where If
ap
create new objects as it starts handling the request and to ensure that these objects aren't put anywhere (such

in a static variable) where other threads can see them. That way the objects are isolated because other threads
have no way of referencing them.

Many developers are concerned about creating new objects because they've been told that object creation is an

ensive process. As a result they often pool objects. The problem with pooling is that you have to
chronize access to the pooled objects in some way. But the cost of object creation is very dependent on the

exp
nsy

virtual machine and memory management strategies. In modern environments object creation is actually pretty
fast [Peckish]. (Off the top of your head: how many Java date objects do you think we can create in one

ond on Martin's 600Mhz P3 with Java 1.3?sec We'll tell you later.) Creating fresh objects for each session
oids a lot of concurrency bugs and can actually improve scalability.

be synchronized. This is also true of
gletons. If you need some kind of global memory, use a Registry

av

While this tactic works in many cases, there are still some areas that developers need to avoid. One is static,

ss-based variables or global variables because any use of these has to cla
sin (480), which you can implement in such a

are

nnection. To deal with this you can place these objects in an explicit pool where you acquire a connection

way that it looks like a static variable but actually uses thread-specific storage.

Even if you're able to create objects for the session, and thus make a comparatively safe zone, some objects

pensive to create and thus need to be handled differently—the most common example of this is a database ex
co
while you need it and return it when done. These operations will need to be synchronized.

Further Reading

In many ways, this chapter only skims the surface of a much more complex topic. To investigate further we
suggest starting with [Bernstein and Newcomer], [Lea], and [Schmidt et al.].

Chapter 6. Session State

When we talked about concurrency, we raised the issue of the difference between business and system
transactions (Chapter 5, page 74). As well as affecting concurrency, this difference affects how to store the

ta that's used within a business transaction but isn't yet ready to be committed to the general database of
ord.

t some sessions are inherently stateful and then deciding what to do about the state.

e state
me,

a distributed
tain state

da
rec

The differences between business and system transactions underlie much of the debate over stateless versus
stateful sessions. There's been a lot written about this issue, but in my view the basic problem is often
disguised behind the technical questions of stateless and stateful server systems. I think the fundamental issue
is realizing tha

The Value of Statelessness

What do people mean by a stateless server? The whole point of objects, of course, is that they combin
(data) with behavior. A true stateless object is one with no fields. Such animals do show up from time to ti
but frankly, they're pretty rare. Indeed, you can make a strong case that a stateless object is a bad design.

As it turns out, however, this isn't what most people mean when they talk about statelessness in

terprise application. When people refer to a stateless server they mean an object that doesn't reen
between requests. Such an object may well have fields, but when you invoke a method on a stateless server the

ction the server
ject might stash the book's ISBN, title, and price in fields when it gets them back from the database, before

s are nothing short of disastrous. Why is this?

g

 perfectly balanced. If we want to track a user's requests with a stateful

ver object, we must have one server object per user: one hundred objects. But 90 percent of the time these

values of the fields are undefined.

An example of a stateless server object might be one that returns a Web page telling you all about a book. You
invoke a call on it by accessing a URL—the object might be an ASP document or a servlet. In the URL you

pply an ISBN number that the server uses to generate the HTTP reply. During the interasu
ob
it generates the HTML; maybe it does some business logic to determine which complimentary reviews to
show the user. Once it's done its job, however, these values become useless. The next ISBN is a whole new
story, and the server object will probably reinitialize to clear out any old values to avoid mistakes.

Now imagine that you want to keep track of all the ISBNs visited by a particular client IP address. You can
keep this in a list maintained by the server object. However, this list must persist between requests and thus
you have a stateful server object. The shift from stateless to stateful is much more than three or four letters at

e end of the word. For many people stateful serverth

The primary issue is one of server resources. Any stateful server object needs to keep all its state while waitin
for a user to ponder a Web page. A stateless server object, however, can process other requests from other
sessions. Here's a completely unrealistic yet helpful thought experiment. We have a hundred people who want
to know about books, and processing a request about a book takes one second. Each person makes one request
very ten seconds, and all requests aree

ser

objects are sitting around doing nothing. If we forgo the ISBN tracking and just use stateless server objects to

r which object services the request,
 if we do store state we need to always get the same object. Statelessness allows us to pool our objects so

that we need fewer objects to handle more users. The more idle users we have, the more valuable stateless
servers are. As you can imagine, stateless servers are very useful on high-traffic Web sites. Statelessness also
fits in well with the Web since HTTP is a stateless protocol.

So everything should be stateless, right? Well, it would be if it could be. The problem is that many client
interactions are inherently stateful. Consider the shopping cart metaphor that fuels a thousand e-commerce
applications. The user's interaction involves browsing several books and picking which ones to buy. The
shopping cart needs to be remembered for the user's entire session. Essentially we have a stateful business
transaction, which implies that the session has to be stateful. If I only look at books and don't buy anything,
my session is stateless, but if I buy, it's stateful. We can't avoid the state unless we stay poor; instead, we have
to decide what to do with it. The good news is that we can use a stateless server to implement a stateful
session; the interesting news is that we may not want to.

respond to requests, we can get away with only ten server objects fully employed all the time.

The point is that, if we have no state between method calls, it doesn't matte
but

Session State

The details of the shopping cart are session state, meaning that the data in the cart is relevant only to that
particular session. This state is within a business transaction, which means that it's separated from other
sessions and their business transactions. (I'll continue to assume for this discussion that each business
transaction runs in one session only and that each session does only one business transaction at any one time).
Session state is distinct from what I call record data, which is the long-term persistent data held in the database
and visible to all sessions. Session state needs to be committed to become record data.

Since session state is within a business transaction, it has many of the properties that people usually think of
with transactions, such as ACID (atomicity, consistency, isolation, and durability). The consequences of this
are not always understood.

One interesting consequence is the effect on consistency. While the customer is editing an insurance policy,
the current state of the policy may not be legal. The customer alters a value, uses a request to send this to the
system, and the system replies indicating invalid values. Those values are part of the session state, but they
aren't valid. Session state is often like this—it isn't going to match the validation rules while it's being worked
on; it will only when the business transaction commits.

The biggest issue with session state is dealing with isolation. With many fingers in the pot, a number of things
can happen while a customer is editing a policy. The most obvious is two people editing the policy at the same
time. But it's not just changes that are a problem. Consider that there are two records, the policy itself and the
customer record. The policy has a risk value that depends partially on the zip code in the customer record. The
customer begins by editing the policy and after ten minutes does something that opens the customer record so
he can see the zip code. However, during that time someone else has changed the zip code and the risk value—
leading to an inconsistent read. See page 76 for advice on how to deal with this.

Not all data held by the session counts as session state. The session may cache some data that doesn't really

need to be stored between requests but is stored to improve performance. Since you can lose the cache without
ing correct behavior, this is different from session state, which must be stored between requests for correct

ays to Store Session State

on State

los
behavior.

 W

So, how do you store session state once you know you have to have it? I divide the options into three blurred
but basic choices.

Client Sessi (456) stores the data on the client. There are several ways to do this: encoding data in a

L for a Web presentation, using cookies, serializing the data into some hidden field on a Web form, and
lding the data in objects on a rich client.

UR
ho

Server Session State (458) may be as simple as holding the data in memory between requests. Usually,

ever, there's a mechanism for storing the session state somewhere more durable as a serialized object. The
ect can be stored on the application server's local file system, or it can be placed in a shared data source.

how
job

This could be a simple database table with a session ID as a key and a serialized object as a value.

Database Session State (462) is also server-side storage, but it involves breaking up the data into tables and
fields and storing it in the database much as you would store more lasting data.

There ar etween
the client and the server. Using Client Session State

e quite a few issues involved in the choice of option. First off, I'll talk about bandwidth needs b
 (456) means that session data needs to be transferred

across the wire with every request. If we're talking about only a few fields, this is no big deal, but larger
ounts of data result in bigger transfers. In one application this data amounted to about a megabyte or, as one

peare plays worth. Admittedly, we were using XML between the two, which is
t the most compact of data transmission forms, but even so there was a lot of data to work with.

ing Client

am
of our team put it, three Shakes
no

Of course, some data will need to be transferred because it has to be seen on the presentation. But us
Session State (456) implies that with every request you have to transfer all the data the server uses for it, even
if it isn't need

ed by the client for display. All in all this means that you don't want to use Client Session

State (456) unless the amount of session state you need to store is pretty small. You also have to worry about
urity and integrity. Unless you encrypt the data, you have to assume that any malicious user could edit your

ses what's going on in one session shouldn't affect what's going on in
other. If we book a flight itinerary there should be no effect on any other user until the flight is confirmed.
eed, part of the meaning of session data is that it's unseen to anything outside the session. This becomes a

sec
session data, which might lead you to a whole new version of "name your own price."

Session data has to be isolated. In most ca
an
Ind
tricky issue if you use Database Session State (462), because you have to work hard to isolate the ses
from the record data that sits in the database.

If you have a lot of users, you'll want to consider clustering to improve your throughput. In this case yo
want to thi

 se

sion data

u'll
nk about whether you need session migration. Session migration allows a session to move from

ver to rver as one server handles one request and other servers take on the others. Its opposite is server
inity, which forces one server to handle all requests for a particular session. Server migration leads to a

ser
aff
better balancing of your servers, particularly if your sessions are long. However, that can be awkward if you're
using Server Session State (458) because often only the machine that handles the session can easily find th
state.There are ways around that—ways that blur the lines between

at
Database Session State (462) and Server

Session State (458).

Server affinity can lead to bigger problems than you might initially think. In trying to guarantee server affinity,

alls to see which session they're part of. As a result, it will
 go to the same application server. Often this is done by the

nt's IP address. If the client is behind a proxy, that could mean that many clients are all using the same IP
ress and are thus tied to a particular server. This can get pretty bad if you see most of your traffic handled

the clustering system can't always inspect the c
increase the affinity so all calls from one client
clie

dad
by one server that bags the IP address for AOL!

If the server is going to use the session state, it needs to get it into a form that can be used quickly. If you

e Server Session Stateus (458), the session state is pretty much there. If you use Client Session State (456), it's
re, but often needs to be put into the form you want. If you use Database Session Statethe (462), you need to

n

go to the database to get it (and maybe do some transforming as well). This implies that each approach ca
have different effects on the system's responsiveness. The size and complexity of the data will have an effect

 this time.on

If you have a public retail system, you probably don't have that much data going into each session, but you do
have a lot of mostly idle users. For that reason Database Session State (462) can work nicely in performance
terms. For a leasing system you run the risk of schlepping masses of data in and out of the database wit

uest. That's when Server Session State
h each

req (458) can give you better performance.

One of the big bugbears in many systems is when a user cancels a session and says forget it. This is
particularly awkward with B2C applications because the user usually doesn't actually say forget it, it just
disappears and doesn't come back. Client Session State (456) certainly wins here because you can forget abo
that user easily. In the other approaches you need to be able to clean out session state when you realize it'

nceled, as well as set up a system

ut
s

 that allows you to cancel after some timeout period. Good
plementations of Server Session State

ca
im (458) allow you to do this with an automatic timeout.

As well as what happens when a user cancels, consider what happens when a system cancels: A client can
crash, a server can go south, and a network connection can disappear into the ether. Database Session
State (462) can usually cope with all three pretty well. Server Session State (458) may or may not survive,
depending on whether the session object is backed up to a nonvolatile store and where that store is kept.

t Clien

Session State (456) won't survive a client crash, but should survive the rest going down.

n't forget the developmDo ent effort involved in these patterns. Usually the Server Session State (458) is the
siest on development resources, particularly if you don't have to persist the session state between ea

requests. Database Session State (462) and Client Session State (456) will usually involve code to transform
from a database or transport format to the form that the session objects will use. That extra time means that
you aren't able to build as many features as quickly with as you would with Server Session State (458),
particularly if the data is complex. On first sight Database Session State (462) might not seem that complex if
you've already got to map to database tables, but the extra development effort comes in keeping all the othe
uses of the database isolated from the session data.

r

 store different
ver sure which

rt of the state goes in what part of the system. Nevertheless, if you use something other than Client Session

The three approaches aren't mutually exclusive. You can use a mix of two or three of them to

rts of the session state. This usually makes things more complicated, however, as you're nepa
pa
State (456), you'll have to keep at least a session identifier in Client Session State (456) even if the rest of the
state is held using the other patterns.

My preference is for Server Session State (458), particularly if the memento is stored remotely so it can

rvive a server crash. I also like Client Session Statesu (456) for session IDs and for session data that's very
small. I don't like Database Session State (462) unless you need failover and clustering and if you can't store
remo

te mementos or if isolation between sessions isn't an issue for you.

Chapter 7. Distribution Strategies

Objects have been around for a while, and sometimes it seems that, ever since they were created, folks have
wanted to distribute them. However, distribution of objects, or indeed of anything else, has a lot more pitfalls
than many people realize [Waldo et al.], especially when they're under the influence of vendors' cozy
brochures. This chapter is about some of these hard lessons—lessons I've seen many of my clients learn the
hard way.

The Allure of Distributed Objects

There is a recurring presentation that I used to see two or three times a year during design reviews. Proudly the

stem architect of a new OO system lays out his plan for a new distributed object system—let's pretend it's a sy
some kind of ordering system. He shows me a design that looks rather like Figure 7.1. With separate remote
objects for customers, orders, products, and deliveries. Each one is a separate component that can be placed o
a separate processing node.

n

Figure 7.1. Distribute an application by putting different components on different nodes.

 aI

sk, "Why do you do this?"

lies, looking at me a little oddly. "We can run each component on a
sy we add extra boxes for it so we can load-balance our

lication." The look is now curious as if he wonders if I really know anything about real distributed object
 all.

"Performance, of course," the architect rep
eparate box. If one component gets too bus

app
stuff at

Meanwhile I'm faced with an interesting dilemma. Do I just say out and out that this design sucks like an

inverted hurricane and get shown the door immediately? Or do I slowly try to show my client the light? The
ter is more remunerative but much tougher since the client is usually very pleased with his architecture, and
akes a lot to give up on a fond dream.

at

other within a process or between
rocess without having to know if the callee is in the same process, in another process, or on another

dure call between two separate
cesses is orders of magnitude slower. Make that a process running on another machine and you can add

ined interface. Thus, if I have an address class, a good interface will have
arate methods for getting the city, getting the state, setting the city, setting the state, and so forth. A fine-

grained interface is good because it follows the general OO principle of lots of little pieces that can be
combined and overridden in various ways to extend the design into the future.

A fine-grained interface doesn't work well when it's remote. When method calls are slow, you want to obtain
or update the city, state, and zip in one call rather than three. The resulting interface is coarse-grained,
designed not for flexibility and extendibility but for minimizing calls. Here you'll see an interface along the
lines of get-address details and update-address details. It's much more awkward to program to, but for
performance you need to have it.

Of course, what vendors will tell you is that there's no overhead to using their middleware for remote and local
calls. If it's a local call, it's done with the speed of a local call. If it's a remote call it's done more slowly. Thus,
you only pay the price of a remote call when you need one. This much is, to some extent, true, but it doesn't
avoid the essential point that any object that may be used remotely should have a coarse-grained interface
while every object that isn't used remotely should have a fine-grained interface. Whenever two objects
communicate you have to choose which to use. If the object could ever be in separate processes you have to
use the coarse-grained interface and pay the cost of the harder programming model. Obviously, it only makes
sense to pay that cost when you need to, and so you need to minimize the amount of inter-process
collaborations.

lat
it t

So assuming you haven't shown this book the door I guess you'll want to know why this distributed
architecture sucks. After all, many tool vendors will tell you that the whole point of distributed objects is th
you can take a bunch of objects and position them as you like on processing nodes. Also, their powerful
middleware provides transparency. Transparency allows objects to call each
a p
machine.

Transparency is valuable, but while many things can be made transparent in distributed objects, performance
isn't usually one of them. Although our prototypical architect was distributing objects the way he was for
performance reasons, in fact his design will usually cripple performance, make the system much harder to
build and deploy, or, usually, do both.

Remote and Local Interfaces

The primary reason that the distribution by class model doesn't work has to do with a fundamental fact of
computers. A procedure call within a process is very, very fast. A proce
pro
another order of magnitude or two, depending on the network topography involved.

As a result, the interface for an object to be used remotely must be different from that for an object used
locally within the same process.

A local interface is best as a fine-gra
sep

For these reasons you can't just take a group of classes that you design in
CORBA or some such at them, and come up with a distributed model. Dis

u base your distribution strategy on a classes, you'll end up with a system

the world of a single process, throw
tribution design is more than that. If

 that does a lot of remote calls and
 needs awkward coarse-grained interfaces. In the end, even with coarse-grained interfaces on every
otable class, you'll still end up with too many remote calls and a system that's awkward to modify as a

nce, we get to my First Law of Distributed Object Design: Don't distribute your objects!

yo
thus
rem
bonus.

He

How, then, do you effectively use multiple processors? In most cases the way to go is clustering (see Figure
7.2). Put all the classes into a single process and then run multiple copies of that process on the various nodes.

at way each process uses local calls to get the job done and thus does things faster. You can also use fine-
ined interfaces for all the classes within the process and thus get better maintainability with a simpler

Th
gra
programming model.

Figure 7.2. Clustering involves putting several copies of the same application on different nodes.

 you need to separate the
cesses. If you're sensible, you'll fight like a cornered rat to eliminate as m of them as you can, but you

won't eliminate them all.

users' desktops are different nodes to shared repositories of data. Since they're different machines you
need separate processes that communicate. The client–server divide is a typical inter-process divide.

nd
re in the

Where You Have to Distribute

So you want to minimize distribution boundaries and utilize your nodes through clustering as much as
possible. The rub is that there are limits to that approach—that is, places where

any pro

• One obvious separation is between the traditional clients and servers of business software. PCs on

• A second divide often occurs between server-based application software (the application server) a
the database. Of course, you don't have to do this. You can run all your application softwa

database process itself using such things as stored procedures. But often that's not so practical, so you
have to have separate processes. They may run on the same machine, but once you have separate
processes you immediately have to have to pay most of the costs in remote calls. Fortunately, SQL is
designed as a remote interface, so you can usually arrange things to minimize that cost.

• Another

separation in process may occur in a Web system between the Web server and the application
server. All things being equal it's best to run the Web and application servers in a single process, but all
things aren't always equal.

.

just have to hold your nose and divide your software into remote, coarse-grained components.

• You may have to separate because of vendor differences. If you're using a software package, it will
often run in its own process, so again you're distributing. At least a good package will have a coarse-
grained interface.

• And finally there may be some genuine reason that you have to split your application server software
You should sell any grandparent you can get your hands on to avoid this, but cases do come up. Then
you

The overriding theme, in Colleen Roe's memorable phrase, is to be "parsimonious with object distribution."
Sell your favorite grandma first if you possibly can.

Working with the Distribution Boundary

As you design your system you need to limit your distribution boundaries as much as possible, but where you
have them you need to take them into account. Every remote call travels on the cyber equivalent of a horse a
carriage. All sorts of places in the system will change shape to minimize remote calls. That's pretty much the
expected price.

However, you can still design within a sing

nd

le process using fine-grained objects. The key is to use them
ernally and place coarse-grained objects at the distribution boundaries, whose sole role is to provide a i

rem
nt

ote interface to the fine-grained objects. The coarse-grained objects don't really do anything but so they act
as a facade for the fine-grained objects. This facade is there only for distribution purposes—hence the
name Remote Facade (388).

Using a Remote Facade (388) helps minimize the difficulties that the coarse-grained interface introduces. This

y only the objects that really need a remote service get the coarse-grained method, and it's obvious to the

 keeping the coarse-grained interfaces as mere facades, however, you allow people to use the fine-grained
jects whenever they know they are running in the same process. This makes the whole distribution policy
ch more explicit. Hand in hand with Remote Facade

wa
developers that they're paying that cost. Transparency has its virtues, but you don't want to be transparent
about a potential remote call.

By
ob
mu (388) is Data Transfer Object (401). Not only do you

sfer coarse-grained objects. When you ask for an address,
u usually can't send the domain object itself, because it's

 in a Web of fine-grained local inter-object references. So you take all the data that the client needs and
ndle it in a particular object for the transfer—hence the term Data Transfer Object

need coarse-grained methods, you also need to tran
ou need to send that information in one block. Yoy

tied
bu (401). (Many people in

s othe enterprise Java community use the term value object for this, but this causes a clash with other meaning f
the term Value Object (486)). The Data Transfer Object (401) appears on both sides of the wire, so it's
important that it not reference anything that isn't shared over the wire. This boils down to the fact that a Data
Transfer Object (401) usually only references other Data Transfer Objects (401) and fundamental objects such

trings. as s

Another route to distribution is to have a broker that migrates objects between processes. The idea here is to
use a Lazy Load (200) scheme where, instead of lazy reading from a database, you move objects across the
wire. The hard part of this is ensuring that you don't end up with lots of remote calls. I haven't seen anyone try

s in an application, but some O/R mapping tools (e.g., TOPLink) have this facility, and I've heard some
od reports about it.

aces
e most common form of this interface, but many

ople have experimented with it for some years.

lasses and methods has value too. Moving all the transferred data into
L structures and strings can add a considerable burden to the remote call. Certainly applications have seen

ignificant performance improvement by replacing an XML-based interface with a remote call. If both sides

call
o

r. My attitude is to use XML Web services only when a more direct approach isn't possible.

, but it does add complexity since you'll need both the Web
ver and the machinery for a remote OO interface. Therefore, you should only do this if you need an HTTP

of the remote OO API for security and transaction handling
ke it easier to deal with these issues than using non-remote objects.

y
ference is for a message-based approach that's inherently asynchronous. Digging into patterns for message-

ook

s

thi
go

Interfaces for Distribution

Traditionally the interfaces for distributed components have been based on remote procedure calls, either with
global procedures or as methods on objects. In the last couple of years, however, we've begun to see interf
based on XML over HTTP. SOAP is probably going to be th
pe

XML-based HTTP communication is handy for several reasons. It easily allows a lot of data to be sent, in
structured form, in a single roundtrip. Since remote calls need to be minimized, that's a good thing. The fact
that XML is a common format with parsers available in many platforms allows systems built on very different
platforms to communicate, as does the fact that HTTP is pretty universal these days. The fact that XML is
textual makes it easy to see what's going across the wire. HTTP is also easy to get through firewalls when
security and political reasons often make it difficult to open up other ports.

Even so, an object-oriented interface of c
XM
a s
of the wire use the same binary mechanism, an XML interface doesn't buy you much other than a jazzier set of
acronyms. If you have two systems built with the same platform, then you're better off using the remote
mechanism built into that platform. Web services become handy when you want different platforms to talk t
each othe

Of course, you can have the best of both worlds by layering an HTTP interface over an object-oriented
interface. All calls to the Web server are translated by it into calls on an underlying object-oriented interface.
To an extent this gives you the best of both worlds
ser
as well as a remote OO API or if the facilities
ma

In my discussions here I've assumed a synchronous, RPC-based interface. However, although that's what I've

scribed, I actually don't think it's always the best way of handling a distributed system. Increasingly, mde
pre
based work is a sizable topic on its own, and that's why I ducked out of it for this book. I hope such a b
will appear in the near future, but for the moment all I can do is urge you to look at asynchronous, message-
based approaches. In particular I think they're the best use of Web services, even though most of the example
published so far are synchronous.

Chapter 8. Putting It All Together

ked at one aspect of a system and explored the various options for handling it.
w it's time to sweep everything together and start to answer the tricky question of what patterns to use when
igning an enterprise application.

t

 I write this, I'm very conscious of the limitations of my advice. Frodo said in Lord of the Rings, "Go not to
e, I

tand their answer that advice is often a dangerous gift. If you're reading this to make
hitectural d cisions for your project, you know far more about your project than I do. One of the biggest
strations in being a pundit is that people often come up to me at a conference or send an e-mail message

e on
nt.

, read this chapter in the spirit in which it's presented. I don't know all the answers, and I certainly don't
king.

e good thing is that your decisions are not cast forever in stone. Architectural refactoring is hard, and we're

So far these narratives have loo
No

sde

The advice in this chapter is in many ways a repeat of the advice given in earlier chapters. I must admit tha
I've wondered whether this chapter was needed. However, I felt it was good to put all the discussion in context
now that, I hope, you have at least an outline of the full scope of the patterns in this book.

As
the Elves for counsel, for they will say both no and yes." While I'm not claiming any immortal knowledg
certainly unders

earc
fru
asking for advice on their architectural or process decisions. There's no way you can give particular advic
the basis of a five-minute description. I write this chapter with even less knowledge of your predicame

So
know your questions. Use this advice to prod your thinking, but don't use it as a replacement for your thin
In the end you have to make, and live with, the decisions yourself.

On
still ignorant of its full costs, but it isn't impossible. Here the best advice I can give is that, even if you dislike
the full story of extreme programming [Beck XP], you should still consider seriously three technical pract
continuous integra

ices:
tion [Fowler CI], test driven development [Beck TDD], and refactoring [Fowler

Refactoring]. These won't be a panacea, but they'll make it much easier for you to change your mind when you
cover you need to. And you will need to, unless you're either more fortunate, or more skillful, than anyone dis

I've met to date.

Starting with the Domain Layer

The start of the process is deciding which domain logic approach to go with. The three main contenders
are Transaction Script (110), Table Module (125), and Domain Model (116).

As I indicated in Chapter 2 (page 25), the strongest force that drives you through this trio is the complexity of

 domain logic, something currently impossible to quantify, or even qualify, with any degree of precision.
, the difficulty of the connection with a database.

e simplest of the three patterns is Transaction Script

the
But other factors also play in the decision, in particular

Th (110). It fits with the procedural model that most
people are still comfortable with. It nicely encapsulates the logic of each system transaction in a

comprehensible script. And it's easy to build on top of a relational database. Its great failing is that it doesn't
deal well with complex business logic, being particularly susceptible to duplicate code. If you have a simple
catalog application with little more than a shopping cart running off a basic pricing structure, then Transaction
Script (110) will fill the bill perfectly. However, as your logic gets more complicated your difficulties multiply
exponentially.

At the other end of the scale is the Domain Model (116). Hard-core object bigots like myself will have
application no other way. After all, if an application is simple enough to write with

 an
Transaction Scripts (110)

why shou
,

ld our immense intellects bother with such an unworthy problem? Also. my experiences lead me to
ve no doubt that with really complex domain logic nothing can handle this hell better than a rich Domain ha

Model (116). Once you get used to working with a Domain Model (116) even simple problems can be tackled
h ease. wit

Yet the Domain Model (116) has its faults. High on the list is the difficulty of learning how to use a domain
model. Object bigots often look down their noses at people who just don't get objects, but the consequence is
that a Domain Model (116) requires skill if it's to be done well—done poorly it's a disaster. The second big

ficulty of a Domain Modeldif (116) is its connection to a relational database. Of course, a real object zealot
esses this problem with the subtle flick of an object database. But for many, mostly nontechnical, reasons an

ase
any

ping patterns I describe is the result.

fin
object database isn't a possible choice for enterprise applications. The result is the messy relational datab
connection. Let's face it, object models and relational models don't fit well together. The complexity of m

the O/R mapof

Table Module (125) represents an attractive middle ground between these poles. It can handle domain logic
better than Transaction Scripts (110). Also, while it can't touch a real Domain Model (116) on handling
complex domain logic, it fits really well with a relational database—and many other things too. If you have an
environment such as .NET, where many tools orbit around the all-seeing Record Set (508), then Table
Module (125) works nicely by playing to the strengths of the relational database and yet representing a
reasonable factoring of the domain logic.

this argument we see that the tools you have also affect your architectIn ure. Sometimes you're able to choose
 tools based on the architecture, and in theory that's the way you should go. In practice, however, you often the

have to match your architecture to your tools. Of the three patterns Table Module (125) is the one wh
rises the most when you have tools that match it. It's a particularly strong choice for .NET environments, si
so much of the platform is geared around

ose star
nce

Record Set (508).

If you read the discussion of domain logic in Chapter 2, much of this will seem familiar. Yet I think it's worth
repeating here because I really do think this is the central decision. From here we go downward to the database
layer, but now the decisions are shaped by the context of your domain layer choice.

own to the Data Source Layer

.

D

Once you've chose your domain layer, you have to figure out how to connect it to your data sources. Your
decisions are based on your domain layer choice, so I'll tackle this in separate sections, driven by that choice

 Data Source for Transaction Script (110)

The simplest Transaction Scripts (110) contain their own database logic, but I avoid that even in the simples
cases. Separating the database delimits two parts that make sense as separate, so I make the separation even in
the simplest applications. The database patterns to choose from here are

t

Row Data Gateway (152) and Table
Data Gateway (144).

The

p
 choice between the two depends much on the facilities of your implementation platform and on where you
ect the application to go in the future. With a Row Data Gatewayex (152) each record is read into an object

with a clear and explicit interface. With Table Data Gateway (144) you may have less code to write since
don't need all the accessor code to get at the data, but you end up with a much more implicit interface that
relies on accessing a record set structure that's little more than a glorified map.

e key decision, however, lies in the

 you

rest of your platform. Having a platform that provides a lot of tools that
rk well with Record Set

Th
wo (508), particularly UI tools or transactional disconnected record sets, tilts you
decisively in the direction of a Table Data Gateway (144).

u usually don't need any of the other O/R mYo apping patterns in this context. The structural mapping issues
 pretty much absent since the in-memory structure maps to the database structure so well. You might are

consider a Unit of Work (184), but usually it's easy to keep track of what's changed in the script. You don't
need to worry about most concurrency issues because the script often corresponds almost exactly to a system
transaction. Thus, you can just wrap the whole script in a single transaction. The common exception is where
one request pulls data back for editing and the next request tries to save the changes. In this case Optim

istic

Offline Lock (416) is almost always the best choice. Not only is it easier to implement, it also usually fits
ers' expectations and avoids the problem of a hanging session leaving all sorts of things locked. us

 Data Source Table Module (125)

The main reason to choose Table Module (125) is the presence of a good Record Set (508) framework. In this

se mapping pattern that works well with Record Setscase you'll want a databa (508), and that leads you
xorably toward Table Data Gatewayine (144). These two patterns fit together as if it were a match made in
ven. hea

There's not really anything else you need to add on the data source side with this pattern. In the best cases
the Record Set (508) has some kind of concurrency control mechanism built in, which effectively turns it int
a

o
Unit of Work (184), further reducing hair loss.

 Data Source for Domain Model (116)

Now things get interesting. In many ways the big weakness of Domain Model (116) is that the connection to
the database is complicated. The degree of complication depends on the complexity of this pattern.

If your Domain Model (116) is fairly simple, say a couple of dozen classes that are pretty close to the

tabase, then an Active Recordda (160) makes sense. If you want to decouple things a bit, you can use
her Table Data Gatewayeit (144) or Row Data Gateway (152) to do that. Whether you separate or not isn't a

r

huge deal either way.

As things get more complicated, you'll need to consider Data Mappe (165). This is the approach that delivers

 the promise of keeping your Domain Modelon (116) as independent as possible of all the other layers.
But Data Mapper (165) is also the most complicated one to implement. Unless you either have a strong team

or y
a

ou can find some simplifications that make the mapping easier to do, I'd strongly suggest getting a
pping tool. m

Once you choose Data Mapper (165) most of the patterns in the O/R mapping section come into play. In
particular I heartily recommend

Unit of Work (184), which acts as a focal point for concurrency control.

 The Presentation Layer

In many ways the presentation is relatively independent of the choice of the lower layers. Your first question is

 take
re effort to program, but that's because they tend to be more sophisticated, not so much because of the
erent complexities of the technology.

s in this book, so if you choose one I don't really have anything
her to say.

whether to provide a rich-client interface or an HTML browser interface. A rich client will give you a nicer UI,
but then you need a certain amount of control and deployment of your clients. My preference is to pick an
HTML browser if you can get away with it and a rich client if that's not possible. Rich clients will usually
mo
inh

I haven't explored any rich-client pattern
furt

If you go the HTML route, you have to decide how to structure your application. I certainly recommend
the Model View Controller (330) as the underpinning for your design. That done, you're left with two
decisions, one for the controller and one for the view.

Your tooling may well make your choice for you. If you use Visual Studio, the easiest way to go is Page
Controller (333) and Template View (350). If you use Java, you have a choice of Web frameworks to consi
Popular at the moment is Struts, which will lead you to a

der.
Front Controller (344) and a Template View (350

 a

).

ven freer choice, I'd recommend Page ControllerGi (333) if your site is more document oriented, particularly
ou have a mix of static and dynamic pages. More complex navigation and UI lead you toward a Front if y

Controller (344)

On the view front the choice between Template View (350) and Transform View (361) depends on whether
your team uses server pages or XSLT in programming. Template Views (350) have the edge at the moment,

hough I rather like the added testability of Transform Viewalt (361). If you have the need to display a common
e with multiple looks and feels, you should consider Two Step Viewsit (365).

municate with the low ends on what kind of layers they are and whether they're
to be in the same proc ce is to have everything run in one process if you can—

ve to worry ab
yer with Remote Facade

How you com
always going

er layers dep
ess. My preferen

that way you don't ha out slow inter-process calls. If you can't do that, you should wrap your
domain la (388) and use Data Transfer Object (401) to communicate to the Web
server.

Some Technology-Specific Advice

In most of this book I'm trying to bring out the common experience of doing projects on many different

platforms. Experience with Forte, CORBA, and Smalltalk translates very effectively into developing wit
and .NET. The only reason I've concentrating on Java and .NET environments is that they look like the m
common platforms for enterprise application development in the future. (Although I'd like to see the
dynamically typed scripting languages, in particular Python and Ruby, give them a run for their money.)

h Java
ost

this section I want to apply the above advice to these two platforms. As soon as I do this, though, I'm in

Currently the big debate in the Java world is exactly how valuable Enterprise Java Beans are. After as many
 The d farewell concerts, the EJB 2.0 specification has finally appeared. But you don't

B to build u. You can do a great deal with
old

lterna E vary in terms of the patterns you're using, and again they break out by
ic.

you use Transaction Script

In
danger of dating myself. Technologies change much more rapidly than these patterns, so as you read
remember that I'm writing in early 2002, when everyone is saying that economic recovery is just around the
corner.

 Java and J2EE

final drafts as Who ha
need EJ a good J2EE application, despite what EJB vendors tell yo
POJOs (plain Java objects) and JDBC.

The design a tives for J2E
domain log

If (110) on top of some form of Gateway (466), the common approach with EJB at
the moment is to use session beans as a Transaction Script (110) and entity beans as a Row Data
Gateway (152). This is a pretty reasonable architecture if your gic is sufficiently modest. However,

ith such a beany approach is that it's hard to get server if you find you don't need
don't want to cough up the license fees. The non-EJB approach is a POJO for the Transaction

domain lo
one problem w rid of the EJB
it and you
Script (110) on top of either a Row Data Gateway (152) or a Table Data Gateway (144). If JDBC 2.0 row sets

ptance, that's a reason to use them as Record Setsget more acce (508) and that leads to a Table Data
Gateway (144). If you're not sure about EJB, you can use the non-EJB approach and wrap the entity beans
with session beans acting as Remote Facades (388).

If you're using a Domain Model (116), the current orthodoxy is to use entity beans. If your Domain
Model (116) is pretty simple and matches your database well, doing that makes reasonable sense and your
entity beans will then be Active Records (160). It's still good practice to wrap your entity beans with sess
beans acting as

ion
Remote Facades (388) (although you can also think of CMP as a Data Mapper (165)).

However, if your Domain Model (116) is more complex, you want it to be entirely independent of the EJB
ucture so that you can write, run, and test your domain logic without having to deal with the vagaries of the
B container. In that model I would use POJOs for the Domain Model

str
EJ (116) and wrap them with session
beans acting as Remote Facades (388). If you choose not to use EJB, I would run the whole app in the Web
server and avoid any remote calls between presentation and domain. If you're using POJO Domain
Model (116), I would also use POJOs for the Data Mappers (165)—either using an O/R mapping tool o
rolling something myself if I felt up to it.

r

If you use entity beans in any context, avo erface. I never understood the point of
 beans a rem ace in the first place. Entity beans are usually used as Domain Models

id giving them a remote int
giving entity ote interf (116)

a Gatewayor as Row Dat s (152). In either case they need a fine-grained interface to play those roles well. As I
led into you st always be coarse-grained, so keep
eans local on [Alur et al.

hope I've dril
 b

r psyche, however, that a remote interface mu
Composite Entity pattern fromyour entity ly. (The exception to this is the], which is

 way of using e ry useful.) a different ntity beans and not one I find ve

At the moment the Table Module (125) isn't common in the Java world. It will be interesting to see if more
ling surrounds the JDBC row set—if it does this pattern could become a viable approach. In this case the too

POJO approach fits best, although you can also wrap the Table Module (125) with session beans acting
as Remote Facades (388) and returning Record Sets (508).

 .NET

Looking at .NET, Visual Studio, and the history of application development in the Microsoft world, the
dominant pattern is Table Module (125). Although object bigots tend to dismiss this as meaning only that
Microsofties don't get objects, Table Module (125) does present a valuable compromise between Transaction
Script (110) and Domain Model (116), with an impressive set of tools that take advantage of the ubiquitous
data set acting as a Record Set (508)

As a result Table Module (125) has to be the default choice for this platform. Indeed, I see no point at all in
using Transaction Scripts (110) except in the very simplest of cases, and even then they should act on and
return data sets.

This doesn't mean that you can't use Domain Model (116). Indeed, you can build a Domain Model (116) just
as easily in .NET as you can in any other OO r, the tools don't give you the extra help

r Table Modules
 environment. Howeve

they do fo (125), so I would tolerate more complexity before I felt the need to shift to
odela Domain M (116).

ype in .NET is all about We b services inside an application, I'd
 as in Java, as a presentation to ere's no real reason to make the

domain logic into sep es in a .NET application, so Remote Facade

The current h b services, but I wouldn't use We

allow applications to integrate. Thuse them,
Web server and the arate process (388) is less

ored Procedures

There's usually a fair bit of debate over stored procedures. They're often the fastest way to do things since they
run in the same process as your database and thus reduce the laggardly remote calls. However, most stored
procedure environments don't give you good structuring mechanisms for your stored procedures, and stored
procedures will lock you into a particular database vendor. (A nice way to avoid these problems is Oracle's
approach of allowing you to run Java applications inside your database process; this is equivalent to putting
your whole domain logic layer inside the database. For the moment this still leaves you with some vendor
lockin, but it at least reduces porting costs.)

For the reasons of modularity and portability a lot of people avoid using stored procedures for business logic. I
tend to side with that view unless there's a strong performance gain to be had, which, to be fair, there often is.
In that case I take a method from the domain layer and happily move it into a stored procedure. I do this only
on clear performance problem areas, treating it as an optimization step rather than as an architectural principle.
([Nilsson

useful here.

 St

] presents a good argument for using stored procedures more widely.)

A common way of using stored procedures is to control access to a database, along the lines of a Table Data
Gateway (144). I don't have any strong feelings about whether or not to do this, and from what I've seen there's
no strong reasons either way. In any case I prefer to isolate the database access with the same patterns, whether
database access is through stored procedures or more regular SQL.

 Web Services

As I write this, the general consensus among pundits is that Web s
system integrators out of business, but I'm not holding my breath.
play a huge role because they're about application integration rathe

ervices will make reuse a reality and drive
Within these patterns Web services don't
r than application construction. You

ouldn't try to break up a single application into Web services that talk to each other unless you really need
 Rather, build your application and expose various parts of it as Web services, treating those Web services

emote Facades

sh
to.
as R (388). Above all, don't let all the buzz about how easy it is to build Web services make you
forget about the First Law of Distributed Object Design (page 89) .

Althou ervices synchronously, rather like an XML RPC call, I
prefer them as asynchronous and message based. While I don't have any patterns for that here (this book is big
enough ynchronous messaging in the next few years.

Othe

I've bui ary layers, but my approach to layering isn't the only one that makes
sense. Other good architectural books have layering schemes, and they all have value. It's worth looking at
these o have here. You may find they make more sense for your
application.

First up model, which is discussed in [Brown et al

gh most published examples I've seen use Web s

 as it is), I expect that we'll see some patterns for as

r Layering Schemes

lt my discussion around three prim

ther schemes and comparing them to what I

 is what I'll call the Brown .] (see Table 8.1). This model has
five layers: presentation, controller/mediator, domain, data mapping, and data source. Essentially it places
additio g layers between the basic three layers. The controller/mediator mediates between the
presentation and domain layers, while the data mapping layer mediates between the domain and data source
la ers

I find that the mediating layers are useful some of the time but not all of the time, so I describe them in terms
of patterns. The Application Controller

nal mediatin

y

.

 (379) is the mediator between the presentation and domain, and
the Data Mapper (165) is the mediator between the data source and the domain. For organizing this book, I've
described Application Controller (379) in the presentation section (Chapter 14) and Data Mapper (165) in the
data source section (Chapter 10).

Table 8.1. Brown Layers
Brown Fowler
Presentation Presentation
Controller/mediator Presentation (Application Controller (379))
Domain Domain
Data mapping Data source (Data Mapper (165))
Data source Data source

For me, then, the addition of mediating layers, frequently but not always useful, represents an optional extra in
the design. My approach is to always think of the three base layers, see if any of them is getting too complex,
and if so add the mediating layer to separate the functionality.

Another good layering scheme for J2EE appears in CoreJ2EE patterns [Alur et al.] (see Table 8.2). Here the

layers are client, presentation, business, integration, and resource. Simple correspondences exist for the
siness and integration layers. The resource layer comprises external services that the integration layer

tween the part that runs on the client
ful split, but again it's not one that's

hitect [Kirtland

bu
connects to. The main difference is that they split the presentation layer be
(client) and the part that runs on a server (presentation). This is often a use

eded all the time.ne

The Microsoft DNA arc] defines three layers: presentation, business, and data access, that
correspond pretty directly to the three layers I use here (see Table 8.3). The biggest shift occurs in the way that
data is passed up from the data access layers. In Microsoft DNA all the layers operate on record sets that result
from SQL queries issued by the data access layer. This introduces an apparent coupling in that both the
business and the presentation layers know about the database.

Table 8.2. Core J2EE Layers
Core J2EE Fowler
Clien Presentation that runs on client (e.g., rich-client systems) t
Presentation Presentation that runs on server (e.g., HTTP handlers, server pages)
Business Domain
Integration Data source
Resource External resource that data source communicates with

Table 8.3. Microsoft DNA Layers
Microsoft DNA Fowler
Presentation Presentation
Business Domain
Data access Data source

The way I look at this is that in DNA the record set acts as a Data Transfer Object (401) between layers. The

ain layer is structured in the form of Table Modules

business layer can modify the record set on its way up to the presentation or even create one itself (that is
rare). Although this form of communication is in many ways unwieldy, it has the big advantage of allowing
the presentation to use data-aware GUI controls, even on data that's been modified by the business layer.

n this case the domI (125) and the data source layer

s Table Data Gatewaysuse (144).

[Marinescu] has five layers (see Table 8.4). The presentation is split into two layers, reflecting the separation
of an Application Controller (379). The domain is also split, with a Service Layer (133) built on a Domain
Model (116), reflecting the common idea of splitting a domain layer into two parts. This is a common
approach, reinforced by the limitations of EJB as a Domain Model (116) (see page 118).

Table 8.4. Marinescu Layers
Marinescu Fowler
Presentation Presentation
Application Presentation (Application Controller (379))
Services Domain (Service Layer (133))
Domain Domain (Domain Model (116))
Persistence Data source

The idea of splitting a services layer from a domain layer is based on a separation of workflow logic from pure

domain logic. The services layer typically includes logic that's particular to a single use case and also some
communication with other infrastructures, such as messaging. Whether to have separate services and domain
layers is a matter some debate. I tend to look as it as occasionally useful rather than mandatory, but designers I
respect disagree with me on this.

[Nilsson] uses one of the more complex layering schemes (see Table 8.5). Mapping to this scheme is made a
bit more complex by the fact that Nilsson uses stored procedures extensivel, and encourages domain logic in
them for performance reasons. I'm uncomfortable with putting domain logic in stored procedures, as it can

ke an application much harder to maintain. On occasion, however, it's a valuable optimization technique.
Nilsson's stored procedure layers contain both data source and domain logic.

Like [Marinescu

ma

], Nilsson uses separate application and domain layers for domain logic. He suggests that you
can skip the domain layer in a small system, which is similar to my view that a Domain Model (116) is less
worthwhile for smaller systems.

Table 8.5. Nilsson Layers
Nilsson Fowler
Consumer Presentation
Consumer helper Presentation (Application Controller (379))
Application Domain (Service Layer (133))
Domain Domain (Domain Model (116))
Persistence access Data source
Public stored procedures Data source (may include some domain)
Private stored procedures Data source (may include some domain)

Part 2: The Patterns

 Chapter 9. Domain Logic Patterns

Chapter 10. Data Source Architectural Patterns

Chapter 11. Object-Relational Behavioral Patterns

Chapter 12. Object-Relational Structural Patterns

Chapter 13. Object-Relational Metadata Mapping Patterns

Chapter 14. Web Presentation Patterns

Chapter 15. Distribution Patterns

Chapter 16. Offline Concurrency Patterns

Chapter 17. Session State Patterns

Chapter 18. Base Patterns

References

hapteC r 9. Domain Logic Patterns

Transaction Script

Domain Model

Table Module

Service Layer

ransaction ScriptT

ch procedure handles a single request fOrganizes business logic by procedures where ea rom the presentation.

st bMo
o

usiness applications can be thought of as a series of transactions. A transaction may view some
rmation as organized in a particular way, another will make changes to it. Each interaction between a

y involve many steps of validations and calculations.

ase wrapper. Each transaction will have its own Transaction Script, although
mmon subtasks can be brok n into subprocedures.

update

transaction is particularly

on't need to
ase, munge,

inf
client system and a server system contains a certain amount of logic. In some cases this can be as simple as
displaying information in the database. In others it ma

A Transaction Script organizes all this logic primarily as a single procedure, making calls directly to the
database or through a thin datab

eco

 How It Works

With Transaction Script the domain logic is primarily organized by the transactions that you carry out with the

nd system. If your need is to book a hotel room, the logic to check room availability, calculate rates, a
the database is found inside the Book Hotel Room procedure.

For simple cases there isn't much to say about how you organize this. Of course, as with any other program

s in a way that makes sense. Unless the you should structure the code into module
complicated, that won't be much of a challenge. One of the benefits of this approach is that you d

oing. Your task is to get the input, interrogate the databworry about what other transactions are d
and save your results to the database.

Where you put the Transaction Script will depend on how you organize your layers. It may be in a server page,

n Scripts as much as you
es separate from those that

s to any

on is to have several
ction Scripts in a single class, where each class defines a subject area of related Transaction Scripts.

s is straightforward and the best bet for most cases. The other way is to have each Transaction Script in its
n class (Figure 9.1

a CGI script, or a distributed session object. My preference is to separate Transactio
 subroutines; better still, put them in classcan. At the very least put them in distinct

handle presentation and data source. In addition, don't have any calls from the Transaction Script
presentation logic; that will make it easier to modify the code and test the Transaction Scripts.

rganize your Transaction Scripts into classes in two ways. The most commYou can o
Transa
Thi
ow), using the Command pattern [Gang of Four]. In this case you define a supertype for

u to manipulate instances of scripts as objects at runtime, although I've rarely seen a
ed to do this with the kinds of systems that use Transaction Scripts to organize domain logic. Of course, you
n ignore classes completely in many languages and just use global functions. However, you'll often find that

your commands that specifies some execute method in which Transaction Script logic fits. The advantage of
this is that it allows yo
ne
ca
instantiating a new object helps with threading issues as it makes it easier to isolate data.

Figure 9.1. Using commands for Transaction Script.

I use the term Transaction Script because most of the time you'll have one Transaction Script for each database

 to the first approximation.

or applications with only
 in understanding.

f these problems, but more complex business domains need to build
ain Model

transaction. This isn't a 100 percent rule, but it's true

 When to Use It

The glory of Transaction Script is its simplicity. Organizing logic this way is natural f
a small amount of logic, and it involves very little overhead either in performance or

As the business logic gets more complicated, however, it gets progressively harder to keep it in a well-
designed state. One particular problem to watch for is its duplication between transactions. Since the whole
point is to handle one transaction, any common code tends to be duplicated.

Careful factoring can alleviate many o
a Dom (116). A Domain Model (116) will give you many more options in structuring the code,

reasing readability and decreasing duplication. inc

t's hard to quantify the cI

Yo
utover level, especially when you're more familiar with one pattern than the other.

u can refactor a Transaction Script design to a Domain Model (116) design, but it's a harder change than it
erwise needs to be. Therefore, an early shot is often the best way to move forward.

ever much of an object bigot you become, don't rule out Transaction Script. There are a lot of simple
blems out there, and a simple solution will get you up and running much faster.

d others that talk about domain logic, I'm going to use the same problem as an illustration.
 problem statement several times, I'm just putting it in here.

,
 you pay me a retainer to be available that year. Even if you pay me some ridiculous fee today, I

y not be able to put it on my books right away because the service is to be performed over the course of a
ar. One approach might be to count only one-twelfth of that fee for each month in the year, since you might

e rules for revenue recognition are many, various, and volatile. Some are set by regulation, some by
fessional standards, and some by company policy. Revenue tracking ends up being quite a complex

 the revenue right away. If it's a spreadsheet, you can book one-third
ay, one-third in sixty days, and one-third in ninety days. If it's a database, you can book one-third today,

e-third in thirty days, and one-third in sixty days. There's no basis for these rules other than my own fevered

ion. Each contract has multiple revenue
recognitions that indicate when the various parts of the revenue should be recognized.

oth

How
pro

 The Revenue Recognition Problem

For this pattern, an
To avoid typing the

Revenue recognition is a common problem in business systems. It's all about when you can actually count the
money you receive on your books. If I sell you a cup of coffee, it's a simple matter: I give you the coffee, I
take your money, and I count the money to the books that nanosecond. For many things it gets complicated
however. Say
ma
ye
pull out of the contract after a month when you realize that writing has atrophied my programming skills.

Th
pro
problem.

I don't fancy delving into the complexity right now, so instead we'll imagine a company that sells three kinds
of products: word processors, databases, and spreadsheets. According to the rules, when you sign a contract
for a word processor you can book all
tod
on
imagination. I'm told that the real rules are equally rational.

Figure 9.2. A conceptual model for simplified revenue recognit

Example: Revenue Recognition (Java)

This example uses two transaction scripts: one to calculate the revenue recognitions for a contract and one to

tell how much revenue on a contract has been recognized by a certain date. The database structure has three

EATE TABLE products (ID int primary key, name varchar, type varchar)
EATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned

e second I sum up the amounts.

n the

tables: one for the products, one for the contracts, and one for the revenue recognitions.

CR
CR
date)
CREATE TABLE revenueRecognitions (contract int, amount decimal, recognizedOn date,
 PRIMARY KEY (contract, recognizedOn))

The first script calculates the amount of recognition due by a particular day. I can do this in two stages: In the
first I select the appropriate rows in the revenue recognitions table; in th

Many Transaction Script designs have scripts that operate directly on the database, putting SQL code i
procedure. Here I'm using a simple Table Data Gateway (144) to wrap the SQL queries. Since this example is
so simple, I'm using a single gateway rather than one for each table. I can define an appropriate find method o
the gateway.

class Gat

n

eway...

 findRecognitionsFor(long contractID, MfDate asof) throws

 PreparedStatement stmt = db.prepareStatement(findRecognitionsStatement);

 }
 private static final String findRecognitionsStatement =

ontractNumber, MfDate asOf) {
 Money result = Money.dollars(0);
 try {

SQLException e) {throw new ApplicationException (e);
 }
 }

ion is as simple as this, you can replace the in-memory script with a call to a SQL statement
t uses an aggregate function to sum the amounts.

 public ResultSet
LException{ SQ

 stmt = db.prepareStatement(findRecognitionsStatement);
 stmt.setLong(1, contractID);
 stmt.setDate(2, asof.toSqlDate());
 ResultSet result = stmt.executeQuery();
 return result;

 "SELECT amount " +
 "FROM revenueRecognitions " +
 "WHERE contract = ? AND recognizedOn <= ?";
 private Connection db;

I then use the script to sum up based on the result set passed back from the gateway.

class RecognitionService...

 public Money recognizedRevenue(long c

 ResultSet rs = db.findRecognitionsFor(contractNumber, asOf);
 while (rs.next()) {
 result = result.add(Money.dollars(rs.getBigDecimal("amount")));
 }
 return result;
 }catch (

When the calculat
tha

For calculating the revenue recognitions on an existing contract, I use a similar split. The script on the service
carries out the business logic.

class RecognitionService...

 public void calculateRevenueRecognitions(long contractNumber) {
 try {
 ResultSet contracts = db.findContract(contractNumber);

 (contractNumber, allocation[0], recognitionDate);
 db.insertRecognition

ion(contractNumber, totalRevenue, recognitionDate);
 }else if (type.equ s("D")) {

y[] allocation = totalRevenue.allocate(3);
nsertRecognition

 (contractNumber, allocation[0], recognitionDate);
 db.insertRecognition

 contracts.next();
 Money totalRevenue = Money.dollars(contracts.getBigDecimal("revenue"));
 MfDate recognitionDate = new MfDate(contracts.getDate("dateSigned"));
 String type = contracts.getString("type");
 if (type.equals("S")){
 Money[] allocation = totalRevenue.allocate(3);
 db.insertRecognition

 (contractNumber, allocation[1], recognitionDate.addDays(60));
 db.insertRecognition
 (contractNumber, allocation[2], recognitionDate.addDays(90));
 }else if (type.equals("W")){
 db.insertRecognit

al
 Mone
 db.i

 (contractNumber, allocation[1], recognitionDate.addDays(30));
 db.insertRecognition
 (contractNumber, allocation[2], recognitionDate.addDays(60));
 }
 }catch (SQLException e) {throw new ApplicationException (e);
 }
 }

Notice that I'm using Money (488) to carry out the allocation. When splitting an amount three ways it's very
easy to lose a penny.

he

wayT Table Data Gate (144) provides support on the SQL. First there's a finder for a contract.

areStatement(findContractStatement);
 stmt.setLong(1, contractID);
 ResultSet result = stmt.executeQuery();

c final String findContractStatement =
 "SELECT * " +

cts c, products p " +
? AND c.product = p.ID";

ass Gateway...

class Gateway...

 public ResultSet findContract (long contractID) throws SQLException{
 PreparedStatement stmt = db.prep

 return result;
 }
 private stati

 "FROM contra
 "WHERE ID =

And secondly there's a wrapper for the insert.

cl

 public void insertRecognition (long contractID, Money amount, MfDate asof) throws
 SQLException {
 PreparedStatement stmt = db.prepareStatement(insertRecognitionStatement);
 stmt.setLong(1, contractID);
 stmt.setBigDecimal(2, amount.amount());
 stmt.setDate(3, asof.toSqlDate());
 stmt.executeUpdate();

 }
 private static final String insertRecognitionStatement =

 "INSERT INTO revenueRecognitions VALUES (?, ?, ?)";

In a Java system the recognition service might be a regular class or a session bean.

As you compare this to the example in Domain Model (116), unless your mind is as twisted as mine, you'll
probably be thinking that this is much simpler. The harder thing to imagine is what happens as the rules get
more complicated. Typical revenue recognition rules get very involved, varying not just by product but also by

te (if the contract was signed before April 15 this rule applies). It'da s difficult to keep a coherent design with
ansaction Script once things get that complicated, which is why object bigots like me prefer using a Domain Tr

Model (116) in these circumstances.

Domain Model

An object model of the domain that incorporates both behavior and data.

At its worst business logic can be very complex. Rules and logic describe many different cases and slants of
behavior, and it's this complexity that objects were designed to work with. A Domain Model creates a web of
interconnected objects, where each object represents some meaningful individual, whether as large as a
corporation or as small as a single line on an order form.

 How It Works

Putting a Domain Model in an application involves inserting a whole layer of objects that model the business
area you're working in. You'll find objects that mimic the data in the business and objects that capture the rules
the business uses. Mostly the data and process are combined to cluster the processes close to the data they
work with.

An OO domain model will often look similar to a database model, yet it will still have a lot of differences. A

Domain Model mingles data and process, has multivalued attributes and a complex web of associations, and
uses inheritance.

As a result I see two styles of Domain Model in the field. A simple Domain Model looks very much like the
database design with mostly one domain object for each database table. A rich Domain Model can look
different from the database design, with inheritance, strategies, and other [Gang of Four] patterns, and
complex webs of small interconnected objects. A rich Domain Model is better for more complex logic, but is
harder to map to the database. A simple Domain Model can use Active Record (160), whereas a rich Domain
Model requires Data Mapper (165).

Since the behavior of the business is subject to a lot of change, it's important to be able to modify, build, and
test this layer easily. As a result you'll want the minimum of coupling from the Domain Model to other layers
in the system. You'll notice that a guiding force of many layering patterns is to keep as few dependencies as
possible between the domain model and other parts of the system.

With a Domain Model there are a number of different scopes you might use. The simplest case is a single-user
application where the whole object graph is read from a file and put into memory. A desktop application may
work this way, but it's less common for a multitiered IS application simply because there are too many objects.
Putting every object into memory consumes too much memory and takes too long. The beauty of object-
oriented databases is that they give the impression of doing this while moving objects between memory and
disk.

ase you have to do this yourself. Usually a session will involve pulling in an object graph
all the objects involved in it. This will certainly not be all objects and usually not all the classes. Thus, if

 contracts you might pull in only the products referenced by contracts within your
venue recognition objects, you may not
is governed by your database mapping

e server state somewhere,
e 81).

mon concern with domain logic is bloated domain objects. As you build a screen to manipulate orders
'll notice that some of the order behavior is only needed only for it. If you put these responsibilities on the
er, the risk is that the Order class will become too big because it's full of responsibilities that are only used

Without an OO datab
of
you're looking at a set of
working set. If you're just performing calculations on contracts and re

emory pull in any product objects at all. Exactly what you pull into m
objects.

If you need the same object graph between calls to the server, you have to save th
which is the subject of the section on saving server state (pag

A com
you
ord
in a single use case. This concern leads people to consider whether some responsibility is general, in which
case it should sit in the order class, or specific, in which case it should sit in some usage-specific class, which
might be a Transaction Script (110) or perhaps the presentation itself.

The problem with separating usage-specific behavior is that it can lead to duplication. Behavior that's

arated from the order is harder to find, so people tend to not see it and duplicate it instead. Duplication can
ickly lead to more complexity and inconsistency, but I've found that bloating occurs much less frequently

es a

sep
qu
than predicted. If it does occur, it's relatively easy to see and not difficult to fix. My advice is not to separate
usage-specific behavior. Put it all in the object that's the natural fit. Fix the bloating when, and if, it becom
problem.

 Java Implementation

There's always a lot of heat generated when people talk about developing a Domain Model in J2EE. Many of
e entity beans to develop a domain

roblems with this approach, at least with the current (2.0) specification.

, I would say there's
ut CMP. However, CMP is a limited form of object-relational mapping,

ou need in a rich Domain Model.

e-entrant. That is, if you call out from one entity bean into another object, that other
an't call back into the first entity bean. A rich Domain Model often uses re-

 hard to spot re-entrant behavior. As a result,
, it very much

 beans may be remotable

r entity beans in a

 with entity beans you need a container and a database connected. This will increase build times and
since the tests have to execute against a database. Entity beans are also

on—it's amazing how
 that
ng

sh Mackenzie, and I gave them one: POJOs (plain old Java objects). A
quick to build, can run and test outside an EJB container, and is

t encourage you to use them).

ave pretty modest domain
lationship with the database: where there's

gic with inheritance, strategies,
odel and Data Mapper

the teaching materials and introductory J2EE books suggest that you us
s pmodel, but there are some seriou

Entity beans are most useful when you use Container Managed Persistence (CMP). Indeed
little point in using entity beans witho
and it can't support many of the patterns that y

Entity beans can't be r
object (or any object it calls) c
entrancy, so this is a handicap. It's made worse by the fact that it's
some people say that one entity bean should never call another. While this avoids re-entrancy
cripples the advantages using a Domain Model.

A Domain Model should use fine-grained objects with fine-grained interfaces. Entity

o version 2.0 they had to be). If you have remote objects with fine-grained interfaces you get terrible (prior t
performance. You can avoid this problem quite easily by only using local interfaces for you

 Domain Model.

To run
also increase the time to do test runs

ky to debug. tric

The alternative is to use normal Java objects, although this often causes a surprised reacti
many people think that you can't run regular Java objects in an EJB container. I've come to the conclusion

ts because they haven't got a fancy name. That's why, while preparipeople forget about regular Java objec
lk in 2000, Rebecca Parsons, Jofor a ta

POJO domain model is easy to put together, is
ependent of EJB (maybe that's why EJB vendors don'ind

odel works if you hMy view on the whole is that using entity beans as a Domain M
If so, you can build a Domain Model that has a simple relogic.

mostly one entity bean class per database table. If you have a richer domain lo
her more sophisticated patterns, you're better off with a POJO domain mand ot (165),

in Model complicated enough to

hen to Use It

 both the
r

 have complicated and everchanging business rules involving validation, calculations, and
rivations, chances are that you'll want an object model to handle them. On the other hand, if you have simple

using a commercial tool or with a homegrown layer.

The biggest frustration for me with the use of EJB is that I find a rich Doma
deal with, and I want to keep as independent as possible from the details of the implementation environment.

 that I have to worry about both theEJB forces itself into your thinking about the Domain Model, which means
domain and the EJB environment.

 W

If the how for a Domain Model is difficult because it's such a big subject, the when is hard because of
vagueness and the simplicity of the advice. It all comes down to the complexity of the behavior in you
ystem. If yous
ed

not-null checks and a couple of sums to calculate, a Transaction Script (110) is a better bet.

One factor that comes into this is comfortable used the development team is with domain objects. Learning

any articles on the
 Domain Model, but

how to design and use a Domain Model is a significant exercise—one that has led to m
o a"paradigm shift" of objects use. It certainly takes practice and coaching to get used t

Scriptonce used to it I've found that few people want to go back to a Transaction (110) for any but the

you're using Domain Model, my first choice for database interaction is Data Mapper

simplest problems.

If (165). This will help

l independent from the database and is the best approach to handle cases where the
main Model and database schema diverge.

you use Domain Model you may want to consider Service Layer

keep your Domain Mode
Do

en Wh (133) to give your Domain Model a

most any book on OO design will talk about Domain Models, since most of what people refer to as OO

more distinct API.

 Further Reading

Al
development is centered around their use.

If you're looking for an introductory book on OO design, my current favorite is [Larman]. For examples of
Domain Model take a look at [Fowler AP]. [Hay] also gives good examples in a relational context. To b
good Domain Model you should have an understanding of conceptual thinking about objects. For this I've
always liked [

uild a

Martin and Odell]. For an understanding of the patterns you'll see in a rich Domain Model, o
any other OO system, you must read [

r
Gang of Four].

Eric Evans is currently writing a book [Evans] on building Domain Models. As I write this I've seen only an

e of the biggest frustrations of describing a Domain Model is the fact that any example I show is necessarily
ple so you can understand it; yet that simplicity hides the Domain Model's strength. You only appreciate
se strengths when you have a really complicated domain.

 even if the example can't do justice to why you would want a Domain Model, at least it will give you a
se of what one can look like. Therefore, I'm using the same example (page 112) that I used for Transaction

early manuscript, but it looks very promising.

 Example: Revenue Recognition (Java)

nO
sim
the

But
sen
Script (110), a little matter of revenue recognition.

An immediate thing to notice is that every class, in this small example (Figure 9.3) contains both behavior and

 value is

nt;
 private MfDate date;

data. Even the humble Revenue Recognition class contains a simple method to find out if that object's
recognizable on a certain date.

class RevenueRecognition...

 private Money amou

 public RevenueRecognition(Money amount, MfDate date) {
 this.amount = amount;

 this.date = date;
 }
 public Money getAmount() {
 return amount;
 }
 boolean isRecognizableBy(MfDate asOf) {

sses for a Domain Model.

 return asOf.after(date) || asOf.equals(date);
 }

Figure 9.3. Class diagram of the example cla

Calculating how much revenue is recognized on a particular date involves both the contract and revenue
recognition classes.

class Contract...

 private List revenueRecognitions = new ArrayList();
 public Money recognizedRevenue(MfDate asOf) {
 Money result = Money.dollars(0);
 Iterator it = revenueRecognitions.iterator();
 while (it.hasNext()) {
 RevenueRecognition r = (RevenueRecognition) it.next();
 if (r.isRecognizableBy(asOf))
 result = result.add(r.getAmount());
 }
 return result;
 }

t tasks.
is is what often leads to the complaint that with OO programs you spend a lot of time hunting around from

 common thing you find in domain models is how multiple classes interact to do even the simplesA
Th
class to class trying to find them. There's a lot of merit to this complaint. The value comes as the decision on
whether something is recognizable by a certain date gets more complex and as other objects need to know.
Containing the behavior on the object that needs to know avoids duplication and reduces coupling between the

different objects.

Looking at calculating and creating these revenue recognition objects further demonstrates the notion of lots of
little objects. In this case the calculation and creation begin with the customer and are handed off via the
product to a strategy hierarchy. The strategy pattern [Gang of Four] is a well-known OO pattern that allows
you combine a group of operations in a small class hierarchy. Each instance of product is connected to a s
instance of recognition strategy, which determines which a

ingle
lgorithm is used to calculate revenue recognition. In

s case we have two subclasses of recognition strategy for the two different cases. The structure of the code
ks like this:

 }

class Product.

 private String name;

 public Product(String name, RecognitionStrategy recognitionStrategy) {

 public tatic Product newSpreadsheet(String name) {
 Product(name, new ThreeWayRecognitionStrategy(60, 90));

public static Product newDatabase(String name) {
 return new Product(name, new ThreeWayRecognitionStrategy(30, 60));

 abstract void calculateRevenueRecognitions(Contract contract);

thi
loo

class Contract...

 private Product product;
 private Money revenue;
 private MfDate whenSigned;
 private Long id;
 public Contract(Product product, Money revenue, MfDate whenSigned) {
 this.product = product;
 this.revenue = revenue;
 this.whenSigned = whenSigned;

..

 private RecognitionStrategy recognitionStrategy;

 this.name = name;
 this.recognitionStrategy = recognitionStrategy;
 }
 public static Product newWordProcessor(String name) {
 return new Product(name, new CompleteRecognitionStrategy());
 }

s
 return new
 }

 }

class RecognitionStrategy...

class CompleteRecognitionStrategy...
 void calculateRevenueRecognitions(Contract contract) {
 contract.addRevenueRecognition(new RevenueRecognition(contract.getRevenue(),
 contract.getWhenSigned()));
 }
class ThreeWayRecognitionStrategy...

 private int firstRecognitionOffset;
 private int secondRecognitionOffset;

 void calculateRevenueRecognitions(Contract contra t) {
 Money[] allocation = contract.getRevenue().allocate(3);

t)));

 public ThreeWayRecognitionStrategy(int firstRecognitionOffset,
 int secondRecognitionOffset)
 {
 this.firstRecognitionOffset = firstRecognitionOffset;
 this.secondRecognitionOffset = secondRecognitionOffset;
 }

c

 contract.addRevenueRecognition(new RevenueRecognition
 (allocation[0], contract.getWhenSigned()));
 contract.addRevenueRecognition(new RevenueRecognition
 (allocation[1], contract.getWhenSigned().addDays(firstRecognitionOffse

 contract.addRevenueRecognition(new RevenueRecognition
 (allocation[2], contract.getWhenSigned().addDays(secondRecognitionOffset)));
 }

The great value of the strategies is that they provide well-contained plug points to extend the application.

ding a new revenue recognition algorithm involves creating a new subclass and overriding the
lculateRevenueRecognitions method. This makes it easy to extend the algorithmic behavior of the

reate products, you hook them up with the appropriate strategy objects. I'm doing this in my test
de.

ivate Product word = Product.newWordProcessor("Thinking Word");
ivate Product calc = Product.newSpreadsheet("Thinking Calc");

 private Product db = Product.newDatabase(hinking DB");

Once everything is set up, calculating the recognitions requires no knowledge of the strategy subclasses.

class Contract...

 public void calculateRecognitions() {
 product.calculateRevenueRecognitions(this);
 }

ass Product ..

alified
ves much of the conditional behavior. You'll notice that there are no conditionals
p the decision path when you create the products with the appropriate strategy.

s, the algorithms just follow the path. Domain models work very well
factored out into the object

 algorithms and into the relationships between objects. The
ar the logic, the more you find the same network of relationships used by different parts of the

em. Any algorithm that's dependent on the type of recognition calculation can follow this particular

at I've shown nothing about how the objects are retrieved from, and written to, the
atabase is always somewhat

, so I'm chickening out and not providing an example. Second, in many ways the whole point of a Domain
odel is to hide the database, both from upper layers and from people working the Domain Model itself.

Ad
ca
application.

When you c
co

class Tester...

 pr
 pr

 "T

cl

.

 void calculateRevenueRecognitions(Contract contract) {
 recognitionStrategy.calculateRevenueRecognitions(contract);
 }

e OO habit of successive forwarding from object to object moves the behavior to the object most quTh
to handle it, but it also resol

this calculation. You set uin
Once everything is wired together like thi
when you have similar conditionals because the similar conditionals can be
structure i

re simil
tself. This moves complexity out of the

mo
stsy

network of objects.

tice in this example thNo
database. This is for a couple of reasons. First, mapping a Domain Model to a d
hard
M
Thus, hiding it here reflects what it's like to actually program in this environment.

Table Module

A single instance that handles the business logic for all rows in a database table or view.

hat uses it. The

th the behavior tOne of the key messages of object orientation is bundling the data wi
traditional object-oriented approach is based on objects with identity, along the lines of Domain Model (116).
Thus, if we have an Employee class, any instance of it corresponds to a particular employee. This scheme

nce we have a reference to an employee, we can execute operations, follow relationshipw rks well because oo s,
and gather data on him.

One of the problems with Domain Model (116) is the interface with relational databases. In many ways this
approach treats the relational database like a crazy aunt who's shut up in an attic and whom nobody wants to

t you often need considerable programmatic gymnastics to pull data in and out of the ta k about. As a resull

abase, and a single instance of a
 distinction with Domain

database, transforming between two different representations of the data.

A Table Module organizes domain logic with one class per table in the dat

 the data. The primaryclass contains the various procedures that will act on
Model (116) is that, if you have many orders, a Domain Model (116) will have one order object per order

s.

th of Table Module is that it allows you to package the data and behavior together and at the same
s of a relational database. On the surface Table Module looks much like a regular

rticular employee you have to pass in some kind of
ntity reference. Often this will be the primary key used in the database.

ally

while a Table Module will have one object to handle all order

 How It Works

 strengThe
e play to the strengthtim

object. The key difference is that it has no notion of an identity for the objects it's working with. Thus, if you
want to obtain the address of an employee, you use a method like anEmployeeModule.getAddress(long

ployeeID). Every time you want to do something to a paem
ide

ually you use Table Module with a backing data structure that's table oriented. The tabular data is normUs
the result of a SQL call and is held in a Record Set (5

 an explicit method-based interface that acts on that
08) that mimics a SQL table. The Table Module gives

 data. Grouping the behavior with the table gives you
f encapsulation in that the behavior is close to the data it will work on.

you
many of the benefits o

ll need behavior from multiple Table Modules in order to do some useful work. MOften you'
ltiple T

any times you see
able Modules operating on the same Record Setmu (508) (Figure 9.4).

Figure 9.4. Several Table Modules can collaborate with a single Record Set (508).

f one for each table in the database. However, if you
 Modules for them as well.

Module may be an instance or it may be a collection of static methods. The advantage of an
ance is that it allows you to initialize the Table Module with an existing record set, perhaps the result of a

is the use oThe most obvious example of Table Module

have interesting queries and views in the database you can have Table

The Table
inst
query. You can then use the instance to manipulate the rows in the record set. Instances also make it possible
to use inheritance, so we can write a rush contract module that contains additional behavior to the regular
contract.

The Table Module may include queries as factory methods. The alternative is a Table Data Gateway (144), but
the disadvantage of this is having an extra

Table Data Gateway (144) class and mechanism in the design. The

 Table Module on data from different data sources, since you use a advantage is that you can use a single
ferent dif Table Data Gateway (144) for each data source.

 Table Data Gateway

When you use a (144) the application first uses the Table Data Gateway (144) to
assemble data in a Record Set (508). You then create a Table Module with the Record Set (508) as an

s, you can create them with the same Record argument. If you need behavior from multiple Table Module
Set (508). The Table Module can then do business logic on the Record Set (508) and pass the modified Record
Set (508) to the presentation for display and editing us

e directly from the relational database
ing the table-aware widgets. The widgets can't tell if the
or if a Table Module manipulated the data on the way

UI, the data set goes back to the Table Module for validation before it's saved
base. One of the benefits of this style is that you can test the Table Module by creating a Record

record sets cam
out. After modification in the G
to the data
Set (508) in memory without going to the database.

Figure 9.5. Typical interactions for the layers around a Table Module.

The word "table" in the pattern name suggests that you have one Table Module per table in the database.
While this is true to the first approximation, it isn't completely true. It's also useful to have a Table Module for
commonly used views or other queries. Indeed, the structure of the Table Module doesn't really depend on the
structure of tables in the database but more on the virtual tables perceived by the application, including views
and queries.

 When to Use It

Table Module is very much based on table-oriented data, so obviously using it makes sense when you're
accessing tabular data using Record Set (508). It also puts that data structure very much in the center of the
code, so you also want the way you access the data structure to be fairly straightforward.

However, Table Module doesn't give you the full power of objects in organizing complex logic. You can't
have direct instance-to-instance relationships, and polymorphism doesn't work well. So, for handling
complicated domain logic, a Domain Model (116) is a better choice. Essentially you have to trade off Domain
Model (116)'s ability to handle complex logic against Table Module's easier integration with the underlying
table-oriented data structures.

Domain ModelIf the objects in a (116) and the database tables are relatively similar, it may be better to use
 Domain Modela (116) that uses Active Record (160). Table Module works better than a combination

of Domain Model (116) and Active Record (160) when other parts of the application are based on a common
table-oriented data structure. That's why you don't see Table Module very much in the Java environment,
although that may change as row sets become more widely used.

The most well-known situation in which I've come across this pattern is in Microsoft COM designs. In COM
and .NET) the (Record Set (508) is the primary repository of data in an application. Record sets can be passed

the UI, where data-aware widgets display information. Microsoft's ADO libraries give you a good

nue Recognition with a Table Module (C#)

to
mechanism to access the relational data as record sets. In this situation Table Module allows you to fit business
logic into the application in a well-organized manner, without losing the way the various elements work on the
tabular data.

 Example: Reve

mTi e to revisit the revenue recognition example (page 112) I used in the other domain modeling patterns, this

vary

le Module is based on a data schema of some kind, usually a relational data model (although in the future
 may well see an XML model used in a similar way). In this case I'll use the relational schema from Figure

time with a Table Module. To recap, our mission is to recognize revenue on orders when the rules
depending on the product type. In this example we have different rules for word processors, spreadsheets, and
databases.

Tab

ew
9.6.

Figure 9.6. Database schema for revenue recognition.

The classes that manipulate this data are in pretty much the same form; there's one Table Module class for
each table. In the .NET architecture a data set object provides an in-memory representation of a database
structure. It thus makes sense to create classes that operate on this data set. Each Table Module class has a data
member of a data table, which is the .NET system class corresponding to a table within the data set. This

ility to read a table is common to all Table Modules and so can appear in a ab Layer Supertype (475).

ass Contract...

ich keeps the code that creates the data set away from the Table Modules, following the guidelines of
O.NET.

w in the data table given the primary key.

ass Contract...

ss TableModule... cla

 protected DataTable table;
 protected TableModule(DataSet ds, String tableName) {
 table = ds.Tables[tableName];
 }

The subclass constructor calls the superclass constructor with the correct table name.

cl

 public Contract (DataSet ds) : base (ds, "Contracts") {}

This allows you to create a new Table Module just by passing in a data set to Table Module's constructor

contract = new Contract(dataset);

wh
AD

A useful feature is the C# indexer, which gets to a particular ro

cl

 public DataRow this [long key] {
 get {
 String filter = String.Format("ID = {0}", key);

 return table.Select(filter)[0];
 }
 }

The first piece of functionality calculates the revenue recognition for a contract, updating the revenue
recognition tables accordingly. The amount recognized depends on the kind of product we have. Since this
behavior mainly uses data from the contract table, I decided to add the method to the contract class.

class Contract...

 public void CalculateRecognitions (long contractID) {

his[contractID];
 Decimal amount = (Decimal)contractRow["amount"];
 RevenueRecognition rr = new RevenueRecognition (table.DataSet);

.Insert(contractID, allocation[0], (DateTime) GetWhenSigned(contractID));
 rr.Insert(contractID, allocation[1], (DateTime) GetWhenSigned(contractID).

 DataRow contractRow = t

 Product prod = new Product(table.DataSet);
 long prodID = GetProductId(contractID);
 if (prod.GetProductType(prodID) == ProductType.WP) {
 rr.Insert(contractID, amount, (DateTime) GetWhenSigned(contractID));
 }else if (prod.GetProductType(prodID) == ProductType.SS) {
 Decimal[] allocation = allocate(amount,3);
 rr

 AddDays(60));

 rr.Insert(contractID, allocation[2], (DateTime) GetWhenSigned(contractID).
 AddDays(90));
 }else if (prod.GetProductType(prodID) == ProductType.DB) {
 Decimal[] allocation = allocate(amount,3);
 rr.Insert(contract

t
ID, allocation[0], (DateTime) GetWhenSigned(contractID));

 rr.Insert(contrac ID, allocation[1], (DateTime) GetWhenSigned(contractID).
 AddDays(30));

). rr.Insert(contractID, allocation[2], (DateTime) GetWhenSigned(contractID
 AddDays(60));
 }else throw new Exception("invalid product id");
 }
 private Decimal[] allocate(Decimal am
 Decimal lowResult = amount / by;

ount, int by) {

 lowResult = Decimal.Round(lowResult,2);

 Decimal highResult = lowResult + 0.01m;
 Decimal[] results = new Decimal[by];
 int remainder = (int) amount % by;
 for (int i = 0; i < remainder; i++) results[i] = highResult;
 for (int i = remainder; i < by; i++) results[i] = lowResult;
 return results;
 }

Usually I would use Money (488) here, but for variety's sake I'll show this using a decimal. I use an allocation

thod similar to the one I use for Moneyme (488).

 carry this out, we need some behavior that's defined on the other classes. The product needs to be able to

g) this[id]["type"];
 return (ProductType) Enum.Parse(typeof(ProductType), typeCode);
 }

To
tell us which type it is. We can do this with an enum for the product type and a lookup method.

 public enum ProductType {WP, SS, DB};

class Product...

 public ProductType GetProductType (long id) {
 String typeCode = (Strin

GetProductType encapsulates the data in the data table. There's an argument for doing this for all columns of

data, as opposed to accessing them directly as I did with the amount on the contract. While encapsulation is
generally a Good Thing, I don't use it here because it doesn't fit with the assumption of the environment that
different parts of the system access the data set directly. There's no encapsulation when the data se

t moves
er to the UI, so column access functions only make sense when there's some additional functionality to be
ne, such as converting a string to a product type.

et.

ognition...

 public long Insert (long contractID, Decimal amount, DateTime date) {
 DataRow newRow = table.NewRow();

ond piece of functionality is to sum up all the revenue recognized on a contract by a given date. Since
s uses the revenue recognition table it makes sense to define the method there.

 public Decimal RecognizedRevenue (long contractID, DateTime asOf) {
lter = String.Format("ContractID = {0}AND date <= #{1:d}#",

ov
do

This is also a good time to mention that, although I'm using an untyped data set here because these are more
common on different platforms, there's a strong argument (page 509) for using .NET's strongly typed data s

The other additional behavior is inserting a new revenue recognition record.

class RevenueRec

 long id = GetNextID();
 newRow["ID"] = id;
 newRow["contractID"] = contractID;
 newRow["amount"] = amount;
 newRow["date"]= String.Format("{0:s}", date);
 table.Rows.Add(newRow);
 return id;
 }

Again, the point of this method is less to encapsulate the data row and more to have a method instead of
several lines of code that are repeated.

e secTh
thi

class RevenueRecognition...

 String fi
ntractID, co

 asOf);
 DataRow[] rows = table.Select(filter);

feature of ADO.NET that allows you to define a where clause
can go further and use an aggregate

ction.

Format("ContractID = {0}AND date <= #{1:d}#",
tractID,

 Decimal result = 0m;
 foreach (DataRow row in rows) {
 result += (Decimal)row["amount"];
 }
 return result;
 }

This fragment takes advantage of the really nice

 then select a subset of the data table to manipulate. Indeed, you and
nfu

class RevenueRecognition...

 public Decimal RecognizedRevenue2 (long contractID, DateTime asOf) {
 String filter = String.
con
 asOf);

 }

 String computeExpression = "sum(amount)";
 Object sum = table.Compute(computeExpression, filter);
 return (sum is System.DBNull) ? 0 : (Decimal) sum;

Service Layer

y Randy Stafford b

Defines an application's bo ailable operations and
coordinates the application's response in each operation.

undary with a layer of servic s a set of aves that establishe

rise applications typically require different kinds of interfaces to the data they store and the logic they Enterp
implement: data loaders, user interfaces, integration gateways, and others. Despite their different purposes,

nipulate its data and
 its business logic. The interactions may be complex, involving transactions across multiple resources

 the coordination of several responses to an action. Encoding the logic of the interactions separately in each
rface causes a lot of duplication.

these interfaces often need common interactions with the application to access and ma
invoke
and

tein

A Service Layer defines an application's boundary [Cockburn PloP] and its set of available operations from
perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactio

d coordinating responses in the implementation of its operations.

 the
ns

f responsibility behind the Service Layer
erface. Before I delve into the various implementation possibilities, let me lay a bit of groundwork.

an

 How It Works

A Service Layer can be implemented in a couple of different ways, without violating the defining
characteristics stated above. The differences appear in the allocation o
int

 Kinds of "Business Logic"

Like Transaction Script (110) and Domain Model (116), Service Layer is a pattern for organizing business
logic. Many designers, including me, like to divide "business logic" into two kinds: "domain logic," having
do purely with the problem domain (such as strategies for calculating revenue recognition on a contract), and
"application logic," having to do with application responsibilities [

 to

Cockburn UC] (such as notifying contract
administrators, and integrated applications, of revenue recognition calculations). Application logic is
sometimes referred to as "workflow logic," although different people have different interpretations of
"workflow."

Domain Models (116) are preferable to Transaction Scripts (110) for avoiding domain logic duplication and
for managing complexity using classical design patterns. But putting application logic into pure domain object
classes has a couple of undesirable consequences. First, domain object classes are less reusable across
applications if they implement application-specific logic and depend on application-specific packages. Second,
commingling both kinds of logic in the same classes makes it harder to reimplement the application logic in,
say, a workflow tool if that should ever become desirable. For these reasons Service Layer factors each kind of
business logic into a separate layer, yielding the usual benefits of layering and rendering the pure domain
object classes more reusable from application to application.

 Implementation Variations

The two basic implementation variations are the domain facade approach and the operation script approach. In
the domain facade approach a Service Layer is implemented as a set of thin facades over a Domain
Model (116). The classes implementing the facades don't implement any business logic. Rather, the Domain
Model (116) implements all of the business logic. The thin facades establish a boundary and set of operatio
through which client layers interact with the application, exhibiting the defining characteristics of Service
Layer.

In the operation script approach a Service Layer is implemented as a set of thicker classes that directly
implement application logic but delegate to encapsulated domain object classes for domain logic. The

erations available to c

ns

lients of a Service Layer are implemented as scripts, organized several to a class
fining a subject area of related logic. Each such class forms an application "service," and it's common for

op
de
service type names to end with "Service." A Service Layer is comprised of these application service classes,
which should extend a Layer Supertype (475), abstracting their responsibilities and common behaviors.

o Remote or Not to Remote T

The interface of a Service Layer class is coarse grained almost by definition, since it declares a set of
application operations available to interfacing client layers. Therefore, Service Layer classes are well
remote invocation from an interface granularity perspective.

However, remote invocation comes at the cost of dealing with object distribution. It likely entails a lot of extra
work to make your Service Layer method signatures deal in

suited to

Data Transfer Objects (401). Don't underestimate
the cost of this work, especially if you have a complex Domain Model (116) and rich editing UIs for com

date use cases! It's significant, and it'
plex

s painful—perhaps second only to the cost and pain of object-relational
pping. Remember the First Law of Distributed Object Design (page 89).

ts.

up
ma

My advice is to start with a locally invocable Service Layer whose method signatures deal in domain objec
Add remotability when you need it (if ever) by putting Remote Facades (388) on your Service Layer or hav
your Service Layer objects implement remote interfaces. If your application has a Web-based UI or a Web-

ing

services-based integration gateway, there's no law that says your business logic has to run in a separate process
ro your server pages and Web services. In fact, you can save yourself some development effort and runtime

response time, without sacrificing scalability, by starting out with a colocated approach.

 Identifying Services and Operations

Identifying the operations needed on a Service Layer boundary is pretty straightforward. They're determined
by the needs of Service Layer clients, the most significant (and first) of which is typically a user interface.
Since a user interface is designed to support the use cases that actors want to perform with an application, the
starting point for identifying Service Layer operations is the use case model and the user interface design for
the application.

Disappointing as it is, many of the use cases in an enterprise application are fairly boring "CRUD" (create,
read, update, delete) use cases on domain objects—create one of these, read a collection of those, update this
other thing. My experience is that there's almost always a one-to-one correspondence between CRUD use
cases and Service Layer operations.

The application's responsibilities in carrying out these use cases, however, may be anything but boring.
Validation aside, the creation, update, or deletion of a domain object in an application increasingly requires
notification of other people and other integrated applications. These responses must be coordinated, and
transacted atomically, by Service Layer operations.

If only it were as straightforward to identify Service Layer abstractions to group related operations. There are
no hard-and-fast prescriptions in this area; only vague heuristics. For a sufficiently small application, it may
suffice to have but one abstraction, named after the application itself. In my experience larger applications are
partitioned into several "subsystems," each of which includes a complete vertical slice through the stack of
architecture layers. In this case I prefer one abstraction per subsystem, named after the subsystem. Other
possibilities include abstractions reflecting major partitions in a domain model, if these are different from the
subsystem partitions (e.g., ContractsService, ProductsService), and abstractions named after thematic
application behaviors (e.g., RecognitionService).

 Java Implementation

In both the domain facade approach and the operation script approach, a Service Layer class can be
implemented as either a POJO (plain old Java object) or a stateless session bean. The trade-off pits ease of
testing against ease of transaction control. POJOs might be easier to test, since they don't have to be deployed
in an EJB container to run, but it's harder for a POJO Service Layer to hook into distributed container-
managed transaction services, especially in interservice invocations. EJBs, on the other hand, come with the
potential for container-managed distributed transactions but have to be deployed in a container before they can
be tested and run. Choose your poison.

My preferred way of applying a Service Layer in J2EE is with EJB 2.0 stateless session beans, using local
interfaces, and the operation script approach, delegating to POJO domain object classes. It's just so darned
convenient to implement a Service Layer using stateless session bean, because of the distributed container-
managed transactions provided by EJB. Also, with the local interfaces introduced in EJB 2.0, a Service Layer
can exploit the valuable transaction services while avoiding the thorny object distribution issues.

On a related Java-specific note, let me differentiate Service Layer from the Session Facade pattern
documented in the J2EE patterns literature [Alur et al.

f m

] and [Marinescu]. Session Facade was motivated by the

desire to avoid the performance penalty of too many remote invocations on entity beans; it therefore prescribes
ading entity beans with session beans. Service Layer is motivated instead by factoring responsibility to

t, the
fac
avoid duplication and promote reusability; it's an architecture pattern that transcends technology. In fac
application boundary pattern [Cockburn PloP] that inspired Service Layer predates EJB by three years.

cade may be in the spirit of Service Layer but, as currently named, scoped, and presented, is not the sam
 Session

e.

 When to Use It

The be r is that it defines a common set of application operations available to many kinds
of clients and it coordinates an application's response in each operation. The response may involve application
logic th ransacted atomically across multiple transactional resources. Thus, in an application
with mo ogic, and complex responses in its use cases involving
multipl l resources, it makes a lot of sense to include a Service Layer with container-managed
transactions, even in an undistributed architecture.

e easier question to answer is probably when not to use it. You probably don't need a Service Layer if your
nly have one kind of client—say, a user interface—and its use case responses
al resources. In this case your Page Controllers can manually control

sactions and coordinate whatever response is required, perhaps delegating directly to the Data Source
er.

But as soon as you envision a second kind of client, or a second transactional resource in use case responses, it
pays to design in a Service Layer from the beginning.

 Further Reading

There's not a great deal of prior art on Service Layer, whose inspiration is Alistair Cockburn's application
boundary pattern [Cockburn PloP

Fa

nefit of Service Laye

at needs to be t
re than one kind of client of its business l

e transactiona

Th
application's business logic will o

on't involve multiple transactiond
tran
lay

]. In the remotable services vein [Alpert, et al.] discuss the role of facades in
istributed systems. Compare and contrast this with the various presentations of Session Facade [Alur et al.d]
d [Marinescuan]. On the topic of application responsibilities that must be coordinated within Service Layer

operations, Cockburn's description of use cases as a contract for behavior [Cockburn UC] is very helpful. An
earlier background reference is the Fusion methodology's recognition of "system operations" [Coleman et al.].

xample: Revenue Recognition (Java) E

This example continues the revenue recognition example of the Transaction Script (110) and Domain
Model (116) patterns, demonstrating how Service Layer is used to script application logic and delegate for
domain logic in a Service Layer operation. It uses the operation script approach to implement a Service Layer,
first with POJOs and then with EJBs.

To make the demonstration we expand the scenario to include some application logic. Suppose the use cases
for the application require that, when the revenue recognitions for a contract are calculated, the application
must respond by sending an e-mail notification of that event to a designated contract administrator and by
publishing a message using message-oriented middleware to notify other integrated applications.

We start by changing the RecognitionService class from the Transaction Script (110) example to extend
a Layer Supertype (475) and to use a couple of Gateways (466) in carrying out application logic. This yields
the class diagram of Figure 9.7. RecognitionService becomes a POJO implementation of a Service Layer

application service, and its methods represent two of the operations available at the application's boundary.

Figure 9.7. RecognitionService POJO class diagram.

The methods of the RecognitionService class script the application logic of the operations, delegating to
domain object classes (of the example from Domain Model (116)) for domain logic.

public class ApplicationService {
 protected EmailGateway getEmailGateway() {
 //return an instance of EmailGateway
 }
 protected IntegrationGateway getIntegrationGateway() {
 //return an instance of IntegrationGateway
 }
}
public interface EmailGateway {
 void sendEmailMessage(String toAddress, String subject, String body);
}
public interface IntegrationGateway {
 void publishRevenueRecognitionCalculation(Contract contract);
}
public class RecognitionService
extends ApplicationService {
 public void calculateRevenueRecognitions(long contractNumber) {
 Contract contract = Contract.readForUpdate(contractNumber);
 contract.calculateRecognitions();
 getEmailGateway().sendEmailMessage(
 contract.getAdministratorEmailAddress(),
 "RE: Contract #" + contractNumber,
 contract + " has had revenue recognitions calculated.");
 getIntegrationGateway().publishRevenueRecognitionCalculation(contract);
 }
 public Money recognizedRevenue(long contractNumber, Date asOf) {
 return Contract.read(contractNumber).recognizedRevenue(asOf);
 }
}

Persistence details are again left out of the example. Suffice it to say that the Contract class implements static
methods to read contracts from the Data Source layer by their numbers. One of these methods has a name

ealing an intention to update the contract that's read, which allows an underlying Data Mapperrev (165) to
ister the read object(s) with for example, a Unit of Workreg (184).

f
riented middleware; and e-mail messages are sent.

l of these responses must be transacted atomically because we don't want to send e-mail and publish
ssages to other applications if the contract changes fail to persist.

Transaction control details are also left out of the example. The calculateRevenueRecognitions() method is
inherently transactional because, during its execution, persistent contract objects are modified via addition o
revenue recognitions; messages are enqueued in message-o
Al
me

In the J2EE platform we can let the EJB container manage distributed transactions by implementing
application services (and Gateways (466)) as stateless session beans that use transactional resources. Figure
9.8 shows the class diagram of a RecognitionService implementation that uses EJB 2.0 local interfaces and the
"business interface" idiom. In this implementation a Layer Supertype (475) is still used, providing default
implementations of the bean implementation class methods required by EJB, in addition to the application
specific methods. If we assume that the EmailGateway and IntegrationGateway interfaces are also "busines
interfaces" for their respective stateless session beans, then control of the distributed transaction is achieved
declaring the calculateRevenueRecognitions,

-
s
 by

 sendEmailMessage, and publishRevenueRecognitionCalculation
thods to be transactional. The RecognitionService methods from the POJO example move unchanged to

anImpl.

me
RecognitionServiceBe

Figure 9.8. RecognitionService EJB class diagram.

The important point about the example is that the Service Layer uses both operation scripting and domain
object classes in coordinating the transactional response of the operation. The calculateRevenueRecognitions
method scripts the application logic of the response required by the application's use cases, but it delegates to

 domain object classes for domain logic. It also presents a couple of techniques for comthe bating duplicated
ic within operation scripts of a Service Layer. Responsibilities are factored into different objects log

(e.g., Gateways (466)) that can be reused via delegation. A Layer Supertype (475) provides convenient acces
to these other objects.

s

elegant implementation of the operation script would use the Observer pattern

me might argue that a more So
[Gang of Four], but Observer is difficult to implement in a stateless, multithreaded Service Layer. In my

nted in domain object

onsibility
able across applications if they

c Gateways

opinion the open code of the operation script is clearer and simpler.

Some might also argue that the application logic responsibilities could be impleme
methods, such as Contract.calculateRevenueRecognitions(), or even in the data source layer, thereby

r. However, I find those allocations of respeliminating the need for a separate Service Laye
e for a number of reasons. First, domain object classes are less reusundesirabl

implement application-specific logic (and depend on application-specifi (466), and the like). They
ll of

igher" layer dedicated
ose (which the data source layer isn't) facilitates changing the implementation of that layer—

aps to use a workflow engine.

n, Service Layer combines scripting
raging the best aspects of both. Several variations are possible in a Service

should model the parts of the problem domain that are of interest to the application, which doesn't mean a
the application's use case responsibilities. Second, encapsulating application logic in a "h
to that purp
perh

s an organization pattern for the logic layer of an enterprise applicatioA
and domain object classes, leve

Layer implementation—for example, domain facades or
combination of both. Service Layer can be designed fo

 operation scripts, POJOs or session beans, or a
emote invocation, or both. Most

sulated implementation of
s clients.

r local invocation, r
important, regardless of these variations, this pattern lays the foundation for encap

ariouan application's business logic and consistent invocation of that logic by its v

Chapter 10. Data Source Architectural Patterns

Table Data Gateway

Row Data Gateway

Active Record

Data Mapper

Table Data Gateway

An object that acts as a Gateway (466) to a database table. One instance handles all the rows in the table.

Mixing SQL in application logic can cause several problems. Many developers aren't comfortable with SQL,
and many who are comfortable may not write it well. Database administrators need to be able to find SQL
easily so they can figure out how to tune and evolve the database.

A Table Data Gateway holds all the SQL for accessing a single table or view: selects, inserts, updates, and
deletes. Other code calls its methods for all interaction with the database.

 How It Works

A Table Data Gateway has a simple interface, usually consisting of several find methods to get data from the
database and update, insert, and delete methods. Each method maps the input parameters into a SQL call and
executes the SQL against a database connection.The Table Data Gateway is usually stateless, as its role is to
push data back and forth.

The trickiest thing about a Table Data Gateway is how it returns information from a query. Even a simple find-
by-ID query will return multiple data items. In environments where you can return multiple items you can use
that for a single row, but many languages give you only a single return value and many queries return multiple
rows.

One alternative is to return some simple data structure, such as a map. A map works, but it forces data to be
copied out of the record set that comes from the database into the map. I think that using maps to pass data
around is bad form because it defeats compile time checking and isn't a very explicit interface, leading to bugs
as people misspell what's in the map. A better alternative is to use a Data Transfer Object (401). It's another
object to create but one that may well be used elsewhere.

To save all this you can return the Record Set (508) that comes from the SQL query. This is conceptually
messy, as ideally the in-memory object doesn't have to know anything about the SQL interface. It may also
make it difficult to substitute the database for a file if you can't easily create record sets in your own code.
Nevertheless, in many environments that use Record Set (508) widely, such as .NET, it's a very effective
approach. A Table Data Gateway thus goes very well with Table Module (125). If all of your updates are done
through the Table Data Gateway, the returned data can be based on views rather than on the actual tables,
which reduces the coupling between your code and the database.

If you're using a Domain Model (116), you can have the Table Data Gateway return the appropriate domain
object. The problem with this is that you then have bidirectional dependencies the domain objects and the
gateway. The two are closely connected, so that isn't necessarily a terrible thing, but it's something I'm always
reluctant to do.

Most times when you use Table Data Gateway, you'll have one for each table in the database. For very simple
cases, however, you can have a single Table Data Gateway that handles all methods for all tables. You can
also have one for views or even for interesting queries that aren't kept in the database as views. Obviously,
view-based Table Data Gateways often can't update and so won't have update behavior. However, if you can
make updates to the underlying tables, then encapsulating the updates behind update operations on the Table
Data Gateway is a very good technique.

 When to Use It

As with Row Data Gateway (152) the decision regarding Table Data Gateway is first whether to use
a Gateway (466) approach at all and then which one.

I find that Table Data Gateway is probably the simplest database interface pattern to use, as it maps so nicely
onto a database table or record type. It also makes a natural point to encapsulate the precise access logic of the
data source. I use it least with Domain Model (116) because I find that Data Mapper (165) gives a better
isolation between the Domain Model (116) and the database.

Table Data Gateway works particularly well with Table Module (125), where it produces a record set data
structure for the Table Module (125) to work on. Indeed, I can't really imagine any other database-mapping
approach for Table Module (125).

Just like Row Data Gateway (152), Table Data Gateway is very suitable for Transaction Scripts (110). The
choice between the two really boils down to how they deal with multiple rows of data. Many people like using
a Data Transfer Object (401), but that seems to me like more work than is worthwhile, unless the same Data
Transfer Object (401) is used elsewhere. I prefer Table Data Gateway when the result set representation is
convenient for the Transaction Script (110) to work with.

Interestingly, it often makes sense to have the Data Mappers (165) talk to the database via Table Data
Gateways. Although this isn't useful when everything is handcoded, it can be very effective if you want to use
metadata for the Table Data Gateways but prefer handcoding for the actual mapping to the domain objects.

One of the benefits of using a Table Data Gateway to encapsulate database access is that the same interface
can work both for using SQL to manipulate the database and for using stored procedures. Indeed, stored
procedures themselves are often organized as Table Data Gateways. That way the insert and update stored
procedures encapsulate the actual table structure. The find procedures in this case can return views, which
helps to hide the underlying table structure.

 Further Reading

[Alur et al.] discusses the Data Access Object pattern, which is a Table Data Gateway. They show returning a
collection of Data Transfer Objects (401) on the query methods. It's not clear whether they see this pattern as
always being table based; the intent and discussion seems to imply either Table Data Gateway or Row Data
Gateway (152).

I've used a different name, partly because I see this pattern as a particular usage of the more
general Gateway (466) concept and I want the pattern name to reflect that. Also, the term Data Access Object
and its abbreviation DAO has its own particular meaning within the Microsoft world.

 Example: Person Gateway (C#)

Table Data Gateway is the usual form of database access in the windows world, so it makes sense to illustrate
one with C#. I have to stress, however, that this classic form of Table Data Gateway doesn't quite fit in the
.NET environment since it doesn't take advantage of the ADO.NET data set; instead, it uses the data reader,
which is a cursor-like interface to database records. The data reader is the right choice for manipulating larger
amounts of information when you don't want to bring everything into memory in one go.

For the example I'm using a Person Gateway class that connects to a person table in a database. The Person
Gateway contains the finder code, returning ADO.NET's data reader to access the returned data.

class PersonGateway...

 public IDataReader FindAll() {
 String sql = "select * from person";
 return new OleDbCommand(sql, DB.Connection).ExecuteReader();
 }
 public IDataReader FindWithLastName(String lastName) {
 String sql = "SELECT * FROM person WHERE lastname = ?";
 IDbCommand comm = new OleDbCommand(sql, DB.Connection);
 comm.Parameters.Add(new OleDbParameter("lastname", lastName));
 return comm.ExecuteReader();
 }
 public IDataReader FindWhere(String whereClause) {
 String sql = String.Format("select * from person where {0}", whereClause);
 return new OleDbCommand(sql, DB.Connection).ExecuteReader();
 }

Almost always you'll want to pull back a bunch of rows with a reader. On a rare occasion you might want to
get hold of an individual row of data with a method along these lines:

class PersonGateway...

 public Object[] FindRow (long key) {
 String sql = "SELECT * FROM person WHERE id = ?";
 IDbCommand comm = new OleDbCommand(sql, DB.Connection);
 comm.Parameters.Add(new OleDbParameter("key",key));
 IDataReader reader = comm.ExecuteReader();
 reader.Read();
 Object [] result = new Object[reader.FieldCount];
 reader.GetValues(result);
 reader.Close();
 return result;
 }

The update and insert methods receive the necessary data in arguments and invoke the appropriate SQL
routines.

class PersonGateway...

 public void Update (long key, String lastname, String firstname, long
 numberOfDependents){
 String sql = @"
 UPDATE person
 SET lastname = ?, firstname = ?, numberOfDependents = ?
 WHERE id = ?";
 IDbCommand comm = new OleDbCommand(sql, DB.Connection);
 comm.Parameters.Add(new OleDbParameter ("last", lastname));
 comm.Parameters.Add(new OleDbParameter ("first", firstname));
 comm.Parameters.Add(new OleDbParameter ("numDep", numberOfDependents));
 comm.Parameters.Add(new OleDbParameter ("key", key));
 comm.ExecuteNonQuery();
 }

class PersonGateway...

 public long Insert(String lastName, String firstName, long numberOfDependents) {
 String sql = "INSERT INTO person VALUES (?,?,?,?)";
 long key = GetNextID();
 IDbCommand comm = new OleDbCommand(sql, DB.Connection);
 comm.Parameters.Add(new OleDbParameter ("key", key));
 comm.Parameters.Add(new OleDbParameter ("last", lastName));
 comm.Parameters.Add(new OleDbParameter ("first", firstName));
 comm.Parameters.Add(new OleDbParameter ("numDep", numberOfDependents));
 comm.ExecuteNonQuery();
 return key;
 }

The deletion method just needs a key.

class PersonGateway...

 public void Delete (long key) {
 String sql = "DELETE FROM person WHERE id = ?";
 IDbCommand comm = new OleDbCommand(sql, DB.Connection);
 comm.Parameters.Add(new OleDbParameter ("key", key));
 comm.ExecuteNonQuery();
 }

 Example: Using ADO.NET Data Sets (C#)

The generic Table Data Gateway works with pretty much any kind of platform since it's nothing but a wrapper
for SQL statements. With .NET you use data sets more often, but Table Data Gateway is still useful although
it comes in a different form.

A data set needs data adapters to load the data into it and update the data. In find it useful to define a holder for
the data set and the adapters. A gateway then uses the holder to store them. Much of this behavior is generic
and can be done in a superclass.

The holder indexes the data sets and adapters by the name of the table.

class DataSetHolder...

 public DataSet Data = new DataSet();
 private Hashtable DataAdapters = new Hashtable();

Figure 10.1. Class diagram of data-set-oriented gateway and the supporting data holder.

The gateway stores the holder and exposes the data set for its clients.

class DataGateway...

 public DataSetHolder Holder;
 public DataSet Data {
 get {return Holder.Data;}
 }

The gateway can act on an existing holder, or it can create a new one.

class DataGateway...

 protected DataSetGateway() {
 Holder = new DataSetHolder();
 }
 protected DataSetGateway(DataSetHolder holder) {
 this.Holder = holder;
 }

The find behavior can work a bit differently here. A data set is a container for table-oriented data and can hold
data from several tables. For that reason it's better to load data into a data set.

class DataGateway...

 public void LoadAll() {
 String commandString = String.Format("select * from {0}", TableName);
 Holder.FillData(commandString, TableName);

 }
 public void LoadWhere(String whereClause) {
 String commandString =
 String.Format("select * from {0}where {1}", TableName,whereClause);
 Holder.FillData(commandString, TableName);
 }
 abstract public String TableName {get;}

class PersonGateway...

 public override String TableName {
 get {return "Person";}
 }

class DataSetHolder...

 public void FillData(String query, String tableName) {
 if (DataAdapters.Contains(tableName)) throw new MutlipleLoadException();
 OleDbDataAdapter da = new OleDbDataAdapter(query, DB.Connection);
 OleDbCommandBuilder builder = new OleDbCommandBuilder(da);
 da.Fill(Data, tableName);
 DataAdapters.Add(tableName, da);
 }

To update data you manipulate the data set directly in some client code.

person.LoadAll();
person[key]["lastname"] = "Odell";
person.Holder.Update();

The gateway can have an indexer to make it easier to get to specific rows.

class DataGateway...

 public DataRow this[long key] {
 get {
 String filter = String.Format("id = {0}", key);
 return Table.Select(filter)[0];
 }
 }
 public override DataTable Table {
 get {return Data.Tables[TableName];}
 }

The update triggers update behavior on the holder.

class DataSetHolder...

 public void Update() {
 foreach (String table in DataAdapters.Keys)
 ((OleDbDataAdapter)DataAdapters[table]).Update(Data, table);
 }
 public DataTable this[String tableName] {
 get {return Data.Tables[tableName];}
 }

Insertion can be done much the same way: Get a data set, insert a new row in the data table, and fill in each
column. However, an update method can do the insertion in one call.

class DataGateway...

 public long Insert(String lastName, String firstname, int numberOfDependents) {
 long key = new PersonGatewayDS().GetNextID();
 DataRow newRow = Table.NewRow();
 newRow["id"] = key;
 newRow["lastName"] = lastName;
 newRow["firstName"] = firstname;
 newRow["numberOfDependents"] = numberOfDependents;
 Table.Rows.Add(newRow);
 return key;
 }

Row Data Gateway

An object that acts as a Gateway (466) to a single record in a data source. There is one instance per row.

Embedding database access code in in-memory objects can leave you with a few disadvantages. For a start, if
your in-memory objects have business logic of their own, adding the database manipulation code increases
complexity. Testing is awkward too since, if your in-memory objects are tied to a database, tests are slower to
run because of all the database access. You may have to access multiple databases with all those annoying
little variations on their SQL.

A Row Data Gateway gives you objects that look exactly like the record in your record structure but can be
accessed with the regular mechanisms of your programming language. All details of data source access are
hidden behind this interface.

 How It Works

A Row Data Gateway acts as an object that exactly mimics a single record, such as one database row. In it
each column in the database becomes one field. The Row Data Gateway will usually do any type conversion
from the data source types to the in-memory types, but this conversion is pretty simple. This pattern holds the
data about a row so that a client can then access the Row Data Gateway directly. The gateway acts as a good
interface for each row of data. This approach works particularly well for Transaction Scripts (110).

With a Row Data Gateway you're faced with the questions of where to put the find operations that generate
this pattern. You can use static find methods, but they preclude polymorphism should you want to substitute
different finder methods for different data sources. In this case it often makes sense to have separate finder
objects so that each table in a relational database will have one finder class and one gateway class for the
results (Figure 10.2).

Figure 10.2. Interactions for a find with a row-based Row Data Gateway.

It's often hard to tell the difference between a Row Data Gateway and an Active Record (160). The crux of the
matter is whether there's any domain logic present; if there is, you have an Active Record (160). A Row Data
Gateway should contain only database access logic and no domain logic.

As with any other form of tabular encapsulation, you can use a Row Data Gateway with a view or query as
well as a table. Updates often turn out to be more complicated this way, as you have to update the underlying
tables. Also, if you have two Row Data Gateways that operate on the same underlying tables, you may find
that the second Row Data Gateway you update undoes the changes on the first. There's no general way to
prevent this; developers just have to be aware of how virtual Row Data Gateways are formed. After all, the
same thing can happen with updatable views. Of course, you can choose not to provide update operations.

Row Data Gateways tend to be somewhat tedious to write, but they're a very good candidate for code
generation based on a Metadata Mapping (306). This way all your database access code can be automatically
built for you during your automated build process.

 When to Use It

The choice of Row Data Gateway often takes two steps: first whether to use a gateway at all and second
whether to use Row Data Gateway or Table Data Gateway (144).

I use Row Data Gateway most often when I'm using a Transaction Script (110). In this case it nicely factors
out the database access code and allows it to be reused easily by different Transaction Scripts (110).

I don't use a Row Data Gateway when I'm using a Domain Model (116). If the mapping is simple, Active
Record (160) does the same job without an additional layer of code. If the mapping is complex, Data

Mapper (165) works better, as it's better at decoupling the data structure from the domain objects because the
domain objects don't need to know the layout of the database. Of course, you can use the Row Data Gateway
to shield the domain objects from the database structure. That's a good thing if you're changing the database
structure when using Row Data Gateway and you don't want to change the domain logic. However, doing this
on a large scale leads you to three data representations: one in the business logic, one in the Row Data
Gateway, and one in the database—and that's one too many. For that reason I usually have Row Data
Gateways that mirror the database structure.

Interestingly, I've seen Row Data Gateway used very nicely with Data Mapper (165). Although this seems like
extra work, it can be effective iff the Row Data Gateways are automatically generated from metadata while
the Data Mappers (165) are done by hand.

If you use Transaction Script (110) with Row Data Gateway, you may notice that you have business logic
that's repeated across multiple scripts; logic that would make sense in the Row Data Gateway. Moving that
logic will gradually turn your Row Data Gateway into an Active Record (160), which is often good as it
reduces duplication in the business logic.

 Example: A Person Record (Java)

Here's an example for Row Data Gateway. It's a simple person table.

create table people (ID int primary key, lastname varchar,
 firstname varchar, number_of_dependents int)

PersonGateway is a gateway for the table. It starts with data fields and accessors.

class PersonGateway...

 private String lastName;
 private String firstName;
 private int numberOfDependents;
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public int getNumberOfDependents() {
 return numberOfDependents;
 }
 public void setNumberOfDependents(int numberOfDependents) {
 this.numberOfDependents = numberOfDependents;
 }

The gateway class itself can handle updates and inserts.

class PersonGateway...

 private static final String updateStatementString =
 "UPDATE people " +

 " set lastname = ?, firstname = ?, number_of_dependents = ? " +
 " where id = ?";
 public void update() {
 PreparedStatement updateStatement = null;
 try {
 updateStatement = DB.prepare(updateStatementString);
 updateStatement.setString(1, lastName);
 updateStatement.setString(2, firstName);
 updateStatement.setInt(3, numberOfDependents);
 updateStatement.setInt(4, getID().intValue());
 updateStatement.execute();
 } catch (Exception e) {
 throw new ApplicationException(e);
 } finally {DB.cleanUp(updateStatement);
 }
 }
 private static final String insertStatementString =
 "INSERT INTO people VALUES (?, ?, ?, ?)";
 public Long insert() {
 PreparedStatement insertStatement = null;
 try {
 insertStatement = DB.prepare(insertStatementString);
 setID(findNextDatabaseId());
 insertStatement.setInt(1, getID().intValue());
 insertStatement.setString(2, lastName);
 insertStatement.setString(3, firstName);
 insertStatement.setInt(4, numberOfDependents);
 insertStatement.execute();
 Registry.addPerson(this);
 return getID();
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } finally {DB.cleanUp(insertStatement);
 }
 }

To pull people out of the database, we have a separate PersonFinder. This works with the gateway to create
new gateway objects.

class PersonFinder...

 private final static String findStatementString =
 "SELECT id, lastname, firstname, number_of_dependents " +
 " from people " +
 " WHERE id = ?";
 public PersonGateway find(Long id) {
 PersonGateway result = (PersonGateway) Registry.getPerson(id);
 if (result != null) return result;
 PreparedStatement findStatement = null;
 ResultSet rs = null;
 try {
 findStatement = DB.prepare(findStatementString);
 findStatement.setLong(1, id.longValue());
 rs = findStatement.executeQuery();
 rs.next();
 result = PersonGateway.load(rs);
 return result;
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } finally {DB.cleanUp(findStatement, rs);
 }
 }
 public PersonGateway find(long id) {
 return find(new Long(id));
 }

class PersonGateway...

 public static PersonGateway load(ResultSet rs) throws SQLException {
 Long id = new Long(rs.getLong(1));
 PersonGateway result = (PersonGateway) Registry.getPerson(id);
 if (result != null) return result;
 String lastNameArg = rs.getString(2);
 String firstNameArg = rs.getString(3);
 int numDependentsArg = rs.getInt(4);
 result = new PersonGateway(id, lastNameArg, firstNameArg, numDependentsArg);
 Registry.addPerson(result);
 return result;
 }

To find more than one person according to some criteria we can provide a suitable finder method.

class PersonFinder...

 private static final String findResponsibleStatement =
 "SELECT id, lastname, firstname, number_of_dependents " +
 " from people " +
 " WHERE number_of_dependents > 0";
 public List findResponsibles() {
 List result = new ArrayList();
 PreparedStatement stmt = null;
 ResultSet rs = null;
 try {
 stmt = DB.prepare(findResponsibleStatement);
 rs = stmt.executeQuery();
 while (rs.next()) {
 result.add(PersonGateway.load(rs));
 }
 return result;
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } finally {DB.cleanUp(stmt, rs);
 }
 }

The finder uses a Registry (480) to hold Identity Maps (195).

We can now use the gateways from a Transaction Script (110)

PersonFinder finder = new PersonFinder();
Iterator people = finder.findResponsibles().iterator();
StringBuffer result = new StringBuffer();
while (people.hasNext()) {
 PersonGateway each = (PersonGateway) people.next();
 result.append(each.getLastName());
 result.append(" ");
 result.append(each.getFirstName());
 result.append(" ");
 result.append(String.valueOf(each.getNumberOfDependents()));
 result.append("

}
return result.toString();

 Example: A Data Holder for a Domain Object (Java)

I use Row Data Gateway mostly with Transaction Script (110). If we want to use the Row Data Gateway from
a Domain Model (116), the domain objects need to get at the data from the gateway. Instead of copying the

data to the domain object we can use the Row Data Gateway as a data holder for the domain object.

class Person...

 private PersonGateway data;
 public Person(PersonGateway data) {
 this.data = data;
 }

Accessors on the domain logic can then delegate to the gateway for the data.

class Person...

 public int getNumberOfDependents() {
 return data.getNumberOfDependents();
 }

The domain logic uses the getters to pull the data from the gateway.

class Person...

 public Money getExemption() {
 Money baseExemption = Money.dollars(1500);
 Money dependentExemption = Money.dollars(750);
 return
baseExemption.add(dependentExemption.multiply(this.getNumberOfDependents()));
 }

Active Record

An object that wraps a row in a database table or view, encapsulates the database access, and adds domain
logic on that data.

An object carries both data and behavior. Much of this data is persistent and needs to be stored in a database.
Active Record uses the most obvious approach, putting data access logic in the domain object. This way all
people know how to read and write their data to and from the database.

 How It Works

The essence of an Active Record is a Domain Model (116) in which the classes match very closely the record
structure of an underlying database. Each Active Record is responsible for saving and loading to the database
and also for any domain logic that acts on the data. This may be all the domain logic in the application, or you
may find that some domain logic is held in Transaction Scripts (110) with common and data-oriented code in
the Active Record.

The data structure of the Active Record should exactly match that of the database: one field in the class for
each column in the table. Type the fields the way the SQL interface gives you the data—don't do any
conversion at this stage. You may consider Foreign Key Mapping (236), but you may also leave the foreign
keys as they are. You can use views or tables with Active Record, although updates through views are
obviously harder. Views are particularly useful for reporting purposes.

The Active Record class typically has methods that do the following:

• Construct an instance of the Active Record from a SQL result set row
• Construct a new instance for later insertion into the table
• Static finder methods to wrap commonly used SQL queries and return Active Record objects
• Update the database and insert into it the data in the Active Record
• Get and set the fields
• Implement some pieces of business logic

The getting and setting methods can do some other intelligent things, such as convert from SQL-oriented types
to better in-memory types. Also, if you ask for a related table, the getting method can return the appropriate
Active Record, even if you aren't using Identity Field (216) on the data structure (by doing a lookup).

In this pattern the classes are convenient, but they don't hide the fact that a relational database is present. As a
result you usually see fewer of the other object-relational mapping patterns present when you're using Active
Record.

Active Record is very similar to Row Data Gateway (152). The principal difference is that a Row Data
Gateway (152) contains only database access while an Active Record contains both data source and domain
logic. Like most boundaries in software, the line between the two isn't terribly sharp, but it's useful.

Because of the close coupling between the Active Record and the database, I more often see static find
methods in this pattern. However, there's no reason that you can't separate out the find methods into a separate
class, as I discussed with Row Data Gateway (152), and that is better for testing.

As with the other tabular patterns, you can use Active Record with a view or query as well as a table.

 When to Use It

Active Record is a good choice for domain logic that isn't too complex, such as creates, reads, updates, and
deletes. Derivations and validations based on a single record work well in this structure.

In an initial design for a Domain Model (116) the main choice is between Active Record and Data
Mapper (165). Active Record has the primary advantage of simplicity. It's easy to build Active Records, and
they are easy to understand. Their primary problem is that they work well only if the Active Record objects
correspond directly to the database tables: an isomorphic schema. If your business logic is complex, you'll
soon want to use your object's direct relationships, collections, inheritance, and so forth. These don't map
easily onto Active Record, and adding them piecemeal gets very messy. That's what will lead you to use Data
Mapper (165) instead.

Another argument against Active Record is the fact that it couples the object design to the database design.
This makes it more difficult to refactor either design as a project goes forward.

Active Record is a good pattern to consider if you're using Transaction Script (110) and are beginning to feel
the pain of code duplication and the difficulty in updating scripts and tables that Transaction Script (110) often
brings. In this case you can gradually start creating Active Records and then slowly refactor behavior into
them. It often helps to wrap the tables as a Gateway (466) first, and then start moving behavior so that the
tables evolve to a Active Record.

 Example: A Simple Person (Java)

This is a simple, even simplistic, example to show how the bones of Active Record work. We begin with a
basic Person class.

class Person...

 private String lastName;
 private String firstName;
 private int numberOfDependents;

There's also an ID field in the superclass.

The database is set up with the same structure.

create table people (ID int primary key, lastname varchar,
 firstname varchar, number_of_dependents int)

gistry.getPerson(id);
result;

 PreparedStatement findStatement = null;

 findStatement.setLong(1, id.longValue());

To load an object, the person class acts as the finder and also performs the load. It uses static methods on the
person class.

class Person...

 private final static String findStatementString =
 "SELECT id, lastname, firstname, number_of_dependents" +
 " FROM people" +
 " WHERE id = ?";
 public static Person find(Long id) {
 Person result = (Person) Re
 if (result != null) return

 ResultSet rs = null;
 try {
 findStatement = DB.prepare(findStatementString);

 rs = findStatement.executeQuery();
 rs.next();
 result = load(rs);
 return result;
 } catch (SQLException e) {
 throw new ApplicationException(e);

 } finally {
 DB.cleanUp(findStatement, rs);
 }
 }
 public static Person find(long id) {
 return find(new Long(id));
 }
 public static Person load(ResultSet rs) throws SQLException {
 Long id = new Long(rs.getLong(1));
 Person result = (Person) Registry.getPerson(id);
 if (result != null) return result;

 }

Updating an object takes a simple instance method.

class Person...

 private final static String updateStatementString =
 "UPDATE people" +
 " set lastname = ?, firstname = ?, number_of_dependents = ?" +
 " where id = ?";
 public void update() {
 PreparedStatement updateStatement = null;
 try {
 updateStatement = DB.prepare(updateStatementString);
 updateStatement.setString(1, lastName);
 updateStatement.setString(2, firstName);
 updateStatement.setInt(3, numberOfDependents);
 updateStatement.setInt(4, getID().intValue());
 updateStatement.execute();
 } catch (Exception e) {
 throw new ApplicationException(e);
 } finally {

 DB.cleanUp(updateStatement);
 }
 }

ertions are also mostly pretty simple.

class Person...

 private final static String insertStatementString =
 "INSERT INTO people VALUES (?, ?, ?, ?)";
 public Long insert() {
 PreparedStatement insertStatement = null;

 try {
 insertStatement = DB.prepare(insertStatementString);
 setID(findNextDatabaseId());
 insertStatement.setInt(1, getID().intValue());
 insertStatement.setString(2, lastName);
 insertStatement.setString(3, firstName);
 insertStatement.setInt(4, numberOfDependents);
 insertStatement.execute();

 String lastNameArg = rs.getString(2);
 String firstNameArg = rs.getString(3);
 int numDependentsArg = rs.getInt(4);
 result = new Person(id, lastNameArg, firstNameArg, numDependentsArg);
 Registry.addPerson(result);
 return result;

Ins

 Registry.addPerson(this);
 return getID();

 }

y business logic, such as calculating the exemption, sits directly in the Person class.

tExemption() {
xemption = Money.dollars(1500);

n = Money.dollars(750);

.multiply(this.getNumberOfDependents()));

A layer of Mappers

 } catch (Exception e) {
 throw new ApplicationException(e);
 } finally {
 DB.cleanUp(insertStatement);

 }

An

class Person...

 public Money ge

 Money baseE
 Money dependentExemptio
 return
baseExemption.add(dependentExemption

}

Data Mapper

 (473) that moves data between objects and a database while keeping them independent of
each other and the mapper itself.

 mechanisms to better organize the data and the behavior that goes

the object schema and the relational schema don't match up.

 two schemas, and this data transfer becomes a complexity in its
jects know about the relational database structure, changes in one tend to ripple

rom the database. Its
 each other. With Data Mapper

tabase present; they need no SQL interface code, and
a is always ignorant of the objects that

Objects and relational databases have different mechanisms for structuring data. Many parts of an object, such
as collections and inheritance, aren't present in relational databases. When you build an object model with a lot
of business logic it's valuable to use these
with it. Doing so leads to variant schemas; that is,

ill need to transfer data between theYou st
own right. If the in-memory ob

he other.to t

The Data Mapper is a layer of software that separates the in-memory objects f

d also to isolate them fromresponsibility is to transfer data between the two an
the in-memory objects needn't know even that there's a da
certainly no knowledge of the database schema. (The database schem
use it.) Since it's a form of Mapper (473), Data Mapper itself is even unknown to the domain layer.

 How It Works

The separation between domain and data source is the main function of a Data Mapper, but there are plenty of

happen. There's also a lot of variety in how mapping layers are
road, because I try to give a general overview of what you need

rom its skin.

We'll start with a very basic Data Mapper example. This is the simplest style of this layer that you can have
and might not seem worth doing. With simple database mapping examples other patterns usually are simpler

d thus better. If you are going to use Data Mapper at all you usually need more complicated cases. However,
imple at a very basic level.

 a client

details that have to be addressed to make this
y of the comments here are pretty bbuilt. Man

rate the cat fto sepa

an
it's easier to explain the ideas if we start s

A simple case would have a Person and Person Mapper class. To load a person from the database,
would call a find method on the mapper (Figure 10.3) The mapper uses an Identity Map (195) to see if the
person is already loaded; if not, it loads it.

Figure 10.3. Retrieving data from a database.

10.4

Updates are shown in Figure . A client asks the mapper to save a domain object. The mapper pulls the data

shuttles it to the database.

 data.

out of the domain object and

Figure 10.4. Updating

esting purposes or to allow a single domain

mory class on a field-to-field
 strategies to handle classes that turn

le tables, classes with inheritance, and the joys of connecting
out. The various object-relational mapping patterns in this book are

 with a Data Mapper than it is with the other

en it comes to inserts and updates, the database mapping layer needs to understand what objects have
nged, which new ones have been created, and which ones have been destroyed. It also has to fit the whole

The whole layer of Data Mapper can be substituted, either for t
layer to work with different datab

ases.

A simple Data Mapper would just map a database table to an equivalent in-me
basis. Of course, things aren't usually simple. Mappers need a variety of
into multiple fields, classes that have multip
together objects once they've been sorted
all about that. It's usually easier to deploy these patterns

.organizing alternatives

Wh
ach

workload into a transactional framework. The Unit of Work (184) pattern is a good way to organize this.

Figure 10.3 suggests that a single requ

ading a typical order with multiple
est to a find method results in a single SQL query. This isn't always true.
order lines may involve loading the order lines as well. The request from

 lead to a graph of objects being loaded, with the mapper designer deciding exactly how
 point of this is to minimize database queries, so the finders typically need to

w a fair bit about how clients use the objects in order to make the best choices for pulling data back.

ou load multiple classes of domain objects from a single query. If you
 lines, it will usually be faster to do a single query that joins the orders and order

nd the order line instances (page 243).

ata back at some point. Otherwise,
 Again, mapping layers have techniques to deal
jects, using Lazy Load

Lo
the client will usually
much to pull back in one go. The
kno

This example leads to cases where y

nt to load orders and orderwa
line tables. You then use the result set to load both the order a

ou usually have to stop pulling the dSince objects are very interconnected, y
you're likely to pull back the entire database with a request.

e in-memory obwith this while minimizing the impact on th (200). Hence, the in-
apping layer. They may need to know about the finders and

oding your mappers, it's best to use one
Metadata Mapping

memory objects can't be entirely ignorant of the m
a few other mechanisms.

An application can have one Data Mapper or several. If you're hardc

erarchy. If you're using for each domain class or root of a domain hi (306), you can get
e the limiting problem is your find methods. With a large
pper with lots of find methods, so it makes sense to split

away with a single mapper class. In the latter cas
application it can be too much to have a single ma

these methods up by each domain class or head of the domain hierarchy. You get a lot of small finder classes,
y for a developer to locate the finder she needs.

or, the finders need to use an Identity Map

but it's eas

As with any database find behavi (195) in order to maintain the
identity of the objects read from the database. Either you can have a Registry (480) of Identity Maps (195), or
you can have each finder hold an Identity Map (195) (providing there is only one finder per class per session).

andling Finders

ct, you have to load it from the database. Usually the presentation layer will
e initial objects. Then control moves into the domain layer, at which point the

en them. This will work effectively
Lazy

H

In order to work with an obje

tiate things by loading somini
code will mainly move from object to object using associations betwe
providing that the domain layer has all the objects it needs loaded into memory or that you use
Load (200) to load in additional objects when needed.

u may need the domain objects to invoke find mOn occasion yo ethods on the Data Mapper. However, I've
found that with a good Lazy Load (200) you can completely avoid this. For simpler applications, though, may
not be worth trying to manage everything with associations and Lazy Load (200). Still, you don't want to add a

e

dependency from your domain objects to your Data Mapper.

You can solve this dilemma by using Separated Interfac (476). Put any find methods needed by the domain

ain package.

 Data to Domain Fields

Mappers need access to the fields in the domain objects. Often this can be a problem because you need public
methods to support the mappers you don't want for domain logic. (I'm assuming that you won't commit the

s no easy to answer to this. You could use a lower level of
ers closer to the domain objects, such as in the same package in Java, but this

nt other parts of the system that know the domain
hich can often bypass the visibility rules of the

error compared to the time taken by
s field so that they throw an

 in such a way that they're not

 the object. In essence you have two options. One is to create the
 with all its mandatory data. The other is to create an
ta. I usually prefer the former since it's nice to have a

ns that, if you have an immutable field, you can enforce it by
ing any method to change its value.

u try to load one it will try to load the other, which will in turn try to
, until you run out of stack space. Avoiding this requires special case code, often

code into an interface class that you can place in the dom

 Mapping

cardinal sin of making fields public.) There'
ibility by packaging the mappvis

confuses the bigger dependency picture because you don't wa
objects to know about the mappers. You can use reflection, w

ower, but the slower speed may end up as just a rounding language. It's sl
the SQL call. Or you can use public methods, but guard them with a statu
exception if they're used outside the context of a database load. If so, name them
mistaken for regular getters and setters.

Tied to this is the issue of when you create
object with a rich constructor so that it's at least created

populate it with the mandatory daempty object and then
well-formed object from the start. This also mea
not provid

e onstructor is that you have to be aware of cyclic references. If you have two objects Th problem with a rich c
that reference each other, each time yo
load the first one, and so on

ng usi Lazy Load (200). Writing this special case code is messy, so it's worth trying to do without it. You can
onstructor to create a blank object and insert that empty do this by creating an empty object. Use a no-arg c

object immediately into the Identity Map (195). That way, if you have a cycle, the Identity Map (195) will
 return an object to stop the recursive loading.

an empty object like this means you may need some setters for values that are truly immutable when the
erhaps some status-checking guards can fix this.

One of the decisions you need to make concerns storing the information about how fields in domain objects
are mapped to columns in the database. The simplest, and often best, way to do this is with explicit code,
which requires a mapper class for each domain object. The mapper does the mapping through assignments and
has fields (usually constant strings) to store the SQL for database access. An alternative is to use Metadata

Using
object is loaded. A combination of a naming convention and p
You can also use reflection for data loading.

data-Based Mappings Meta

Mapping (306), which stores the metadata as data, either in a class or in a separate file. The great advantage of
etadata is that all the variation in the mappers can be handled through data without the need for more source
de, either by use of code generation or reflective programming.

 When to Use It

The primary occasion for using Data Mapper is when you want the database schema and the object model to
evolve independently. The most common case for this is with a Domain Model

m
co

 (116). Data Mapper's primary
benefit is that when working on the domain model you can ignore the database, both in design and in the build

d testing process. The domain objects have no idea what the database structure is, because all the
correspondence is done by the mappers.

use you can understand and work with the domain objects without having to
e database. You can modify the Domain Model

an

is helps you in the code becaTh
understand how they're stored in th (116) or the database

 complicated mappings, particularly those involving existing databases, this

The price, of course, is the extra layer that you don't get with Active Record

without having to alter either. With
is very valuable.

 (160), so the test for using these
patterns is the complexity of the business logic. If you have fairly simple business logic, you probably won't

Domain Modelneed a (116) or a Data Mapper. More complicated logic leads you to Domain Model (116) and

odel

therefore to Data Mapper.

I wouldn't choose Data Mapper without Domain M (116), but can I use Domain Model (116) without Data

the database is under the domain model developers'
 objects to access the database directly with Active Record

Mapper? If the domain model is pretty simple, and
control, then it's reasonable for the domain (160).

discussed here into the domain objects themselves. As things
e more complicated, it's better to refactor the database behavior out into a separate layer.

Remember that you don't have to build a full-featured database-mapping layer. It's a complicated beast to
build, and there are products available that do this for you. For most cases I recommend buying a database-

pping layer rather than building one yourself.

base Mapper (Java)

tructure. Our example is a

Effecti
om

vely this puts the mapper behavior
bec

ma

ample: A Simple Data Ex

Here's an absurdly simple use of Data Mapper to give you a feel for the basic s
person with an isomorphic people table.

class Person...

 private String lastName;
 private String firstName;
 private int numberOfDependents;

The database schema looks like this:

ey, lascreate table people (ID int primary k
 firstname varch

tname varchar,
ar, number_of_dependents int)

re, where the Person Mapper class also implements the finder and Identity

'll use the simple case heWe
Map (195). However, I've added an abstract mapper Layer Supertype (475) to indicate where I can pull out

ity Mapsome common behavior. Loading involves checking that the object isn't already in the Ident (195) and

atement() {
 return "SELECT " + COLUMNS +

 lastname, firstname, number_of_dependents

Long id) {
return (Person) abstractFind(id);

public Person find(long id) {
ong(id));

String findStatement();
tected DomainObject abstractFind(Long id) {
 DomainObject result = (DomainObject) loadedMap.get(id);

 if (result != null) return result;
 PreparedStatement findStatement = null;
 try {
 findStatement = DB.prepare(findStatement());
 findStatement.setLong(1, id.longValue());
 ResultSet rs = findStatement.executeQuery();
 rs.next();
 result = load(rs);

 } finally {
tement);

 find method calls the load method, which is split between the abstract and person mappers. The abstract
mapper checks the ID, pulling it from the data and registering the new object in the Identity Map

then pulling the data from the database.

The find behavior starts in the Person Mapper, which wraps calls to an abstract find method to find by ID.

class PersonMapper...

 protected String findSt

 " FROM people" +
 " WHERE id = ?";
 }
 public static final String COLUMNS = " id,
";
 public Person find(

 }

 return find(new L
 }
class AbstractMapper...

 protected Map loadedMap = new HashMap();
 abstract protected
 pro

 return result;
 } catch (SQLException e) {
 throw new ApplicationException(e);

 DB.cleanUp(findSta
 }

 }

The

 (195).

class AbstractMapper...

 protected DomainObject load(ResultSet rs) throws SQLException {

 Long id = new Long(rs.getLong(1));
tainsKey(id)) return (DomainObject) loadedMap.get(id);
lt = doLoad(id, rs);

ng id, ResultSet rs) throws SQLException;

class PersonMapper...

Load(Long id, ResultSet rs) throws SQLException {

firstNameArg, numDependentsArg);

 if (loadedMap.con
 DomainObject resu

 loadedMap.put(id, result);
 return result;
 }
 abstract protected DomainObject doLoad(Lo

 DomainObject do protected

 String lastNameArg = rs.getString(2);
 String firstNameArg = rs.getString(3);

Int(4); int numDependentsArg = rs.get
 return new Person(id, lastNameArg,
 }

Notice that the Identity Map (195) is checked twice, once by abstractFind and once by load. There's a reason

ed to check the map in the finder because, if the object is already there, I can save myself a trip to the
database—I always want to save myself that long hike if I can. But I also need to check in the load because I
may have queries that I can't be sure of resolving in the Identity Map

for this madness.

I ne

 (195). Say I want to find everyone whose
last name matches some search pattern. I can't be sure that I have all such people already loaded, so I have to
go to the database and run a query.

 private static String findLastNameStatement =
 "SELECT " + COLUMNS +

ame(String name) {
mt = null;

ption e) {

t, rs);

while (rs.next())
 result.add(load(rs));
 return result;

e rows in the result set that correspond to people I've already loaded. I

class PersonMapper...

 " FROM people " +
 " WHERE UPPER(lastname) like UPPER(?)" +
 " ORDER BY lastname";

 public List findByLastN
 PreparedStatement st

 ResultSet rs = null;
 try {
 stmt = DB.prepare(findLastNameStatement);
 stmt.setString(1, name);

; rs = stmt.executeQuery()
ll(rs); return loadA

 } catch (SQLExce
 throw new ApplicationException(e);
 } finally {

 DB.cleanUp(stm
 }
 }

class AbstractMapper...

 protected List loadAll(ResultSet rs) throws SQLException {

 List result = new ArrayList();

 }

en I do this I may pull back somWh
have to ensure that I don't make a duplicate, so I have to check the Identity Map (195) again.

e basic, but repetitive, coding,

 in each subclass that needs it involves somWriting a find method this way

which I can eliminate by providing a general method.

.

ll;

gth; i++)
+1, source.parameters()[i]);

 throw new ApplicationException(e);

}
}

For this to work I need an interface that wraps both the SQL string and the loading of parameters into the
prepared statement.

..

 providing a suitable implementation as an inner class.

class PersonMapper...

ttern) {
any(new FindByLastName(pattern));

tSource {

ng lastName) {
;

}
) {

e UPPER(?)" +
 " ORDER BY lastname";

 }
 public Object[] parameters() {

This kind of work can be done in other places where there's repetitive statement invocation code. On the whole
I've made the examples here more straight to make them easier to follow. If you find yourself writing a lot of
repetitive straight-ahead code you should consider doing something similar.

With the update the JDBC code is specific to the subtype.

class PersonMapper...

 AbstractMapper..class

 public List findMany(StatementSource source) {
 PreparedStatement stmt = null;

 ResultSet rs = nu
 try {

 stmt = DB.prepare(source.sql());
< source.parameters().len for (int i = 0; i

 stmt.setObject(i
 rs = stmt.executeQuery();
 return loadAll(rs);
 } catch (SQLException e) {

 } finally {
 DB.cleanUp(stmt, rs);

interface StatementSource.

 String sql();
 Object[] parameters();

hen use this facility byI can t

 public List findByLastName2(String pa

 return findM
 }
 static class FindByLastName implements Statemen

 private String lastName;
 public FindByLastName(Stri

 this.lastName = lastName

 public String sql(
 return

 "SELECT " + COLUMNS +
 " FROM people " +

 " WHERE UPPER(lastname) lik

 Object[] result = {lastName};
 return result;
 }
 }

 private static final String updateStatementString =

 public void update(Person subject) {
 PreparedStatement updateStatement = null;
 try {
 updateStatement = DB.prepare(updateStatementString);
 updateStatement.setString(1, subject.getLastName());
 updateStatement.setString(2, subject.getFirstName());
 updateStatement.setInt(3, subject.getNumberOfDependents());
 updateStatement.setInt(4, subject.getID().intValue());
 updateStatement.execute();
 } catch (Exception e) {
 throw new ApplicationException(e);
 } finally {
 DB.cleanUp(updateStatement);

 }

F de can be factored into the Layer Supertype

 "UPDATE people " +
 " SET lastname = ?, firstname = ?, number_of_dependents = ? " +
 " WHERE id = ?";

 }

or the insert some co (475)

ass AbstractMapper...

 try {
 insertStatement = DB.prepare(insertStatement());
 subject.setID(findNextDatabaseId());
 insertStatement.setInt(1, subject.getID().intValue());
 doInsert(subject, insertStatement);
 insertStatement.execute();
 loadedMap.put(subject.getID(), subject);
 return subject.getID();
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } finally {
 DB.cleanUp(insertStatement);
 }
 }

abstract protected void doIns t(DomainObject subject, PreparedStatement

cl

 public Long insert(DomainObject subject) {
 PreparedStatement insertStatement = null;

 abstract protected String insertStatement();
 er
 insertStatement)

 protected String insertStatement() {
 return "INSERT INTO people VALUES (?, ?, ?, ?)";

 {
 Person subject = (Person) abstractSubject;

 }

 Example: Separating the Finders (Java)

 throws SQLException;

class PersonMapper...

 }
 protected void doInsert(
 DomainObject abstractSubject,
 PreparedStatement stmt)
 throws SQLException

 stmt.setString(2, subject.getLastName());
 stmt.setString(3, subject.getFirstName());
 stmt.setInt(4, subject.getNumberOfDependents());

To allow domain objects to invoke finder behavior I can use Separated Interface (476) to separate the find
interfaces from the mappers (

er
Figure 10.5). I can put these finder interfaces in a separate package that's visible

to the domain layer, or, as in this case, I can put them in the domain layer itself.

Figure 10.5. Defining a finder interface in the domain package.

One of the most common finds is one that finds an object according to a particular surrogate ID. Much of this

cessing is quite generic, so it can be handled by a suitable Layer Supertypepro (475). All it needs is a Layer
Supertype (475) for domain objects that know about IDs.

The interface for finding lies in the finder interface. It's usually best not made generic because you need to
know what the return type is.

interface ArtistFinder...

 Artist find(Long id);
 Artist find(long id);

The finder interface is best declared in the domain package with the finders held in a Registry

 (480). In this
case I've made the mapper class implement the finder interface.

class ArtistMapper implements ArtistFinder...

 public Artist find(Long id) {
 return (Artist) abstractFind(id);
 }
 public Artist find(long id) {
 return find(new Long(id));
 }

The bulk of the find method is done by the mapper's Layer Supertype (475), which checks the Identity
Map (195) to see if the object is already in memory. If not, it completes a prepared statement that's loaded in
by the artist mapper and executes it.

class AbstractMapper...

 abstract protected String findStatement();
 protected Map loadedMap = new HashMap();
 protected DomainObject abstractFind(Long id) {
 DomainObject result = (DomainObject) loadedMap.get(id);
 if (result != null) return result;
 PreparedStatement stmt = null;
 ResultSet rs = null;
 try {
 stmt = DB.prepare(findStatement());
 stmt.setLong(1, id.longValue());
 rs = stmt.executeQuery();
 rs.next();
 result = load(rs);
 return result;
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } finally {cleanUp(stmt, rs);
 }
 }

class ArtistMapper...

 protected String findStatement() {
 return "select " + COLUMN_LIST + " from artists art where ID = ?";
 }
 public static String COLUMN_LIST = "art.ID, art.name";

e find part of he behavior is about getting either the existing object or a new one. The load part is about

 protected DomainObject load(ResultSet rs) throws SQLException {
 Long id = new Long(rs.getLong("id"));

 String name = rs.getString("name");
 Artist result = new Artist(id, name);
 return result;
 }

Notice that the load method also checks the Identity Map

Th t
putting the data from the database into a new object.

class AbstractMapper...

 if (loadedMap.containsKey(id)) return (DomainObject) loadedMap.get(id);
 DomainObject result = doLoad(id, rs);
 loadedMap.put(id, result);
 return result;
 }
 abstract protected DomainObject doLoad(Long id, ResultSet rs) throws SQLException;

class ArtistMapper...

 protected DomainObject doLoad(Long id, ResultSet rs) throws SQLException {

 (195). Although redundant in this case, the load can
be called by other finders that haven't already done this check. In this scheme all a subclass has to do is

velop a doLoad method to load the actual data needed, and return a suitable prepared statement from the
dStatement method.

de
fin

You can also do a find based on a query. Say we have database of tracks and albums and we want a finder
that will find all the tracks on a specified album. Again the interface declares the finders.

interface TrackFinder...

 Track find(Long id);
 Track find(long id);
 List findForAlbum(Long albumID);

ce this is a specific find method for this class, it's implemented in a specific class, such as the track mapper

a

Sin
class, rather than in a Layer Supertype (475). As with any finder, there are two methods to the implementation.
One sets up the prepared statement; the other wraps the call to the prepared statement and interprets the results

class TrackMapper...

 public static final String findForAlbumStatement =
 "SELECT ID, seq, albumID, title " +
 "FROM tracks " +
 "WHERE albumID = ? ORDER BY seq";

.

 public List findForAlbum(Long albumID) {
 PreparedStatement stmt = null;

 rs = stmt.executeQuery();
 List result = new ArrayList();
 while (rs.next())
 result.add(load(rs));
 return result;
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } finally {cleanUp(stmt, rs);

 }

The finder calls a load method for each row in the result set. This method has the responsibility of creating the
in-memory object and loading it with the data. As in the previous example, some of this can be handled in
a Layer Supertype

 ResultSet rs = null;
 try {
 stmt = DB.prepare(findForAlbumStatement);
 stmt.setLong(1, albumID.longValue());

 }

 (475), including checking the Identity Map (195) to see if something is already loaded.

Example: Creating an Empty Object (Java)

w his results in the following loading code:

class AbstractMapper...

 protected DomainObject load(ResultSet rs) throws SQLException {

ption;

c

ainObject doLoad(Long id, ResultSet rs) throws SQLException {
 String lastNameArg = rs.getString(2);
 String firstNameArg = rs.getString(3);

There are two basic approaches for loading an object. One is to create a fully valid object with a constructor,

hich is what I've done in the examples above. T

 Long id = new Long(rs.getLong(1));
 if (loadedMap.containsKey(id)) return (DomainObject) loadedMap.get(id);
 DomainObject result = doLoad(id, rs);
 loadedMap.put(id, result);
 return result;
 }
 abstract protected DomainObject doLoad(Long id, ResultSet rs) throws SQLExce

lass PersonMapper...

 protected Dom

 int numDependentsArg = rs.getInt(4);

 if (loadedMap.containsKey(id)) return (DomainOb ctEL) loadedMap.get(id);
 DomainObjectEL result = createDomainObject();
 result.setID(id);
 loadedMap.put(id, result);
 doLoad (result, rs);
 return result;
 }
 abstract protected DomainObjectEL createDomainObject();
 abstract protected void doLoad(DomainObjectEL obj, ResultSet rs) throws SQLException;

class PersonMapper...

 protected DomainObjectEL createDomainObject() {
 return new Person();
 }
 protected void doLoad(DomainObjectEL obj, ResultSet rs) throws SQLException {
 Person person = (Person) obj;

 person.dbLoadLastName(rs.getString(2));
 person.setFirstName(rs.getString(3));
 person.setNumberOfDependents(rs.getInt(4));
 }

Notice that I'm using a different kind of domain object Layer Supertype

 return new Person(id, lastNameArg, firstNameArg, numDependentsArg);
 }

he alternative is to create an empty object and load it with the setters later. T

class AbstractMapper...

 protected DomainObjectEL load(ResultSet rs) throws SQLException {
 Long id = new Long(rs.getLong(1));

je

 (475) here, because I want to control
be an immutable field. In this case I

don't want to change the value of the field once it's loaded, so I add a status field to the domain object.

bjectEL...

 private int state = LOADING;
 private static final int LOADING = 0;
 private static final int ACTIVE = 1;
 public void beActive() {
 state = ACTIVE;
 }

of this during a load.

 assertStateIsLoading();

ass DomainObjectEL...

oading() {

ss

the use of the setters. Let's say that I want the last name of a person to

class DomainO

an then check the value I c

class Person...

public void dbLoadLastName(String lastName) {

 this.lastName = lastName;
 }

cl

 void assertStateIsL

 Assert.isTrue(state == LOADING);
 }

What I don't like about this is that we now have a method in the interface that most clients of the Person cla

can't use. This is an argument for the mapper using reflection to set the field, which will completely bypass

h bugs caused by
ng time. On the other hand is the seriousness of the bugs worth the

 mechanism? At the moment I don't have a strong opinion either way.

Java's protection mechanisms.

l catcIs the status-based guard worth the trouble? I'm not entirely sure. On the one hand it wil
people calling update methods at the wro
cost of the

hapter 11. C Object-Relational Behavioral Patterns

Unit of Work

Identity Map

Lazy Load

Unit of Work

 coordinates the writing out of changes and the

Maintains a list of objects affected by a business transaction and

ion of concurrency problems.resolut

it's important to keep track of what you've changed;
database. Similarly you have to insert new objects you

bjects you delete.

You can change the database with each change to your object model, but this can lead to lots of very small
database calls, which ends up being very slow. Furthermore it requires you to have a transaction open for the
whole interaction, which is impractical if you have a business transaction that spans multiple requests. The

uation is even worse if you need to keep track of the objects you've read so you can avoid inconsistent reads.

ase.
e as a result of your work.

 object created and existing ones

When you're pulling data in and out of a database,

ten back into the otherwise, that data won't be writ
create and remove any o

sit

A Unit of Work keeps track of everything you do during a business transaction that can affect the datab

hen you're done, it figures out everything that needs to be done to alter the databasW

ow It Works H

 changes: newThe obvious things that cause you to deal with the database are

updated or deleted. Unit of Work is an object that
something that may affect a database, you create a

keeps track of these things. As soon as you start doing
Unit of Work to keep track of the changes. Every time you

 change, or delete an object you tell the Unit of Work. You can also let it know about objects you've
istent reads by verifying that none of the objects changed on the database

during the business transaction.

The key thing about Unit of Work is that, when it comes time to commit, the Unit of Work decides what to do.

opens a transaction, does any concurrency checking (using Pessimistic Offline Lock

c eate,r
read so that it can check for incons

It (426) or Optimistic
Offline Lock (416)), and writes cha

thods for database updates. This
nges out to the database. Application programmers never explicitly call
way they don't have to keep track of what's changed or worry about how

 to know what objects it should keep track of. You can do
t to tell the Unit of Work.

Figure 11.1

me
referential integrity affects the order in which they need to do things.

Of course for this to work the Unit of Work needs
this either by the caller doing it or by getting the objec

With caller registration (), the user of an object has to remember to register the object with the Unit

s

't want written out. Still, I would argue that it's going to cause far more confusion than would be
worthwhile. It's better to make an explicit copy for that purpose.

Figure 11.1. Having the caller register a changed object.

of Work for changes. Any objects that aren't registered won't be written out on commit. Although this allow
wing people to make in-memory changes that they forgetfulness to cause trouble, it does give flexibility in allo

don

W Figure 11.2

ith object registration (), the onus is removed from the caller. The usual trick here is to place
gistration methods in object methods. Loading an object from the database registers the object as clean; the

ed
re
setting methods register the object as dirty. For this scheme to work the Unit of Work needs either to be pass

to the object or to be in a well-known place. Passing the Unit of Work around is tedious but usually no
problem to have it present in some kind of session object.

Figure 11.2. Getting the receiver object to register itself.

egistration leaves something to remember; that is, the developer of the object has to remember to
add a registration call in the right places. The consistency becomes habitual, but is still an awkward bug when
missed.

This is a natural place for code generation to generate appropriate calls, but that only works when you can

oblem turns out to be particularly suited to aspect-
ented programming. I've also come across post-processing of the object files to pull this off. In this example

Another technique I've seen is unit of work controller (Figure 11.3

Even object r

clearly separate generated and nongenerated code. This pr
ori
a post-processor examined all the Java .class files, looked for the appropriate methods and inserted registration
calls into the byte code. Such finicking around feels dirty, but it separates the database code from the regular
code. Aspect-oriented programming will do this more cleanly with source code, and as its tools become more
commonplace I expect to see this strategy being used.

), which the TOPLink product uses. Here
the Unit of Work handles all reads from the database and registers clean objects whenever they're read. Rather
than marking objects as dirty the Unit of Work takes a copy at read time and then compares the object at
commit time. Although this adds overhead to the commit process, it allows a selective update of only those

fields that were actually changed; it also avoids registration calls in the domain objects. A hybrid approach is
to take copies only of changed objects. This requires registration, but it supports selective update and greatly

uces the overhead of the copy if there are many more reads than updates.

Figure 11.3. Using the Unit of Work as the controller for database access.

red

other solutions, such as providing a transient constructor that doesn't register with the Unit of Work or, better
ecial Case

Object creation is often a special time to consider caller registration. It's not uncommon for people to create
objects that are only supposed to be transient. A good example of this is in testing domain objects, where the
tests run much faster without database writes. Caller registration can make this apparent. However, there are

still, providing a Sp (496)Unit of Work that does nothing with a commit.

rity.
 when

there's no
good reason not to do it. If not, the Unit of Work is the natural place to sort out the update order. In smaller

stems this can be done with explicit code that contains details about which tables to write first based on the
e

f this book, and it's a common reason to use a
mmercial tool. If you have to do it yourself, I'm told the key to the puzzle is a topological sort.

You can use a similar technique to minimize deadlocks. If every transaction uses the same sequence of tables
to edit, you greatly reduce the risk of deadlocks. The Unit of Work is an ideal place to hold a fixed sequence o

Another area where a Unit of Work can be helpful is in update order when a database uses referential integ
Most of the time you can avoid this issue by ensuring that the database only checks referential integrity
the transaction commits rather than with each SQL call. Most databases allow this, and if available

sy
foreign key dependencies. In a larger application it's better to use metadata to figure out which order to writ
to the database. How you do that is beyond the scope o
co

f
table writes so that you always touch the tables in the same order.

Objects need to be able to find their current Unit of Work. A good way to do this is with a thread-

scoped Registry (480). Another way is to pass the Unit of Work to objects that need it, either in method calls
or when you create an object. In either case make sure that more than one thread can't get access a Unit of
Work—there lies the way to madness.

Unit of Work makes an obvious point of handling batch updates. The idea behind a batch update is to send
multiple SQL commands as a single unit so that they can be processed in a single remote call. This is
particularly important when many updates, inserts, and deletes are sent in rapid succession. Different
environments provide different levels of support for batch updates. JDBC has a facility that allows you to
batch individual statements. If you don't have this feature, you can mimic it by building up a string that has

ent. [Nilsson

multiple SQL statements and then submitting as one statem] describes an example of this for
Microsoft platforms. However, if you do this check to see if it interferes with statement precompilation.

 you can also use it to coordinate

t. This makes it a slightly different pattern from
ross register and track changes to objects. .NET reads

s a series of objects arranged like tables, rows, database and
umns. The data set is essentially an in-memory mirror image of the result of one or more SQL queries. Each
 row has the concept of a version (current, original, proposed) and a state (unchanged, added, deleted,

e fundamental problem that Unit of Work deals with is keeping track of the various objects you've
m nipulated so that you know which ones you need to consider to synchronize your in-memory data with the

 able to do all your work within a system transaction, the only objects you need to worry
u alter. Although Unit of Work is generally the best way of doing this, there are alternatives.

ter it. The problem here is that
ct at three different points in

ur work, you get three calls rather than one call in its final state.

ine with a Transaction Script

it of Work works with any transactional resource, not just databases, soUn
with message queues and transaction monitors.

 .NET Implementation

.NET the Unit of Work is done by the disconnected data seIn
the classical variety. Most Units of Work I've come ac
data from the database into a data set, which i
c lo

atad
modified), which, together with the fact that the data set mimics the database structure, makes for
straightforward writing of changes to the database.

 When to Use It

Th

a
database. If you're
about are those yo

Perhaps the simplest alternative is to explicitly save any object whenever you al

ou may get many more database calls than you want since, if you alter one objey
yo

To avoid multiple database calls, you can leave all your updates to the end. To do this you need to keep track
of all the objects that have changed. You can use variables in your code for this, but they soon become
unmanageable once you have more than a few. Variables often work f (110), but

y can be very difficult with a Domain Modelthe (116).

d all the dirty objects at the end of your transaction and write them out. The
lue of this technique hinges on how easy it is to find the dirty objects. If all of them are in a single hierarchy,

Rather than keep objects in variables you can give each object a dirty flag that you set when the object
changes. Then you need to fin
va
then you can traverse the hierarchy and write out any that have been changed. However, a more general object
network, such as a Domain Model (116), is harder to traverse.

The great strength of Unit of Work is that it keeps all this information in one place. Once you have it working

for you, you don't have to remember to do much in order to keep track of your changes. Also, Unit of Work is
a firm platform for more complicated situations, such as handling business transactions that span several

stem transactions using Optimistic Offline Locksy (416) and Pessimistic Offline Lock (426).

by David Rice

Here's a Unit of Work that can track all changes for a given business transaction and then commit them to the

tabase when instructed to do so. Our domain layer has a Layer Supertype

 Example: Unit of Work with Object Registration (Java)

da (475), DomainObject, with which
the Unit of Work will interact. To store the change set we use three lists: new, dirty, and removed domain
objects.

class UnitOfWork...

 private List newObjects = new ArrayList();
 private List dirtyObjects = new ArrayList();
 private List removedObjects = new ArrayList();

The registration methods maintain the state of these lists. They must perform basic assertions such as checking
that an ID isn't null or that a dirty object isn't being registered as new.

ass UnitOfWork...

d registerDirty(DomainObject obj) {
 Assert.notNull("id not null", obj.getId());
 Assert.isTrue("object not removed", !removedObjects.contains(obj));

(DomainObject obj) {
 Assert.notNull("id not null", obj.getId());

 if (newObjects.remove(obj)) return;
 dirtyObjects.remove(obj);
 if (!removedObjects.contains(obj)) {
 removedObjects.add(obj);
 }
 }
 public void registerClean(DomainObject obj) {

cl

 public void registerNew(DomainObject obj) {
 Assert.notNull("id not null", obj.getId());
 Assert.isTrue("object not dirty", !dirtyObjects.contains(obj));
 Assert.isTrue("object not removed", !removedObjects.contains(obj));
 Assert.isTrue("object not already registered new", !newObjects.contains(obj));
 newObjects.add(obj);
 }
 public voi

 if (!dirtyObjects.contains(obj) && !newObjects.contains(obj)) {
 dirtyObjects.add(obj);
 }
 }
 public void registerRemoved

 Assert.notNull("id not null", obj.getId());
 }

Notice that registerClean() doesn't do anything here. A common practice is to place an Identity Map (195
within a Unit of Work. An

)
Identity Map (195) is necessary almost any time you store domain object state

memory because multiple copies of th
in

e same object would result in undefined behavior. Were an Identity
Map (195) in place, registerClean() would put the registered object in it. Likewise registerNew() would put a
new object in the map and registerRemoved() would remove a deleted object from the map. Without
the Identity Map (195) you have the option of not including registerClean() in your Unit of Work. I've seen
implementations of this method that remove changed objects from the dirty list, but partially rolling back
changes is always tricky. Be careful when reversing any state in the change set.

commit() will locate the Data Mapper (165) for each object and invoke the appropriate mapping method.

dateDirty() and deleteRemoved() aren't shown, but they would behave like insertNew(), which is as
pected.

 insertNew();

rator(); objects.hasNext();) {
 DomainObject obj = (DomainObject) objects.next();

 MapperRegistry.getMapper(obj.getClass()).insert(obj);
 }
 }

Not included in this Unit of Work is the tracking of any objects we've read and want to check for inconsistent
read errors upon commit. This is addressed in Optimistic Offline Lock

up
ex

class UnitOfWork...

 public void commit() {

 updateDirty();
 deleteRemoved();
 }
 private void insertNew() {
 for (Iterator objects = newObjects.ite

 (416).

xt we need to facilitate object registration. First each domain object needs to find the Unit of Work serving
 current business transaction. Since that Unit of Work will be needed by the entire domain model, passing it

ad
.

rather than add the management overhead of another
ead mapping. Besides, the Unit of Work logically belongs to the session.

urrent = new ThreadLocal();
 public static void newCurrent() {

 setCurrent(new UnitOfWork());
 }
 public static void setCurrent(UnitOfWork uow) {
 current.set(uow);
 }
 public static UnitOfWork getCurrent() {
 return (UnitOfWork) current.get();
 }

ct...

 protected void markNew() {
 UnitOfWork.getCurrent().registerNew(this);
 }
 protected void markClean() {
 UnitOfWork.getCurrent().registerClean(this);
 }
 protected void markDirty() {
 UnitOfWork.getCurrent().registerDirty(this);
 }
 protected void markRemoved() {

Ne
the
around as a parameter is probably unreasonable. As each business transaction executes within a single thre
we can associate the Unit of Work with the currently executing thread using the java.lang.ThreadLocal class
Keeping things simple, we'll add this functionality by using static methods on our Unit of Work class. If we
already have some sort of session object associated with the business transaction execution thread we should

ce the current Unit of Work on that session object pla
thr

class UnitOfWork...

 private static ThreadLocal c

Now we can now give our abstract domain object the marking methods to register itself with the current Unit
of Work.

class DomainObje

 UnitOfWork.getCurrent().registerRemoved(this);

ass Album...

Album(IdGenerator.nextId(), name);
 obj.markNew();

 public void setTitle(String title) {
 this.title = title;

oved objects can be handled by a remove() method on the abstract

 }

Concrete domain objects need to remember to mark themselves new and dirty where appropriate.

cl

 public static Album create(String name) {
 Album obj = new

 return obj;
 }

 markDirty();
 }

Not shown is that the registration of rem
domain object. Also, and if you've implemented registerClean() your Data Mappers (165) will need to register

ean.

ither

 public static void updateTitle(Long albumId, String title) {

itle(title);
 UnitOfWor .getCurrent().commit();

ond the simplest of applications, implicit Unit of Work management is more appropriate as it avoids
etitive, tedious coding. Here's a servlet Layer Supertype

any newly loaded object as cl

The final piece is to register and commit the Unit of Work where appropriate. This can be done e
explicitly or implicitly. Here's what explicit Unit of Work management looks like:

class EditAlbumScript...

 UnitOfWork.newCurrent();
 Mapper mapper = MapperRegistry.getMapper(Album.class);
 Album album = (Album) mapper.find(albumId);
 album.setT

k
 }

Bey
rep (475) that registers and commits the Unit of Work

et...

etRequest request, HttpServletResponse response)
eption {

 UnitOfWork.newCurrent();
 handleGet(request, response);

 UnitOfWork.setCurrent(null);

ponse response)

a bit simplistic, in that it skips system transaction control. If you were

for its concrete subtypes. Subtypes will implement handleGet() rather than override doGet(). Any code
executing within handleGet() will have a Unit of Work with which to work.

class UnitOfWorkServl

 final protected void doGet(HttpServl

ServletException, IOExc throws
 try {

 UnitOfWork.getCurrent().commit();
 }finally {

 }
 }

 abstract void handleGet(HttpServletRequest request, HttpServletRes
Exception, IOException; throws Servlet

The above servlet example is obviously
using Front Controller (344), you would be more likely to wrap Unit of Wo

 rather than doGet(). Similar wrapping can be done with just abo
rk management around your
ut any execution context. commands

entity MapId

ing every loaded object in a map. Looks up objects Ensures that each object gets loaded only once by keep
using the map when referring to them.

old proverb says that a man with two watches never knows what time it is. If two watches are confusing,
u can get in an even bigger mess with loading objects from a database. If you aren't careful you can load the

 update them both you'll have an
eresting time writing the changes out to the database correctly.

problem. If you load the same data more than once you're incurring
ot loading the same data twice doesn't just help correctness, but can

een read from the database in a single business
saction. Whenever you want an object, you check the Identity Map first to see if you already have it.

The basic idea behind the Identity Map is to have a series of maps containing objects that have been pulled
m the database. In a simple case, with an isomorphic schema, you'll have one map per database table. When

e

lementation choices to worry about. Also, since Identity Maps interact with
onsider Optimistic Offline Lock

An
yo
data from the same database record into two different objects. Then, when you
int

Related to this is an obvious performance

ensive cost in remote calls. Thus, nan exp
also speed up your application.

 Identity Map keeps a record of all objects that have bAn
ntra

 How It Works

fro
you load an object from the database, you first check the map. If there's an object in it that corresponds to th
one you're loading, you return it. If not, you go to the database, putting the objects into the map for future
reference as you load them.

ere are a number of impTh
concurrency management, so you should c (416) as well.

e of Keys Choic

The first thing to consider is the key for the map. The obvious choice is the primary key of the corresponding
database table. This works well if the key is a single column and immutable. A surrogate primary key fits in

very well with this approach because you can use it as the key in the map. The key will usually be a simple
 behavior will work nicely.

e Identity Map explicit or generic. An explicit Identity Map is accessed
 as findPerson(1). A generic map uses a single
ndicate which kind of object you need, such as

ious advantage is that you can support a generic map with a generic and reusable

data type so the comparison

 Explicit or Generic

You have to choose whether to make th
with distinct methods for each kind of object you need: such

jects, with perhaps a parameter to imethod for all kinds of ob
erson", 1). The obvfind("P

object. It's easy to construct a reusable Registry (480) that work for all kinds of objects and doesn't need
 a new map.

e

ailable and what they're called. It does mean adding a method each time you add a new map,
the virtue of explicitness.

s have the same type of
ind a single key object.

updating when you add

However, I prefer an explicit Identity Map. For a start this gives you compile-time checking in a strongly
typed language. But more than that, it has all the other advantages of an explicit interface: it's easier to se

hat maps are avw
but that is a small overhead for

Your type of key affects the choice. You can only use a generic map if all your object
key. This is a good argument for encapsulating different kinds of database key beh
(See Identity Field (216) for detail.)

 How Many

ecision varies betwHere the d een one map per class and one map for the whole session. A single map for the
ase-unique keys (see the discussion in Identity Fieldsession works only if you have datab (216) for the trade-

nly one place to go and no
ecisions about inheritance.

us route is one map per class or per table, which works well if your
database schema and object models are the same. If they look different, it's usually easier to base the maps on
your objects rather than on your tables, as the objects shouldn't really know about the intricacies of the
mapping.

eritance rears an ugly head here. If you have cars as a subtype of vehicle, do you have one map or separate
can make polymorphic references much more awkward, since any lookup needs

a result I prefer to use a single map for each inheritance tree, but that means
s inheritance trees, which can be awkward if you

offs on that.) Once you have one Identity Map, the benefit is that you have o
awkwa

rd d

If you have multiple maps, the obvio

Inh
maps? Keeping them separate
to know to look in all maps. As
that you should also make your keys unique acros
use Concrete Table Inheritance (293).

 ones when you add database tables. However,

age of a single map is that you don't have to add newAn advant
tying your maps to your Data Mappers (165) (see below) won't be any extra burden.

're easy to find. They're also tied to the process context you're
ce that's isolated from any other session's

fic object. If you're using Unit of

 Where to Put Them

aps need to be somewhere where theyIdentity M
working in. You need to ensure that each session gets it's own instan

p on a session-speciinstance. Thus, you need to put the Identity Ma
Work (184) that's by far the best place for the Identity Maps since the Unit of Work (184) is the main place for

keeping track of data coming in or out of the database. If you don't have a Unit of Work (184), the best bet is
gistrya Re (480) that's tied to the session.

 Map for a session; otherwise, you need to provide
nsactional protection for your map, which is more work than any sane developer wants to do. However,
re are a couple of exceptions. The biggest one is to use an object database as a transactional cache, even if

rth taking a look at. Many people I respect are big fans of a transactional cache
a way to improve performance.

that are read-only in all cases. If an object can never be modified, there's no
ng shared across sessions. In performance-intensive systems it can be very beneficial

 and have it available to the whole process. In this case you have your read-
held in a process context and your updatable Identity Maps in a session context. This also

n't completely read-only but are updated so rarely that you don't mind flushing the
tentially bouncing the server when it happens.

have only one Identity Map you can split it in two along read-only and updatable
aving to know which is which by providing an interface that checks both maps.

eneral you use an Identity Map to manage any object brought from a database and modified. The key
son is that you don't want a situation where two in-memory objects correspond to a single database

Another value in Identity Map is that it acts as a cache for database reads, which means that you can avoid
going to the database each time you need some data.

You may not need an Identity Map for immutable objects. If you can't change an object, then you don't have to

rry about modification anomalies. Since Value Objects

As I've implied here, you usually see a single Identity
tra
the
you use a relational database for record data. While I haven't seen any independent performance studies, the
possibilities suggest that it's wo
as

n is for objects The other exceptio
need to worry about it bei
to load in all read-only data once
only Identity Maps
applies to objects that are
process-wide Identity Map and po

en if you're inclined to Ev
lines. You can avoid clients h

 When to Use It

In g
rea
record—you might modify the two records inconsistently and thus confuse the database mapping.

wo (486) are immutable, it follows that you don't need
l, Identity Map has advantages here, the most important of which is the

revent the use of the wrong form of equality

t need an Identity Map for a Dependent Mapping

Identity Map for them. Stil
performance advantages of the cache, another is that it helps to p

ere you can't override ==. test, a problem prevalent in Java, wh

You don' (262). Since dependent objects have their
persistence controlled by their ty. However, although you
don't need a map, you may want to provide one if you need to access the object through a database key. In this
case the map is merely an index, so it's arguable whether it really counts as a map at all.

Identity Map helps avoid update conflicts within a single session, but it doesn't do anything to handle conflicts
that cross sessions. This is a complex problem that we discuss further in Optimistic Offline Lock

 parent, there's no need for a map to maintain identi

 (416)
and Pessimistic Offline Lock (426).

 Example: Methods for an Identity Map (Java)

For each Identity Map we have a map field and accessors.

private Map people = new HashMap();
public static void addPerson(Person arg) {
 soleInstance.people.put(arg.getID(), arg);
}
public static Person getPerson(Long key) {
 return (Person) soleInstance.people.get(key);
}
public static Person getPerson(long key) {
 return getPerson(new Long(key));
}

One of the annoyances of Java is the fact that long isn't an object so you can't use it as an index for a map. This
isn't as annoying as it could have been since we don't actually do any arithmetic on the index. The one place
where it really hurts, though, is when you want to retrieve an object with a literal. You hardly ever need to do

t in production code, but you often do in test code, so I've included a getting method that takes a long to tha
make testing easier.

Lazy Load

An object that doesn't contain all of the data you need but knows how to get it.

 design things so that as you load an object of
u also load the objects that are related to it. This makes loading easier on the developer using the

e has to load all the objects he needs explicitly.

ere loading one object can have the
 that hurts performance when only a few of the

For loading data from a database into memory it's handy to
interest yo
object, who otherwis

 conclusion, you reach the point whHowever, if you take this to its logical
effect of loading a huge number of related objects—something
objects are actually needed.

A Lazy Load interrupts this loading process for the moment, leaving a marker in the object structure so that if
, if you're lazy about doing

: lazy initialization, virtual proxy, value holder, and
st.

the data is needed it can be loaded only when it is used. As many people know
things you'll win when it turns out you don't need to do them at all.

 How It Works

our main ways you can implement Lazy LoadThere are f
gho

Lazy initialization [Beck Patterns] is the simplest approach. The basic idea is that every access to the field

ecks first to see if it's null. If so, it calculates the value of the field before returning the field. To make this
re that the field is self-encapsulated, meaning that all access to the field, even from

a legal value field value. In
en loaded, or you need to use a Special

ch
work you have to ensu
within the class, is done through a getting method.

Using a null to signal a field that hasn't been loaded yet works well, unless null is
this case you need something else to signal that the field hasn't be
Case (496) for the null value.

Using lazy initialization is simple, but it does tend to force a dependency between the object and the database.

tive RecordFor that reason it works best for Ac (160), Table Data Gateway (144), and Row Data
Gateway (152). If you're using Data Mapper (165), you'll need an additional layer of indirection, which you

rcan obtain by using a virtual proxy [Gang of Fou]. A virtual proxy is an object that looks like the object that
in anything. Only when one of its methods is called does it

t object from the database.

The good thing about a virtual proxy is that it looks exactly like the object that's supposed to be there. The bad
thing is that it isn't that object, so you can easily run into a nasty identity problem. Furthermore you can have
more than one virtual proxy for the same real object. All of these proxies will have different object identities,
yet they represent the same conceptual object. At the very least you have to override the equality method and
remember to use it instead of an identity method. Without that, and discipline, you'll run into some very hard-

track bugs.

s proxies,

should be in the field, but doesn't actually conta
load the correc

to-

In some environments another problem is that you end up having to create lots of virtual proxies, one for each
class you're proxying. You can usually avoid this in dynamically typed languages, but in statically typed

guages things often get messy. Even when the platform provides handy facilities, such as Java'lan
other inconveniences can come up.

These problem don't hit you if you only use virtual proxies for collections classes, such as lists. Since
collections are Value Objects (486), their identity doesn't matter. Additionally you only have a few collection

in classes you can get around these problems by using a value holder. This concept, which I first
e across in Smalltalk, is an object that wraps some other object. To get the underlying object you ask the

classes to write virtual collections for.

With doma
cam
value holder for its value, but only on the first access does it pull the data from the database. The
disadvantages of the value holder are that the class needs to know that it's present and that you lose the
explicitness of strong typing. You can avoid identity problems by ensuring that the value holder is never
passed out beyond its owning class.

A ghost is the real object in a partial state. When you load the object from the database it contains just its ID.

Map

Whenever you try to access a field it loads its full state. Think of a ghost as an object, where every field is
lazy-initialized in one fell swoop, or as a virtual proxy, where the object is its own virtual proxy. Of course,
there's no need to load all the data in one go; you may group it in groups that are commonly used together. If
you use a ghost, you can put it immediately in its Identity (195). This way you maintain identity and

oid all problems due to cyclic references when reading in data.

esn't need to be completely devoid of data. If you have some data that's quick to get
ed, it may make sense to load it when you load the proxy or ghost. (This is

object.")

oad. If you're going to use ghosts, you'll need to know what
ll without loading the thing properly. Virtual proxies can suffer

anguages.

ading cripple the performance of an application. One way to avoid it is never to have a collection of
ke the collection itself a Lazy Load and, when you load it, load all the contents. The
hen the collection is very large, such as all the IP addresses in the world. These

tions in the object model, so that doesn't happen very often, but when it
er [Alur et al.

av

st doA virtual proxy/gho
hold of and commonly us
sometimes referred to as a "light

Inheritance often poses a problem with Lazy L

ou often can't tetype of ghost to create, which y
from the same problem in statically typed l

Another danger with Lazy Load is that it can easily cause more database accesses than you need. A good
example of this ripple loading is if you fill a collection with Lazy Loads and then look at them one at a time.
This will cause you to go to the database once for each object instead of reading them all in at once. I've seen
ripple lo
Lazy Loads but, rather ma

itation of this tactic is wlim
aren't usually linked through associa

andldoes you'll need a Value List H].

r aspect-oriented programming. You can put Lazy Load behavior into a
t, which allows you to change the lazy load strategy separately as well as freeing the domain

seen a project post-process Java bytecode to
ay.

Often you'll run into situations where different use cases work best with different varieties of laziness. Some
need one subset of the object graph; others need another subset. For maximum efficiency you want to load the

ht subgraph for the right use case.

The way to deal with this is to have separate database interaction objects for the different use cases. Thus, if
you use Data Mapper

a good candidate foLazy Load is
specseparate a

developers from having to deal with lazy loading issues. I've also
implement Lazy Load in a transparent w

rig

 (165), you may have two order ma er objects: one that loads the line items
immediately and one that loads them lazily. The application code chooses the appropriate mapper depending
o
decide the loading pattern. This is a tter way to factor behavior.

In theory you might want a range of different degrees of laziness, but in practice you really need only two: a
complete load and enough of a load for identification purposes in a list. Adding more usually adds more
complexity than is worthwhile.

 When to Use It

Deciding when to use Lazy Load is all about deciding how much you want to pull back from the database as
you load an object, and how many database calls that will require. It's usually pointless to use Lazy Load on a

pp

n the use case. A variation on this is to have the same basic loader object but defer to a strategy object to
 bit more sophisticated, but it can be a be

field that's stored in the same row as the rest of the object, because most of the time it doesn't cost any more to
bring back extra data in a call, even if the data field is quite large—such as a Serialized LOB (272). That
means it's usually only worth considering Lazy Load if the field requires an extra database call to access.

In performance terms it's about deciding when you want to take the hit of bringing back the data. Often it's a
good idea to bring everything you'll need in one call so you have it in place, particularly if it corresponds to a
single interaction with a UI. The best time to use Lazy Load is when it involves an extra call and the data
you're calling isn't used when the main object is used.

Adding Lazy Load does add a little complexity to the program, so my preference is not to use it unless I
actively think I'll need it.

 Example: Lazy Initialization (Java)

The essence of lazy initialization is code like this:

class Supplier...

 public List getProducts() {
 if (products == null) products = Product.findForSupplier(getID());
 return products;
 }

e the actual class you normally use but that
or a supplier would be held with

cts;

 this is setting it up so that you can provide an
hen it's accessed. To do this we have to pass the code that's needed to

te the list into the virtual list when it's instantiated. The best way to do this in Java is to define an interface

alListLoader {

n we can instantiate the virtual list with a loader that calls the appropriate mapper method.

ader(Long id) {

 this.id = id;

In this way the first access of the products field causes the data to be loaded from the database.

Example: Virtual Proxy (Java)

The key to the virtual proxy is providing a class that looks lik
actually holds a simple wrapper around the real class. Thus, a list of products f
a regular list field.

class SupplierVL...

 private List produ

roducing a list proxy likeThe most complicated thing about p
erlying list that's created only wund

eacr
for the loading behavior.

public interface Virtu
 List load();

}

The

class SupplierMapper...

 public static class ProductLoader implements VirtualListLoader {

 private Long id;
 public ProductLo

 }
 public List load() {
 return ProductMapper.create().findForSupplier(id);
 }
 }

 to the list fielDuring the load method we assign the product loader d.

 doLoad(Long id, ResultSet rs) throws SQLException {

turn result;
}

 private List source;
 private VirtualListLoader loader;
 public VirtualList(VirtualListLoader loader) {
 this.loader = loader;
 }
 private List getSource() {
 if (source == null) source = loader.load();
 return source;
 }

The regular list methods to delegate are then implemented to the source list.

class VirtualList...

 public int size() {
 return getSource().size();
 }
 public boolean isEmpty() {
 return getSource().isEmpty();
 }
 // ... and so on for rest of list methods

This way the domain class knows nothing about how the mapper class does the Lazy Load. Indeed, the domain
class isn't even aware that there is a Lazy Load.

 Example: Using a Value Holder (Java)

A value holder can be used as a generic Lazy Load. In this case the domain type is aware that something is
afoot, since the product field is typed as a value holder. This fact can be hidden from clients of the supplier by
the getting method.

class SupplierVH...

 private ValueHolder products;
 public List getProducts() {
 return (List) products.getValue();
 }

erMapper... class Suppli

ted DomainObject protec

 String nameArg = rs.getString(2);
 SupplierVL result = new SupplierVL(id, nameArg);

ult.setProducts(new VirtualList(new ProductLoader(id))); res
 re

The virtual list's source list is self-encapsulated and evaluates the loader on first reference.

ass VirtualList... cl

ue

class ValueHolder...

 private Object value;
 private ValueLoader loader;
 public ValueHolder(ValueLoader loader) {

 }
 public Object getValue() {
 if (value == null) value = loader.load();
 return value;
 }
public interface ValueLoader {
 Obj
}

A mapper can set up the value holder by creating an implementation of the loader and putting it into the
supplie

class

 protected DomainObject doLoad(Long id, ResultSet rs) throws SQLException {
 String nameArg = rs.getString(2);
 SupplierVH result = new SupplierVH(id, nameArg);
 esult.setProducts(new ValueHolder(new ProductLoader(id)));
 return result;

 }
lass ProductLoader implements ValueLoader {
 id;

 public ProductLoader(Long id) {
 this.id = id;
 }

 }

rtypes

The value holder itself does the Lazy Load behavior. It needs to be passed the necessary code to load its val
when it's accessed. We can do this by defining a loader interface.

this.loader = loader;

ect load();

r object.

SupplierMapper...

 r

 public static c
 private Long

 public Object load() {
 return ProductMapper.create().findForSupplier(id);

 }

 Example: Using Ghosts (C#)

Much of the logic for making objects ghosts can be built into Layer Supe (475). As a consequence, if

u use ghosts you tend to see them used everywhere. I'll begin our exploration of ghosts by looking at the yo
domain object Layer Supertype (475). Each domain object knows if it's a ghost or not.

class Domain Object...

s Status;
 public DomainObject (long key) {

 }

 get {return Status == LoadStatus.GHOST;}

 get {return Status == LoadStatus.LOADED;}
 }

 LoadStatu

 this.Key = key;

 public Boolean IsGhost {

 }
 public Boolean IsLoaded {

 public void MarkLoading() {
 Debug.Assert(IsGhost);
 Status = LoadStatus.LOADING;

 }
vo public id MarkLoaded() {

 Debug.Assert(Status == LoadStatus.LOADING);

d if

ass Employee...

 }
 String _name;

 }

In order for the loading to work, the domain object needs to call the correct mapper. However, my visibility
rules dictate that the domain code may not see the mapper code. To avoid the dependency, I need to use an
interesting combination of Registry

 Status = LoadStatus.LOADED;
 }
 enum LoadStatus {GHOST, LOADING, LOADED};

Domain objects can be in three states: ghost, loading, and loaded. I like to wrap status information with read-
only properties and explicit status change methods.

The most intrusive element of ghosts is that every accessor needs to be modified so that it will trigger a loa
the object actually is a ghost.

cl

 public String Name {
 get {
 Load();
 return _name;
 }
 set {
 Load();
 _name = value;
 }

class Domain Object...

 protected void Load() {
 if (IsGhost)
 DataSource.Load(this);

Such a need, which is annoying to remember, is an ideal target for aspect-oriented programming for post-

rocessing the bytecode. p

 (480) and Separated Interface (476) (Figure 11.4). I define
a Registry (480) for the domain for data source operations.

class DataSource...

 public static void Load (DomainObject obj) {

 instance.Load(obj);
 }

Figure 11.4. Classes involved in loading a ghost.

e instance of the data source is defined using an interface.

try : IDataSource...

 public void Load (DomainObject obj) {
 Mapper(obj.GetType()).Load (obj);

 }
 IDictionary mappers = new Hashtable();

Th

class DataSource...

 public interface IDataSource {
 void Load (DomainObject obj);
 }

A registry of mappers, defined in the data source layer, implements the data source interface. In this case I've
put the mappers in a dictionary indexed by domain type. The load method finds the correct mapper and tells it
to load the appropriate domain object.

class MapperRegis

 }
 public static Mapper Mapper(Type type) {
 return (Mapper) instance.mappers[type];

The preceding code shows how the domain objects interact with the data source. The data source logic
uses Data Mappers (165). Th

is
e update logic on the mappers is the same as in the case with no ghosts—the

eresting behavior for th example lies in the finding and loading behavior.

ass Mapper...

int

Concrete mapper classes have their own find methods that use an abstract method and downcast the result.

class EmployeeMapper...

 public Employee Find (long key) {
 return (Employee) AbstractFind(key);
 }

cl

 public DomainObject AbstractFind (long key) {
 DomainObject result;
 result = (DomainObject) loadedMap[key];
 if (result == null) {
 result = CreateGhost(key);
 loadedMap.Add(key, result);
 }

 return result;
 }

 you can see, the find method returns an object in its ghost state. The actual data does not come from the

comm.Parameters.Add(new OleDbParameter("key",obj.Key));
 IDataReader reader = comm.ExecuteReader();
 reader.Read();

 obj.MarkLoaded();
 }

 IDictionary loadedMap = new Hashtable();
 public abstract DomainObject CreateGhost(long key);

class EmployeeMapper...

 public override DomainObject CreateGhost(long key) {
 return new Employee(key);
 }

As
database until the load is triggered by accessing a property on the domain object.

class Mapper...

 public void Load (DomainObject obj) {
 if (! obj.IsGhost) return;
 IDbCommand comm = new OleDbCommand(findStatement(), DB.connection);

 LoadLine (reader, obj);
 reader.Close();
 }
 protected abstract String findStatement();
 public void LoadLine (IDataReader reader, DomainObject obj) {
 if (obj.IsGhost) {
 obj.MarkLoading();
 doLoadLine (reader, obj);

 }
 protected abstract void doLoadLine (IDataReader reader, DomainObject obj);

As is common with these examples, the Layer Supertype (475) handles all of the abstract behavior and then

lls an abstract method for a particular subclass to play its part. For this example I've used a data reader, a

rsor-based approach that's the more common for the various platforms at the moment. I'll leave it to you to

ethod.

 loadTimeRecords(employee);
 }

loaded simply by reading the appropriate column from the data reader's current cursor.
The departm y using the find method on the department's mapper object. This will end up setting
the property to a ghost of the department; the department's data will only be read when the department object
itself is accessed.

ca
cu
extend this to a data set, which would actually be more suitable for most cases in .NET.

For this employee object, I'll show three kinds of property: a name that's a simple value, a department that's a
reference to another object, and a list of timesheet records that shows the case of a collection. All are loaded

ether in the subclass's implementation of the hook mtog

class EmployeeMapper...

 protected override void doLoadLine (IDataReader reader, DomainObject obj) {
 Employee employee = (Employee) obj;
 employee.Name = (String) reader["name"];
 DepartmentMapper depMapper =
 (DepartmentMapper) MapperRegistry.Mapper(typeof(Department));

 employee.Department = depMapper.Find((int) reader["departmentID"]);

The name's value is
ent is read b

e collection is the most complicated case. To avoid ripple loading, it's important to load all the time records
in a single query. For this we need a special list implementation that acts as a ghost list. This list is just a thin
wrapper around a real list object, to which all the real behavior is just delegated. The only thing the ghost does
is ensure that any accesses to the real list triggers a load.

ass DomainList...

 IList data {
 get {
 Load();
 return _data;
 }
 set {_data = value;}

= new ArrayList();
 public int Count {
 get {return data.Count;}
 }

ain objects and is part of the domain layer. The actual loading needs
access to SQL commands, so I use a delegate to define a loading function than can be supplied by the mapping

er.

st...

) {

 }

ink of a delegate as a special variety of Separated Interface

Th

cl

 }
 IList _data

The domain list class is used by dom

lay

class DomainLi

 public void Load (
 if (IsGhost) {

 MarkLoading();
 RunLoader(this);
 MarkLoaded();

 }

 public delegate void Loader(DomainList list);
 public Loader RunLoader;

Th (476) for a single function. Indeed, declaring an

Figure 11.5. The load sequence for a ghost.

interface with a single function in it is a reasonable alternative way of doing this.

ist. As yet there's no accepted standard for showing delegates in UML

Figure 11.6. Classes for a ghost l

models. This is my current approach.

e loader itself has properties to spe ify the SQL for the load and mapper to use for mapping the time
records. The employee's mapper sets up the loader when it loads the employee object.

class EmployeeMapper...

 void loadTimeRecords(Employee employee) {
 ListLoader loader = new ListLoader();
 loader.Sql = TimeRecordMapper.FIND_FOR_EMPLOYEE_SQL;
 loader.SqlParams.Add(employee.Key);
 loader.Mapper = MapperRegistry.Mapper(typeof(TimeRecord));

tLoader...

ass ListLoader...

the loader executes the query to fill the list.

cTh

 loader.Attach((DomainList) employee.TimeRecords);
 }
class Lis

 public String Sql;

yList(); public IList SqlParams = new Arra
 public Mapper Mapper;

Since the syntax for the delegate assignment is a bit complicated, I've given the loader an attach method.

cl

 public void Attach (DomainList list) {
 list.RunLoader = new DomainList.Loader(Load);
 }

When the employee is loaded, the time records collection stays in a ghost state until one of the access methods
fires to trigger the loader. At this point

class ListLoader...

 public void Load (DomainList list) {

e;
= new OleDbCommand(Sql, DB.connection);
 param in SqlParams)

;

ad()) {
rLine(reader);
);

return Mapper.AbstractFind((System.Int32)reader[Mapper.KeyColumnName]);
}

 are
n this example, a more sophisticated mapping could load the department's data

a single query with the employee. However, always loading all the elements in a collection together helps
minate the worst cases.

 list.IsLoaded = tru
 IDbCommand comm
 foreach (Object
 comm.Parameters.Add(new OleDbParameter(param.ToString(),param))
 IDataReader reader = comm.ExecuteReader();
 while (reader.Re
 DomainObject obj = GhostFo
 Mapper.LoadLine(reader, obj
 list.Add (obj);
 }
 reader.Close();
 }
 private DomainObject GhostForLine(IDataReader reader) {

Using ghost lists like this is important to reduce ripple loading. It doesn't completely eliminate it, as there
other cases where it appears. I
in
eli

Chapter 12. Object-Relational Structural Patterns
Identity Field

Foreign Key Mapping

Association Table Mapping

Dependent Mapping

Embedded Value

Serialized LOB

Single Table Inheritance

Class Table Inheritance

Concrete Table Inheritance

Inheritance Mappers

Identity Field

Saves a database ID field in an object to maintain identity between an in-memory object and a database row.

ther by using key—in particular, the primary key. However, in-
as the object system ensures the correct identity under the covers (or in

ons). Reading data from a database is all very well, but in order to write
ystem.

w It Works

though the basic notion of Identity Field is very simple, there are oodles of complicated issues that come up.

oosing Your Key

Relational databases tell one row from ano
memory objects don't need such a k

case with raw memory locati
ey,

C++'s
data back you need to tie the database to the in-memory object s

In essence, Identity Field is mind-numbingly simple. All you do is store the primary key of the relational

se table in the object's fields. databa

o H

Al

 Ch

st issue is what kind of key to choose in yThe fir our database. Of course, this isn't always a choice, since
atabase that already has its key structures in place. There's a lot of

aningless keys. A meaningful key is something like the
tifying a person. A meaningless key is essentially a random number the

d for human use. The danger with a meaningful key is that, while in
 they don't. To work at all, keys need to be unique; to work well, they

 be immutable. While assigned numbers are supposed to be unique and immutable, human error often
m neither. If you mistype my SSN for my wife's the resulting record is neither unique nor immutable

sult, meaningful keys should be distrusted. For small systems and/or very stable cases you may get
ay with it, but usually you should take a rare stand on the side of meaninglessness.

cern is simple versus compound keys. A simple key uses only one database field; a compound
n one. The advantage of a compound key is that it's often easier to use when one table makes
t of another. A good example is orders and line items, where a good key for the line item is

equence number makes a good key for a line item. While compound
 a lot to be said for the sheer uniformity of simple keys. If you use simple keys

 code for all key manipulation. Compound keys require special handling in
ation this isn't a problem). Compound keys also carry a bit of meaning, so

s and particularly the immutability rule with them.

 checking,
y. Hence

et. Strings can also work, but equality checking may be slower and
ul. Your DBA's preferences may well decide the issue.

ly are they meaningful, they also lead to problems with
e

ync and lead to identity problems.)

e ier to do

you're often dealing with an existing d
discussion and material on this in the database community. Still, mapping to objects does add some concerns
to your decision.

ful or meThe first concern is whether to use meaning
U.S. Social Security number for iden
database dreams up that's never intende

 they make good keys, in practicetheory
d tonee

akes them
(assuming you would like to fix the mistake.) The database should detect the uniqueness problem, but it can
only do that after my record goes into the system, and of course that might not happen until after the mistake.

 a reAs
aw

e next conTh
key uses more tha

se in the contexsen
a compound of the order number and a s
keys often make sense, there is
everywhere, you can use the same

enerconcrete classes. (With code g
be careful about the uniquenes

You have to choose the type of the key. The most common operation you'll do with a key is equality

 want a type with a fast equality operation. The other important operation is getting the next keso you
a long integer type is often the best b
incrementing strings is a bit more painf

(Beware about using dates or times in keys. Not on
portability and consistency. Dates in particular are vulnerable to this because they are often stored to som
fractio

nal second precision, which can easily get out of s

You can have keys that are unique to the table or unique database-wide. A table-unique key is unique across
the table, which is what you need for a key in any case. A database-unique key is unique across every row in
very table in the database. A table-unique key is usually fine, but a database-unique key is often eas

and allows you to use a single Identity Map (195). Modern values being what they are, it's pretty unlikely that
bjects with a

simple database script that compacts the key space—although running this scri
lication offline. However, if you use 64-bit keys (and you might as well) you're unlikely to need this.

 wary of inheritance when you use table-unique keys. If you're using Concrete Table Inheritance

you'll run out of numbers for new keys. If you really insist, you can reclaim keys from deleted o
pt will require that you take the

app

Be (293)
or Class Table Inheritance (285), life is much easier with keys that are unique to the hierarchy rather than

l use the term "table-unique," even if it should strictly be something like "inheritance unique to each table. I stil
graph unique."

The size of your key may effect perfor
system and/or how many rows y

mance, particularly with indexes. This is dependent on your database
ou have, but it's worth doing a crude check before you get fixed into your

 of Identity Field is a field that matches the type of the key in the database. Thus, if you use

a simple integral key, an integral field will work very nicely.

hat act as the elements of the key. The key behavior for the key object (I have a
ota of puns per book to fill) is equality. It's also useful to get parts of the key when you're mapping to the

database.

If you use the same basic structure for all keys, you can do all of the key handling in a Layer Supertype

decision.

 Field in an Object Representing the Identity

The simplest form

Compound keys are more problematic. The best bet with them is to make a key class. A generic key class can
store a sequence of objects t
qu

 (475).
You can put default behavior that will work for most cases in the Layer Supertype (475) and extend it for the
exceptional cases in the particular subtypes.

hich takes a generic list of key objects, or key class for each domain
usually prefer to be explicit, but in this case I'm not sure it

that don't do anything interesting. The main benefit is
 putting the elements of the key in the wrong order, but that doesn't

port data between different database instances, you need to remember that you'll get key
with some scheme to separate the keys between different databases. You can
y migration on the imports, but this can easily get very messy.

ike a simple matter, but it can often be quite a problem.
erate, use a GUID, or generate your own.

 insert data for the database, the database
o anything. It sounds too good to be true, and sadly it
hat do, handle it in such a way that causes problems for

 one auto-generated field, which, whenever you insert a
ith this scheme is that you can't easily determine what

enerated as the key. If you want to insert an order and several line items, you need the key of the
, you need this key before the

't give you
d to insert

 alternative approach to auto-generation is a database counter, which Oracle uses with its sequence. An

You can have either a single key class, w
class with explicit fields for each part of the key. I

ery much. You end up with lots of small classes buys v
that you can avoid errors caused by users
seem to be a big problem in practice.

If you're likely to im
collisions unless you come up

ve this with some kind of kesol

 Getting a New Key

ey. This sounds lTo create an object, you'll need a k
You have three basic choices: get the database to auto-gen

e youThe auto-generate route should be the easiest. Each tim
ry key without you having to dgenerates a unique prima

often is. Not all databases do this the same way. Many t
object-relational mapping.

-generation method is declaringThe most common auto
row, is incremented to a new value. The problem w
value got g
new order so you can put the value in the line item's foreign key. Also
transaction commits so you can save everything within the transaction. Sadly, databases usually don

u usually can't use this kind of auto-generation on any table in which you neethis information, so yo
connected objects.

An

Oracle sequence works by sending a select statement that references a sequence; the database then returns an
L record set consisting of the next sequence value. You can set a sequence to increment by any integer,

e keys at once. The sequence query is automatically carried out in a separate
ns inserting at the same time. A
not available in all databases.

achine that's guaranteed to be unique
give you the API to generate a GUID. The algorithm is
e of the day in nanoseconds, chip ID numbers, and
 matters is that the resulting number is completely

that the resulting key string is big, and that
eone needs to type in a key to a window or

ad. They may also lead to performance

all systems is to use a table scan using the SQL max
e to use it. Sadly, this read-locks the entire table

performance will be toasted if

; otherwise, you can end up with multiple transactions getting the same

etter approach is to use a separate key table. This table is typically one with two columns: name and next
ilable value. If you use database-unique keys, you'll have just one row in this table. If you use table-unique

ys
se

If you use a key table, it's a good idea to design it so that access to it is in a separate transaction from the one
that updates the table you're inserting into. Say I'm inserting an order into the orders table. To do this I'll need
to lock the orders row on the key table with a write lock (since I'm updating). That lock will last for the entire

nsaction that I'm in, locking out anyone else who wants a key. For table-unique keys, this means anyone
r database-unique keys it means anyone inserting anywhere.

ers are cheap, so that's not a big issue. Using a separate transaction
D as soon as you create the in-memory object, which is often some before you open

you use a table-unique key,
e you add a table to the database. This is more effort, but it

s contention on the row. If you keep your key table accesses in a different transaction, contention is not
cially if you get multiple keys in a single call. But if you can't arrange for the key
rate transaction, you have a strong reason against database-unique keys.

makes it easier to build a Service

SQ
which allows you to get multipl
transaction, so that accessing the sequence won't lock out other transactio
database counter like this is perfect for our needs, but it's nonstandard and

A GUID (Globally Unique IDentifier) is a number generated on one m

 all machines in space and time. Often platforms across
an interesting one involving ethernet card addresses, tim

ber of hairs on your left wrist. All thatprobably the num
unique and thus a safe key. The only disadvantage to a GUID is
can be an equally big problem. There are always times when som

xpression, and long keys are hard both to type and to reSQL e
problems, particularly with indexes.

The last option is rolling your own. A simple staple for sm

n to find the largest key in the table and then add onfunctio
while you're doing it, which means that it works fine if inserts are rare, but your

n the same table. You also have to ensure you have you have inserts running concurrently with updates o
complete isolation between transactions
ID value.

A b

aav
keys, you'll have one row for each table in the database. To use the key table, all you need to do is read that
one row and note the number, the increment, the number and write it back to the row. You can grab many ke
at a time by adding a suitable number when you update the key table. This cuts down on expensive databa
calls and reduces contention on the key table.

tra
inserting into the orders table; fo

By putting access to the key table in a separate transaction, you only lock the row for that, much shorter,

o the orders, the key you got from the key transaction. The downside is that, if you roll back on your insert t
table is lost to everyone. Fortunately, numb
also allows you to get the I
the transaction to commit the business transaction.

Using a key table affects the choice of database-unique or table-unique keys. If
you have to add a row to the key table every tim
reduce
so much of a problem, espe

le update to be in a sepatab

It's good to separate the code for getting a new key into its own class, as that
Stub (504) for testing purposes.

 When to Use It

a mapping between objects in memory and rows in a database. This is usually

Use Identity Field when there's

en you use wh Domain Model (116) or Row Data Gateway (152). You don't need this mapping if you're
using Transaction Script (110), Table Module (125), or Table Data Gateway (144).

For a small object with value semantics, such as a money or date range object that won't have its own table, it's
better to use Embedded Value (268).

al database, Serialized LOB
 For a complex graph of objects that doesn't need to be queried within the

relation (272) is usually easier to write and gives faster performance.

One alternative to Identity Field is to extend Identity Map (195) to maintain the correspondence. This can be

in-memory object. Identity Mapused for systems where you don't want to store an Identity Field in the (195)
: give me a key for an object or an object for a key. I don't see this very often

ally it's easier to store the key in the object.

rinescu

needs to look up both ways
because usu

 Further Reading

Ma[] discusses several techniques for generating keys.

atabase that maps to an integral field in an in-

ID;
 {return Id == PLACEHOLDER_ID;}

aved to the database will not have a value for its key. For a
e object this is a problem since .NET values cannot be null. Hence, the placeholder value.

: finding and inserting. For finding you need to form a query using a

 Find(long id) {
 return (Cricketer) AbstractFind(id);

 }

class Mapper...

 protected DomainObject AbstractFind(long id) {
 DataRow row = FindRow(id);
 return (row == null) ? null : Find(row);

 protected DataRow FindRow(long id) {
 String filter = String.Format("id = {0}", id);

xample: Integral Key (C#) E

l field in the dThe simplest form of Identity Field is a integra
memory object.

class DomainObject...

ID = -1; public const long PLACEHOLDER_
HOLDER_ public long Id = PLACE

 public Boolean isNew()

that's been created in memory but not sAn object
alu.NET v

The key becomes important in two places
key in a where clause. In .NET you can load many rows into a data set and then select a particular one with a
find operation.

class CricketerMapper...

 public Cricketer

 }

 DataRow[] results = table.Select(filter);

ainObject();
 Load(result, row);

ect();

 return (results.Length == 0) ? null : results[0];
 }
 public DomainObject Find (DataRow row) {
 DomainObject result = CreateDom

 return result;

 }
 abstract protected DomainObject CreateDomainObj

Most of this behavior can live on the Layer Supertype (

lass just to encapsulate the downcast. Natural
475), but you'll often need to define the find on the
ly, you can avoid this in a language that doesn't use

me typing.

With a simple integral Identity Field the insertion behavior can also be held at the Layer Supertype

concrete c
e-ticompil

 (475).

g) {

d(row);
d;

entially insertion involves creating the new row and using the next key for it. Once you have it you can

owler

 about being dependent on database-
bout being dependent on a database you

 still consider it—as long as your key generation code is nicely encapsulated, you can always change it
 portable algorithm later. You could even have a strategy [Gang of Four

class Mapper...

 public virtual long Insert (DomainObject ar

Row(); DataRow row = table.New
 arg.Id = GetNextID();

 row["id"] = arg.Id;
 Save (arg, row);

 table.Rows.Ad
 return arg.I

 }

Ess
save the in-memory object's data to this new row.

 Example: Using a Key Table (Java)

 Matt Foemmel and Martin Fby

If your database supports a database counter and you're not worried

c SQL, you should use the counter. Even if you're worried aspecifi
uldsho

ato] to use counters when you have

t we have to do this the hard way. The first thing we need is a key table in the

 primary key, nextID int)
s', 1)

 1. If
ng data in the database, you'll need to set the counter to a suitable number. If you want

le-unique keys, you'll need one row per table.

n class. That way it's easier to use it more widely
 or more applications and it's easier to put key reservation into its own transaction.

them and roll your own when you don't.

For the moment let's assume tha
database.

CREATE TABLE keys (name varchar
SERT INTO keys VALUES ('orderIN

This table contains one row for each counter that's in the database. In this case we've initialized the key to
you're preloadi
database-unique keys, you'll only need one row, if you want tab

You can wrap all of your key generation code into its ow
around one

We construct a key generator with its own database connection, together with information on how many keys

Name, int incrementBy) {

this.incrementBy = incrementBy;
 nextId = maxId = 0;
 try {

tionException("Unable to turn off autocommit", exc);

nce we absolutely must have the select and update

en we ask for a new key, the generator looks to see if it has one cached rather than go to the database.

extKey() {
 if (nextId == maxId) {
 reserveIds();

ass KeyGenerator...

s() {

 FROM keys WHERE name = ? FOR

to take from the database at one time.

cl

ass KeyGenerator...

 private Connection conn;
 pr
 pri

ivate String keyName;
vate long nextId;

 private long maxId;
 pr
 pub

ivate int incrementBy;
lic KeyGenerator(Connection conn, String key

 this.conn = conn;

 this.keyName = keyName;

 conn.setAutoCommit(false);
 } catch(SQLException exc) {

 throw new Applica
 }

 }

We need to ensure that no auto-commit is going on si
operating in one transaction.

hW

class KeyGenerator...

 public synchronized Long n

 }
 return new Long(nextId++);
 }

If the generator hasn't got one cached, it needs to go to the database.

cl

private void reserveId
 PreparedStatement stmt = null;
 ResultSet rs = null;
 long newNextId;

try {
 stmt = conn.prepareStatement("SELECT nextID
 UPDATE");
 stmt.setString(1, keyName);
 rs = stmt.executeQuery();
 rs.next();
 newNextId = rs.getLong(1);
 }

ca

tch (SQLException exc) {
 throw new ApplicationException("Unable to generate ids", exc);

 }

wMaxId = newNextId + incrementBy;
 stmt null;

 finally {
 DB.cleanUp(stmt, rs);
 }
 long ne

=

 try {

 nextId = newNextId;

 catch (SQLException exc) {
tion("Unable to generate ids", exc);

 hold a write lock on the key table. This is
ing something else. If you can't write-lock
her one get in there before you. In this case,

ntil you get a pristine set of keys.

ing a simple integral key is a good, simple solution, but you often need other types or compound keys.

As soon as you need something else it's worth putting together a key class. A key class needs to be able to
re multiple elements of the key and to be able to tell if two keys are equal.

 private Object[] fields;
uals(Object obj) {
anceof Key)) return false;

 Key otherKey = (Key) obj;
th != otherKey.fields.length) return false;

 for (int i = 0; i < fields.length; i++)
)) return false;

 with an array parameter.

ds) {
eckKeyNotNull(fields);

("Cannot have a null key");
ds.length; i++)

] == null)

 stmt = conn.prepareStatement("UPDATE keys SET nextID = ? WHERE name = ?");
 stmt.setLong(1, newMaxId);
 stmt.setString(2, keyName);
 stmt.executeUpdate();
 conn.commit();

 maxId = newMaxId;
 }

 throw new ApplicationExcep
 }
 finally {
 DB.cleanUp(stmt);
 }
 }

In this case we use SELECT... FOR UPDATE to tell the database to
an Oracle-specific statement, so your mileage will vary if you're us

g should anoton the select, you run the risk of the transaction failin
er, you can pretty safely just rerun reserveIds uhowev

 Example: Using a Compound Key (Java)

Us

 A Key Class

sto

class Key...

 public boolean eq
 if (!(obj inst

 if (this.fields.leng

 if (!this.fields[i].equals(otherKey.fields[i]
 return true;
 }

The most elemental way to create a key is

class Key...

 Key(Object[] fiel public
ch

 this.fields = fields;
 }
 private void checkKeyNotNull(Object[] fields) {

 new IllegalArgumentException if (fields == null) throw
i < fiel for (int i = 0;

 if (fields[i
 throw new IllegalArgumentException("Cannot have a null element of key");
 }

If you find you commonly create keys with certain elements, you can add convenience constructors. The exact
ones will depend on what kinds of keys your application has.

class Key...

blic Key(long arg) { pu
 this.fields = new Object[1];

w Long(arg);

 if (field == null) throw new IllegalArgumentException("Cannot have a null key");
;

fter all, convenience is important to everyone using the

cessor functions to get parts of keys. The application will need to do this for the

ateException("Cannot take value on composite key");

) {

longValue on non long key");
ields[i]).longValue();

example we'll map to an order and line item tables. The order table has a simple integral primary key,
y is a compound of the order's primary key and a sequence number.

er varchar)
char,

 this.fields[0] = ne
 }

 public Key(Object field) {

 this.fields = new Object[1]
 this.fields[0] = field;
 }

blic Key(Object arg1, Object arg2) { pu
 this.fields = new Object[2];
 this.fields[0] = arg1;
 this.fields[1] = arg2;

 checkKeyNotNull(fields);
 }

Don't be afraid to add these convenience methods. A
keys.

Similarly you can add ac

ppings.ma

ass Key... cl

 public Object value(int i) {

 fields[i]; return
 }
 public Object value() {
 checkSingleKey();
 return fields[0];
 }

eckSingleKey() { private void ch
 if (fields.length > 1)

 throw new IllegalSt
 }
 public long longValue() {
 checkSingleKey();
 return longValue(0);
 }

blic long longValue(int i pu
 if (!(fields[i] instanceof Long))

 throw new IllegalStateException("Cannot take
 return ((Long) f
 }

In this
the line item table's primary ke

CREATE TABLE orders (ID int primary key, custom
CREATE TABLE line_items (orderID int, seq int, amount int, product var

 primary key (orderID, seq))

yer SupertypeThe La (475) for domain objects needs to have a key field.

class DomainObjectWithKey...

private Key key;
protected DomainObjectWithKey(Key ID) {

 }
Key() {

 public Key getKey() {

 }

 this.key = key;

 Reading

ith other examples in this book I've split the behavior into find (which ge
base) and load (which loads data from that row into the domain object). Both responsibilities are affected

ault case the simple integral and have embedded the behavior for it the mapper Layer

 this.key = ID;

 protected DomainObjectWith
 }

 return key;

 public void setKey(Key key) {

 }

ts to the right row in the As w

tada
by the use of a key object.

The primary difference between these and the other examples in this book (which use simple integral keys) is
that we have to factor out certain pieces of behavior that are overridden by classes that have more complex
keys. For this example I'm assuming that most tables use simple integral keys. However, some use something

e, so I've made the defels
Supertype (475). The order class is one of those simple cases. Here's the code for the find behavior:

class OrderMapper...

 find(Key key) {
 return (Order) abstractFind(key);
 }
 public Order find(Long id) {
 return find(new Key(id));
 }
 protected String findStatementString() {
 return "SELECT id, customer from orders WHERE id = ?";
 }

class AbstractMapper...

 abstract protected String findStatementString();
 protected Map loadedMap = new HashMap();
 public DomainObjectWithKey abstractFind(Key key) {
 DomainObjectWithKey result = (DomainObjectWithKey) loadedMap.get(key);
 if (result != null) return result;
 ResultSet rs = null;
 PreparedStatement findStatement = null;
 try {
 findStatement = DB.prepare(findStatementString());
 loadFindStatement(key, findStatement);
 rs = findStatement.executeQuery();
 rs.next();
 if (rs.isAfterLast()) return null;
 result = load(rs);
 return result;
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } finally {
 DB.cleanUp(findStatement, rs);
 }
 }
 // hook method for keys that aren't simple integral
 protected void loadFindStatement(Key key, PreparedStatement finder) throws

 public Order

 SQLException {
 finder.setLong(1, key.longValue());
 }

I've extracted out the buildin rameters to be passed into
the prepared statement. The line item is a compound key, so it needs to override that method.

class LineItemMappe

 public LineItem find(long orderID, long seq) {
 Key key = new Key(new Long(orderID), new Long(seq));
 return (LineItem) abstractFind(key);
 }
 public LineItem find(Key key) {
 return (LineItem) abstractFind(key);
 }
 protected String findStatementString() {
 return
 "SELECT orderID, seq, amount, product " +
 " FROM line_items " +
 " WHERE (orderID = ?) AND (seq = ?)";
 }
 // hook methods overridden for the composite key
 protected void loadFindStatement(Key key, PreparedStatement finder) throws

g of the find statement, since that requires different pa

r...

 SQLException {
 finder.setLong(1, orderID(key));
 finder.setLong(2, sequenceNumber(key));
 }
 //helpers to extract appropriate values from line item's key
 private static long orderID(Key key) {
 return key.longValue(0);
 }
 private static long sequenceNumber(Key key) {
 return key.longValue(1);
 }

As well as defining the interface for the find methods and providing an SQL string for the find statement, the
subclass needs to override the hook method to allow two parameters to go into the SQL statement. I've also
written two helper methods to extract the parts of the key information. This makes for clearer code than I

uld get by just putting explicit accessors with numeric indices from the key. Such literal indices are a bad
ell.

wo
sm

The load behavior shows a similar structure—default behavior in the Layer Supertype (475) for simple integral

ys, overridden for the more complex cases. In thiske case the order's load behavior looks like this:

;

 }
 abstract protected DomainObjectWithKey doLoad(Key id, ResultSet rs) throws

class AbstractMapper...

 protected DomainObjectWithKey load(ResultSet rs) throws SQLException {
 Key key = createKey(rs);
 if (loadedMap.containsKey(key)) return (DomainObjectWithKey) loadedMap.get(key)
 DomainObjectWithKey result = doLoad(key, rs);
 loadedMap.put(key, result);

 return result;

 SQLException;
 // hook method for keys that aren't simple integral
 protected Key createKey(ResultSet rs) throws SQLException {
 return new Key(rs.getLong(1));

 }

class OrderMapper...

 protected DomainObjectWithKey doLoad(Key key, ResultSet rs) throws SQLException {
 String customer = rs.getString("customer");
 Order result = new Order(key, customer);
 MapperRegistry.lineItem().loadAllLineItemsFor(result);
 return result;

 protected DomainObjectWithKey doLoad(Key key, ResultSet rs) throws SQLException {

t rs, Order order)
 throws SQLException

 return result;
 }
 //overrides the default case
 protected Key createKey(ResultSet rs) throws SQLException {
 Key key = new Key(new Long(rs.getLong("orderID")), new Long(rs.getLong("seq")));
 return key;
 }

The line item also has a separate load method for use when loading all the lines for the order.

class LineItemMapper...

 public void loadAllLineItemsFor(Order arg) {

rs = null;
 try {
 stmt = DB.prepare(findForOrderString);
 stmt.setLong(1, arg.getKey().longValue());
 rs = stmt.executeQuery();
 while (rs.next())
 load(rs, arg);
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } finally {DB.cleanUp(stmt, rs);

 }
 }
 private final static String findForOrderString =
 "SELECT orderID, seq, amount, product " +

 "WHERE orderID = ?";
 protected DomainObjectWithKey load(ResultSet rs, Order order) throws SQLException {
 Key key = createKey(rs);

n (DomainObjectWithKey) loadedMap.get(key);

 loadedMap.put(key, result);
 return result;

andling because the order object isn't put into the order's Identity Map

 }

The line item needs to override the hook to create a key based on two fields.

class LineItemMapper...

 Order theOrder = MapperRegistry.order().find(orderID(key));
 return doLoad(key, rs, theOrder);
 }
 protected DomainObjectWithKey doLoad(Key key, ResultSe

 {
 LineItem result;
 int amount = rs.getInt("amount");
 String product = rs.getString("product");
 result = new LineItem(key, amount, product);
 order.addLineItem(result); //links to the order

 PreparedStatement stmt = null;
 ResultSet

 "FROM line_items " +

 if (loadedMap.containsKey(key)) retur
 DomainObjectWithKey result = doLoad(key, rs, order);

 }

u need the special hYo (195) until after

it's created. Creating an empty object and inserting it dire
this (page 169).

ctly into the Identity Field would avoid the need for

 simple integral key and the hooks to override this for more
ovided an operation to act as the interface, together with a

k of the insertion.

pper...

nObjectWithKey subject) {

yObject());
n e) {

nException(e);

DomainObjectWithKey subject, Key key) throws SQLException

(insertStatementString());
mt);

;

bject.getKey(), subject);

insertStatementString();

ss OrderMapper...

 protected String insertStatementString() {
 return "INSERT INTO orders VALUES(?,?)";
 }

The data from the object goes into the insert statement through two methods that separate the data of the key

m the basic data of the object. I do this because I can provide a default implementation for the key that will
work for any class, like order, that

class AbstractMapper...

 protected void insertKey(DomainObjectWithKey subject, PreparedStatement stmt)
 throws SQLException
 {

ubject.getKey().longValue());

endent on the particular subclass, so this behavior is abstract
on the superclass.

AbstractMapper...

d insertData(DomainObjectWithKey subject, PreparedStatement

ectWithKey abstractSubject, PreparedStatement

tion Inser

Like reading, inserting has a default action for a

r supertype I've printeresting keys. In the mappe
te method to do the wortempla

cl

ass AbstractMa

 public Key insert(Domai
 try {
 return performInsert(subject, findNextDatabaseKe
 } catch (SQLExceptio
 throw new Applicatio
 }
 }
 protected Key per
{

formInsert(

 subject.setKey(key);
mt = DB.prepare PreparedStatement st

 insertKey(subject, st
 insertData(subject, stmt)

 stmt.execute();
 loadedMap.put(su
 return subject.getKey();
 }
 abstract protected String

cla

fro
uses the default simple integral key.

 stmt.setLong(1, s
 }

st of the data for the insert statement is depThe re

ass cl

 abstract protected voi

stmt)
 throws SQLException;

class OrderMapper...

a(DomainObj protected void insertDat
stmt) {

 try {
 Order subject = (Order) abstractSubject;

t.getCustomer());
on e) {
tionException(e);

pulls two values out for key.

ss LineItemMapper...

 line_items VALUES (?, ?, ?, ?)";

protected void insertKey(DomainObjectWithKey subject, PreparedStatement stmt)

 {

getKey()));

 the data.

eption

t());

 the data loading into the insert statement like this is only worthwhile if most classes use the same
le field for the key. If there's more variation for the key handling, then having just one command to insert

se key is also something that I can separate into a default and an overridden
alked about earlier. But for the line item we run

posite key. However, there's no
 class to the order class, so it's impossible to tell a line item to insert itself into the

This leads to the always messy approach of implementing
 exception.

item, Order order) {

value(), getNextSequenceNumber(order));
performInsert(item, key);

 throw new ApplicationException(e);
 }

 }

 stmt.setString(2, subjec
 } catch (SQLExcepti
 throw new Applica
 }
 }

The line item overrides both of these methods. It

acl

 protected String insertStatementString() {
 return "INSERT INTO
 }

 throws SQLException

 stmt.setLong(1, orderID(subject.getKey()));
 stmt.setLong(2, sequenceNumber(subject.
 }

t for the rest ofIt also provides its own implementation of the insert statemen

LineItemMapper... class

protected void insertData(DomainObjectWithKey subject, PreparedStatement stmt)
 throws SQLExc

{
 LineItem item = (LineItem) subject;

 stmt.setInt(3, item.getAmount());
 stmt.setString(4, item.getProduc
 }

P ttingu
ings

the information is probably easier.

ming up with the next databaCo
case. For the default case I can use the key table scheme that I t

 a problem. The line item's key uses the key of the order as part of its cominto
reference from the line item
database without providing the correct order as well.
the superclass method with an unsupported operation

class LineItemMapper...

 public Key insert(DomainObjectWithKey subject) {
 throw new UnsupportedOperationException
 ("Must supply an order when inserting a line item");
 }
 public Key insert(LineItem
 try {
 Key key = new Key(order.getKey().
 return
 } catch (SQLException e) {

Of course, we can avoid this by having a back link from the line item to the order, effectively making the

ociation between the two bidirectional. I've chosen not to do it here to illustrate what to do when you don't

h we can do either with a max query in SQL or by looking at the line items on the
ple I'll do the latter.

while (it.hasNext()) {
 LineItem thisItem = (LineItem) it.next();
 if (thisItem.getKey() == null) continue;

 thisItem;

equenceNumber(candidate) + 1);

eys

n();

ethod, but since we may (and indeed will)
that method would fail.

d deletes are mostly harmless. Again we have an abstract method for the assumed
ase and an override for the special cases.

 public void update(DomainObjectWithKey subject) {

 stmt = DB.prepare(updateStatementString());
 loadUpdateStatement(subject, stmt);
 stmt.execute();
 } catch (SQLException e) {
 throw new ApplicationException(e);

 DB.cleanUp(stmt);

g updateStatementString();
dUpdateStatement(DomainObjectWithKey subject,

 PreparedStatement stmt)

ass
have that link.

By supplying the order, it's easy to get the order's part of the key. The next problem is to come up with a

uence number for the order line. To find that number, we need to find out what the next available sequence seq
number is for an order, whic

er in memory. For this examord

 LineItemMapper... class

 private Long getNextSequenceNumber(Order order) {
 loadAllLineItemsFor(order);
 Iterator it = order.getItems().iterator();

 LineItem candidate = (LineItem) it.next();

 if (sequenceNumber(thisItem) > sequenceNumber(candidate)) candidate =
 }

 return new Long(s
 }

 private static long sequenceNumber(LineItem li) {
)); return sequenceNumber(li.getKey(

 }
 //comparator doesn't work well here due to unsaved null k

eyTableRow() { protected String k
 throw new UnsupportedOperationExceptio
 }

This algorithm would be much nicer if I used the Collections.max m
have at least one null key,

 Updates and Deletes

After all of that, updates an
u ual cs

Updates work like this:

class AbstractMapper...

 PreparedStatement stmt = null;
 try {

 } finally {

 }

}
 abstract protected Strin
 abstract protected void loa

 throws SQLException;

class OrderMapper...

 protected void loadUpdateStatement(DomainObjectWithKey subject, PreparedStatement

 Order order = (Order) subject;
 stmt.setString(1, or
 stmt.setLong(2, orde
 }
 protected String updateStatementString() {
 return "UPDATE orders SET customer = ? WHERE id = ?";
 }

class LineItemMapper...

 return
items " +
nt = ?, product = ? " +

seq = ?";

ainObjectWithKey subject, PreparedStatement

tion

 stmt.setString(2, li.getProduct());

 {

epare(deleteStatementString());

 throw new ApplicationException(e);

 } finally {
 DB.clean
 }
 }
 abstract protected String deleteStatementString();
 protected void loadDeleteStatement(DomainO ectWithKey subject, PreparedStatement

 stmt.setLong(1, subject.getKey().longValue());

}

 protected String deleteStatementString() {
eq = ?";

stmt)
 throws SQLException

{

der.getCustomer());
r.getKey().longVal e()); u

 protected String updateStatementString() {

 "UPDATE line_

 " SET amou
 " WHERE orderId = ? AND
 }

ted void loadUpdateStatement(Dom protec
stmt)

 throws SQLExcep
 {
 stmt.setLong(3, orderID(subject.getKey()));

subject.getKey())); stmt.setLong(4, sequenceNumber(
 LineItem li = (LineItem) subject;

t.setInt(1, li.getAmount()); stm

 }

Deletes work like this:

tractMapper... class Abs

 public void delete(DomainObjectWithKey subject)

 PreparedStatement stmt = null;
 try {
 stmt = DB.pr

 loadDeleteStatement(subject, stmt);
 stmt.execute();

catch (SQLException e) { }

Up(stmt);

 bj
stmt)
 throws SQLException
 {

 }
ss OrderMapper... cla

 protected String deleteStatementString() {

 return "DELETE FROM orders WHERE id = ?";

class LineItemMapper...

 return "DELETE FROM line_items WHERE orderid = ? AND s
 }

 protected void loadDeleteStatement(DomainObjectWithKey subject, PreparedStatement

on
stmt)
 throws SQLExcepti

 {
.getKey())); stmt.setLong(1, orderID(subject

 stmt.setLong(2, sequenceNumber(subject.getKey()));
 }

Foreign Key Mapping

Maps an association between objects to a foreign key reference between tables.

erences. Even the simplest object-oriented system will
ther in all sorts of interesting ways. To save these objects to a

 references. However, since the data in them is specific to the specific instance
ing program, you can't just save raw data values. Further complicating things is the fact that objects

 easily hold collections of references to other objects. Such a structure violates the first normal form of

n object reference to a foreign key in the database.

roblem is Identity Field

ject refObjects can refer to each other directly by ob

 of objects connected to each ocontain a bevy
database, it's vital to save these
of the runn
can
relational databases.

Foreign Key Mapping maps aA

 How It Works

The obvious key to this p (216). Each object contains the database key from the

ssociation can be
database, you save the

 the album record, as in Figure 12.1

appropriate database table. If two objects are linked together with an association, this a
 Put simply, when you save an album to the replaced by a foreign key in the database.

ID of the artist that the album is linked to in .

ection to a foreign key.

Figure 12.1. Mapping a coll

ou can't
v a collection in the database, so you have to reverse the direction of the reference. Thus, if you have a

o ction of tracks in the album, you put the foreign key of the album in the track record, as in Figures

hat's the simple case. A more complicated case turns up when you have a collection of objects. YT
as e

c lle
12.2 and 12.3. The complication occurs when you have an update. Updating implies that tracks can be added
to and removed from the collection within an album. How can you tell what alterations to put in the database?
Essentially you have three options: (1) delete and insert, (2) add a back pointer, and (3) diff the collection.

Figure 12.2. Mapping a collection to a foreign key.

Figure 12.3. Classes and tables for a multivalued reference.

ith delete and insert you delete all the tracks in the database that link to the album, and then insert all the
ny

W
ones currently on the album. At first glance this sounds pretty appalling, especially if you haven't changed a
tracks. But the logic is easy to implement and as such it works pretty well compared to the alternatives. The
drawback is that you can only do this if tracks are Dependent Mappings (262), which means they must be
owned by the album and can't be referred to outside it.

k back to the album, effectively making the association
bidirectional. This changes the object model, but now you can handle the update using the simple technique

 single-valued fields on the other side.

neither of those appeals, you can do a diff. There are two possibilities here: diff with the current state of the
at you read the first time. Diffing with the database involves rereading the collection

the collection in the album. Anything
 in the album that isn't on the disk is
tion to decide what to do with each item.

 place means that you have to keep what you read. This is better as it
 with the database is you're using Optimistic Offline

Adding a back pointer puts a link from the trac

for

If
database or diff with wh
back from the database and then comparing the collection you read with
in the database that isn't in the album was clearly removed; anything

plicaclearly a new item to be added. Then look at the logic of the ap

th what you read in the firstDiffing wi
avoids another database read. You may also need to diff
Lock (416).

n thI e general case anything that's added to the collection needs to be checked first to see if it's a new object.

s made You can do this by seeing if it has a key; if it doesn't, one needs to be added to the database. This step i
a lot easier with Unit of Work (184) because that way any new object will be automatically inserted first. In
either case you then find the linked row in the database and update its foreign key to point to the current
lbum. a

For removal you have to know whether the track was moved to another album, has no album, or has been

should be updated when you update that other album.
 album, you need to null the foreign key. If the track was deleted, then it should be deleted when

letes is much easier if the back link is mandatory, as it is here, where every
at way you don't have to worry about detecting items removed from the

deleted altogether. If it's been moved to another album it
If it has no
things get deleted. Handling de
track must be on an album. Th

collection since they will be updated when you process the album they'

ve been added to.

, then adding always means insertion

 order, which has a link to a
u load), and each payment has

ude the original order you're trying to load. Therefore, you load the

 how you create your objects. Usually
a good idea for a creation method to include data that will give you a fully formed object. If you do that,

If the link is immutable, meaning that you can't change a track's album

ing always means deletion. This makes things simpler still.and remov

One thing to watch out for is cycles in your links. Say you need to load an

which you load). The customer has a set of payments (which yocustomer (
orders that it's paying for, which might incl
order (now go back to the beginning of this paragraph.)

you have two choices that boil down toTo avoid getting lost in cycles
it's
you'll need to place Lazy Load (200) at appr

flow, but if you're testing is good e
opriate points to break the cycles. If you miss one, you'll get a
nough you can manage that burden.

The other choice is to create empty objects and immediately put them in an Identity Map

stack over

 (195). That way,
when you cycle back around, the object is already loaded and you'll end the cycle. The objects you create

n't fully formed, but they should be by the end of the load procedure. This avoids having to make special
 Lazy Load

are
case decisions about the use of (200) just to do a correct load.

is with many-to-many associations. Foreign keys are single values, and first normal
t store multiple foreign keys in a single field. Instead you need to use Association

 When to Use It

A Foreign Key Mapping can be used for almost all associations between classes. The most common case
where it isn't possible

m means that you can'for
Table Mapping (248).

th no back pointer, you should consider whether the many side should be

If you have a collection field wi

ependent Mappinga D (262). If so, it can simplify your handling of the collection.

is a If the related object Value Object (486) then you should use Embedded Value (268).

 Example: Single-Valued Reference (Java)

plest case, where an album has a single reference to an artist.

 String name) {

 void setName(String name) {
 this.name = name;
 }

This is the sim

class Artist...

 private String name;

 public Artist(Long ID,
 super(ID);

 this.name = name;
 }
 public String getName() {
 return name;
 }

public

class Album...

ist) {

 public void setArtist(Artist artist) {
 this.artist = artist;
}

 private String title;

 private Artist artist;
art public Album(Long ID, String title, Artist

 super(ID);
 this.title = title;
 this.artist = artist;
 }

ring getTitle() { public St
 return title;
 }
 public void setTitle(String title) {
 this.title = title;
 }

 Artist getArtist() { public
 return artist;
 }

Figure 12.4 shows how you can

eries the database and pulls b
 load an album. When an album mapper is told to load a particular album it
ack the result set for it. It then queries the result set for each foreign key field

te found objects. If the artist object was
 cache; otherwise, it would be loaded from the database in the

ding a single-valued field.

qu
and finds that object. Now it can create the album with the appropria
already in memory it would be fetched from the
same way.

Figure 12.4. Sequence for loa

ap

The find operation uses abstract behavior to manipulate an Identity M (195).

umMapper...

 protected String findStatement() {
 return "SELECT ID, title, artistID FROM albums WHERE ID = ?";

ss Albcla

 public Album find(Long id) {
 return (Album) abstractFind(id);
 }

 }

 PreparedStatement stmt = null;
 ResultSet rs = null;

= stmt.executeQuery();
 rs.next();
 result = load(rs);

) {

The find operation calls a load operation to actually load the data into the album.

class AbstractMapper...

load(ResultSet rs) throws SQLException {
rs.getLong(1));

return (DomainObject) loadedMap.get(id);
, rs);

 return result;

nObject result) {
Key(id));

doLoad(Long id, ResultSet rs) throws SQLException;

on {
etString(2);

 long artistID = rs.getLong(3);
artistID);

he linked artist object.

e(DomainObject arg);

{
paredStatement statement = null;

tID = ? WHERE id = ?");
 statement.setLong(3, arg.getID().longValue());
 Album album = (Album) arg;

class AbstractMapper...

 abstract protected String findStatement();
 protected DomainObject abstractFind(Long id) {
 DomainObject result = (DomainObject) loadedMap.get(id);
 if (result != null) return result;

 try {
 stmt = DB.prepare(findStatement());
 stmt.setLong(1, id.longValue());
 rs

 return result;
 } catch (SQLException e

 throw new ApplicationException(e);
 } finally {cleanUp(stmt, rs);}
}
private Map loadedMap = new HashMap();

 protected DomainObject

 Long id = new Long(
 if (loadedMap.containsKey(id))
 DomainObject result = doLoad(id

doRegister(id, result);

 }
tected void doRegister(Long id, Domai pro

 Assert.isFalse(loadedMap.contains
p.put(id, result); loadedMa

 }
ct abstract protected DomainObje

AlbumMapper... class

protected DomainObject doLoad(Long id, ResultSet rs) throws SQLExcepti

 String title = rs.g

 Artist artist = MapperRegistry.artist().find(
 Album result = new Album(id, title, artist);
 return result;
 }

m tTo update an album the foreign key value is taken fro

... class AbstractMapper

updat abstract public void

class AlbumMapper...

c void update(DomainObject arg) publi
 Pre

 try {
 statement = DB.prepare(

 "UPDATE albums SET title = ?, artis

 statement.setString(1, album.getTitle());
 statement.setLong(2, album.getArtist().
 statement.execute();

getID().longValue());

) {
nException(e);

n to issue one query per table, it's often inefficient since SQL consists of remote

odify the above example to use a single query to get both the album and the
 SQL call. The first alteration is that of the SQL for the find statement.

ndStatement() {
return "SELECT a.ID, a.title, a.artistID, r.name " +

 " from albums a, artists r " +

d that loads both the album and the artist information together.

d(Long id, ResultSet rs) throws SQLException {

st();

D))

um(id, title, artist);

rs) throws SQLException {

 result = new Artist(new Long(id), name);
 result);

 where to put the method that maps the SQL result into the artist object. On the one
rtist. On the other

query. In this case I've

 references occurs when you have a field that constitutes a collection. Here I'll use

 } catch (SQLException e
 throw new Applicatio

 } finally {
 cleanUp(statement);
 }
}

 Example: Multitable Find (Java)

it's conceptually cleaWhile
calls and remote calls are slow. Therefore, it's often worth finding ways to gather information from multiple
tables in a single query. I can m

ist information with a singleart

class AlbumMapper...

 public Album find(Long id) {
 return (Album) abstractFind(id);
 }

otected String fi pr

 " WHERE ID = ? and a.artistID = r.ID";
 }

I then use a different load metho

class AlbumMapper...

mainObject doLoa protected Do
 String title = rs.getString(2);
 long artistID = rs.getLong(3);

istry.arti ArtistMapper artistMapper = MapperReg
 Artist artist;

artistI if (artistMapper.isLoaded(
 artist = artistMapper.find(artistID);
 else

t = loadArtist(artistID, rs); artis
 Album result = new Alb
 return result;
 }

ltSet private Artist loadArtist(long id, Resu
g name = rs.getString(4); Strin

 Artist
 MapperRegistry.artist().register(result.getID(),
 return result;
 }

There's tension surrounding
hand it's better to put it in the artist's mapper since that's the class that usually loads the a

d, the load method is closely coupled to the SQL and thus should stay with the SQL han
voted for the latter.

 Example: Collection of References (C#)

The case for a collection of

an example of teams and players where we'll assume that we can't make player a Dependent Mapping (262)
(Figure 12.5).

class Team...

public String Name;
 public IList Players {

layersData);}
value);}

 }
r(Player arg) {
rg);

ayList();

am with multiple players.

 get {return ArrayList.ReadOnly(p
 set {playersData = new ArrayList(

 public void AddPlaye
 playersData.Add(a

 }
 private IList playersData = new Arr

Figure 12.5. A te

 with the player record having a foreign key to the team (Figure 12.6

 this will be handledIn the database).

(id);

ng id) {
t.PLACEHOLDER_ID);

 DataRow row = FindRow(id);
 return (row == null) ? null : Load(row);

 }

 protected DataTable table {

 public DataSetHolder dsh;
 abstract protected String TableName {get;}

class TeamMapper...

id) { public Team Find(long
 return (Team) AbstractFind
 }
class AbstractMapper...

d(lo protected DomainObject AbstractFin
Assert.True (id != DomainObjec

 protected DataRow FindRow(long id) {
 String filter = String.Format("id = {0}", id);
 DataRow[] results = table.Select(filter);
 return (results.Length == 0) ? null : results[0];
 }

 get {return dsh.Data.Tables[TableName];}
 }

class TeamMapper...

 protected override String TableName {
 get {return "Teams";}
 }

Figure 12.6. Database structure for a team with multiple players.

Th data e set holder is a class that holds onto the data set in use, together with the adapters needed to update it

et();
 private Hashtable DataAdapters = new Hashtable();

ap[id] != null) return (DomainObject) identityMap[id];

ble();

protected override void doLoad (DomainObject obj, DataRow row) {
 Team team = (Team) obj;
 team.Name = (String) row["name"];

= String.Format("teamID = {0}", id);
 DataRow[] ro = table.Select(filter);
 IList result = new ArrayList();

 }

 mapper to save the data into the player table.

to the database.

class DataSetHolder...

 public DataSet Data = new DataS

or this example, we'll assume that it has already been populated by some appropriate queries. F

The find method calls a load to actually load the data into the new object.

class AbstractMapper...

ataRow row) { protected DomainObject Load (D
 long id = (int) row ["id"];

 if (identityM
 else {

 DomainObject result = CreateDomainObject();
 result.Id = id;
 identityMap.Add(result.Id, result);
 doLoad(result,row);

sult; return re
 }

 }
nObject(); abstract protected DomainObject CreateDomai

 private IDictionary identityMap = new Hashta
 abstract protected void doLoad (DomainObject obj, DataRow row);

class TeamMapper...

 team.Players = MapperRegistry.Player.FindForTeam(team.Id);
 }

To bring in the players, I execute a specialized finder on the player mapper.

class PlayerMapper...

 public IList FindForTeam(long id) {
 String filter

ws

 foreach (DataRow row in rows) {
 result.Add(Load (row));

 return result;

 }

To update, the team saves its own data and delegates the player

class AbstractMapper...

ject arg) { public virtual void Update (DomainOb
 Save (arg, FindRow(arg.Id));
 }
 abstract protected void Save (DomainObject arg, DataRow row);

class TeamMapper...

 protected override void Save (DomainObject obj, DataRow row){

ers) {

 MapperRegistry.Player.LinkTeam(p, team.Id);
 }

 }
class PlayerMapper...

 public void LinkTeam (Player player, long teamID) {
 DataRow row = FindRow(player.Id);
 row["teamID"] = teamID;
 }

e update code is made much simpler by the fact that the association from player to team is mandatory. If we
as long as we update both team, we don't have to do a complicated
ase as an exercise for the reader.

 Team team = (Team) obj;
 row["name"] = team.Name;
 savePlayers(team);
 }
 private void savePlayers(Team team){
 foreach (Player p in team.Play

Th
move a player from one team to another,

ff to sort the players out. I'll leave that cdi

Association Table Mapping

Saves an association as a table with foreign keys to the tables that are linked by the association.

ing collections as field values. Relational databases
le-valued fields only. When you're mapping a one-to-many

 you can handle this using Foreign Key Mapping

Objects can handle multivalued fields quite easily by us
don't have

tion
 this feature and are constrained to sing

associa (236), essentially using a foreign key for the
single-valued end of the association. But a many-to-many association can't do this because there is no single-

lued end to hold the foreign key.

relational data people for decades: create an extra table
tion Table Mapping to map the multivalued field to this link table.

 How It Works

link table to store the association. This table has
ow for each pair of associated

va

The answer is the classic resolution that's been used by

ecord the relationship. Then use Associato r

The basic idea behind Association Table Mapping is using a
only the foreign key IDs for the two tables that are linked together, it has one r
objects.

The link table has no correspon

pound of the two primary
ding in-memory object. As a result it has no ID. Its primary key is the

keys of the tables that are associated.

le terms, to load data from the link table you perform two queries. Consider loading the skills for an
queries in two stages. The first stage queries the

ill

t's in the link table. You can avoid this cost by

com

In simp
employee. In this case, at least conceptually, you do
skillsEmployees table to find all the rows that link to the employee you want. The second stage finds the sk
object for the related ID for each row in the link table.

If all the information is already in memory, this scheme works fine. If it isn't, this scheme can be horribly
xpensive in queries, since you do a query for each skill thae

joining the skills table to the link table, which allows you to get all the data in a single query, albeit at the cost

g a many-valued field. Fortunately, the matter is
ways treat the link table like a Dependent Mapping

of making the mapping a bit more complicated.

Updating the link data involves many of the issues in updatin
made much easier since you can in many (262). No other

can freely create and destroy links as you need them.

n also be used for any other form of association. However, because it's more

table should refer to the link table, so you

 When to Use It

The canonical case for Association Table Mapping is a many-to-many association, since there are really no
any alternatives for that situation.

sociation Table Mapping caAs
complex than Foreign Key Mapping (236) and involves an extra join, it's not usually the right choice. Even so,

olve
ay need to link two existing tables,

e Association
lly necessary.

case it's often easier to use Association Table Mapping than to simplify the database schema.

's
company. In this case the person/company table really corresponds to a true domain

ject.

class Employee...

 public IList Skills {
 get {return ArrayList.ReadOnly(skillsData);}
 set {skillsData = new ArrayList(value);}

 }
 public void AddSkill (Skill arg) {
 skillsData.Add(arg);

in a couple of cases Association Table Mapping is appropriate for a simpler association; both inv
databases where you have less control over the schema. Sometimes you m
but you aren't able to add columns to those tables. In this case you can make a new table and us

ping. Other times an existing schema uses an associative table, even when it isn't reaTable Map
In this

In a relational database design you may often have association tables that also carry information about the
relationship. An example is a person/company associative table that also contains information about a person
employment with the
ob

 Example: Employees and Skills (C#)

Here's a simple example using the sketch's model. We have an employee class with a collection of skills, each

f which can appear for more than one employee. o

 }
ll arg) {

database, we need to pull in the skills using an employee mapper. Each
ind method that creates an employee object. All mappers are subclasses of the

rvices for the mappers.

EmployeeMapper...

 public Employee Find(long id) {

ind(long id) {

);

w FindRow(long id) {
 = String.Format("id = {0}", id);

 DataRow[] results = table.Select(filter);
Length == 0) ? null : results[0];

}

public DataSetHolder dsh;
 abstract protected String TableName {get;}

class EmployeeMapper...

 protected override String TableName {
 get {return "Employees";}
 }

e data set holder is a simple object that contains an ADO.NET data set and the relevant adapters to save it to
the database.

 public DataSet Data = new DataSet();
 private Hashtable DataAdapters = new Hashtable();

 make this example simple-indeed, simplistic—we'll assume that the data set has already been loaded with
all the data we need.

The find method calls load methods to load data for the employee.

class AbstractMapper...

 protected DomainObject Load (DataRow row) {
 long id = (int) row ["id"];
 if (identityMap[id] != null) return (DomainObject) identityMap[id];
 else {
 DomainObject result = CreateDomainObject();
 result.Id = id;
 identityMap.Add(result.Id, result);

 public void RemoveSkill (Ski
 skillsData.Remove(arg);

 }
 private IList skillsData = new ArrayList();

To load an employee from the

ployee mapper class has a fem
abstract mapper class that pulls together common se

class

 return (Employee) AbstractFind(id);
 }

class AbstractMapper...

 protected DomainObject AbstractF
 Assert.True (id != DomainObject.PLACEHOLDER_ID);
 DataRow row = FindRow(id);
 return (row == null) ? null : Load(row
 }
 protected DataRo

 String filter

 return (results.
 }

 protected DataTable table {
 get {return dsh.Data.Tables[TableName];

 }

Th

class DataSetHolder...

To

 doLoad(result,row);
 return result;
 }
 }
 abstract protected DomainObject CreateDomainObject();
 private IDictionary identityMap = new Hashtable();
 abstract protected void doLoad (DomainObject obj, DataRow row);

class EmployeeMapper...

 protected override void doLoad (DomainObject obj, DataRow row) {
 Employee emp = (Employee) obj;
 emp.Name = (String) row["name"];
 loadSkills(emp);
 }

Loading the skills is sufficiently awkward to demand a separate method to do the work.

ass EmployeeMapper...

 long skillID = (int)row["skillID"];
.AddSkill(MapperRegistry.Skill.Find(skillID));

 return result;
 }

 }
 private DataTable skillLinkTable {
 get {return dsh.Data.Tables["skillEmployees"];}
 }

To handle changes in skills information we use an update method on the abstract mapper.

class AbstractMapper...

 public virtual void Update (DomainObject arg) {
 Save (arg, FindRow(arg.Id));
 }
 abstract protected void Save (DomainObject arg, DataRow row);

The update method calls a save method in the subclass.

ass EmployeeMapper...

cl

 private IList loadSkills (Employee emp) {
 DataRow[] rows = skillLinkRows(emp);
 IList result = new ArrayList();
 foreach (DataRow row in rows) {

 emp
 }

 private DataRow[] skillLinkRows(Employee emp) {
 String filter = String.Format("employeeID = {0}", emp.Id);
 return skillLinkTable.Select(filter);

cl

 protected override void Save (DomainObject obj, DataRow row) {
 Employee emp = (Employee) obj;
 row["name"] = emp.Name;
 saveSkills(emp);
 }

Again, I've made a separate method for saving the skills.

class EmployeeMapper...

 private void saveSkills(Employee emp) {

 deleteSkills(emp);
 foreach (Skill s in emp.Skills) {

 row["skillID"] = s.Id;
 skillLinkTable.Rows.Add(row);
 }

The logic here does the simple thing of deleting all existing link table rows and creating new ones. This saves
me having to figure out which ones have been added and deleted.

 Example: Using Direct SQL (Java)

One of the nice things about ADO.NET is that it allows me to discuss the basics of an object-relational
mapping without getting into the sticky details of minimizing queries. With other relational mapping schemes
you're closer to the SQL and have to take much of that into account.

When you're going directly to the database it's important to minimize the queries. For my first version of this
I'll pull back the employee and all her skills in two queries. This is easy to follow but not quite optimal, so bear

 DataRow row = skillLinkTable.NewRow();
 row["employeeID"] = emp.Id;

 }
 private void deleteSkills(Employee emp) {
 DataRow[] skillRows = skillLinkRows(emp);
 foreach (DataRow r in skillRows) r.Delete();
 }

with me.

Here's the DDL for the tables:

create table employees (ID int primary key, firstname varchar, lastname varchar)
create table skills (ID int primary key, name varchar)
create table employeeSkills (employeeID int, skillID int, primary key (employeeID,
 skillID))

To load a single Employee I'll follow a similar approach to what I've done before. The employee mapper

fines a simple wrapper for an abstract find method on the Layer Supertypede (475).

cla

 public Employee find(long key) {
 return find (new Long (key));
 }
 public Employee find (Long key) {
 return (Employee) abstractFind(key);
 }
 protected String findStatement() {
 return
 "SELECT " + COLUMN_LIST +
 " FROM employees" +

 " WHERE ID = ?";
 }
 public static final String COLUMN_LIST = " ID, lastname, firstname ";

class AbstractMapper...

 protected DomainObject abstractFind(Long id) {
 DomainObject result = (DomainObject) loadedMap.get(id);

t;

ss EmployeeMapper...

 if (result != null) return resul
 PreparedStatement stmt = null;

 ResultSet rs = null;
 try {
 stmt = DB.prepare(findStatement());
 stmt.setLong(1, id.longValue());
 rs = stmt.executeQuery();
 rs.next();
 result = load(rs);
 return result;

 } catch (SQLException e) {

 } finally {DB.cleanUp(stmt, rs);
 }
 }

s. An abstract load method handles the ID loading while the actual data
ee's mapper.

ject load(ResultSet rs) throws SQLException {
Long id = new Long(rs.getLong(1));

 return load(id, rs);
}

 id, ResultSet rs) throws SQLException {
(DomainObject) loadedMap.get(id);

t result = doLoad(id, rs);
ut(id, result);

oad(Long id, ResultSet rs) throws SQLException;

oLoad(Long id, ResultSet rs) throws SQLException {
id);
g("firstname"));

rs.getString("lastname"));
(id));

.

yeeID) {

employeeID);
 rs = stmt.executeQuery();

 while (rs.next()) {
 Long skillId = new Long (rs.getLong(1));

.loadRow(skillId, rs));

 } catch (SQLException e) {

throw new ApplicationException(e);

 abstract protected String findStatement();
 protected Map loadedMap = new HashMap();

The find methods then call load method
for the employee is loaded on the employ

class AbstractMapper...

 protected DomainOb

 public DomainObject load(Long
 if (hasLoaded(id)) return
 DomainObjec
 loadedMap.p
 return result;
 }
 abstract protected DomainObject doL

class EmployeeMapper...

 protected DomainObject d
 Employee result = new Employee(
 result.setFirstName(rs.getStrin
 result.setLastName(
 result.setSkills(loadSkills
 return result;
 }

The employee needs to issue another query to load the skills, but it can easily load all the skills in a single
query. To do this it calls the skill mapper to load in the data for a particular skill.

class EmployeeMapper..

 protected List loadSkills(Long emplo
 PreparedStatement stmt = null;
 ResultSet rs = null;
 try {
 List result = new ArrayList();
 stmt = DB.prepare(findSkillsStatement);

 stmt.setObject(1,

 result.add((Skill) MapperRegistry.skill()
 }

 return result;

 throw new ApplicationException(e);

s); } finally {DB.cleanUp(stmt, r
 }

 }
 private static final String findSkillsStatement =

, " + SkillMapper.COLUMN_LIST +

 static final String COLUMN_LIST = " skill.name skillName ";

 ResultSet rs) throws SQLException {
 return load (id, rs);

ss SkillMapper...

 result.setName(rs.getString("skillName"));
 return result;

so help find employees.

yee" +

inally {DB.cleanUp(stmt, rs);

ls. Thus, loading a

ees (Java)

It's possible to bring back many employees, with their skills, in a single query. This is a good example of

 "SELECT skill.ID
 " FROM skills skill, employeeSkills es " +
 " WHERE es.employeeID = ? AND skill.ID = es.skillID";

class SkillMapper...

 public

class AbstractMapper...

 protected DomainObject loadRow (Long id,

 }

acl

 protected DomainObject doLoad(Long id, ResultSet rs) throws SQLException {
 Skill result = new Skill (id);

 }

e abstract mapper can alTh

class EmployeeMapper...

 public List findAll() {
 return findAll(findAllStatement);
 }
 private static final String findAllStatement =
 "SELECT " + COLUMN_LIST +
 " FROM employees emplo
 " ORDER BY employee.lastname";

class AbstractMapper...

 protected List findAll(String sql) {
 PreparedStatement stmt = null;
 ResultSet rs = null;
 try {
 List result = new ArrayList();
 stmt = DB.prepare(sql);
 rs = stmt.executeQuery();
 while (rs.next())
 result.add(load(rs));
 return result;
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } f
 }
 }

All of this works quite well and is pretty simple to follow. Still, there's a problem in the number of queries, and

lthough we can load the basic employee data for that is that each employee takes two SQL queries to load. A
many employees in a single query, we still need one query per employee to load the skil
hundred employees takes 101 queries.

e: Using a Single Query for Multiple Employ Exampl

multitable query optimization, which is certainly more awkward. For that reason do this when you need to,
etter to put more energy into speeding up your slow queries than into many queries

k all the skills for an employee in the same query
t holds the basic data. To do this I'll use a more complex SQL statement that joins across all three tables.

ass EmployeeMapper...

 " FROM employees employee, skills skill, employeeSkills es" +
 " WHERE employee.ID = es.employeeID AND skill.ID = es.skillID AND employee.ID

rather than every time. It's b
that are less important.

The first case we'll look at is a simple one where we pull bac
tha

cl

 protected String findStatement() {
 return
 "SELECT " + COLUMN_LIST +

=
 ?";
 }
 public static final String COLUMN_LIST =
 " employee.ID, employee.lastname, employee.firstname, " +

skillID, es.employeeID, skill.ID skillID, " +

The abstractFind and load methods on the superclass are the same as in the previous example, so I won't repeat
them here. The employee mapper loads its data differently to take advantage of the multiple data rows.

class EmployeeMapper...

ainObject doLoad(Long id, ResultSet rs) throws SQLException {

 loadSkillData(result, rs);
 while (rs.next()){

 return result;
 }
 protected DomainObject loadRow(Long id, ResultSet rs) throws SQLException {
 Employee result = new Employee(id);
 result.setFirstName(rs.getString("firstname"));
 result.setLastName(rs.getString("lastname"));
 return result;
 }
 private boolean rowIsForSameEmployee(Long id, ResultSet rs) throws SQLException {

In this case the load method for the employee mapper actually runs through the rest of the result set to load in
all the data.

All is simple when we're loading the data for a single employee. However, the real benefit of this multitable
query appears when we want to load lots of employees. Getting the reading right can be tricky, particularly

en we don't want to force the result set to be grouped by employees. At this point it's handy to introduce a
helper class to go through the result set by focusing on the associative table itself, loading up the employees
and skills as it goes along.

 " es.
 SkillMapper.COLUMN_LIST;

 protected Dom
 Employee result = (Employee) loadRow(id, rs);

 Assert.isTrue(rowIsForSameEmployee(id, rs));
 loadSkillData(result, rs);
 }

 return id.equals(new Long(rs.getLong(1)));
 }
 private void loadSkillData(Employee person, ResultSet rs) throws SQLException {
 Long skillID = new Long(rs.getLong("skillID"));
 person.addSkill ((Skill)MapperRegistry.skill().loadRow(skillID, rs));
 }

wh

I'll begin with the SQL and the call to the special loader class.

ass EmployeeMapper...

 public List findAll() {
 return findAll(findAllStatement);
 }
 private static final String findAllStatement =
 "SELECT " + COLUMN_LIST +
 " FROM employees employee, skills skill, employeeSkills es" +
 " WHERE employee.ID = es.employeeID AND skill.ID = es.skillID" +

 protected List findAll(String sql) {
 AssociationTableLoader loader = new AssociationTableLoader(this, new
SkillAdder());
 return loader.run(findAllStatement);
 }
class AssociationTableLoader...

tMapper sourceMapper;
 private Adder targetAdder;
 public AssociationTableLoader(AbstractMapper primaryMapper, Adder targetAdder) {
 this.sourceMapper = primaryMapper;

ome a bit clearer later. For the moment notice that we
construct the loader with a reference to the mapper and then tell it to perform a load with a suitable query. This

the typical structure of a method object. A method object [Beck Patterns

cl

 " ORDER BY employee.lastname";

 private Abstrac

 this.targetAdder = targetAdder;
 }

Don't worry about the skillAdder—that will bec

is] is a way of turning a complicated

ters. The usual way of using a method object is to create it, fire it up,
 done.

eps.

ss AssociationTableLoader...

 protected List run(String sql) {
 loadData(sql);
 addAllNewObjectsToIdentityMap();
 return formResult();

 }

The loadData method forms the SQL call, executes it, and loops through the result set. Since this is a method

ject, I've put the result set in a field so I don't have to pass it around.

method into an object on its own. The great advantage of this is that it allows you to put values in fields
instead of passing them around in parame
and then let it die once its duty is

stThe load behavior comes in three

cla

ob

class AssociationTableLoader...

 private ResultSet rs = null;
 private void loadData(String sql) {
 PreparedStatement stmt = null;
 try {
 stmt = DB.prepare(s ql);
 rs = stmt.executeQuery();
 while (rs.next())
 loadRow();
 } catch (SQLException e) {
 throw new ApplicationException(e);
 } finally {DB.cleanUp(stmt, rs);
 }

 }

The loadRow method loads the data from a single row in the result set. It's a bit complicated.

r...

 new ArrayList();
p();

id loadRow() throws SQLException {

s(ID))
 sourceMapper.loadRow(ID, rs));
nObject) inProgress.get(ID), rs);

insKey(id);

The loader preserves any order there is in the result set, so the output list of employees will be in the same
order in which it first appeared. So I keep a list of IDs in the order I see them. Once I've got the ID I look to
see if it's already fully loaded in the mapper—usually from a previous query. If it not I load what data I have
and keep it in an in-progress list. I need such a list since several rows will combine to gather all the data from
the employee and I may not hit those rows consecutively.

The trickiest part to this code is ensuring that I can add the skill I'm loading to the employees' list of skills, but
still keep the loader generic so it doesn't depend on employees and skills. To achieve this I need to dig deep
into my bag of tricks to find an inner interface—the Adder.

class AssociationTableLoader...

 public static interface Adder {
 void add(DomainObject host, ResultSet rs) throws SQLException ;
 }

The original caller has to supply an implementation for the interface to bind it to the particular needs of the
employee and skill.

class EmployeeMapper...

 private static class SkillAdder implements AssociationTableLoader.Adder {
 public void add(DomainObject host, ResultSet rs) throws SQLException {
 Employee emp = (Employee) host;
 Long skillId = new Long (rs.getLong("skillId"));
 emp.addSkill((Skill) MapperRegistry.skill().loadRow(skillId, rs));
 }
 }

This is the kind of thing that comes more naturally to languages that have function pointers or closures, but at
least the class and interface get the job done. (They don't have to be inner in this case, but it helps bring out
their narrow scope.)

class AssociationTableLoade

 private List resultIds =
 private Map inProgress = new HashMa
 private vo
 Long ID = new Long(rs.getLong(1));
 if (!resultIds.contains(ID)) resultIds.add(ID);
 if (!sourceMapper.hasLoaded(ID)) {
 if (!inProgress.keySet().contain
 inProgress.put(ID,
 targetAdder.add((Domai
 }
 }

class AbstractMapper...

 boolean hasLoaded(Long id) {
 return loadedMap.conta
 }

ou may have noticed that I have a load and a loadRow method defined on the superclass and the

implementation of the loadRow is to call load. I did this because there are times when you want to be sure that
a load action will not move the result set forward. The load does whatever it needs to do to load an object, but

ad data from a row without altering the position of the cursor. Most of the time these
t ut in the case of this employee mapper they're different.

he
et in the order of first appearance and a list of new objects that haven't yet made an appearance in the

ployee mapper's Identity Map

Y

loadRow guarantees to lo
wo are the same thing, b

Now all the data is in from the result set. I have two collections: a list of all the employee IDs that were in t
result s
em (195).

The next step is to put all the new objects into the Identity Map (195).

class AssociationTableLoader...

 private void addAllNewObjectsToIdentityMap() {
 for (Iterator it = inProgress.values().iterator(); it.hasNext();)
 sourceMapper.putAsLoaded((DomainObject)it.next());
 }

class AbstractMapper...

 void putAsLoaded (DomainObject obj) {
 loadedMap.put (obj.getID(), obj);
 }

The final step is to assemble the result list by looking up the IDs from the mapper.

lass AssociationTableLoader...

 }

rn (DomainObject) loadedMap.get(id);
 }

Such code is more complex than the average loading code, but this kind of thing can help cut down the number
of queries. Since it's complicated, this is something to be used sparingly when you have laggardly bits of
database interaction. However, it's an example of how Data Mapper

c

 private List formResult() {
 List result = new ArrayList();
 for (Iterator it = resultIds.iterator(); it.hasNext();) {
 Long id = (Long)it.next();
 result.add(sourceMapper.lookUp(id));
 }
 return result;

class AbstractMapper...

 protected DomainObject lookUp (Long id) {
 retu

 (165) can provide good queries without
eing aware of the complexity involved.

the domain layer b

Dependent Mapping

Has one class perform the database mapping for a child class.

Some objects naturally appear in the context of other objects. Tracks on an album may be loaded or saved

enever the underlying album is loaded or saved. If they aren't referenced to by any other table in the
the

lass (the dependent) relies upon some other class (the
ner) for its database persistence. Each dependent can have only one owner and must have one owner.

wh
database, you can simplify the mapping procedure by having the album mapper perform the mapping for
tracks as well—treating this mapping as a dependent mapping.

 How It Works

he basic idea behind Dependent Mapping is that one cT
wo

This manifests itself in terms of the classes that do the mapping. For Active Record (160) and Row Data
Gateway (152), the dependent class won't contain any database mapping code; its mapping code sits in the
owner. With Data Mapper (165) there's no mapper for the dependent, the mapping code sits in the mapper for

e Data Gatewaythe owner. In a Tabl (144) there will typically be no dependent class at all, all the handling of
e in the owner.

the dependent is don

In most cases every time you load an owner, you load the dependents too. If the dependents are expensive to
load and infrequently used, you can use a Lazy Load (200) to avoid loading the dependents until you need
them.

An important property of a dependent is that it doesn't have an Identity Field (216) and therefore isn't stored
a

in
Identity Map (195). It therefore cannot be loaded by a find method that looks up an ID. Indeed, there's no

finder for a dependent since all finds are done with the owner.

A dependent may itself be the owner of another dependent. In this case the owner of the first dependent is also
responsible for the persistence of the second dependent. You can have a whole hierarchy of dependents
controlled by a single primary owner.

It's usually easier for the primary key on the database to be a composite key that includes the owner's primary

 owner. key. No other table should have a foreign key into the dependent's table, unless that object has the same
As a result, no in-memory object other than the owner or its dependents should have a reference to a

dependent. Strictly speaking, you can relax that rule providing that the reference isn't persisted to the database,
but having a nonpersistent reference is itself a good source of confusion.

a UML model, it's appropriate to use composition to show the relationship between an owner and its

 dependents can be handled through deletion and insertion. Thus, if you want to update the collection of
reinsert all the dependents. This

s collection.

In
dependents.

ce the writing and saving of dependents is left to the owner, and there are no outside references, updates to Sin
the
dependents you can safely delete all rows that link to the owner and then

es you from having to do an analysis of objects added or removed from the owner'sav

Dependents are in many ways like Value Objects (486), although they often don'

u use in making something a
t need the full mechanics that

yo Value Object (486) (such as overriding equals). The main difference is that
ut them from a purely in-memory point of view. The dependent nature of the objects

atabase mapping behavior.

ng Dependent Mapping complicates tracking whether the owner has changed. Any change to a dependent
eds to mark the owner as changed so that the owner will write the changes out to the database. You can

ependent immutable, so that any change to it needs to be done by

pendent
re using Data Mapper

there's nothing special abo
nly really due to the dis o

Usi
ne
simplify this considerably by making the d
removing it and adding a new one. This can make the in-memory model harder to work with, but it does
simplify the database mapping. While in theory the in-memory and database mapping should be inde
when you' (165), in practice you have to make the occasional compromise.

 only referred to by one other object, which
ts. Dependent Mapping is a good way of dealing

ts dependents but there's no back
akes it

mber of preconditions.

 than the owner to the dependent.

ts and dependent objects when designing

 When to Use It

You use Dependent Mapping when you have an object that's

when one object has a collection of dependenusually occurs
with the awkward situation where the owner has a collection of references to i

ed their own identity, using Dependent Mapping mpointer. Providing that the many objects don't ne
easier to manage their persistence.

For Dependent Mapping to work there are a nu

• A dependent must have exactly one owner.
ere must be no references from any object other• Th

 entity objecThere is a school of OO design that uses the notion of

a Domain Model (116). I tend to think of Dependent Mapping as a technique to simplify database mapping
, I avoid large graphs of dependents. The
nt from outside the graph, which often leads to

s based around the root owner.

dent Mapping if you're using Unit of Work

rather than as a fundamental OO design medium. In particular
ndeproblem with them is that it's impossible to refer to a depe

complex lookup scheme

I don't recommend Depen (184). The delete and reinsert strategy

Unit of Workdoesn't help at all if you have a (184) keeping track of things. It can also lead to problems since
the Unit of Work (184) isn't controlling the dependents. Mike Rettig told me about an application where a Unit
of Work (184) would keep track of rows inserted for testing and then delete them all when done. Because it

ed failures in the test runs. didn't track dependents, orphan rows appeared and caus

 Example: Albums and Tracks (Java)

In this domain model (Figure 12.7) an album holds a collection of tracks. This uselessly simple application

sn't need anything else to refer to a track, so it's an obvious candidate for Dependent Mapping. (Indeed, doe
anyone would think the example is deliberately constructed for the pattern.)

Figure 12.7. An album with tracks that can be handled using Dependent Mapping.

utable class.

ring title;
ring title) {

 this.title = title;

nt i) {

public Track[] getTracks() {
) tracks.toArray(new Track[tracks.size()]);

tatements that access the

protected String findStatement() {
 return

This track just has a title. I've defined it as an imm

class Track...

 private final St

public Track(St

 }
 public String getTitle() {
 return title;
 }

The tracks are held in the album class.

class Album...

 private List tracks = new ArrayList();
 public void addTrack(Track arg) {
 tracks.add(arg);
 }
 public void removeTrack(Track arg) {
 tracks.remove(arg);
 };
 public void removeTrack(i
 tracks.remove(i);
 }

 return (Track[]
 }

The album mapper class handles all the SQL for tracks and thus defines the SQL s
tracks table.

class AlbumMapper...

 "SELECT ID, a.title, t.title as trackTitle" +
 " FROM albums a, tracks t" +
 " WHERE a.ID = ? AND t.albumID = a.ID" +
 " ORDER BY t.seq";
 }

The tracks are loaded into the album whenever the album is loaded.

class AlbumMapper...

 p

rotected DomainObject doLoad(Long id, ResultSet rs) throws SQLException {
 String title = rs.getString(2);

 Album result = new Album(id, title);

 }
 public void loadTracks(Album arg, ResultSet rs) throws SQLException {
 arg.addTrack(newTrack(rs));

 }
 private Track newTrack(ResultSet rs) throws SQLException {
 String title = rs.getString(3);
 Track newTrack = new Track (title);
 return newTrack;
 }

For clarity I've done the track load in a separate query. For performance, you might want to consider loading
them in the same query along the lines of the example on page 243.

When the album is updated all the tracks are deleted and reinserted.

class AlbumMapper...

 public void update(DomainObject arg) {
 PreparedStatement updateStatement = null;

 updateTracks(album);

new ApplicationException(e);
 } finally {DB.cleanUp(updateStatement);
 }
 }
 public void updateTracks(Album arg) throws SQLException {
 PreparedStatement deleteTracksStatement = null;
 try {
 deleteTracksStatement = DB.prepare("DELETE from tracks WHERE albumID = ?");
 deleteTracksStatement.setLong(1, arg.getID().longValue());
 deleteTracksStatement.execute();
 for (int i = 0; i < arg.getTracks().length; i++) {

 insertTracksStatement =
 DB.prepare("INSERT INTO tracks (seq, albumID, title) VALUES (?, ?, ?)");

 loadTracks(result, rs);
 return result;

 while (rs.next()) {
 arg.addTrack(newTrack(rs));
 }

 try {
 updateStatement = DB.prepare("UPDATE albums SET title = ? WHERE id = ?");
 updateStatement.setLong(2, arg.getID().longValue());
 Album album = (Album) arg;
 updateStatement.setString(1, album.getTitle());
 updateStatement.execute();

 } catch (SQLException e) {
 throw

 Track track = arg.getTracks()[i];
 insertTrack(track, i + 1, arg);
 }
 } finally {DB.cleanUp(deleteTracksStatement);
 }
 }
 public void insertTrack(Track track, int seq, Album album) throws SQLException {
 PreparedStatement insertTracksStatement = null;
 try {

 insertTracksStatement.setInt(1, seq);

 insertTracksStatement.setLong(2, album.getID().longValue());
 insertTracksStatement.setString(3, track.getTitle());

racksStatement.execute();
{DB.cleanUp(insertTracksStatement);

 }
 }

 insertT
 } finally

mbedded Value

Ma a

E

ps n object into several fields of another object's table.

Man s
include
tabl n

An Embedded Value maps the values of an object to fields in the record of the object's owner. In the sketch we
have an employment object with links to a date range object and a money object. In the resulting table the
fields in those objects map to fields in the employment table rather than make new records themselves.

 How It Works

This exercise is actually quite simple. When the owning object (employment) is loaded or saved, the
dependent objects (date range and money) are loaded and saved at the same time. The dependent classes won't
have their own persistence methods since all persistence is done by the owner. You can think of Embedded
Value as a special case of Dependent Mapping

y mall objects make sense in an OO system that don't make sense as tables in a database. Examples
 currency-aware money objects and date ranges. Although the default thinking is to save an object as a

e, o sane person would want a table of money values.

 (262), where the value is a single dependent object.

ward, but knowing when to use it a little

The simplest cases for Embedded Value are the clear, simple Value Objects

 When to Use It

 of those patterns where the doing of it is very straightforThis is one
more complicated.

 (486) like money and date range.
Since Value Objects (486) don't have identity, you can create and destroy them easily without worrying about
such things as Identity Maps (195) to keep them all in sync. Indeed, all Value Objects (486) should be
persisted as Embedded Value, since you would never want a table for them there.

e grey area is in whether it's worth storing reference objects, such as an order and a shipping object, using

Th

Embedded Value. The principal question here is whether the shipping data has any relevance outside the
ng data into memory when

 the same table. Another question is whether you'll
y though SQL. This can be important if you're reporting through

on't have a separate database for reporting.

 when a table contains data that you
lit into more than one object in memory. This may occur because you want a separate object to factor out

s all still one entity in the database. In this case you have to be
t an issue with Value

context of the order. One issue is the loading and saving. If you only load the shippi
 saving both inyou load the order, that's an argument for

cess the shipping data separatelwant to ac
 and dSQL

If you're mapping to an existing schema, you can use Embedded Value
sp
some behavior in the object model, but it'
careful that any change to the dependent marks the owner as dirty—which isn'
Objects (486) that are replaced in the owner.

In most cases you'll only use Embedded Value on a reference object when the association between them is

n). Occasionally you may use it if there are multiple
small and fixed. Then you'll have numbered fields for each value.

ssy table design, and horrible to query in SQL, but it may have performance benefits. If this is the
, however, Serialized LOB

single valued at both ends (a one-to-one associatio
candidate

s is me
dependents and their number is

Thi
seca (272) is usually the better choice.

r deciding when to use Embedded Value is the same as for Serialized LOB

Since so much of the logic fo (272),

hoosing between the two. The great advantage of Embedded Value is that it
lues in the dependent object. Although using XML as the

ons to SQL, may alter that in the future, at the moment you
is may be important for

 Value can only be used for fairly simple dependents. A solitary dependent, or a few separated

there's the obvious matter of c
allows SQL queries to be made against the va
serialization, together with XML-based query add-
really need Embedded Value if you want to use dependent values in a query. Th
separate reporting mechanisms on the database

Embedded
dependents, works well. Serialized LOB (272) w
large object subgraphs.

orks with more complex structures, including potentially

urther Reading

 a couple of different names in its history. TOPLink refers to tit as aggregate

e: Simple Value Object (Java)

apped with Embedded Value. We'll begin with a simple product
 following fields.

 F

bedded Value has been calledEm
mapping. Visual Age refers to it as composer.

 Exampl

is is the classic example of a value object mTh
offering class with the

class ProductOffering...

 private Product product;

e Money baseCost; privat
 private Integer ID;

elds the ID is an In these fi Identity Field (216) and the product is a regular record mapping. We'll map the base
ith Active Recordcost using Embedded Value. We'll do the overall mapping w (160) to keep things simple.

rd

Since we're using Active Reco (160) we need save and load routines. These simple routines are in the

product offering class because it's the owner. The money class has no persistence behavior at all. Here'
load method.

s the

Integer id = (Integer) rs.getObject("ID");
 BigDecimal baseCostAmount = rs.getBigDecimal("base_cost_amount");

ass ProductOffering... cl

load(ResultSet rs) { public static ProductOffering

y { tr

 Currency baseCostCurrency = Registry.getCurrency(rs.getString(
 "base_cost_currency"));
 Money baseCost = new Money(baseCostAmount, baseCostCurrency);

= (Integer) rs.getObject("product");
Product.find((Integer) rs.getObject("product"));

paredStatement stmt = null;

B.prepare(updateStatementString);

);
stmt.execute();

 } catch (Exception e) {

 private String update atementString =
_offerings" +
t_amount = ?, base_cost_currency = ? " +

 Integer productID
 Product product =

 return new ProductOffering(id, product, baseCost);
) { } catch (SQLException e

 throw new ApplicationException(e);
 }
 }

Here's the update behavior. Again it's a simple variation on the updates.

class ProductOffering...

c void update() { publi
 Pre

 try {
 stmt = D

 stmt.setBigDecimal(1, baseCost.amount());
currency().code()); stmt.setString(2, baseCost.

 stmt.setInt(3, ID.intValue()

 throw new ApplicationException(e);
 } finally {DB.cleanUp(stmt);}
 }

St
 "UPDATE product
 " SET base_cos

 " WHERE id = ?";

Serialized LOB

lizing them into a single large object (LOB), which it stores in a database

es a graph of objects by seriaSav
field.

ed graphs of small objects. Much of the information in these structures
en them. Consider storing the organization hierarchy for all your

 pattern to represent organizational
ncestors, siblings, descendents, and other

common relationships.

t so easy is putting all this into a relational schema. The basic schema is simple—an organization table with

.

 Another form of persistence is
e large object (LOB) in a table this

 [Gang of Four

Object models often contain complicat

etweisn't in the objects but in the links b
customers. An object model quite naturally shows the composition

s, and you can easily add methods that allow you to get ahierarchie

No
a parent foreign key, however, its manipulation of the schema requires many joins, which are both slow and
awkward

Objects don't have to be persisted as table rows related to each other.

ritten out as a singlserialization, where a whole graph of objects is w
f mementoSerialized LOB then becomes a form o].

lization: as a binary (BLOB) or as textual characters (CLOB). The
to create since many platforms include the ability to automatically serialize an

lization in a buffer and saving that buffer

 How It Works

There are two ways you can do the seria

OB is often the simplest BL
object graph. Saving the graph is a simple matter of applying the seria
in the relevant field.

The advantages of the BLOB are that it's simple to program (if your platform supports it) and that it uses the
minimum of space. The disadvantages are that your database must support a binary data type for it and that

u can't reconstruct the graph without the object, so the field is utterly impenetrable to casual viewing. The
e able to read

 its previous serializations; since data can live in the database for a long time, this is no small thing.

t graph into a text string that carries all the
asily by a human viewing the row, which helps in casual

wever the text approach will usually need more space, and you may need to
he textual format you use. It's also likely to be slower than a binary serialization.

ML parsers are commonly available, so
ave to write your own. Furthermore, XML is a widely supported standard so you can take

antage of tools as they become available to do further manipulations. The disadvantage that XML doesn't
lp with is the matter of space. Indeed, it makes the space issue much worse because its a very verbose
rmat. One way to deal with that is to use a zipped XML format as your BLOB—you lose the direct human
adability, but it's an option if space is a real issue.

hen you use Serialized LOB beware of identity problems. Say you want to use Serialized LOB for the
ustomer details on an order. For this don't put the customer LOB in the order table; otherwise, the customer
ata will be copied on every order, which makes updates a problem. (This is actually a good thing, however, if
ou want to store a snapshot of the customer data as it was at the placing of the order—it avoids temporal
lationships.) If you want your customer data to be updated for each order in the classical relational sense,

ou need to put the LOB in a customer table so many orders can link to it. There's nothing wrong with a table
at just has an ID and a single LOB field for its data.

ta when using this pattern. Often it's not a whole Serialized LOB that
gets duplicated but part of one that overlaps with another one. The thing to do is to pay careful attention to the

ta that's stored in the Serialized LOB and be sure that it can't be reached from anywhere but a single object

 When to Use It

Serialized LOB isn't considered as often as it might be. XML makes it much more attractive since it yields a
easy-to-implement textual approach. Its main disadvantage is that you can't query the structure using SQL.
SQL extensions appear to get at XML data within a field, but that's still not the same (or portable).

This pattern works best when you can chop out a piece of the object model and use it to represent the LOB.
Think of a LOB as a way to take a bunch of objects that aren't likely to be queried from any SQL route outside
the application. This graph can then be hooked into the SQL schema.

Serialized LOB works poorly when you have objects outside the LOB reference objects buried in it. To handle
this you have to come up with some form of referencing scheme that can support references to objects inside a
LOB—it's by no means impossible, but it's awkward, awkward enough usually not to be worth doing. Again

ML, or rather XPath, reduces this awkwardness somewhat.

ized

yo
most serious problem, however, is versioning. If you change the department class, you may not b
all

ze the departmenThe alternative is a CLOB. In this case you seriali
xt string can be read einformation you need. The te

f the database. Hobrowsing o
create your own parser for t

vercome with XML. XMany of the disadvantages of CLOBs can be o
you don't h
adv
he
fo
re

W
c
d
y
re
y
th

In general, be careful of duplicating da

da
that acts as the owner of the Serialized LOB.

X

If you're using a separate database for reporting and all other SQL goes against that database, you can
transform the LOB into a suitable table structure. The fact that a reporting database is usually denormal

means that structures suitable for Serialized LOB are often also suitable for a separate reporting database.

lizing a Department Hierarchy in XML (Java)

For this example we'll take the notion of customers and departments from the sketch and show how you might
serialize all the departments into an XML CLOB. As I write this, Java's XML handling is somewhat primitive
and volatile, so the code may look different when you get to it (I'm also using an early version of JDOM).

ass Department...

e database for this has only one table.

 Example: Seria

The object model of the sketch turns into the following class structures:

class Customer...

 private String name;
 private List departments = new ArrayList();

cl

 private String name;
 private List subsidiaries = new ArrayList();

hT

create table customers (ID int primary key, name varchar, departments varchar)

We'll treat the customer as an Active Record (160) and illustrate writing the data with the insert behavior.

class Customer...

 public Long insert() {
 PreparedStatement insertStatement = null;
 try {
 insertStatement = DB.prepare(insertStatementString);
 setID(findNextDatabaseId());
 insertStatement.setInt(1, getID().intValue());
 insertStatement.setString(2, name);

, XmlStringer.write(departmentsToXmlElement()));

 Registry.addCustomer(this);

 throw new ApplicationException(e);
 } finally {DB.cleanUp(insertStatement);
 }
 }
 public Element departmentsToXmlElement() {

 while (i.hasNext()) {

 }

class Department...

 Element toXmlElement() {
 Element root = new Element("department");
 root.setAttribute("name", name);

 subsidiaries.iterator();

 insertStatement.setString(3
 insertStatement.execute();

 return getID();

 } catch (SQLException e) {

 Element root = new Element("departmentList");
 Iterator i = departments.iterator();

 Department dep = (Department) i.next();
 root.addContent(dep.toXmlElement());
 }
 return root;

 Iterator i =

 while (i.hasNext()) {
 Department dep = (Department) i.next();
 root.addContent(dep.toXmlElement());
 }
 return root;

The customer has a method for serializing its departments field into a single XML DOM. Each department has
a method for serializing itself (and its subsidiaries recursively) into a DOM as well. The insert method then
takes the DOM of the departments, converts it into a string (via a utility class) and puts it in the database. We
aren't particularly concerned with the structure of the string. It's human readable, but we aren't going to look at
it on a regular basis.

<?xml version="1.0" encoding="UTF-8"?>
<departmentList>
 <department name="US">
 <department name="New England">

ia" />

cess.

public static Customer load(ResultSet rs) throws SQLException {

 String name = rs.getString("name");
partmentLob = rs.getString("departments");

 result = new Customer(name);
 result.readDepartments(XmlStringer.read(departmentLob));

 void readDepartments(Element source) {
yList();

 Iterator it = source.getChildren("department").iterator();

)));

ss Department...

 source.getAttributeValue("name");
 Department result = new Department(name);

= source.getChildren("department").iterator();
asNext())

 image of the insert code. The department knows how to create itself (and
ent, and the customer knows how to take an XML element and create the

d method uses a utility class to turn the string from the database into a

 }

 <department name="Boston" />
 <department name="Vermont" />

 </department>
 <department name="Californ

 <department name="Mid-West" />
 </department>
 <department name="Europe" />

</departmentList>

ersal of this proReading back is a fairly simple rev

class Customer...

 Long id = new Long(rs.getLong("id"));
 Customer result = (Customer) Registry.getCustomer(id);
 if (result != null) return result;

 String de

 return result;
 }

 List result = new Arra

 while (it.hasNext())
 addDepartment(Department.readXml((Element) it.next(
 }

acl

 static Department readXml(Element source) {
 String name =

 Iterator it

 while (it.h
 result.addSubsidiary(readXml((Element) it.next()));
 return result;
 }

rorThe load code is obviously a mir
its subsidiaries) from an XML elem

ents from it. The loalist of departm
ent.utility elem

An obvious danger here is that someone may try to edit the XML by hand in

ols th
 the database and mess up the

at would support adding a DTD or XML, making it unreadable by the load routine. More sophisticated to
t.XML schema to a field as validation will obviously help with tha

Single Table Inheritance

Represents an inheritance hierarchy of classes as a single table that has columns for all the fields of the various
classes.

databases don't support inheritance, so when mapping from objects to databases we have to
sider how to represent our nice inheritance structures in relational tables. When mapping to a relational

hat aren't relevant are left empty. The basic mapping behavior follows the general scheme

Relational
con
database, we try to minimize the joins that can quickly mount up when processing an inheritance structure in
multiple tables. Single Table Inheritance maps all fields of all classes of an inheritance structure into a single
table.

 How It Works

In this inheritance mapping scheme we have one table that contains all the data for all the classes in the
inheritance hierarchy. Each class stores the data that's relevant to it in one table row. Any columns in the

tabase tda
of Inheritance Mappers (302).

stantiate. For this you have a field in
. This can be the name of the class or a code field. A code

t class. This code needs to be extended when
ble you can just use it directly to

p more space and may be less easy to process by
 may more closely couple the class structure to the

 you read the code first to figure out which subclass to instantiate. On saving the data the code

 know which class to inWhen loading an object into memory you need to
es which class should be usedthe table that indicat

field needs to be interpreted by some code to map it to the relevan
me in the taa class is added to the hierarchy. If you embed the class na

instantiate an instance. The class name, however, will take u
 well itthose using the database table structure directly. As

database schema.

In loading data

needs be written out by the superclass in the hierarchy.

 When to Use It

Single Table Inheritance is one of the options for mapp

tabase. The alternatives are Class Table Inheritance
ing the fields in an inheritance hierarchy to a relational

da (285) and Concrete Table Inheritance (293).

• There's only a single table to worry about on the database.

o change the database.

heritance are

people using the tables

ace in the database. How much this is actually
tics and how well the database compresses empty

ns. Oracle, for example, is very efficient in trimming wasted space, particularly if you keep your
ide of the database table. Each database has its own tricks for this.

es and frequent locking, which may hurt
ither list keys of rows that have

 fields, so you have to be sure that you don't use the same name
es with the name of the class as a prefix or suffix help here.

These are the strengths of Single Table Inheritance:

• There are no joins in retrieving data.
• Any refactoring that pushes fields up or down the hierarchy doesn't require you t

The weaknesses of Single Table In

• Fields are sometimes relevant and sometimes not, which can be confusing to
directly.

d to wasted sp• Columns used only by some subclasses lea
roblem depends on the specific data characterisa p

colum
optional columns to the right s

• The single table may end up being too large, with many index
performance. You can avoid this by having separate index tables that e

fields relevant to an index. a certain property or that copy a subset of
• You only have a single namespace for

for different fields. Compound nam

Rremember that you don't need to use one form of inheritance mapping for your whole hierarchy. It's perfectly

e to map half a dozen similar classes in a single table, as long as you use Concrete Table Inheritancefin (293)
for any classes that have a lot of specific data.

 based this one on Inheritance Mappers

 Example: A Single Table for Players (C#)

Like the other inheritance examples, I've (302), using the classes
in Figure 12.8. Each mapper needs to be linked to a data table in an ADO.NET data set. This link can be made

s. The gateway's data property is a data set that can be loaded by a query.

 get {return Gateway.Data.Tables[TableName];}

eway Gateway;
 abstract protected String TableName {get;}

generically in the mapper superclas

class Mapper...

tected DataTable table { pro

 }
 protected Gat

Figure 12.8. The generic class diagram of Inheritance Mappers (302).

r mapper.

erride String TableName {
rn "Players";}

 }

 the mapper code figure out what kind of player it's dealing with. The type
nd implemented in the subclasses.

ss PlayerMapper...

 private CricketerMapper cmapper;
Mapper fmapper;
r (Gateway gateway) : base (gateway) {

Since there is only one table, this can be defined by the abstract playe

tractPlayerMapper... class Abs

 protected ov
 get {retu

Each class needs a type code to help
e is defined on the superclass acod

.. class AbstractPlayerMapper.

tring TypeCode {get;} abstract public S

class CricketerMapper...

 public const String TYPE_CODE = "C";
 public override String TypeCode {

PE_CODE;} get {return TY
 }

The player mapper has fields for each of the three concrete mapper classes.

lac

 private BowlerMapper bmapper;

 private Footballer
 public PlayerMappe

 bmapper = new BowlerMapper(Gateway);
r(Gateway); cmapper = new CricketerMappe

 fmapper = new FootballerMapper(Gateway);
 }

Each concrete mapper class has a find method to get an object from the data.

 public Cricketer Find(long id) {
 return (Cricketer) AbstractFind(id);
 }

ass Mapper...

 String filter = String.Format("id = {0}", id);

 (results.Length == 0) ? null : results[0];
 }
 public DomainObject Find (DataRow row) {
 DomainObject result = CreateDomainObject();
 Load(result, row);
 return result;
 }
 abstract protected DomainObject CreateDomainObject();

ass CricketerMapper...

 protected override DomainObject CreateDomainObject() {
 return new Cricketer();
 }

I load the data into the new object with a series of load methods, one on each class in the hierarchy.

ass CricketerMapper...

attingAverage"];
 }

 }

class Mapper...

 obj.Id = (int) row ["id"];
 }

Loading an Object from the Database

class CricketerMapper...

This calls generic behavior to find an object.

cl

 protected DomainObject AbstractFind(long id) {
 DataRow row = FindRow(id);
 return (row == null) ? null : Find(row);
 }
 protected DataRow FindRow(long id) {

 DataRow[] results = table.Select(filter);
 return

cl

lc

 protected override void Load(DomainObject obj, DataRow row) {
 base.Load(obj,row);
 Cricketer cricketer = (Cricketer) obj;
 cricketer.battingAverage = (double)row["b

class AbstractPlayerMapper...

 protected override void Load(DomainObject obj, DataRow row) {
 base.Load(obj, row);
 Player player = (Player) obj;
 player.name = (String)row["name"];

 protected virtual void Load(DomainObject obj, DataRow row) {

I can also load a player through the player mapper. It needs to read the data and use the type code to determine
which concrete mapper to use.

class PlayerMapper...

 else {
 String typecode = (String) row["type"];
 switch (typecode){
 case BowlerMapper.TYPE_CODE:
 return (Player) bmapper.Find(row);
 case CricketerMapper.TYPE_CODE:
 return (Player) cmapper.Find(row);
 case FootballerMapper.TYPE_CODE:
 return (Player) fmapper.Find(row);
 default:
 throw new Exception("unknown type");
 }
 }
 }

e basic operation for updating is the sam I can define the operation on the mapper
perclass.

dRow(arg.Id));
 }

The save method is similar to the load method—each class defines it to save the data it contains.

class CricketerMapper...

 protected override void Save(DomainObject obj, DataRow row) {
 base.Save(obj, row);

r) obj;
er.battingAverage;

 }

cla

 protected override void Save(DomainObject obj, DataRow row) {
 Player player = (Player) obj;
 row["name"] = player.name;
 row["type"] = TypeCode;
 }

The player mapper forwards to the appropriate concrete mapper.

class PlayerMapper...

 public Player Find (long key) {

 DataRow row = FindRow(key);
 if (row == null) return null;

 Updating an Object

e for all objects, soTh
su

class Mapper...

 public virtual void Update (DomainObject arg) {
 Save (arg, Fin

 Cricketer cricketer = (Crickete
 row["battingAverage"] = cricket

ss AbstractPlayerMapper...

 public override void Update (DomainObject obj) {
 MapperFor(obj).Update(obj);

}

 private Mapper MapperFor(DomainObject obj) {
 if (obj is Footballer)
 return fmapper;
 if (obj is Bowler)
 return bmapper;
 if (obj is Cricketer)
 return cmapper;
 throw new Exception("No mapper available");

 Inserting an Object

Insertions are similar to updates; the only real difference is that a new row needs to be made in the table before

ing.

class Mapper...

 public virtual long Insert (DomainObject arg) {
 DataRow row = table.NewRow();

 Save (arg, row);
 table.Rows.Add(row);

g.Id;

Object obj) {
ert(obj);

letes are pretty simple. They're defined at the abstract mapper level or in the player wrapper.

pper...

l void Delete(DomainObject obj) {
w = FindRow(obj.Id);

 public override void Delete (DomainObject obj) {
ete(obj);

 }

sav

 arg.Id = GetNextID();
 row["id"] = arg.Id;

 return ar
 }

class PlayerMapper...

 (Domain public override long Insert
 return MapperFor(obj).Ins

 }

n Object Deleting a

De

class Ma

 public virtua
 DataRow ro

 row.Delete();
 }

class PlayerMapper...

 MapperFor(obj).Del

 }

ass TCl able Inheritance

Represents an inheritance hierarchy of classes with one table for each class.

tch is the fact that relational databases don't support
ts and allow links anywhere in the
e database table per class in the

ble per class in the domain model.
bles. As with the other inheritance

A very visible aspect of the object-relational misma
inheritance. You want database structures that map clearly to the objec

sing oninheritance structure. Class Table Inheritance supports this by u
inheritance structure.

 How It Works

The straightforward thing about Class Table Inheritance is that it has one ta

y to fields in the corresponding taThe fields in the domain class map directl
he fundamental approach of Inheritance Mappersmappings t (302) applies.

otballers table and the row of key 101 in the players
le correspond to the same domain object. Since the superclass table has a row for each row in the other

 to be unique across the tables if you use this scheme. An alternative is to let
 tie the rows together.

ata back from multiple
aking a call for each table isn't good since you have multiple calls

 doing a join across the various component tables; however, joins for
ptimizations.

u often don't know exactly which tables to join. If
ootballer, you know to use the footballer table, but if you're looking for a group of
 do you use? To join effectively when some tables have no data, you'll need to do an outer

One issue is how to link the corresponding rows of the database tables. A possible solution is to use a common
primary key value so that, say, the row of key 101 in the fo
tab
tables, the primary keys are going
each table have its own primary keys and use foreign keys into the superclass table to

The biggest implementation issue with Class Table Inheritance is how to bring the d
tables in an efficient manner. Obviously, m

the database. You can avoid this byto
more than three or four tables tend to be slow because of the way databases do their o

On top of this is the problem that in any given query yo
you're looking for a f

yers, which tablespla
join, which is nonstandard and often slow. The alternative is to read the root table first and then use a code to

volves multiple queries. figure out what tables to read next, but this in

 When to Use It

Class Table Inheritance, Single Table Inheritance (278) and Concrete Table Inheritance (293) are the three
lternatives to consider for inheritance mapping. a

The strengths of Class Table Inheritance are

• All columns are relevant for every row so tables are easier to understand and don't waste space.
 the database is very straightforward.

u need to touch multiple tables to load an object, which means a join or multiple queries and sewing
in memory.

eritance for the classes at the top of the hierarchy and a bunch of Concrete Table Inheritance

• The relationship between the domain model and

The weaknesses of Class Table Inheritance are

• Yo

• Any refactoring of fields up or down the hierarchy causes database changes.
• The supertype tables may become a bottleneck because they have to be accessed frequently.
• The high normalization may make it hard to understand for ad hoc queries.

You don't have to choose just one inheritance mapping pattern for one class hierarchy. You can use Class

ble InhTa (293)

rther Reading

ts refer to this pattern as Root-Leaf Mapping [Brown et al.

for those lower down.

u F

A number of IBM tex].

re's an implementation for the sketch. Again I'll follow the familiar (if perhaps a little tedious) theme of
players and the like, using Inheritance Mappers

 Example: Players and Their Kin (C#)

He

 (302) (Figure 12.9).

generic class diagram of Figure 12.9. The Inheritance Mappers (302).

pe code for it.

er...

ayers";

ss FootballerMapper...

 public ove ide String TypeCode {
 get {return "F";}

ridden table name because we have to have
the table name for this class even when the instance is an instance of the subclass.

n Object

now the first step is the find method on the concrete mappers.

.

ind (id, TABLENAME);

The abstract find method looks for a row matching the key and, if successful, creates a domain object and calls

Each class needs to define the table that holds its data and a ty

ass AbstractPlayerMappcl

 abstract public String TypeCode {get;}

otected static String TABLENAME = "Pl pr

cla

rr

 }
 protected new static String TABLENAME = "Footballers";

Unlike the other inheritance examples, this one doesn't have a over

 Loading a

If you've been reading the other mappings, you k

ass FootballerMapper..cl

 public Footballer Find(long id)

 return (Footballer) AbstractF
 {

 }

the load method on it.

class Mapper...

 public DomainObject AbstractFind(long id, String tablename) {

 if (row == null) return null;
 else {

 DomainObject result = CreateDomainObject();
 result.Id = id;
 Load(result);
 return result;
 }
 }
 protected DataTable tableFor(String name) {
 return Gateway.Data.Tables[name];
 }
 protected DataRow FindRow(long id, DataTable table) {
 String filter = String.Format("id = {0}", id);
 DataRow[] results = table.Select(filter);
 return (results.Length == 0) ? null : results[0];
 }
 protected DataRow FindRow (long id, String tablename) {
 return FindRow(id, tableFor(tablename));
 }
 protected abstract DomainObject CreateDomainObject();

class FootballerMapper...

 protected override DomainObject CreateDomainObject(){
 return new Footballer();
 }

There's one load method for each class which loads the data defined by that class.

lass FootballerMapper...

 }

class AbstractPlayerMapper...

 protected override void Load(DomainObject obj) {
 DataRow row = FindRow (obj.Id, tableFor(TABLENAME));
 Player player = (Player) obj;

.name = (String)row["name"];
 }

ass PlayerMapper...

 DataRow row = FindRow (id, tableFor(tablename));

c

 protected override void Load(DomainObject obj) {
 base.Load(obj);
 DataRow row = FindRow (obj.Id, tableFor(TABLENAME));
 Footballer footballer = (Footballer) obj;
 footballer.club = (String)row["club"];

 player

As with the other sample code, but more noticeably in this case, I'm relying on the fact that the ADO.NET data
set has brought the data from the database and cached it into memory. This allows me to make several
accesses to the table-based data structure without a high performance cost. If you're going directly to the
database, you'll need to reduce that load. For this example you might do this by creating a join across all the
ables and manipulating it. t

The player mapper determines which kind of player it has to find and then delegates the correct concrete
mapper.

lc

 public Player Find (long key) {

 DataRow row = FindRow(key, tableFor(TABLENAME));
 if (row == null) return null;
 else {
 String typecode = (String) row["type"];
 if (typecode == bmapper.TypeCode)
 return bmapper.Find(key);
 if (typecode == cmapper.TypeCode)

pdating an Object

The update method appears on the mapper superclass

class Mapper...

 public virtual void Update (DomainObject arg) {
 Save (arg);

 protected override void Save(DomainObject obj) {
 base.Save(obj);

 protected override void Save(DomainObject obj) {
 DataRow row = FindRow (obj.Id, tableFor(TABLENAME));
 Player player = (Player) obj;
 row["name"] = player.name;
 row["type"] = TypeCode;
 }

ethod overrides the general method to forward to the correct concrete mapper.

 (obj is Footballer)
 return fmapper;

 if (obj is Bowler)
 return bmapper;
 if (obj is Cricketer)
 return cmapper;
 throw new Exception("No mapper available");
 }

 return cmapper.Find(key);
 if (typecode == fmapper.TypeCode)
 return fmapper.Find(key);
 throw new Exception("unknown type");
 }
 }
 protected static String TABLENAME = "Players";

 U

 }

It's implemented through a series of save methods, one for each class in the hierarchy.

class FootballerMapper...

 DataRow row = FindRow (obj.Id, tableFor(TABLENAME));
 Footballer footballer = (Footballer) obj;
 row["club"] = footballer.club;
 }

class AbstractPlayerMapper...

The player mapper's update m

class PlayerMapper...

 public override void Update (DomainObject obj) {
 MapperFor(obj).Update(obj);
 }
 private Mapper MapperFor(DomainObject obj) {
 if

 Inserting an Object

The method for inserting an object is declared on the mapper superclass. It has two stages: creating new

 public virtual void Update (DomainObject arg) {
 Save (arg);
 }

Each cl o its table.

class FootballerMapper...

 protected override void AddRow (DomainObject obj) {
 base.AddRow(obj);
 InsertRow (obj, tableFor(TABLENAME));

class AbstractPlayerMapper...

void AddRow (DomainObject obj) {
 InsertRow (obj, tableFor(TABLENAME));
 }

 abstract protected void AddRow (DomainObject obj);
 protected virtual void InsertRow (DomainObject arg, DataTable table) {

 DataRow row = table.NewRow();

The player mapper delegates to the appropriate concrete mapper.

class PlayerMapper...

eleting an Object

ass Foot allerMapper...

 public override void Delete(DomainObject obj) {
 base.Delete(obj);
 DataRow row = FindRow(obj.Id, TABLENAME);
 row.Delete();
 }
ass AbstractPlayerMapper...

database rows and then using the save methods to update these blank rows with the necessary data.

class Mapper...

ass inserts a row int

 }

 protected override

class Mapper...

 row["id"] = arg.Id;
 table.Rows.Add(row);
 }

 public override long Insert (DomainObject obj) {
 return MapperFor(obj).Insert(obj);
 }

 D

To delete an object, each class deletes a row from the corresponding table in the database.

bcl

cl

 public override void Delete(DomainObject obj) {
 DataRow row = FindRow(obj.Id, tableFor(TABLENAME));
 row.Delete();
 }

class Mapper...

 public abstract void Delete(DomainObject obj);

ide public void Delete(DomainObject obj) {
 pperFor(obj).Delete(obj);
 }

The player mapper again wimps out of all the hard work and just delegates to the concrete mapper.

class PlayerMapper...

 overr

Ma

Concrete Table Inheritance

Represents an inheritance hierarchy of classes with one table per concrete class in the hierarchy.

e

 you

ow It Works

As any object purist will tell you, relational databases don't support inheritance—a fact that complicates
object-relational mapping. Thinking of tables from an object instance point of view, a sensible route is to tak
each object in memory and map it to a single database row. This implies Concrete Table Inheritance, where
there's a table for each concrete class in the inheritance hierarchy.

I'll confess to having had some difficulty naming this pattern. Most people think of it as leaf oriented since
usually have one table per leaf class in a hierarchy. Following that logic, I could call this pattern leaf table
inheritance, and the term "leaf" is often used for this pattern. Strictly, however, a concrete class that isn't a leaf
usually gets a table as well, so I decided to go with the more correct, if less intuitive term.

 H

Concrete Table Inheritance uses one database table for each concrete class in the hierarchy. Each table
contains columns for the concrete class and all its ancestors, so any fields in a superclass are duplicated across
the tables of the subclasses. As with all of these inheritance schemes the basic behavior uses Inheritance

Mappers (302).

You need to pay attention to the keys with this pattern. Punningly, the key thing is to ensure that keys are
unique not just to a table but to all the tables from a hierarchy. A classic example of where you need this is if

n of players and you're using Identity Fieldyou have a collectio (216) with table-wide keys. If keys can be
duplicated between the tables that map the concrete classes, you'll get multiple rows for a particular key value.

us, you thus need a key allocation system that keeps track of key usage across tables; also, you can't rely on

any of these
ses you can't guarantee key uniqueness across tables. In this situation you either avoid using superclass

u can get around some of this by not having fields that are typed to the superclass, but obviously that
 to use
 from

't null. If

For compound keys you can use a special key object as your ID field for Identity Field

Th
the database's primary key uniqueness mechanism.

is becomes particularly awkward if you're hooking up to databases used by other systems. In mTh
ca
fields or use a compound key that involves a table identifier.

Yo
compromises the object model. As alternative is to have accessors for the supertype in the interface but
several private fields for each concrete type in the implementation. The interface then combines values
the private fields. If the public interface is a single value, it picks whichever of the private values aren
the public interface is a collection value, it replies with the union of values from the implementation fields.

 (216). This key uses
both the primary key of the table and the table name to determine uniqueness.

lated to this are problems with referential integrity in the database. Consider an object model like Figure

Re
12.10. To implement referential integrity you need a link table that contains foreign key columns for the
charity function and for the player. The problem is that there's no table for the player, so you can't put togethe
a referential integrity constraint for the foreign key field that takes either footballers or cricketers. Your choice
is to ignore referential integrity or use multiple link tables, one for each of the actual tables in the database. On
top of this you have problems if you can't guarantee key uniqueness.

r

Figure 12.10. A model that causes referential integrity problems for Concrete Table Inheritance.

yers with a select statement, you need to look at all tables to see which ones contain
 appropriate value. This means using multiple queries or using an outer join, both of which are bad for

rformance. You don't suffer the performance hit when you know the class you need, but you do have to use

ferred to as along the lines of leaf table inheritance. Some people prefer a variation
le per leaf class instead of one table per concrete class. If you don't have any concrete

erclasses in the hierarchy, this ends up as the same thing. Even if you do have concrete superclasses the

If you're searching for pla
the
pe
the concrete class to improve performance.

This pattern is often re

ere you have one tabwh
sup

difference is pretty minor.

hen to Use It W

When figuring out how to map inheritance, Concrete Table Inheritance, Class Table Inheritance (285),

nceand Single Table Inherita (278) are the alternatives.

ritance are:

• Each table is self-contained and has no irrelevant fields. As a result it makes good sense when used by

ch table is accessed only when that class is accessed, which can spread the access load.

e weaknesses of Concrete Table Inheritance are:

to abstract classes.
• If the fields on the domain classes are pushed up or down the hierarchy, you have to alter the table

Class Table Inheritance

le InheThe strengths of Concrete Tab

other applications that aren't using the objects.
• There are no joins to do when reading the data from the concrete mappers.
• Ea

Th

• Primary keys can be difficult to handle.
• You can't enforce database relationships

definitions. You don't have to do as much alteration as with (285), but you
can't ignore this as you can with Single Table Inheritance (278).

hat has this field because the superclass

o multiple database accesses

• If a superclass field changes, you need to change each table t
fields are duplicated across the tables.

• A find on the superclass forces you to check all the tables, which leads t
(or a weird join).

Remember that the trio of inheritance patterns can coexist in a single hierarchy. So you might use Concrete
Table Inheritance for one or two subclasses and Single Table Inheritance (278) for the rest.

Example: Concrete Players (C#)

Here I'll show you an implementation for the sketch. As with all inheritance examples in this chapter, I'm

nce Mappersusing the basic design of classes from Inherita (302), shown in Figure 12.11.

Inheritance Mappers

Figure 12.11. The generic class diagram of (302).

 to the database table that's the source of the data. In ADO.NET a data set holds the data

);

ables[TableName];}

abstract public String TableName {get;}

The gateway class holds the data set within its data property. The data can be loaded up by supplying suitable
queries.

 public DataSet Data = new DataSet();

ch concrete mapper needs to define the name of the table that holds its data.

Each mapper is linked

le.tab

class Mapper...

 public Gateway Gateway;

le(private IDictionary identityMap = new Hashtab
blic Mapper (Gateway gateway) { pu

 this.Gateway = gateway;
 }

 private DataTable table {
eway.Data.T get {return Gat

 }

class Gateway...

Ea

class CricketerMapper...

 public override String TableName {
 get {return "Cricketers";}
 }

The player mapper has fields for each concrete mapper.

PlayerMapper...

cmapper = new CricketerMapper(Gateway);
 fmapper = new FootballerMapper(Gateway);

cketerMapper...

 public Cricketer Find(long id) {
 return (Cricketer) AbstractFind(id);

ass Mapper...

 if (row == null) return null;

 DomainObject result = CreateDomainObject();

 }
 }

indRow(long id) {
= String.Format("id = {0}", id);

 DataRow[] results = table.Select(filter);
 if (results.Length == 0) return null;

 }
stract DomainObject CreateDomainObject();

eturn new Cricketer();

ethods:

ow row) {

 (double)row["battingAverage"];

AbstractPlayerMapper...

class

 private BowlerMapper bmapper;
 private CricketerMapper cmapper;
 private FootballerMapper fmapper;

 (gateway) { public PlayerMapper (Gateway gateway) : base
 bmapper = new BowlerMapper(Gateway);

 }

 Loading an Object from the Database

Each concrete mapper class has a find method that returns an object given a key value.

 Criclass

 }

The abstract behavior on the superclass finds the right database row for the ID, creates a new domain object of
the correct type, and uses the load method to load it up (I'll describe the load in a moment).

cl

 public DomainObject AbstractFind(long id) {
 DataRow row = FindRow(id);

 else {

 Load(result, row);
 return result;

 private DataRow F

 String filter

 else return results[0];

 protected ab

class CricketerMapper...

 protected override DomainObject CreateDomainObject(){
 r
 }

The actual loading of data from the database is done by the load method, or rather by several load m
one each for the mapper class and for all its superclasses.

eterMapper... class Crick

ad(DomainObject obj, DataR protected override void Lo
 base.Load(obj,row);

cketer) obj; Cricketer cricketer = (Cri
cricketer.battingAverage =

 }
ass cl

 protected override void Load(DomainObject obj, DataRow row) {

tected virtual void Load(DomainObject obj, DataRow row) {

 a mapper for the
ass: the player mapper, which it needs to find an object from whatever table it's living in. Since all the

y in the data set, I can do this like so:

if (result != null) return result;
 result = bmapper.Find(key);

 if (result != null) return result;
 result = cmapper.Find(key);

ll) return result;

 for more subclasses) this will be slow. It may help to do a join across all the concrete

e call. However, large joins are often slow in
hmarks with your own application to find out what works and

what doesn't. Also, this will be an outer join, and as well as slowing the syntax it's nonportable and often

e mapper superclass.

public virtual void Update (DomainObject arg) {
, FindRow(arg.Id));

apper class.

e(DomainObject obj, DataRow row) {
 base.Save(obj, row);

 Cricketer cricketer = (Cricketer) obj;
ngAverage"] = cricketer.battingAverage;

 base.Load(obj, row);
 Player player = (Player) obj;
 player.name = (String)row["name"];

class Mapper...

 pro
 obj.Id = (int) row ["id"];
 }

 the logic for finding an object using a mapper for a concrete class. You can also useThis is
erclsup

data is already in memor

Mapper... class Player

 key) { public Player Find (long
 Player result;

 result = fmapper.Find(key);

 if (result != nu
 return null;

 }

Remember, this is reasonable only because the data is already in memory. If you need to go to the database
three times (or more
tables, which will allow you to access the data in one databas

 so you'll need to do some benctheir own right,

cryptic.

 Updating an Object

The update method can be defined on th

pper... class Ma

 Save (arg
 }

Similar to loading, we use a sequence of save methods for each m

class CricketerMapper...

 protected override void Sav

 row["batti

 }

class AbstractPlayerMapper...

 protected override void Save(DomainObject obj, DataRow row) {

 Player player = (Player) obj;
"] = player.name;

er needs to find the correct concrete mapper to use and then delegate the update call.

DomainObject obj) {
;

nObject obj) {

mapper;
xception("No mapper available");

new row, which can be done on the
superclass

Mapper...

 public virtual long Insert (DomainObject arg) {

g.Id;
;

apper...

ainObject obj) {
t(obj);

Deletion is very straightforward. As before, we have a method defined on the superclass:

ass Mapper...

ethod on the player mapper.

 row["name
 }

The player mapp

class PlayerMapper...

 public override void Update (

perFor(obj).Update(obj) Map
 }
 private Mapper MapperFor(Domai

 if (obj is Footballer)
 return fmapper;
 if (obj is Bowler)
 return bmapper;

 if (obj is Cricketer)
 return c

 throw new E
 }

 Inserting an Object

Insertion is a variation on updating. The extra behavior is creating the

.

class

 DataRow row = table.NewRow();
 arg.Id = GetNextID();
 row["id"] = ar
 Save (arg, row)
 table.Rows.Add(row);
 return arg.Id;
 }

riate mapper. Again, the player class delegates to the approp

class PlayerM

 public override long Insert (Dom
 return MapperFor(obj).Inser
 }

Deleting an Object

cl

 public virtual void Delete(DomainObject obj) {
 DataRow row = FindRow(obj.Id);
 row.Delete();
 }

and a delegating m

class PlayerMapper

...

 public override void Delete (DomainObject obj) {
 MapperFor(obj).Delete(obj);

Inheritance Mappers

A structure to organize database mappers that handle inheritance hierarchies.

 }

hen you map from an object-oriented inheritance hierarchy in memory to a relational database you have to

W
minimize the amount of code needed to save and load the data to the database. You also want to provide both
abstract and concrete mapping behavior that allows you to save or load a superclass or a subclass.

Although the details of this behavior vary with your inheritance mapping scheme (Single Table
Inheritance (278), Class Table Inheritance (285), and Concrete Table Inheritance (293)) the general structure

rks the sa e for all of them.

 How It Works

You can organize the mappers with a hierarchy so that each domain class has a mapper that saves and loads
the data for that domain class. This way you have one point where you can change the mapping. This approach
works well for concrete mappers that know how to map the concrete objects in the hierarchy. There are times,

wever, where you also need mappers for the abstract classes. These can be implemented with mappers that

wo m

ho

are actually outside of the basic hierarchy but delegate to the appropriate concrete mappers.

e
des the find, insert, update, and delete

erations.

The find methods are declared on the concrete subclasses because they will return a concrete class. Thus, the
find method on BowlerMapper should return a bowler, not an abstract class. Common OO languages can't let
you change the declared return type of a method, so it's not possible to inherit the find operation and still
declare a specific return type. You can, of course, return an abstract type, but that forces the user of the class to

wncast—which is best to avoid. (A language with dynamic typing doesn't have this problem.)

e appropriate row in the database, instantiate an object of the
rrect type (a decision that's made by the subclass), and then load the object with data from the database. The
d method is implemented by each mapper in the hierarchy which loads the behavior for its corresponding

The insert and update methods operate in a similar way using a save method. Here you can define the interface
ndeed, on a Layer Supertype

To best explain how this works, I'll start with the concrete mappers. In the sketch the concrete mappers are th
mappers for footballer, cricketer, and bowler. Their basic behavior inclu
op

do

The basic behavior of the find method is to find th
co
loa
domain object. This means that the bowler mapper's load method loads the data specific to the bowler class
and calls the superclass method to load the data specific to the cricketer, which calls its superclass method, and
so on.

on the superclass—i (475). The insert method creates a new row and then saves
the data from the domain object using the save hook methods. The update method just saves the data, also
using the save hook methods. These methods operate similarly to the load hook methods, with each class
storing its specific data and calling the superclass save method.

is scheme makes it easy to write the appropriate mappers to save the information needed for a particular
rt of the hierarchy. The next step is to support loading and saving an abstract class—in this example, a

se combinations of generalization and composition that twist your brain cells into a knot.

e
er

ind method and overrides the insert and update methods. For all of these
 responsibility is to figure out which concrete mapper should handle the task and delegate to it.

Therefore, it' ple for this case. You can find good examples in each of the
attern sections: Single Table Inheritance

Th
pa
player. While a first thought is to put appropriate methods on the superclass mapper, that actually gets
awkward. While concrete mapper classes can just use the abstract mapper's insert and update methods, the

yer mapper's insert and update need to override these to call a concrete mapper instead. The result is one of pla
tho

I prefer to separate the mappers into two classes. The abstract player mapper is responsible for loading and
saving the specific player data to the database. This is an abstract class whose behavior is just used only by th
concrete mapper objects. A separate player mapper class is used for the interface for operations at the play

el. The player mapper provides a flev
its

Although a broad scheme like this makes sense for each type of inheritance mapping, the details do vary.

s not possible to show a code exam
inheritance mapping p (278), Class Table Inheritance (285),

heritanceand Concrete Table In (293).

 When to Use It

e-based database mapping. The alternatives involve such
g the concrete mappers and folding the player's interface

into the abstract player mapper class. The former is a heinous crime, and the latter is possible but leads to a

This general scheme makes sense for any inheritanc
things as duplicating superclass mapping code amon

player mapper class that's messy and confusing. On the whole, then, its hard to think of a good alternative to
this pattern.

haC pter 13. Object-Relational Metadata Mapping

pping

Patterns

Metadata Ma

Query Object

Repository

Metadata Mapping

Holds details of object-relational mapping in metadata.

uch of the code that deals with object-relational mapping describes how fields in the database correspond to

to define the mappings in a simple tabular form, which can then be processed by
neric code to carry out the details of reading, inserting, and updating the data.

w the information in the metadata manifests itself in
utes to take: code generation and reflective programming.

m whose input is the metadata and whose output is the source code of
 that do the mapping. These classes look as though they're hand-written, but they're entirely generated

s, usually just prior to compilation. The resulting mapper classes are deployed with the

use code generation, you should make sure that it's fully integrated into your build process with
 you're using. The generated classes should never be edited by hand and thus shouldn't
rce code control.

M
fields in in-memory objects. The resulting code tends to be tedious and repetitive to write. A Metadata
Mapping allows developers
ge

 How It Works

ping is hoThe biggest decision in using Metadata Map
terms of running code. There are two main ro

With code generation you write a progra
classes
during the build proces

ver code.ser

ou If y
whatever build scripts

d to be held in sounee

A reflective program may ask an object for a method named setName, and then run an invoke m

 treating metho
ethod on the

ds (and fields) as data the reflective
ata file and use them to carry out the mapping. I

t's hard
ug. Even so, reflection is actually quite appropriate for database mapping. Since you're reading in the

es of fields and methods from a file, you're taking full advantage of reflection's flexibility.

Code generation is a less dynamic approach since any changes to the mapping require recompiling and
redeploying at least that part of the software. With a reflective approach, you can just change the mapping data

e and the existing classes will use the new metadata. You can even do this during runtime, rereading the
ges should be pretty rare,
 to redeploy part of an

 on the actual
g—in some a reflective call can be an order of magnitude slower. Remember, though,
g done in the context of an SQL call, so its slower speed may not make that much

e, you need to measure
.

th approaches can be a little awkward to debug. The comparison between them depends very much on how

cated developers (which I guess makes me unsophisticated).

On most occasions you keep the metadata in a separate file format. These days XML is a popular choice as it
tructuring while freeing you from writing your own parsers and other tools. A loading

ming language structure, which then drive either the code
generation output or the reflective mapping.

external file format and create the metadata representation directly in source
de. This saves you from having to parse, but it makes editing the metadata somewhat harder.

lternative is to hold the mapping information in the database itself, which keeps it together with the
. If the database schema changes, the mapping information is right there.

When you're deciding which way to hold the metadata information, you can mostly neglect the performance of
access and parsing. If you use code generation, access and parsing take place only during the build and not
during execution. If you use reflective programming, you'll typically access and parse during execution but
only once during system startup; then you can keep the in-memory representation.

setName method passing in the appropriate argument. By
an read in field and method names from a metadprogram c

usually counsel against reflection, partly because it's slow but mainly because it often causes code tha
to deb
nam

fil
metadata when you get a particular kind of interrupt. As it turns out, mapping chan

o make it easysince they imply database or code changes. Modern environments als
lication. app

flective programming often suffers in speed, although the problem here depends very muchRe
environment you're usin

t the reflection is beintha
difference considering the slow speed of the remote call. As with any performance issu
within your environment to find out how much of a factor this is

Bo
used to generated and reflective code developers are. Generated code is more explicit so you can see what's

oin the debugger; as a result I usually prefer generation to reflection, and I think it's usually easier forg g on in
phistiless so

provides hierarchic s
step takes this metadata and turns it into program

n simpler cases you can skip the I
oc

nother aA
ad ta

How complex to make your metadata is one of your biggest decisions. When you're faced with a general
relational mapping problem, there are a lot of different factors to keep in metadata, but many projects can
manage with much less than a fully general scheme and so their metadata can be much simpler. On the whole
it's worth evolving your design as your needs grow, as it isn't hard to add new capabilities to metadata-driven
software.

One of the challenges of metadata is that although a simple metadata scheme often works well 90 percent of
the time, there are often special cases that make life much more tricky. To handle these minority cases you

 lot of complexity to metadata. A useful alternative is to override the generic code with
subclasses where the special code is handwritten. Such special-case subclasses would be subclasses of either
the generated code or the reflective routines. Since these special cases are well special, it isn't easy to
describe in general terms how you arrange things to support the overriding. My advice is to handle them on a
case-by-case basis. As you need the overriding, alter the generated/reflective code to isolate a single method
that should be overridden and then override it in your special case.

 When to Use It

etadata Mapping can greatly reduce the amount of work needed to handle database mapping. However,

hould evaluate the trade-offs yourself. Compare adding new
ppings using handwritten code with using Metadata Mapping. If you use reflection, look into its

nsequences for performance; sometimes it causes slowdowns, but sometimes it doesn't. Your own

often have to add a

M
some setup work is required to prepare the Metadata Mapping framework. Also, while it's often easy to handle
most cases with Metadata Mapping, you can find exceptions that really tangle the metadata.

It's no surprise that the commercial object-relational mapping tools use Metadata Mapping—when selling a
product producing a sophisticated Metadata Mapping is always worth the effort.

If you're building your own system, you s
ma
co
measurements will reveal whether this is an issue for you.

The extra work of hand-coding can be greatly reduced by creating a good Layer Supertype (475) that ha
all the common behavior. That way you should only

ndles
 have a few hook routines to add in for each mapping.

ually Metadata Mapping can further reduce the number.

Metadata Mapping can interfere with refactoring, particularly if you're using automated tools. If you change
the name of a private field, it can break an application unexpectedly. Even automated refactoring tools won't

Us

be able to find the field name hidden in a XML data file of a map. Using code generation is a little easier, since
search mechanisms can find the usage. Still, any automated update will get lost when you regenerate the code.
A tool can warn you of a problem, but it's up to you to change the metadata yourself. If you use reflection, you
won't even get the warning.

On the other hand, Metadata Mapping can make refactoring the database easier, since the metadata represents
a statement of the interface of your database schema. Thus, alterations to the database can be contained by
changes in the Metadata Mapping.

 Example: Using Metadata and Reflection (Java)

olding the Metadata

Most examples in this book use explicit code because it's the easiest to understand. However, it does lead to
pretty tedious programming, and tedious programming is a sign that something is wrong. You can remove a lot
of tedious programming by using metadata.

 H

The first question to ask about metadata is how it's going to be kept. Here I'm keeping it in two classes. The

data map corresponds to the mapping of one class to one table. This is a simple mapping, but it will do fo
illustration.

r

class DataMap...

 private Class domainClass;
 private String tableName;
 private List columnMaps = new ArrayList();

 private String fieldName;

sses.

cl

During construction of the column mapper, I build the link to the field. Strictly speaking, this is an
optimization so you may not have to calculate the fields. However, doing so reduces the subsequent accesses
by an order of magnitude on my little laptop.

class ColumnMap...

 this.columnName = columnName;
 this.fieldName = fieldName;

ield() {
 try {

.getDomainClass().getDeclaredField(getFieldName());
 field.setAccessible(true);
 } catch (Exception e) {

nable to set up field: " + fieldName, e);

uch of a challenge to see how I can write a routine to load the map from an XML file or from a
tadata database. Paltry that challenge may be, but I'll decline it and leave it to you.

The data map contains a collection of column maps that map columns in the table to fields.

class ColumnMap...

 private String columnName;

 private Field field;
 private DataMap dataMap;

This isn't a terribly sophisticated mapping. I'm just using the default Java type mappings, which means there's
no type conversion between fields and columns. I'm also forcing a one-to-one relationship between tables and
cla

These structures hold the mappings. The next question is how they're populated. For this example I'm going to
populate them with Java code in specific mapper classes. That may seem a little odd, but it buys most of the
benefit of metadata—avoiding repetitive code.

ass PersonMapper...

 protected void loadDataMap(){
 dataMap = new DataMap (Person.class, "people");
 dataMap.addColumn ("lastname", "varchar", "lastName");
 dataMap.addColumn ("firstname", "varchar", "firstName");
 dataMap.addColumn ("number_of_dependents", "int", "numberOfDependents");
 }

 public ColumnMap(String columnName, String fieldName, DataMap dataMap) {

 this.dataMap = dataMap;
 initField();
 }
 private void initF

 field = dataMap

 throw new ApplicationException ("u
 }
 }

It's not m
me

Now that the mappings are defined, I can make use of them. The strength of the metadata approach is that all

the code that actually manipulates things is in a superclass, so I don't have to write the mapping code that I

begin with the find by ID method.

ass Mapper...

 public Object findObject (Long key) {
ey)) return uow.getObject(key);

ataMap.columnList() + " FROM " + dataMap.getTableName()

of
wrote in the explicit cases.

 Find by ID

I'll

cl

 if (uow.isLoaded(k
 String sql = "SELECT" + d
+
 "

WHERE ID = ?";

 ResultSet rs = null;

PreparedStatement stmt = null;

 stmt = DB.prepare(sql);
 stmt.setLong(1, key.longValue());

 StringBuffer result = new StringBuffer(" ID");
nMaps.iterator(); it.hasNext();) {

)it.next();
me());

 return result.toString();
}
public String getTableName() {

e select is built more dynamically than the other examples, but it's still worth preparing in a way that allows
culated during construction

e life of the data map. For this example I'm

 DomainObject result = null;
 try {

 rs = stmt.executeQuery();
 rs.next();
 result = load(rs);
 } catch (Exception e) {throw new ApplicationException (e);
 } finally {DB.cleanUp(stmt, rs);
 }
 return result;
 }
 private UnitOfWork uow;
 protected DataMap dataMap;

class DataMap...

 public String columnList() {

 for (Iterator it = colum
 result.append(",");
 ColumnMap columnMap = (ColumnMap
 result.append(columnMap.getColumnNa

 }

 return tableName;
 }

Th
the database session to cache it properly. If it's an issue, the column list can be cal
and cached, since there's no call for updating the columns during th
using a Unit of Work (184) to handle the database session.

As is common with the examples in this book I've separated the load from the find, so that we can use the

e load method from other find methods. sam

class Mapper...

 public DomainObject load(ResultSet rs)
 throwsInstantiationException, IllegalAccessException, SQLException

 {
on L g key = new Long(rs.getLong("ID"));

s().newInstance();

 private void loadFields(ResultSet rs, DomainObject result) throws SQLException {
Map.getColumns(); it.hasNext();) {
= (ColumnMap)it.next();

lue = rs.getObject(columnMap.getColumnName());
eld(result, columnValue);

}
}

ass ColumnMap...

 public void setField(Object result, Object columnValue) {
 try {
 field.set(result, columnValue);
 } catch (Exception e) {throw new ApplicationException ("Error in setting " +

 if (uow.isLoaded(key)) return uow.getObject(key);
omainObject) dataMap.getDomainClas DomainObject result = (D

 result.setID(key);
 uow.registerClean(result);
 loadFields(rs, result);
 return result;
 }

 for (Iterator it = data
 ColumnMap columnMap

 Object columnVa
 columnMap.setFi

cl

 fieldName, e);
 }
 }

This is a classic reflected program. We go through each of the column maps and use them to load the field in
the domain object. I separated the loadFields method to show how we might extend this for more complicated
cases. If we have a class and a table where the simple assumptions of the metadata don't hold, I can just
override loadFields in a subclass mapper to put in arbitrarily complex code. This is a common technique with
metadata—providing a hook to override for more wacky cases. It's usually a lot easier to override the wacky
cases with subclasses than it is to build metadata sophisticated enough to hold a few rare special cases.

Of course, if we have a subclass, we might as well use it to avoid downcasting.

class PersonMapper...

 public Person find(Long key) {
 return (Person) findObject(key);
 }

 Writing to the Database

For updates I have a single update routine.

class Mapper...

 public void update (DomainObject obj) {
 String sql = "UPDATE " + dataMap.getTableName() + dataMap.updateList() + " WHERE
ID
 = ?";
 PreparedStatement stmt = null;
 try {
 stmt = DB.prepare(sql);
 int argCount = 1;
 for (Iterator it = dataMap.getColumns(); it.hasNext();) {
 ColumnMap col = (ColumnMap) it.next();
 stmt.setObject(argCount++, col.getValue(obj));
 }
 stmt.setLong(argCount, obj.getID().longValue());
 stmt.executeUpdate();

 } catch (SQLException e) {throw new ApplicationException (e);
 } finally {DB.cleanUp(stmt);
 }
 }

 public String updateList() {
 StringBuffer result = new StringBuffer(" SET ");
 for (Iterator it = columnMaps.iterator(); it.hasNext();) {
 ColumnMap columnMap = (ColumnMap)it.next();
 result.append(columnMap.getColumnName());
 result.append("=?,");

 result.setLength(result.length() - 1);
 return result.toString();
 }
 public Iterator getColumns() {
 return Collections.unmodifiableCollection(columnMaps).iterator();
 }

class

 public Object getValue (Object subject) {
 try {
 return field.get(subject);
 } catch (Exception e) {
 throw new ApplicationException (e);
 }
 }

 String sql = "INSERT INTO " + dataMap. tTableName() + " VALUES (?" + dataMap.

class DataMap...

}

ColumnMap...

Inserts use a similar scheme.

class Mapper...

 public Long insert (DomainObject obj) {

ge
 insertList()

 + ")";

 PreparedStatement stmt = null;

umnMap col = (ColumnMap) it.next();
 stmt.setObject(argCount++, col.getValue(obj));
 }
 stmt.executeUpdate();
 } catch (SQLException e) {throw new ApplicationException (e);
 } finally {DB.cleanUp(stmt);
 }
 return obj.getID();
 }
class DataMap...

 public String insertList() {

 try {
 stmt = DB.prepare(sql);
 stmt.setObject(1, obj.getID());
 int argCount = 2;
 for (Iterator it = dataMap.getColumns(); it.hasNext();) {
 Col

 StringBuffer result = new StringBuffer();
 for (int i = 0; i < columnMaps.size(); i++) {
 result.append(",");
 result.append("?");
 }
 return result.toString();
 }

 Multi-Object Finds

There are a couple of routes you can take to get multiple objects with a query. If you want a generic query

class Mapper...

 b
 String sql = "SELECT" + dataMap.columnList() + " FROM " + dataMap.getTableName()

capability on the generic mapper, you can have a query that takes a SQL where clause as an argument.

pu lic Set findObjectsWhere (String whereClause) {

+
 " W

 throw new ApplicationException (e);

 return result;
 }

HERE "
 + whereClause;
PreparedStatement stmt = null;

 ResultSet rs = null;
 Set result = new HashSet();

try {
 stmt = DB.prepare(sql);
 rs = stmt.executeQuery();
 result = loadAll(rs);
} catch (Exception e) {

 } finally {DB.cleanUp(stmt, rs);
}

 public Set loadAll(ResultSet rs) throws SQLException, InstantiationException,
 IllegalAccessException {
 Set result = new HashSet();
 while (rs.next()) {
 DomainObject newObj = (DomainObject) dataMap.getDomainClass().newInstance();
 newObj = load (rs);
 result.add(newObj);
 }
 return result;
 }

An alternative is to provide special case finders on the mapper subtypes.

ass PersonMapper...

 public Set findLastNamesLike (String pattern) {
 String sql =
 "SELECT" + dataMap.columnList() +
 " FROM " + dataMap.getTableName() +
 " WHERE UPPER(lastName) like UPPER(?)";
 PreparedStatement stmt = null;
 ResultSet rs = null;
 try {
 stmt = DB.prepare(sql);
 stmt.setString(1, pattern);
 rs = stmt.executeQuery();
 return loadAll(rs);
 } catch (Exception e) {throw new ApplicationException (e);
 } finally {DB.cleanUp(stmt, rs);
 }
 }

A further alternative for general selects is a Query Object

cl

 (316).

the metadata approach is that I can now add new tables and classes to my
l I have to do is to provide a loadMap method and any specialized finders that I may

fancy.

On the whole, the great advantage of
data mapping and al

Query Object

An object that represents a database query.

SQL can be an involved language, and many developers aren't particularly familiar with it. Furthermore, you
need to know what the database schema looks like to form queries. You can avoid this by creating specialized
finder methods that hide the SQL inside parameterized methods, but that makes it difficult to form more ad

c queries. It also leads to duplication in the SQL statements should the database schema change. ho

A Query Object is an interpreter [Gang of Four], that is, a structure of objects that can form itself into a SQL
query. You can create this query by referring to classes and fields rather than tables and columns. In this way

 queries can do so independently of the database schema and changes to the schema can be
localized in a single place.

 to allow a client to form queries of various kinds and to turn those object structures into the appropriate
SQL string.

In order to represent any query, you need a flexible Query Object. Often, however, applications can make do
with a lot less than the full power of SQL, in which case your Query Object can be simpler. It won't be able to
represent anything, but it can satisfy your particular needs. Moreover, it's usually no more work to enhance it
when you need more capability than it is to create a fully capable Query Object right from the beginning. As a

ult you should create a minimally functional Query Object for your current needs and evolve it as those
eds grow.

d field names. While this isn't important if your objects and database have the same structure, it can be very
eful if you get variations between the two. In order to perform this change of view, the Query Object needs

those who write the

 How It Works

A Query Object is an application of the Interpreter pattern geared to represent a SQL query. Its primary roles
are

res
ne

A common feature of Query Object is that it can represent queries in the language of the in-memory objects
rather than the database schema. That means that, instead of using table and column names, you can use object
an
us

to know how the database structure maps to the object structure, a capability that really needs Metadata
Mapping (306).

For multiple databases you can design your Query Object so that it produces different SQL depending on

implest level it can take into account the annoying
ferences in SQL syntax that keep cropping up; at a more ambitious level it can use different mappings to

cope with the same classes being stored in different database schemas.

A parti ou
see tha n the same query earlier in a session, you can use it to select objects from the Identity

which database the query is running against. At it's s
dif

cularly sophisticated use of Query Object is to eliminate redundant queries against a database. If y
t you've ru

Map (195) and avoid a trip to the database. A more sophisticated approach can detect whether one query is a
particular case of an earlier query, such as a query that is the same as an earlier one but with an additional

use linked with an AND.

se more sophisticated features is beyond the scope of this book, but they're the kind
features that O/R mapping tools may provide.

Query Objects are a pretty sophisticated pattern to put together, so most projects don't use them if they have a
handbuilt data source layer. You only really need them when you're using Domain Model

cla

Exactly how to achieve the
of

A variation on the Query Object is to allow a query to be specified by an example domain object. Thus, you
might have a person object whose last name is set to Fowler but all of those other attributes are set to null. You
can treat it as a query by example that's processed like the Interpreter-style Query Object. That returns all
people in the database whose last name is Fowler, and it's very simple and convenient to use. However, it
breaks down for complex queries.

 When to Use It

 (116) and Data
Mapper (165); you also really need Metadata Mapping (306) to make serious use of them.

en then Query Objects aren't always necessary, as many developers are comfortable with SQL. You can
hide many of the details of the database schema behind specific finder methods.

The advantages of Query Object come with more sophisticated needs: keeping database schemas encapsulated,

pporting multiple databases, supporting multiple schemas, and optimizing to avoid multiple queries. Some
projects with a particularly sophisticated data source team might want to build these capabilities themselves,
but most people who use Query Object do so with a commercial tool. My inclination is that you're almost
always better off buying a tool.

cult to build on a
project that doesn't justify a fully featured version. The trick is to pare down the functionality to no more than

u actually use.

You can find an example of Query Object

Ev

su

All that said, you may find that a limited Query Object fulfills your needs without being diffi

yo

 Further Reading

 in [Alpert et al.] in the discussion of interpreters. Query Object is
also closely linked to the Specification pattern in [Evans and Fowler] and [Evans].

 Example: A Simple Query Object (Java)

This is a simple example of a Query Object—rather less than would be useful for most situations but enough
to give you an idea of what a Query Object is about. It can query a single table based on set of criteria
"AND'ed" together (in slightly more technical language, it can handle a conjunction of elementary predicates).

The Query Object is set up using the language of domain objects rather than that of the table structure. Thus, a
query knows the class that it's for and a collection of criteria that correspond to the clauses of a where clause.

class QueryObject...

 private Class klass;
 private List criteria = new ArrayList();

A simple criterion is one that takes a field and a value and an SQL operator to compare them.

ass Criteria...

 Object value;

thod.

teria greaterThan(String fieldName, int value) {
 return Criteria.greaterThan(fieldName, new Integer(value));
 }

ect value) {

ql, String field, Object value) {

teria...

 QueryObject query = new QueryObject(Person.class);
 query.addCriteria(Criteria.greaterThan("numberOfDependents", 0));

Thus, if I have a person object such as this:

class Person...

e;
me;

cl

 private String sqlOperator;
 protected String field;

 protected

ier to create the right criteria, I can provide an appropriate creation meTo make it eas

class Criteria...

 public static Cri

 public static Criteria greaterThan(String fieldName, Obj
 return new Criteria(" > ", fieldName, value);

 }
 private Criteria(String s

 this.sqlOperator = sql;
 this.field = field;
 this.value = value;
 }

This allows me to find everyone with dependents by forming a query such as

 Criclass

 private String lastNam
 private String firstNa

 private int numberOfDependents;

y for person and adding a criterion.I can ask for all people with dependents by creating a quer

QueryObject query = new QueryObject(Person.class);

ependents", 0));

That's enough to describe the query. Now the query needs to execute by turning itself into a SQL select. In this
case I assume that my mapper class supports a method that finds objects based on a string that's a where

t() + " FROM " + dataMap.getTableName()

query

.addCriteria(Criteria.greaterThan("numberOfD

clause.

class QueryObject...

 public Set execute(UnitOfWork uow) {
 this.uow = uow;
 return uow.getMapper(klass).findObjectsWhere(generateWhereClause());
 }

class Mapper...

 public Set findObjectsWhere (String whereClause) {
 String sql = "SELECT" + dataMap.columnLis
+
 " WHERE "
 + whereClause;
 PreparedStatement stmt = null;
 ResultSet rs = null;
 Set result = new HashSet();
 try {
 stmt = DB.prepare(sql);
 rs = stmt.executeQuery();
 result = loadAll(rs);
 } catch (Exception e) {
 throw new ApplicationException (e);

 } finally {DB.cleanUp(stmt, rs);
 }

f Work

 return result;
 }

Here I'm using a Unit o (184) that holds mappers indexed by the class and a mapper that uses Metadata
Mapping (306). The code is the same as that in the example in Metadata Mapping (306) to save repeating the

 private String generateWhereClause() {

 return result.toString();
 }

g generateSql(DataMap dataMap) {

code in this section.

To generate the where clause, the query iterates through the criteria and has each one print itself out, tying
them together with ANDs.

class QueryObject...

 StringBuffer result = new StringBuffer();
 for (Iterator it = criteria.iterator(); it.hasNext();) {
 Criteria c = (Criteria)it.next();
 if (result.length() != 0)
 result.append(" AND ");
 result.append(c.generateSql(uow.getMapper(klass).getDataMap()));
 }

ass Criteria... cl

 public Strin

 return dataMap.getColumnForField(field) + sqlOperator + value;
 }

class DataMap...

);
ame))

 return columnMap.getColumnName();

 criteria classes that do a little
sider a case-insensitive pattern match query, like one that finds all people whose last names start

 F. We can form a query object for all people with such dependents.

ery.addCriteria(Criteria.greaterThan("numberOfDe ndents", 0));
atches("lastName", "f%"));

 forms a more complex clause in the where statement.

 String pattern){

ield(field) + ") LIKE UPPER('" + value +

 public String getColumnForField (String fieldName) {
 for (Iterator it = getColumns(); it.hasNext();) {
 ColumnMap columnMap = (ColumnMap)it.next(
 if (columnMap.getFieldName().equals(fieldN

 }
 throw new ApplicationException ("Unable to find column for " + fieldName);
 }

 criteria with simple SQL operators, we can create more complexAs well as
onmore. C

with

QueryObject query = new QueryObject(Person.class);

pequ
query.addCriteria(Criteria.m

This uses a different criteria class that

class Criteria...

 public static Criteria matches(String fieldName,

return new MatchCriteria(fieldName, pattern);
 }

class MatchCriteria extends Criteria...

aMap dataMap) { public String generateSql(Dat
 return "UPPER(" + dataMap.getColumnForF
 "')";
 }

Repository

by Edward Hieatt and Rob Mee

Mediates between the domain and data mapping layers using a collection-like interface for accessing domain
objects.

 by Data

A system with a complex domain model often benefits from a layer, such as the one provided
Mapper (165), that isolates domain objects from details of the database access code. In such systems it can be

r the mapping layer where query construction code is
ere are a large number of domain classes or heavy

ing this layer helps minimize duplicate query logic.

 layers, acting like an in-memory domain object
atively and submit them to Repository for

an from a simple collection o

worthwhile to build another layer of abstraction ove
centrated. This becomes more important when thcon

querying. In these cases particularly, add

A Repository mediates between the domain and data mapping

nt objects construct query specifications declarcollection. Clie
satisfaction. Objects can be added to and removed from the Repository, as they c f

ropriate operations behind
the scenes in a data store and the

, providing a more object-oriented view of the persistence layer. Repository
chieving a clean separation and one-way dependency between the domain and

apping layers.

ted database and in that way it's similar to Query

objects, and the mapping code encapsulated by the Repository will carry out the app
. Conceptually, a Repository encapsulates the set of objects persisted

operations performed over them
pports the objective of aalso su

a mdat

 How It Works

Repository is a sophisticated pattern that makes use of a fair number of the other patterns described in this
book. In fact, it looks like a small piece of an object-orien
Object (316), which development teams may be more likely to encounter in an object-relational mapping tool
than to build themselves. However, if a team has taken the leap and built Query Object (316), it isn't a huge

 a Repository capability. When used in conjunction with step to add Query Object (316), Repository adds a
large measure of usability to the object-relational mapping layer without a lot of effort.

ients create a criteria
cteristics of the objects they want returned from a query. For example, to find

person objects by name we first create a criteria object, setting each individual criterion like so:
). Then we

n a list of domain objects representing people with the last name
 with M. Various convenience methods similar to matching (criteria) can be

 on an abstract repository; for example, when only one match is expected soleMatch(criteria) might
rn the found object rather than a collection. Other common methods include byObjectId(id), which can be

y behind the scenes, Repository presents a simple interface. ClIn spite of all the machiner
specifying the charaobject

criteria.equals(Person.LAST_NAME, "Fowler"), and criteria.like(Person.FIRST_NAME, "M"
invoke repository.matching(criteria) to retur
Fowle

ined
r and a first name starting

def
ture

trivially implemented using soleMatch.

To code that uses a Repository, it appears as a simple in-memory collection of domain objects. The fact that

ry should be aware that this apparent collection of objects might very
ll map to a product table with hundreds of thousands of records. Invoking all() on a catalog system's

Repository replaces specialized finder methods on Data Mapper

the domain objects themselves typically aren't stored directly in the Repository is not exposed to the client
code. Of course, code that uses Reposito
we
ProductRepository might not be such a good idea.

 (165) classes with a specification-based
approach to object selection [Evans and Fowler]. Compare this with the direct use of Query Object (316), in
which client code may construct a criteria object (a simple example of the specification pattern), add() that
directly to the Query Object (316), and execute the query. With a Repository, client code constructs the criteria
and then passes them to the Repository, asking it to select those of its objects that match. From the client
code's perspective, there's no notion of query "execution"; rather there's the selection of appropriate objects

ough the "satisfaction" of the query's specification. This may seem an academic distinction, but it illustrates
 declarative flavor of object interaction with Repository, which is a large part of its conceptual power.

thr
the

Under the covers, Repository combines Metadata Mapping (329) with a Query Object (316) to automatically
generate SQL code from the criteria. Whether the criteria know how to add themselves to a query, the Query
Object (316) knows how to incorporate criteria objects, or the Metadata Mapping (306) itself controls the

eraction is an implementation detail.

ds

s
mory objects is desirable for speed.

ving readability and clarity in code that uses querying
nsively. For example, a browser-based system featuring a lot of query pages needs a clean mechanism to

process HttpRequest objects into query results. The handler code for the request can usually convert the
HttpRequest into a criteria object without much fuss, if not automatically; submitting the criteria to the
appropriate Repository should require only an additional line or two of code.

When to Use It

ry reduces the amount o

int

The object source for the Repository may not be a relational database at all, which is fine as Repository len
itself quite readily to the replacement of the data-mapping component via specialized strategy objects. For this
reason it can be especially useful in systems with multiple database schemas or sources for domain objects, a
well as during testing when use of exclusively in-me

Repository can be a good mechanism for impro
exte

In a large system with many domain object types and many possible queries, Reposito f

otes the Specification pattern (in the
s the query to be performed in a pure
bject in specific cases can be removed.

rite code purely in terms of objects.

ple data sources are where we really see Repository coming into its own.
re sometimes interested in using a simple in-memory data store, commonly

ants to run a suite of unit tests entirely in memory for better performance. With no database access,
 faster. Creating fixture for unit tests can also be more straightforward

ave

 running normally, that certain types of domain objects should
ple is immutable domain objects (those that can't be changed by

the user), which once in memory, should remain there and never be queried for again. As we'll see later in this

code needed to deal with all the querying that goes on. Repository prom
form of the criteria object in the examples here), which encapsulate

de for setting up a query oobject-oriented way. Therefore, all the co
 can wClients need never think in SQL and

However, situations with multi

or example, that we'Suppose, f
en we wwh

any lengthy test suites run significantlym
if all we have to do is construct some domain objects and throw them in a collection rather than having to s
them to the database in setup and delete them at teardown.

It's also conceivable, when the application is

ays be stored in memory. One such examalw

chapter, a simple extension to the Repository pattern allows different querying strategies to be employed
depending on the situation.

Another example where Repository might be useful is when a data feed is used as a source of domain
objects—say, an XML stream over the Internet, perhaps using SOAP, might be available as a source. An

LFeedRepositoryStrategy might be implemented that reads from the feed and creates domain objects from

't made it into a really good reference source yet. The best published description

XM
the XML.

 Further Reading

ication pattern hasnThe specif
so far is [Evans and Fowler]. A better description is currently in the works in [Evans].

pendents from the database
representing the search criteria to be matched and sends it to the

sitory();
teria criteria = new Criteria();

Person.BENEFACTOR, this);
y.matching(criteria);

ueries can be accommodated with specialized subclasses of Repository. In the previous example we
ht make a PersonRepository subclass of Repository and move the creation of the search criteria into the

epository {
tsOf(aPerson) {
 = new Criteria();

on);

n object then calls the dependents() method directly on its Repository.

a)

 domain layer from awareness of the data source, we can refactor the
ng any calls from clients. Indeed,

 or destination of domain objects. In the case of the in-memory

 Example: Finding a Person's Dependents (Java)

From the client object's perspective, using a Repository is simple. To retrieve its de
a person object creates a criteria o

epository.
bject

appropriate R

public class Person {
 public List dependents() {
 Repository repository = Registry.personRepo
 Cri
 criteria.equal(
 return repositor
 }
}

mon qCom
igm

Repository itself.

blic class PersonRepository extends Rpu

 public List dependen
 Criteria criteria

 criteria.equal(Person.BENEFACTOR, aPers
 return matching(criteria);
 }
}

 persoThe

public class Person {
 public List dependents() {
 return Registry.personRepository().dependentsOf(this);
 }
}

 Example: Swapping Repository Strategies (Jav

Because Repository's interface shields the
implementation of the querying code inside the Repository without changi
the domain code needn't care about the source

store, we want to change the matching() method to select from a collection of domain objects the ones satisfy
the criteria. However, we're not interested in permanently changing the data store used but rather in being able
to switch between data stores at will. From this comes the need to change the implementation of the
matching() method to delegate to a strategy object that does the querying. The power of this, of course, is that

 can have multiple strategies and we can set the strategy as desired. In our case, it's appropriate to have two:
ueries the database, and InMemoryStrategy, which queries the in-memory

terface, which exposes the
 class:

tory {

;

A RelationalStrategy implements matching() by creating a Query Object from the criteria and then querying
the database using it. We can set it up with the appropriate fields and values as defined by the criteria,
assuming here that the Query Object knows how to populate itself from criteria:

blic class RelationalStrategy implements RepositoryStrategy {
 protected List matching(Criteria criteria) {
 Query query = new Query(myDomainObjectClass())

 query.addCriteria(criteria);
cute(unitOfWork());

}

ating over a collection of domain objects and asking the
teria at each domain object if it's satisfied by it. The criteria can implement the satisfaction code using

e ction to interrogate the domain objects for the values of specific fields. The code to do the selection looks
e this:

 ArrayList();
 Iterator it = domainObjects.iterator();
 while (it.hasNext()) {

 return results;

}

we
RelationalStrategy, which q
collection of domain objects. Each strategy implements the RepositoryStrategy in

tching() method, so we get the following implementation of the Repositoryma

tract class Reposiabs
 private RepositoryStrategy strategy;
 protected List matching(aCriteria) {

eria) return strategy.matching(aCrit
 }
}

pu

 return query.exe
 }

An InMemoryStrategy implements matching() by iter
cri
r fle
lik

public class InMemoryStrategy implements RepositoryStrategy {
 private Set domainObjects;
 protected List matching(Criteria criteria) {
 List results = new

 DomainObject each = (DomainObject) it.next();
 if (criteria.isSatisfiedBy(each))
 results.add(each);
 }

 }

Chapter 14. Web Presentation Patterns

Model View Controller

Page Controller

Front Controller

Template View

Transform View

Two Step View

Application Controller

Model View Controller

Splits user interface interaction into three distinct roles

Model View Controller (MVC) is one of the most quoted (and most misquoted) patterns around. It started as a
framework developed by Trygve Reenskaug for the Smalltalk platform in the late 1970s. Since then it has
played an influential role in most UI frameworks and in the thinking about UI design.

ow It Works H

MVC considers three roles. The model is an object that represents some information about the domain. It's a

nonvisual object containing all the data and behavior other than that used for the UI. In its most pure OO form
the model is an object within a Domain Model (116). You might also think of a Transaction Script (110) as the

t it contains no UI machinery. Such a definition stretches the notion of model, but fits the
role breakdown of MVC.

The view represents the display of the model in the UI. Thus, if our model is a customer object our view might

 a frame full of UI widgets or an HTML page rendered with information from the model. The view is only
out display of information; any changes to the information are handled by the third member of the MVC

e

arating the controller from the view.

• Fundamentally presentation and view are about different concerns. When you're developing a view
you're thinking about the mechanisms of UI and how to lay out a good user interface. When you're
working with a model you are thinking about business policies, perhaps database interactions.
Certainly you will use different very different libraries when working with one or the other. Often
people prefer one area to another and they people specialize in one side of the line.

• Depending on context, users want to see the same basic model information in different ways.
Separating presentation and view allows you to develop multiple presentations—indeed, entirely
different interfaces—and yet use the same model code. Most noticeably this could be providing the
same model with a rich client, a Web browser, a remote API, and a command-line interface. Even

 Web interface you might have different customer pages at different points in an

• Nonvisual objects are usually easier to test than visual ones. Separating presentation and model allows
you to test all the domain logic easily without resorting to things like awkward GUI scripting tools.

key point in this separation is the direction of the dependencies: the presentation depends on the model but
the model doesn't depend on the presentation. People programming in the model should be entirely unaware of
what presentation is being used, which both simplifies their task and makes it easier to add new presentations
later on. It also m ade freely without altering the model.

is principle introduces a common issue. With a rich-client interface of multiple windows it's likely that there

pendency you usually need an

model providing tha

be
ab
trinity: the controller. The controller takes user input, manipulates the model, and causes the view to updat
appropriately. In this way UI is a combination of the view and the controller.

 I think about MVC I see two principal separations: separating the presentation from the model and As
sep

Of these the separation of presentation from model is one of the most fundamental heuristics of good software

sign. This separation is important for several reasons.de

within a single
application.

A

eans that presentation changes can be m

Th
will be several presentations of a model on a screen at once. If a user makes a change to the model from one
presentation, the others need to change as well. To do this without creating a de
implementation of the Observer pattern [Gang of Four], such as event propagation or a listener. The
presentation acts as the observer of the model: whenever the model changes it sends out an event and the

sentations refresh the information.

The second division, the separation of view and controller, is less important. Indeed, the irony is that almost
every version of Smalltalk didn't actually make a view ller separation. The classic example of why you'd

nt to separate them is to support editable and noneditable behavior, which you can do with one view and
s [Gang of Four

pre

/contro
wa
two controllers for the two cases, where the controllers are strategie] for the view. In practice

st systems have only one controller per view, however, so this separation is usually not done. It has come
erfaces where it becomes useful for separating the controller and view again.

mo
back into vogue with Web int

The fact that most GUI frameworks combine view and controller has led to

, but where's the controller? The common id
many misquotations of MVC. The
ea is that it sits between the model

ontroller
model and the view are obvious

 view, as in the Application Cand the (379)—it doesn't help that the word "controller" is used in both
contexts. Whatever the merits of a Application Controller (379), it's a very different beast from an MVC

poses of this set of patterns these principles are really all you need to know. If you want to dig

controller.

For the pur
deeper into MVC the best available reference is [POSA].

 When to Use It

. Of these As I said, the value of MVC lies in its two separations
ware, and the only tim

the separation of presentation and model is
e you shouldn't follow it is in very

tems where the model has no real behavior in it anyway. As soon as you get some nonvisual logic
ould apply the separation. Unfortunately, a lot of UI frameworks make it difficult, and those that don't
n taught without a separation.

The separation of view and controller is less important, so I'd only recommend doing it when it is really
helpful. For rich-client systems, that ends up being hardly ever, although it's common in Web front ends where
the controller is separated out. Most of the patterns on Web design here are based on that principle.

one of the most important design principles in soft
simple sys
you sh

 ofteare

eb site.

Page Controller

An object that handles a request for a specific page or action on a W

TML you pass to
page on the

ever, the
request is a simple model to understand.

As a result, Page Controller has one input controller for each logical page of the Web site. That controller may

Most people's basic Web experience is with static HTML pages. When you request static H
the Web server the name and path for a HTML document stored on it. The key notion is that each

te is a separate document on the server. With dynamic pages things can get much more interesting since Web si
there's a much more complex relationship between path names and the file that responds. How
approa

ch of one path leading to one file that handles the

be the page itself, as it often is in server page environments, or it may be a separate object that corresponds to
that page.

ow It Works

the controller for each
age, since you may hit a link

pending on dynamic information. More strictly, the controllers tie in to
tion, which may be clicking a link or a button.

 script, servlet, etc.) or as a server page (ASP,
age usually combines the Page Controller and a Template View

 H

The basic idea behind a Page Controller is to have one module on the Web server act as
page on the Web site. In practice, it doesn't work out to exactly one module per p
someti
e ch ac

mes and get a different page de
a

e Page Controller can be structured either as a script (CGITh
PHP, JSP, etc.). Using a server p (350) in the

e Template Viewsame file. This works well for th (350) but less well for the Page Controller because it's more
't a problem. However, if

ata out of the request or deciding which actual view to display, then
n end up with awkward scriptlet code in the server page.

One way of dealing with scriptlet code is to use a helper object. In this case the first thing the server page does
 handle all the logic. The helper may return control to the original server page, or it

m t server page to act as the view, in which case the server page is the request handler
but most of the controller logic lies in the helper.

other approach is to make a script the handler and controller. The Web server passes control to the script;
the script carries out the controller's responsibilities and finally forwards to an appropriate view to display any
results.

The basic responsibilities of a Page Controller are:

• Decode the URL and extract any form data to figure out all the data for the action.
• Create and invoke any model objects to process the data. All relevant data from the HTML request

should be passed to the model so that the model objects don't need any connection to the HTML
request.

• Determine which view should display the result page and forward the model information to it.

e Page Controller needn't be a single class but can invoke helper objects. This is particularly useful if
at would

There's no reason that you can't have some URLs handled by server pages and some by scripts. Any URLs that
ve little or no controller logic are best handled with a server page, since that provides a simple mechanism

ross
es

roblems of either scriptlet-laden server pages or
s of simple pass-through scripts.

awkward to properly structure the module. If the page is a simple display, this isn
there's logic involved in either pulling d
y u cao

is call the helper object to
ay forward to a differen

An

Th
several handlers have to do similar tasks. A helper class can then be a good spot to put any code th
otherwise be duplicated.

ha
that's easy to understand and modify. Any URLs with more complicated logic go to a script. I've come ac
teams who want to handle everything the same way: all server page or everything is a script. Any advantag
of consistency in such an application are usually offset by the p
lot

 When to Use It

The main decision point is whether to use Page Controller or Front Controller (344). Of the two, Page
Controller is the most familiar to work with and leads to a natural structuring mechanism where particular
actions are handled by particular server pages or script classes. Your trade-off is thus the greater complexity
of Front Controller (344) against the various advantages of Front Controller, most of which make a difference
in Web sites that have more navigational complexity.

ge Controller works particularly well in a site where most of the controller logic is pretty simple. In this case

Pa
most URLs can be handled with a server page and the more complicated cases with helpers. When your
controller logic is simple, Front Controller (344) adds a lot of overhead.

 not uncommon to have a site where some requests are dealt with by Page Controllers and others are dealt It's
with by Front Controllers (344), particularly when a team is refactoring from one to another. Actually, the two

xample: Simple Display with a Servlet Controller and a JSP View (Java)

simple example of an Page Controller displays some information about something. Here we'll show it

Figure 14.1. Classes involved in a simple display with a Page Controller servlet and a JSP view.

patterns mix without too much trouble.

 E

A
displaying some information about a recording artist. The URL runs along the lines of
http://www.thingy.com/recordingApp/artist?name=danielaMercury.

The Web server needs to be configured to recognize /artist as a call to ArtistController. In Tomcat you do this

ith the following code in the web.xml file: w

<servlet>
 <servlet-name>artist</servlet-name>
 <servlet-class>actionController.ArtistController</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>artist</servlet-name>

 <url-patter
</servlet-mapp

n>/artist</url-pattern>
ing>

The artist controller needs to implement a method to handle the request.

class ArtistController...

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 Artist artist = Artist.findNamed(request.getParameter("name"));
 if (artist == null)

 }

though this is a very simple case, it covers the salient points. First the controller needs to create the
 puts
 helper

 forward("/MissingArtistError.jsp", request, response);
 else {
 request.setAttribute("helper", new ArtistHelper(artist));
 forward("/artist.jsp", request, response);
 }

Al
necessary model objects to do their thing, here just finding the correct model object to display. Second it
the right information in the HTTP request so that the JSP can display it properly. In this case it creates a
and puts it into the request. Finally it forwards to the Template View (350) to handle the display. Forwarding
is a common behavior, so it sits naturally on a superclass for all Page Controllers.

class ActionServlet...

 protec

ted void forward(String target,
 HttpServletRequest request,
 HttpServletResponse response)

tServletContext().getRequestDispatcher(target);

 throws IOException, ServletException
 {
 RequestDispatcher dispatcher =
eg
 dispatcher.forward(request, response);
 }

The main point of coupling between the Template View (350) and the Page Controller is the parameter names

the request to pass on any objects that the JSP needs.

r
ss.

OException, ServletException

meter("id"));

uest, response);
 return;
 }

tAttribute("helper", album);
instanceof ClassicalAlbum)

e);

request, response);

in

The controller logic here is really very simple, but as it gets more complex we can continue to use the servlet
as a controller. We can have a similar behavior for albums, with the twist that classical albums both have a
different model object and are rendered with a different JSP. To do this behavior we can again use a controlle
cla

class AlbumController...

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws I
 {
 Album album = Album.find(request.getPara
 if (album == null) {
 forward("/missingAlbumError.jsp", req

 request.se
 if (album
 forward("/classicalAlbum.jsp", request, respons
 else
 forward("/album.jsp",
 }

Notice that in this case I'm using the model objects as helpers rather than creating a separate helper class
is worth doing if a helper class is just a dumb forwarder to the model class. If you do it, though, make

. This
 sure that

 model class doesn't contain any servlet-dependent code. Any servlet-dependent code should be in a
arate helper class.

ng a servlet as a controller is one route to take, but the most common route is to make the server page itself
 with this approach is that it results in scriptlet code at the beginning of the server
 gathered, I think that scriptlet code has the same relationship to well-designed

 you can make a server page as the request handler while delegating control to the helper to
ually carry out the controller function. This preserves the simple property of having your URLs denoted by

.

onHelper"/>
helper.init(request, response);%>

The call to init sets the helper up to carry out the controller behavior.

class AlbumConHelper extends HelperController...

 public void init(HttpServletRequest request, HttpServletResponse response) {
 super.init(request, response);
 if (getAlbum() == null) forward("missingAlbumError.jsp", request, response);
 if (getAlbum() instanceof ClassicalAlbum) {
 request.setAttribute("helper", getAlbum());
 forward("/classicalAlbum.jsp", request, response);
 }

ass HelperController...

 protected void forward(String target,
 HttpServletRequest request,
 HttpServletResponse response)

{

the
sep

 Example: Using a JSP as a Handler (Java)

siU
the controller. The problem
age and, as you may havep

software that professional wrestling has to sport.

spite thisDe
tac

server pages. I'll do this for the album display, using the URL of the form
http://localhost:8080/isa/album.jsp?id=zero. Most albums are displayed directly with the album JSP, but
classical recordings require a different display, a classical album JSP.

This controller behavior appears in a helper class to the JSP. The helper is set up in the album JSP itself

album.jsp...

<jsp:useBean id="helper" class="actionController.AlbumC
<%

 }

Common helper behavior naturally sits on a helper superclass.

cl

 public void init(HttpServletRequest request, HttpServletResponse response) {
 this.request = request;
 this.response = response;
 }

 try {
 RequestDispatcher dispatcher = request.getRequestDispatcher(target);
 if (dispatcher == null) response.sendError(response.SC_NO_CONTENT);
 else dispatcher.forward(request, response);
 } catch (IOException e) {
 throw new ApplicationException(e);
 } catch (ServletException e) {

 throw new ApplicationException(e);

The key difference between the controller behavior here and that when using a servlet is that the handler JSP is
also the default view and, unless the controller forwards to a different JSP, control reverts to the original
handler. This is an advantage when you have pages where the JSP directly acts as the view most of the time
and so there's no forwarding to be done. The initialization of the helper acts to kick off any model behavior
and set things up for the view later on. It's a simple model to follow, since people generally associate a Web
page with the server page that acts as its view. Often this also fits naturally with Web server configuration.

The call to initialize the handler is a little clumsy. In a JSP environment this awkwardness can be much better
handled with a custom tag. Such a tag can automatically create an appropriate object, put it in the request, and
initialize it. With that all you need is a simple tag in the JSP page.

<helper:init name = "actionController.AlbumConHelper"/>

The custom tag's implementation then does the work.

class HelperInitTag extends HelperTag...

 public void setName(String helperClassName) {
 this.helperClassName = helperClassName;
 }
 public int doStartTag() throws JspException {
 HelperController helper = null;
 try {
 helper = (HelperController) Class.forName(helperClassName).newInstance();
 } catch (Exception e) {

 throw new ApplicationException("Unable to instantiate " + helperClassName, e);

xt.getRequest();
ntext.getResponse();

perTag...

public static final String HELPER = "helper";

perty access too.

}
() throws JspException {

().print(getProperty(propertyName));

o print to writer");

 }
 }

 private String helperClassName;

 }
 initHelper(helper);

 pageContext.setAttribute(HELPER, helper);
 return SKIP_BODY;
 }

(HelperController helper) { private void initHelper
 HttpServletRequest request = (HttpServletRequest) pageConte

vletResponse response = (HttpServletResponse) pageCo HttpSer
 helper.init(request, response);
 }

 Helclass

'm going to use custom tags like this, I might as well make them for proIf I

ss HelperGetTag extends HelperTag... cla

 private String propertyName;
 public void setProperty(String propertyName) {
 this.propertyName = propertyName;

 public int doStartTag
 try {

 pageContext.getOut
 } catch (IOException e) {

ion("unable t throw new JspExcept
 }

 return SKIP_BODY;
}

Property(String property) throws JspException {
tHelper();

helper.getClass().getMethod(gettingMethod(property),

 return getter.invoke(helper, null);
 } catch (Exception e) {
 throw new JspException

ethod(property) + " - " + e.getMessage());

rows JspException {
 Object helper = pageContext.getAttribute(HELPER);
 if (helper == null) throw new JspException("Helper not found.");

helper;

.toUpperCase() +
 property.substring(1);

ter to use the Java Beans mechanism than to just invoke a getter using reflection. If so,
u're probably right and also probably intelligent enough to figure out how to change the method to do that.)

to pull information out of the helper. The tag is shorter and eliminates
ce of my mizpelling "helper."

Page Handler with a Code Behind (C#)

class HelperTag...

 protected Object get
 Object helper = ge
 try {
 final Method getter =
null);

 ("Unable to invoke " + gettingM
 }

 }
 private Object getHelper() th

 return

}
 private String gettingMethod(String property) {

 String methodName = "get" + property.substring(0, 1)

 return methodName;
 }

(You may think it's bet
yo

With the getting tag defined, I can use it
any chan

<helper:get property = "title"/>

 Example:

The Web system in .NET is designed to work with the Page Controller and Template View (350) patterns,
although you can certainly decide to handle Web events with a different approach. In this next example, I'll

 the pruse eferred style of .NET, building the presentation layer on top of a domain using Table Module (125)
rier of information between layers.

 run rate for one innings of a cricket match. As I
rt form, let me summarize

and using data sets as the main car

lays runs scored and theThis time we'll have a page that disp
know I'll have many readers who are afflicted with no material experience of this a
by saying that the runs scored are the score of the batsman and the run rate is how many runs he scores divided

database; the run rate needs to be
ly useful piece of domain logic.

T Web page, captured in a .aspx file. As with other server page
bed programming logic directly into the page as scriptlets. Since you

criptlets, you know there's little chance that I'd do that. My savior in
anism that allows you to associate a regular file and class with the

age, signaled in the header of the aspx page.

by the number of balls he faces. The runs scored and balls faced are in the
pedagogicalcalculated by the application—a tiny but

The handler in this design is an ASP.NE
constructs, this file allows you to em
know I'd rather drink bad beer than write s

se is ASP.NET's code behind mechthis ca
 paspx

<%@ Page language="c#" Codebehind="bat.aspx.cs" AutoEventWireup="false" trace="False"
 Inherits="batsmen.BattingPage" %>

The page is set up as a subclass of the code behind class, and as such can use all its protected properties and

thods. The page object is the handler of the request, and the code behind can define the handling by
er Supertype

me
defining a Page_Load method. If most pages follow a common flow, I can define a Lay (475) that
has a template method [Gang of Four] for this.

acl ss CricketPage...

 db = new OleDbConnection(DB.ConnectionString);

 errorTransfer (missingParameterMessage);
 DataSet ds = getData();
 if (hasNoData (ds))
 errorTransfer ("No data matches your request");
 applyDomainLogic (ds);
 DataBind();
 prepareUI(ds);

The m handling into a number of common steps. This way we can
def Page Controller to supply
imp m
what common flow to use for the template method. If any page needs to do something completely different, it
can always override the page load method.

 realistic example this might
entail initial sanity checking of various form values, but in this case we're just decoding a URL of the form
http://localhost/batsmen/bat.aspx?team=England&innings=2&match=905. The only validation in this example
is that the various parameters required for the database query are present. As usual I've been overly simplistic
in the error handling until somebody writes a good set of patterns on validation—so here the particular page

 protected void Page_Load(object sender, System.EventArgs e) {

 if (hasMissingParameters())

 }

 te plate method breaks down the request
ine a single common flow for handling Web requests, while allowing each
le entations for the specific steps. If you do this, once you've written a few Page Controllers, you'll know

The first task is to do validation on the parameters coming into the page. In a more

defines a set of mandatory parameters and the Layer Supertype (475) has the logic for checking them.

ss CricketPage... cla

 abstract protected String[] mandatoryParameters();
 private Boolean hasMissingParameters() {
 foreach (String param in mandatoryParameters())
 if (Request.Params[param] == null) return true;
 return false;

ssingParameterMessage {

ters:</P>";

ers())

.Format("{0}", param);

rTransfer (String message) {
Context.Items.Add("errorMessage", message);

 Context.Server.Transfer("Error.aspx");
 }

 "innings", "match"};

 }
 private String mi
 get {
 String result = "<P>This page is missing mandatory parame
 result += "";
 foreach (String param in mandatoryParamet
 if (Request.Params[param] == null)
 result += String
 result += "";
 return result;
 }
 }
 protected void erro

class BattingPage...

 override protected String[] mandatoryParameters() {
 String[] result = {"team",

 return result;

data out of the database and put it in an ADO.NET disconnected data set object.
re this is a single query to the batting table.

in ds.Tables)
e;

rride protected DataSet getData() {
 OleDbCommand command = new OleDbCommand(SQL, db);
 command.Parameters.Add(new OleDbParameter("team", team));

ings", innings));
 command.Parameters.Add(new OleDbParameter("m ch", match));

 OleDbDataAdapter da = new OleDbDataAdapter(command);
et result = new DataSet();

private const String SQL =

 the domain logic gets its turn to play, organized as a Table Module

 }

The next stage is to pull the
He

icketPage... class Cr

 abstract protected DataSet getData();

otected Boolean hasNoData(DataSet ds) { pr
 foreach (DataTable table
 if (table.Rows.Count != 0) return fals

 return true;
 }

ttingPage... class Ba
 ove

 command.Parameters.Add(new OleDbParameter("inn

at

 DataS
 da.Fill(result, Batting.TABLE_NAME);

 return result;
 }

 @"SELECT * from batting
 = ? AND innings = ? AND matchID = ? WHERE team

 ORDER BY battingOrder";

Now (125). The controller passes the

rieved data set to the Table Moduleret (125) for processing.

 protected virtual void applyDomainLogic (DataSet ds) {}

 dataSet) {
t);

);

At this point the controller part of the page handler is done. By this I mean, in classic Model View

class CricketPage...

ass BattingPage... cl

omainLogic (DataSet override protected void applyD

dataSe batting = new Batting(
 batting.CalculateRates(

 }

Controller (330) terms, that the controller should now hand over to the view to do display. In this design the
ttingPage acts as both the controller and the view and the last call to prepareUI is part of the view behavior.

n

Ba
I can now say farewell to this example in this pattern. However, I suspect you'll find this to lack a certai
dramatic closure, so you can find the example continued later (page 350).

Front Controller

A controller that handles all requests for a Web site.

In a complex Web site there are many similar things you need to do when handling a request. These things
include security, internationalization, and providing particular views for certain users. If the input controller
behavior is scattered across multiple objects, much of this behavior can end up duplicated. Also, it's difficult to
change behavior at runtime.

e Front Controller consolidates all request handling by channeling requests through a single handler object.
is object can carry out common behavior, which can be modified at runtime with decorators. The handler

then dispatches to command objects for behavior particular to a request.

 Ho

s: a Web handler and a
mand hierarchy. The Web handler is the object that actually receives post or get requests from the Web

ation from the URL and the request to decide what kind of action to initiate
and then delegates to a command to carry out the action (see Figure 14.2

Th
Th

w It Works

 Front Controller handles all calls for a Web site, and is usually structured in two partA
oc m

server. It pulls just enough inform
).

Figure 14.2. How the Front Controller works.

The Web handler is almost always implemented as a class rather than as a server page, as it doesn't produce
ny response. The commands are also classes a rather than server pages and in fact don't need any knowledge of

t, although they're often passed the HTTP information. The Web handler itself is usually a
m that does nothing other than decide which command to run.

The Web handler can decide which command to run either statically or dynamically. The static version
involves parsing the URL and using conditional logic; the dynamic version usually involves taking a standard
piece of the URL and using dynamic instantiation to create a command class.

e static case has the advantage of explicit logic, compile time error checking on the dispatch, and lots of
xibility in the look of your URLs. The dynamic case allows you to add new commands without changing

ith dynamic invocation you can put the name of the command class into the URL or you can use a properties
e that binds URLs to command class names. The properties file is another file to edit, but it does make it

particularly useful pattern to use in conjunction with Front Controller is Intercepting Filter, described in
[Alur et al.

the Web environmen
fairly simple progra

Th
fle
the Web handler.

W
fil
easier to change your class names without a lot of searching through your Web pages.

A

]. This is essentially a decorator that wraps the handler of the front controller allowing you to build
a filter chain (or pipeline of filters) to handle issues such as authentication, logging, and locale identification.
Using filters allows you to dynamically set up the filters to use at configuration time.

b Mee showed me an interesting variation of Front Controller using a two stage Web handler separated into
a degenerate Web handler and a dispatcher. The degenerate Web handler pulls the basic data out of the http
parameters and hands it to the dispatcher in such a way that the dispatcher is completely independent of the
Web server framework. This makes testing easier because test code can drive the dispatcher directly without
having to run in a Web server.

Remember that both the handler and the commands are part of the controller. As a result the commands can
(and should) choose which view to use for the response. The only responsibility of the handler is in choosing

Ro

which command to execute. Once that's done, it plays no further part in that request.

 When to Use It

The Front Controller is a more complicated design than its obvious counterpart, Page Controller (333). It
therefore needs a few advantages to be worth the effort.

ly one Front Controller has to be configured into the Web server; the Web handler does the rest of the

n add new commands without changing anything.
ey also ease porting since you only have to register the handler in a Web-server-specific way.

 objects with each request, you don't have to worry about making the
gramming; however,

that's otherwise

On
dispatching. This simplifies the configuration of the Web server, which is an advantage if the Web server is
awkward to configure. With dynamic commands you ca
Th

eate new commandBecause you cr
command classes thread-safe. In this way you avoid the headaches of multi-threaded pro

share any other objects, such as the model objects.you do have to make sure that you don't

ont Controller is that it allows you to factor out code A commonly stated advantage of a Fr
duplicated in Page Controller (333). To be fair, however, you can also do much of this with a superclass Page
Controller (333).

e with decorators [Gang of Four

There's just one controller, so you can easily enhance its behavior at runtim].

r encoding, internationalization, and so forth, and add
even while the server is running. ([Alur et al.

You can have decorators for authentication, characte
them using a configuration file or] describe this approach in

ilter.) detail under the name Intercepting F

g Further Readin

[Alur et al.] give a detailed description of how to implement Front Controller in Java. They also describe

hich goes very well with Front Controller. Intercepting Filter, w

A number of Java Web frameworks use this pattern. An excellent example appears in [Struts].

 Example: Simple Display (Java)

Here's a simple case of using Front Controller for the original and innovative task of displaying information

ic commands with a URL of the form
ame=barelyWorks&command=Artist. The command parameter tells the Web

d to use.

Figure 14.3. The classes that implement Front Controller.

about a recording artist. We'll use dynam
http://localhost:8080/isa/music?n
handler which comman

We'll begin with the handler, which I've implemented as a servlet.

class FrontServlet...

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 FrontCommand command = getCommand(request);
 command.init(getServletContext(), request, response);
 command.process();

 throw new ApplicationException(e);

 Class result;

 } catch (ClassNotFoundException e) {
 result = UnknownCommand.class;

e logic is straightforward. The handler tries to instantiate a class named by concatenating the command
name and "Command." Once it has the new command it initializes it with the necessary information from the
HTTP server. I've passed in what I need for this simple example. You may well need more, such as the HTTP
session. If you can't find a command, I've used the Special Case

 }
 private FrontCommand getCommand(HttpServletRequest request) {
 try {
 return (FrontCommand) getCommandClass(request).newInstance();
 } catch (Exception e) {

 }
 }
 private Class getCommandClass(HttpServletRequest request) {

 final String commandClassName =
 "frontController." + (String) request.getParameter("command") + "Command";
 try {
 result = Class.forName(commandClassName);

 }
 return result;
 }

Th

 (496) pattern and returned an unknown

command. As is often the case, Special Case (496) allows you to avoid a lot of extra error checking.

mmands share a fair bit of data and behavior. They all need to be initialized with information from the Web

 protected HttpServletResponse response;
 public void init(ServletContext context,
 HttpServletRequest request,
 HttpServletResponse response)
 {
 this.context = context;
 this.request = request;
 this.response = response;
 }

tCommand...

 abstract public void process()throws ServletException, IOException ;
 protected void forward(String target) throws ServletException, IOException
 {
 RequestDispatcher dispatcher = context.getRequestDispatcher(target);

Co
server.

class FrontCommand...

 protected ServletContext context;

 protected HttpServletRequest request;

They can also provide common behavior, such as a forward method, and define an abstract process command
for the actual commands to override.

ass Froncl

 dispatcher.forward(request, response);

}

The command object is very simple, at least in this case. It just implements the process method, which
involves invoking the appropriate behavior on the model objects, putting the information needed for the view
nto the request, and forwarding to a i Template View (350).

class ArtistCommand...

 public void process() throws ServletException, IOException {
 Artist artist = Artist.findNamed(request.getParameter("name"));
 request.setAttribute("helper", new ArtistHelper(artist));
 forward("/artist.jsp");
 }

The unknown command just brings up a boring error page.

class UnknownCommand...

 public void process() throws ServletException, IOException {
 forward("/unknown.jsp");
 }

Template View

Renders information into HTML by embedding markers in an HTML page.

Writing a program that spits out HTML is often more difficult than you might imagine. Although
programming languages are better at creating text than they used to be (some of us remember character
handling in Fortran and standard Pascal), creating and concatenating string constructs is still painful. If there
isn't much to do, it isn't too bad, but a whole HTML page is a lot of text manipulation.

With static HTML pages—those that don't change from request to request—you can use nice WYSIWG
editors. Even those of us who like raw text editors find it easier to just type in the text and tags rather than
fiddle with string concatenation in a programming language.

Of course the issue is with dynamic Web pages—those that take the results of something like database queries
and embed them nt with each result, and as a result regular HTML

the job.

bed markers into a static HTML page when it's written. When the
ge is used to service a request, the markers are replaced by the results of some computation, such as a

A lot of tools use Template View. As a result this pattern isn't about how to build one yourself, but about how
to use one effectively and what the alternative is.

 Embedding the Markers

ber of ways markers can be placed in the HTML. One is to use HTML-like tags. This works
well with WYSIWYG edito brackets (<>) is special
and so either ignore it or treat it di
XML tools on the resulting document (providing your HTML is XHMTL, of course).

 into the HTML. The page looks differe
editors aren't up to

The best way to work is to compose the dynamic Web page as you do a static page but put in markers that can
be resolved into calls to gather dynamic information. Since the static part of the page acts as a template for the
particular response, I call this a Template View.

 How It Works

e basic idea of Template View is to emTh
pa
database query. This way the page can be laid out in the usual manner, often with WYSIWYG editors, often
by people who aren't programmers. The markers then communicate with real programs to put in the results.

There are a num

rs because they realize that anything between the angled
fferently. If the tags follow the rules for well-formed XML you can also use

Another way to do this is to use special text markers in the body text. WYSIWYG editors treat that as regular
text, still ignoring it but probably doing annoying things to it like spell checking. The advantage is that the
syntax can be easier than the clunky syntax of HTML/XML.

Many environments provide the set of tags you use but more and more platforms now give you the ability to
define your own tags and markers so you can design them to fit in with your particular needs.

One of the most popular forms of Template View is a server page such as ASP, JSP, or PHP. These actually
go a step further than the basic form of a Template View in that they allow you to embed arbitrary
programming logic, referred to as scriptlets, into the page. In my view, however, this feature is actually a big
problem and you're better off limiting yourself to basic Template View behavior when you use server page
technology.

The most obvious disadvantage of putting a lot of scriptlets into a page is that it eliminates the possibility of
nonprogrammers editing the page. This is particularly important when you're using graphic designers for the
page design. However, the biggest problems of embedding scriptlets into the page come from the fact that a
page is poor module for a program. Even with an object-oriented language the page construct loses you most
of the structural features that make it possible to do a modular design either in OO or in procedural style.

Even worse, putting a lot of scriptlets into the page makes it too easy to mingle the different layers of an
enterprise application. When domain logic starts turning up on server pages it becomes far too difficult to
structure it well and far too easy to duplicate it across different server pages. All in all, the worst code I've seen
in the last few years has been server page code.

 Helper Object

The key to avoiding scriptlets is to provide a regular object as a helper to each page. This helper has all the real
programming logic. The page only has calls into it, which simplifies the page and makes it a m
Template View. The resul programmers to
concentrate on the helper. plates in
a page to HTML/XML tags, which keeps the page mo e nsistent and more amenable to tool support.

This sounds like a simple and commendable principle, but as ever quite a few dirty issues make things more
complicated. The simplest markers are those that get some information from the rest of the system and put in
the correct place on the page. They are easily translated into calls to the helper that result in text, (or something

t's trivially turned into text), and the engine places the text on the page.

 Conditional Display

A more knotty issue is conditional page behavior. The simplest case is the situation where something is
displayed only if a condition is true. That might be some kind of conditional tag along the lines of <IF
condition = "$pricedrop > 0.1"> ...show some stuff </IF>. The trouble with this is that when you start having
conditional tags like this, you start going down the path of turning the templates into a programming language
in and of themselves. This leads you into all the same problems you face when you embed scriptlets in the
page. If you need a full programming language, you might as well use scriptlets, but you know what I think of
that idea!

As a result, I see purely conditional tags as a bad smell, something you should try to avoid. You can't always

ore pure
ting simplicity allows nonprogrammers to edit the page and
Depending on the actual too u're using, you can often reduce all the teml yo

r co

tha

avoid them, but you should try to come up with something more focused than a general purpose <IF> tag.

If you're displaying some text conditionally, one option is to move the condition into the helper. The page will
then always insert the result of the call into helper. It's just that if the condition isn't true the helper will send
back an empty string, but this way the helper holds all the logic. This approach works best if there's no markup
for the returned text or it's enough to return empty markup that gets ignored by the browser.

This doesn't work if, say, you want to highlight good-selling items in a list by putting their names in bold. In
such a situation you always need the names displayed but sometimes you want the special markup. One way to
get it is to have the helper generate the markup. This keeps all the logic out of the page, at the cost of moving
the choice of highlighting mechanism away from the page designer and giving it to the programming code.

In order to keep the choice o form of conditional tag.
However it's important to lo d tag, so rather than a tag
that looks like this:

<highlight condition = "isHighSelling" style = "bold">
 <property name = "price"/>
</highlight>

 either case it's important that the condition be done based on a single Boolean property of the helper.
tting any more complex expression into the page is actually putting the logic into the page itself.

em is
ning. Consider some text that should only be shown in the United States or Canada, which, rather than

Would be som

<locale includes = "US, CA"> ...special text </locale>

rating over a collection presents similar issues. If you want a table where each line corresponds to a line
easy display of information for each line. Here it's hard to

oid a general iteration over a collection tag, but it usually works simply enough to fit in quite well.

with are often limited by the environment you're in. Some

 choice in the tags to

f HTML in the hands of the page design, you need some
ok beyond a simple <IF>. A good route to go is a focuse

<IF expression = "isHighSelling()"></IF>
<property name = "price"/>
<IF expression = "isHighSelling()"></IF>

you have one like

In
uP

nother example would be putting information on a page that depends on the locale on which the systA
unr

<IF expression = "locale = 'US' || 'CA'"> ...special text </IF>

ething like

 Iteration

Ite
item on an order, you need a construct that allows
av

 of tag you have to work Of course the kinds
environments give you a fixed set of templates, in which case you may be more limited than you would like in
following these kinds of guidelines. In other environments, however, you may have more
use; many of them even allow you to define your own tag libraries.

 When to Process

emplate The name T
odel V

View brings out the fact that the primary function of this pattern is to play the view
iew Controllerin M (330). For many systems the Template View should only play the view. In simpler

tems it may be reasonable for it to play the controller, and possibly even the model, although I would strive
king on responsibilities beyond

 view, it's important to ensure that these responsibilities are handled by the helper, not by the page.
d model responsibilities involve program logic, which program logic everywhere, should sit in

 done by compiling the page
each request.

n works its way up to the Web container,
 yourself with a half-handled page that provides some decidedly odd output to the calling browser

ead of a redirect. You need to look into how your Web server handles exceptions; if it does something
ange, catch all exceptions yourself in the helper class (yet another reason to disdain scriptlets.)

sing Scripts

mmon forms of Template View these days, you can write scripts
done this way. Most noticeably demonstrated by perl's

ating strings by having function calls that output the appropriate tags to
nguage and avoid the mess of

sys
to separate model processing as much as possible. Where Template View is ta
the
Controller an
the helper.

Any template system needs extra processing by the Web server. This can either be
after it's created, compiling the page or on its first request, or by interpreting the page on
Obviously the latter isn't a good idea if the interpretation takes a while to do.

atch with Template View is exceptions. If an exceptioOne thing to w
you may find
inst
str

 U

Although server pages are one of the most co
in a Template View style. I've seen a fair bit of Perl
CGI.pm, the trick is to avoid concaten
the response. This way you can write the script in your programming la

rings with programming logic. interspersing print st

 When to Use It

e view in Model View ControllerFor implementing th (330) the main choice is between Template View
and Transform View (361). The strength of Temp

e page structure. This seems
late View is that it allows you to compose the content of the
 to be easier for most people to do and to learn. In particular

gner laying out a page with a programmer working on the helper.

wo significant weaknesses. First, the common implementations make it too easy to put
plicated logic in the page, thus making it hard to maintain, particularly by nonprogrammers. You need

od discipline to keep the page simple and display oriented, putting logic in the helper. The second weakness

page by looking at th
it nicely supports the idea of a graphic desi

Template View has t
com
go
is that Template View is harder to test than Transform View (361). Most implementations of Template View

very difficult or impossible to test otherwise. Transform are designed to work within a Web server and are
View (361) implementations are much easier to hook into a testing harness and test without a running Web

w you also need to consider Two Step View

server.

ieIn thinking about a v (365). Depending on your template scheme
sing specialized tags. However, you may find it easier to you may be able to implement this pattern u

implement it based on a Transform View (361). If you're going to need Two Step View (365) you need to take

ys be invoked from a controller rather than directly from the servlet

that into account in your choice.

Example: Using a JSP as a View with a Separate Controller (Java)

When using a JSP as a view only, it's alwa

container. Thus, it's important to pass to the JSP any information it will need to figure out what to display. A
good way to do this is to have the controller create a helper object and pass it to the JSP using the HTTP

rom Page Controllerrequest. We'll show this with the simple display example f (333). The Web-handling
ks like this:

t request, HttpServletResponse response)
tException {

ist = Artist.findNamed(request.getParameter("name"));
 if (artist == null)
 forward("/MissingArtistError.jsp", request, response);

 request.setAttribute("helper", new ArtistHelper(artist));
t.jsp", request, response);

nt behavior is creating the helper and placing it in the
eBean tag.

elper in place we can use it to access the information we need to display. The model information the
needs was passed to it when it was created.

class ArtistHelper...

 private Artist artist;
 public ArtistHelper(Artist artist) {
 this.artist = artist;
 }

on from the model. In the simplest case we provide a
method to get some simple data, such as the artist's name.

en we access this information by a Java expression.

ss room

Using a helper is one way to remove awkward scriptlet code. If you want to show a list of albums for an artist,

method for the servlet loo

oller... class ArtistContr

es public void doGet(HttpServletRequ
OException, Servle throws I

 Artist art

 else {

 forward("/artis

 }
 }

d the importaAs far as the Template View is concerne
request. The server page can now reach the helper with the us

est"/> <jsp:useBean id="helper" type="actionController.ArtistHelper" scope="requ

he hWith t
per hel

We can use the helper to get appropriate informati

class ArtistHelper...

 public String getName() {
 return artist.getName();
 }

Th

 <%=helper.getName()%>

or a property

<jsp:getProperty name="helper" property="name"/>

The choice between properties or expressions depends on who is editing the JSP. Programmers find

pr ead and more compact, but HTML editors may not be able to handle them. ex essions easy to r
Nonprogrammers will probably prefer tags, since they fits in the general form of HTML and leave le

 for confusing errors.

you need to run a loop, which you can do with a scriptlet in the server page.

<%
 for (Iterator it = helper.getAlbums().iterator(); it.hasNext();) {

 <%=album.getTitle()%>
 } %>

 and HTML is really horrible to read. An alternative is to move the for loop to the

s().iterator(); it.hasNext();) {
t.next();

lt.append(album.getTitle());

lic List getAlbums() {
 return artist.getAlbums();

}

ice
ts I'd choose HTML in helpers any day or night.

ized tag for iteration.

lper" collection = "albums" id = "each">
><jsp:getProperty name="each" property="title"/>

ag:forEach>

is is a much nicer alternative as it keeps scriptlets out of the JSP and HTML out of the helper.

 Album album = (Album) it.next();%>

<%

Frankly, this mix of Java

per. hel

elper... class ArtistH

 public String getAlbumList() {
 StringBuffer result = new StringBuffer();

ult.append(""); res
 for (Iterator it = getAlbum

 Album album = (Album) i
 result.append("");
 resu
 result.append("");
 }
 result.append("");

urn result.toString(); ret
 }
 pub

I find this easier to follow because the amount of HTML is quite small. It also allows you to use a property to

t the list. Many people don't like putting HTML code in helpers. While I prefer not to, given the choge
between this and scriptle

The best route to go is a special

<tag:forEach host = "he
 <LI
</t

Th

Example: ASP.NET Server Page (C#)

This example continues the one I started in Page Controller (333) (page 3

en in a single innings of a cricket match. For those
40). To remind you, it shows the
who think that cricket is a small noisy

about the world's most immortal sport and boil it all down to the fact
ormation:

able showing each batsman's name, score, and run rate (the number of balls he faced divided by the

scores made by batsm
insect, I'll pass over the long rhapsodies

 page displays three essential pieces of infthat the

• An ID number to reference the match
• Which team's scores are shown and which innings the scores are for
• A t

runs he scored)

If you don't understand what these statistics mean, don't worry about it. Cricket is full of statistics—perhaps its
greatest contribution to humanity is providing odd statistics for eccentric papers.

The Page Controller (333) discussion covered how a Web request is handled. To sum up, the object that acts as

th the controller and the view is the aspx ASP.NET page. To keep the controller code out of a scriptlet, you

@ Page language="c#" Codebehind="bat.aspx.cs" utoEventWireup="false" trace="False"
BattingPage" %>

d properties of the code behind class directly. Furthermore, the code
 case I've defined the Page_Load as a

bo
define a separate code behind class.

A<%
 Inherits="batsmen.

The page can access the methods an
behind can define a Page_Load method to handle the request. In this
template method [Gang of Four] on a Layer Supertype (475).

class CricketPage...

protected void Page_Load(o bject sender, System.EventArgs e) {
onString);

singParameterMessage);
 DataSet ds = getData();

 if (hasNoData (ds))

prepareUI(ds);
 }

all to
t will do for
's code

BattingPage...

 protected String team {

 Request.Params["match"];}

 in the text of the page.

match %>" runat="server" font-bold="True">

<%# team %>" runat="server" font-bold="True">

 db = new OleDbConnection(DB.Connecti
rs()) if (hasMissingParamete

 errorTransfer (mis

 errorTransfer ("No data matches your request");
 applyDomainLogic (ds);
 DataBind();

For the purposes of Template View I can ignore all but the last couple of lines of the page load. The c
DataBind allows various page variables to be properly bound to their underlying data sources. Tha

 cases the last line calls a method in the particular pagethe simpler cases, but for more complicated
behind to prepare any objects for its use.

The match ID number, team, and innings are single values for the page, all of which came into the page as

s in the HTTP request. I can provide these values by using properties on the code behind class. parameter

ss cla

 get {return Request.Params["team"];}
 }
 protected String match {

 get {return
 }

 protected String innings {
 {return Request.Params["innings"];} get

 }
nnings{ protected String ordinalI

 get {return (innings == "1") ? "1st" : "2nd";}
 }

With the properties defined, I can use them

<P>
 Match id:
 <asp:label id="matchLabel" Text="<%
 </asp:label>
</P>
<P>
 <asp:label id=teamLabel Text="

 </asp:label>
 <asp:Label id=inningsLabel Text="<%# ordinalInnings %>" runat="server">

ngs</P>

se of the graphical design
bound to a single table from a

 override protected void prepareUI(DataSet ds) {
 DataGrid1.DataSource = ds;

 </asp:Label> inni
<P>

The table is a little more complicated, but actually works easily in practice becau

io provides a data grid control that can be facilities in Visual Studio. Visual Stud
data set. I can do this binding in the prepareUI method that's called by the Page_Load method.

class BattingPage...

 DataGrid1.DataBind();
 }

e batting class is a Th Table Module (125) that provides domain logic for the batting table in the database. Its
from that table enriched by domain logic from Table Moduledata property is the data (125). Here the
e, which is calculated rather than stored in the database.

ish to display in the Web page,
an select name, runs, and rate

unat="server" Width="480px" Height="171px"
derColor="#336666" BorderStyle="Double" BorderWidth="3px" BackColor="White"

ntal" AutoGenerateColumns="False">
or="#339966"></

enrichment is the run rat

With the ASP.NET data grid you can select which table columns you w

 table's appearance. In this case we ctogether with information about the
columns.

aGrid id="DataGrid1" r<asp:Dat
 Bor

 CellPadding="4" GridLines="Horizo
 <SelectedItemStyle Font-Bold="True" ForeColor="White" BackCol
 SelectedItemStyle>

te"></ <ItemStyle ForeColor="#333333" BackColor="Whi
Color="Whit

ItemStyle>
e" BackColor="#336666"></HeaderStyle>

ckColor="White"></FooterStyle>

<asp:BoundColumn DataField="name" HeaderText="Batsman">
 <HeaderStyle Width="70px"></HeaderStyle>

</Columns>
<PagerStyle HorizontalAlign="Center" ForeColor="White" BackColor="#336666"

 <HeaderStyle Font-Bold="True" Fore
olor="#333333" Ba <FooterStyle ForeC

lumns> <Co

 </asp:BoundColumn>
 <asp:BoundColumn DataField="runs" HeaderText="Runs">
 <HeaderStyle Width="30px"></HeaderStyle>
 </asp:BoundColumn>
 <asp:BoundColumn DataField="rateString" HeaderText="Rate">
 <HeaderStyle Width="30px"></HeaderStyle>
 </asp:BoundColumn>

 Mode="NumericPages"></PagerStyle>

The HTML for this data grid looks intimidating, but in Visual Studio you don't manipulate it directly but

ough property sheets in the development environment, as you do for much of the rest of the page.

h ability to have Web form controls on the Web page that understand the ADO.NET abstractions of data
s and data tables is the strength, and limitation, of this scheme. The strength is that you transfer information

</asp:DataGrid></P>

thr

T is
set
through data sets, thanks to the kind of tools that Visual Studio provides. The limitation is that it only works
seamlessly when you use patterns such as Table Module (125). If you have very complex domain logic, th
a

en
Domain Model (116) becomes helpful; to take advantage of the tools, the Domain Model (116) needs to

create its own data set.

Transform View

view that processes domain data element by element and transforms it into HTML.

A

When you issue requests for data to the domain and data source layers, you get back all the data you need to
satisfy them, but without the formatting you need to make a proper Web page. The role of the view in Model
View Controller (330) is to render this data into a Web page. Using Transform View means thinking of this as
a transformation where you have the model's data as input and its HTML as output.

 How It Works

The basic notion of Transform View is writing a program that looks at domain-oriented data and converts it to
HTML. The program walks the structure of the domain data and, as it recognizes each form of domain data, it
writes out the particular piece of HTML for it. If you think about this in an imperative way, you might have a
method called renderCustomer that takes a customer object and renders it into HTML. If the customer contains
a lot of orders, this method loops over the orders calling renderOrder.

The key difference between Transform View and Template View

 (350) is the way in which the view is
organized. A Template View (350) is organized around the output. A Transform View is organized around
separate transforms for each kind of input element. The transform is controlled by something like a simple
loop that looks at each input element, finds the appropriate transform for that element, and then calls the
transform on it. A typical Transform View's rules can be arranged in any order without affectin lting
output.

You can write a Transform View in any language; at the moment, however, the dominant choice is XSLT. The
interesting thing about this is that XSLT is a functional programming language, similar to Lisp, Haskell, and

er languages that never quite made it into the IS mainstream. As such it has a different kind of structure to
it. For example, rather than explicitly calling routines, XSLT recognizes elements in the domain data and then
invokes the appropriate rendering transformations.

 carry out an XSLT transform we need to begin with some XML data. The simplest way this can happen is
if the natural return type of the domain logic is either XML or something automatically transformable to it—
for example, a .NET. Failing that, we need to produce the XML ourselves, perhaps by populating a Data

g the resu

oth

To

Transfer Object (401) that can serialize itself into XML. That way the data can be assembled using a
nvenient API. In simpler cases a Transaction Script (110) can return XML directly. co

The XML that's fed into the transform don't have to be a string, unless a string form is needed to cross a
communication line. It's usually quicker and easier to produce a DOM and hand that to the transform.

Once we have the XML we pass it to an XSLT engine, which is becoming increasingly available
commercially. The logic for the transform is captured in an XSLT style sheet, which we also pass to the

transformer. The transformer then applies the stylesheet to the input XML to yield the output HTML, which
we can write directly to the HTTP response.

 When to Use It

The choice between a Transform View and a Template View (350) mostly comes down to which environment
the team working on the view software prefers. The presence of tools is a key factor here. There are more and
more HTML editors that you can use to write Template Views (350). Tools for XSLT are, at least so far, muc
less sophisticated. Also, XSLT can be an aw

h
kward language to master because of its functional programming

le coupled with its awkward XML syntax.

to
m

ansform View avoids two of the biggest problems with Template View

sty

One of the strengths of XSLT is its portability to almost any Web platform. You can use the same XSLT
transform XML created from J2EE or .NET, which can help in putting a common HTML view on data fro
different sources.

XSLT is also often easier if you're building a view on an XML document. Other environments usually require
you to transform such a document into an object or to indulge in walking the XML DOM, which can be
complicated. XSLT fits naturally in an XML world.

Tr (350). It's easier to keep the
transform focused only on rendering HTML, thus avoiding having too much other logic in the view. It's also
easy to run the Transform View and capture the output for testing. This makes it easier to test the view and
you don't need a Web server to run the tests.

Transform View transforms directly from domain-oriented XML into HTML. If you need to change the
overall appearance of a Web site, this can force you to change multiple transform programs. Using common
transform XSLT includes, helps reduce this problem. Indeed it's much easier to call common

g Transform View than it is using Template View
s, such as with

transformations usin (350). If you need to make global
changes easily or support multiple appearances for the same data, you might consider Two Step View (365),

ich uses a two-stage process.

tting up a simple transform involves preparing Java code for invoking the right style sheet to form the

wh

 Example: Simple Transform (Java)

Se
response. It also involves preparing the style sheet to format the response. Most of the response to a page is
pretty generic, so it makes sense to use Front Controller (344). I'll describe only the command here, and you
should look at Front Controller (344) to see how the command object fits in with the rest of the request-
response handling.

All the command object does is invoke the methods on the model to obtain an XML input document, and then
pass that XML document through the XML processor.

class AlbumCommand...

 try {
 Album album = Album.findNamed(request.getParameter("name"));
 Assert.notNull(album);
 PrintWriter out = response.getWriter();
 XsltProcessor processor = new SingleStepXsltProcessor("album.xsl");

 public void process() {

 out.print(processor.getTransformation(album.toXmlDocument()));
 } catch (Exception e) {
 throw new ApplicationException(e);
 }

 }

The XML document may look something like this:

 <title>Stormcock</title>

 r

 <track><title>The Same Old Rock</title><time>12:24</time></track>
 <track><title>One Man Rock and Roll Band</title><time>7:23</time></track>

 < t
</albu

he translation of the XML document is done by an XSLT program. Each template matches a particular part
 appropriate HTML output for the page. In this case I've kept the formatting to a
ow just the essentials. The following template clauses match the basic elements

></P>
template>

L.

sl:template match="trackList">
 <table><xsl:apply-templates/></table>

</xsl:variable>
<tr bgcolor="{$bgcolor}"><xsl:apply-templates/></tr>

sl:template match="track/time">
mplates/></td>

<album>

 <artist>Roy Harper</artist>

<t ackList>
 <track><title>Hors d'Oeuvres</title><time>8:37</time></track>

 <track><title>Me and My Woman</title><time>13:01</time></track>
/ rackList>
m>

T
of the XML and produces the

essively simple level to shexc
of the XML file.

<xsl:template match="album">
 <HTML><BODY bgcolor="white">
 <xsl:apply-templates/>
 </BODY></HTML>
</xsl:template>
<xsl:template match="album/title">
 <h1><xsl:apply-templates/></h1>
</xsl:template>
<xsl:template match="artist">
 <P>Artist: <xsl:apply-templates/
</xsl:

These template matches handle the table, which here has alternating rows highlighted in different colors. This
is a good example of something that isn't possible with cascading style sheets but is reasonable with XM

<x

</xsl:template>
xsl:template match="track"> <
 <xsl:variable name="bgcolor">
 <xsl:choose>

 <xsl:when test="(position() mod 2) = 1">linen</xsl:when>
 <xsl:otherwise>white</xsl:otherwise>
 </xsl:choose>

</xsl:template>
<xsl:template match="track/title">
 <td><xsl:apply-templates/></td>
</xsl:template>
<x
 <td><xsl:apply-te

sl:template> </x

Two Step View

ain data into HTML in two steps: first by forming some kind of logical page, then rendering the Turns dom
logical page into HTML.

If you have a Web application with many pages, you often want a consistent look and organization to the site.
If every page looks different, you end up with a site that users find confusing. You may also want to make
global changes to the appearance of the site easily, but common approaches using Template View (350)
or Transform View (361) make this difficult because presentation decisions are often duplicated across
multiple pages or transform modules. A global change can force you to change several files.

Two Step View deals with this problem by splitting the transformation into two stages. The first transforms the
model data into a logical presentation without any specific formatting; the second converts that logical
presentation with the actual formatting needed. This way you can make a global change by altering the second
stage, or you can support multiple output looks and feels with one second stage each.

 How It Works

The key to this pattern is in making the transformation to HTML a two-stage process. The first stage
assembles the information in a logical screen structure that is suggestive of the display elements yet contains
no HTML. The second stage takes that presentation-oriented structure and renders it into HTML

This intermediate form is a kind of logical screen. Its elements might include things like fields, headers,

s certainly presentation-oriented and certainly f ces the

ecific code written for each screen. The first stage's
odel, either a database, an actual domain model, or a domain-

footers, tables, choices, and the like. As such it'
scr

or
eens to follow a definite style. You can think of the presentation-oriented model as one that defines the

various widgets you can have and the data they contain but doesn't specify the HTML appearance.

This presentation-oriented structure is assembled by sp

ponsibility is to access a domain-oriented mres
oriented Data Transfer Object (401); to extract the relevant information for that screen; and then to put that

information into the presentation-oriented structure.

into HTThe second stage turns this presentation-oriented structure
w it as HTM

ML. It knows about each element in the
L. Thus, a system with many screens can be

age so that all the HTML formatting decisions are made in one place.
ble from the presentation-oriented structure.

re are several ways to build a Two Step View. Perhaps the easiest is with two-step XSLT. Single-step
LT follows the approach in Transform View

presentation-oriented structure and how to sho
rendered as HTML by a single second st
Of course, the constraint is that the resulting screen must be deriva

The
XS (361), in which each page has a single XSLT style sheet that

tyle sheets.
e first-stage style sheet transforms the domain-oriented XML into presentation-oriented XML, the second-

into HTML.

ther way is to use classes. Here you define the presentation-oriented structure as a set of classes: with a

ing
s to generate HTML for itself or by having a separate HTML renderer class to

transforms the domain-oriented XML into HTML. In the two-step approach there are two XSLT s
Th
stage style sheet renders that XML

noA
table class, a row class, and so forth. The first stage takes domain information and instantiates these classes
into a structure that models a logical screen. The second stage renders the classes into HTML, either by gett
ach presentation-oriented clase

do the job.

Both approaches are based on Transform View (361). You can also use a Template View (350) based

ch, in which you pick templates based on the idea of a logical screen—for example:

nto HTML. In such a scheme the page definition
includes no HTML but only these logical screen tags. As a result it will probably be an XML document, which

course means that you lose the ability to use WYSIWYG HTML editors.

le classes for two-step rendering.

approa

<field label = "Name" value = "getName" />

The template system then converts these logical tags i

of

Figure 14.4. Samp

When to Use It

Two Step View's key value comes from the separation of first and second stages, allowing you to make global
changes more easily. It helps to think of two situations: multiappearance Web applications and single-
appearance Web applications. Multiappearance apps are the rarer breed but a growing one. In them the same
basic functionality is provided through multiple organizations and each organization has its own distinct look.
A current example of this is airline travel sites, where as you look at them you can tell from the page layout
and design that they're all variations on one base site. I suspect many airlines want that same functionalit

ith a distinctly individual appe
y but

arance.

k

w

Single-appearance apps are more common. Only one organization fronts them, and they want a consistent loo
throughout the site. This makes them the easiest case to consider first.

With a single-stage view (either Template View (350) or Transform View (361), you build one view module

er Web page (see p Figure 14.6). With a Two Step View you have two stages: one first-stage module per page
odule for the entire application (Figure 14.7and one second-stage m). Your pay-off in using Two Step View is

that any change to the appearance of the site in the second stage is much easier to make, since one second-
stage change affects the site as a whole.

Figure 14.6. Single-stage view with one appearance.

Figure 14.7. Two-stage view with one appearance.

Figure 14.5. Sequence diagram for two-step rendering.

With a multiappearance app this advantage is compounded because you have a single-stage view for each

mbination of screen and appearance (Figure 14.8co). Thus, ten screens and three appearances require thirty
single stage view modules. Using Two Step View, however (see Figure 14.9), you can get away with ten first
stages and three second stages. The more screens and appearances you have, the bigger the saving.

Figure 14.8. Single-stage view with two appearances.

Figure 14.9. Two-stage view with two appearances.

Nevertheless, your ability to pull this off is entirely dependent on how well you can make the presentation-
oriented structure to really serve the needs of the appearance. A design-heavy site, where each page is
supposed to look different, won't work well with Two Step View because it's hard to find enough commonality

tween the screens to get a simple enough presentation-oriented structure. Essentially the site design is
nstrained by the presentation-oriented structure, and for many sites that's too much of a limitation.

iew

be
oc

Another drawback of Two Step View is the tools required to use it. There are a lot of tools for designers with

o programming skills to lay out HTML pages using n Template V (350), but Two Step View forces
ers to write the renderer and controller objects. Thus programmers have to be involved in any design

change.

It's also true that Two Step View, with its multiple layers, presents a harder programming model to learn,
lthough once you're used to it it's not that difficult, and may help reduce repetitive boilerplate code.

.

programm

a

A variation on the theme of multiple appearances is providing different second stages for different devices, so
you can have one second stage for a browser and another for a PDA. The usual limitation here is that both
appearances must follow the same logical screen, and for very different devices this may be too much to ask

 Example: Two Stage XSLT (XSLT)

This approach to a Two Step View uses a two-stage XLST transformation. The first stage transforms domain-
specific XML into logical screen XML; the second transforms the logical screen XML into HTML.

The initial domain oriented XML looks like this:

lbum>

><title>Milonga del Angel</title><time>6:30</time></track>
 <trac ><title>Concierto Para Quinteto</title><time>9:00</time></track>

 <track><title>Milonga Loca</title><time>3:05</time></track>
 <track><title>Michelangelo '70</title><time>2:50</time></track>
 <track><title>Contrabajisimo</title><time>10:18</time></track>
 <track><title>Mumuki</title><time>9:32</time></track>
 </trackList>

</album>

The first stage XSLT processor transforms it into this screen-oriented XML:

 <title>Zero Hour</title
 <field label="Artist">A
 <table>
 <row><cell>Tanguedia III</cell><cell>4:39</cell></row>
 <row><cell>Milonga del Angel</cell><cell>6:30</cell></row>
 <row><cell>Concierto Para Quinteto</cell><cell>9:00</cell></row>
 <row><cell>Milonga Loca</cell><cell>3:05</cell></row>
 <row><cell>Michelangelo '70</cell><cell>2:50</cell></row>
 <row><cell>Contrabajisimo</cell><cell>10:18</cell></row>
 <row><cell>Mumuki</cell><cell>9:32</cell></row>
 </table>
screen>

To do this we need the following XSLT program:

<xsl:template match="album">
 <screen><xsl:apply-templates/></screen>
</xsl:template>
<xsl:template match="album/title">
 <title><xsl:apply-templates/></title>
xsl:template>

tist">
><xsl:apply-templates/></field>

sl:template>

The screen-oriented XML is very plain. To turn it into HTML we use a second-stage XSLT program.

<xsl:template match="screen">
 <HTML><BODY bgcolor="white">
 <xsl:apply-templates/>
 </BODY></HTML>
xsl:template>

<a
 <title>Zero Hour</title>
 <artist>Astor Piazzola</artist>
 <trackList>
 <track><title>Tanguedia III</title><time>4:39</time></track>
 <track

k

<screen>

>
stor Piazzola</field>

</

</
<xsl:template match="ar
 <field label="Artist"
</xsl:template>
<xsl:template match="trackList">
 <table><xsl:apply-templates/></table>
</xsl:template>
<xsl:template match="track">
 <row><xsl:apply-templates/></row>
</xsl:template>
<xsl:template match="track/title">
 <cell><xsl:apply-templates/></cell>
</xsl:template>
<xsl:template match="track/time">
 <cell><xsl:apply-templates/></cell>
</x

</

<xsl:template match="title">
 <h1><xsl:apply-templates/></h1>

 match="field">
t = "@label"/>: <xsl:apply-templates/></P>

 </xsl:variable>
>

</xsl:template><xsl:template
 <P><xsl:value-of selec

</xsl:template>
<xsl:template match="table">

able><xsl:apply-templates/></table> <t
</xsl:template>
<xsl:template match="table/row">
 <xsl:variable name="bgcolor">

 <xsl:choose>
 <xsl:when test="(position() mod 2) = 1">linen</xsl:when>
 <xsl:otherwise>white</xsl:otherwise>

 </xsl:choose>

 <tr bgcolor="{$bgcolor}"><xsl:apply-templates/></tr
</xsl:template>

template match="table/row/cell"> <xsl:
 <td><xsl:apply-templates/></td>
</xsl:template>

In assembling the two stages, I used Front Controller (344) to help separate the code that does the work.

AlbumCommand...

 public void process() {

Writer out = response.getWriter();
 XsltProcessor processor = new TwoStepXsltProcessor("album2.xsl", "second.xsl");
 out.print(processor.getTransformation(album.toXmlDocument()));

 single-stage approach in Transform View

ss cla

 try {
 Album album = Album.findNamed(request.getParameter("name"));
 album = Album.findNamed("1234");
 Assert.notNull(album);
 Print

 } catch (Exception e) {
 throw new ApplicationException(e);
 }
 }

It's useful to compare this to the (361). If you want to change the

form Viewcolors of the alternating rows, Trans (361) requires editing every XSLT program, but with Two
 It might be possible to use
gymnastics to pull off. The down

is very much constrained by the screen-oriented XML.

 implementing Two Step View, plenty
ey're both more awkward and

 powerful than XSLT, they do show how the pattern can manifest itself in different ways. I'm being a bit
eeky with this example, for I haven't seen this done in the field. But I feel a somewhat speculative example

will give you an idea of what might be possible.

at choosing what to display and choosing the HTML that displays it are
totally separate. For this example my first stage is handled by a JSP page and its helper; my second stage, by a

 of custom tags. The interesting part of the first stage is the JSP page.

Step View only the single second-stage XSLT program needs to be changed.
 a fair bit of XSLT callable templates to do something similar, but this needs

side of Two Step View is that the final HTML

s (Java) Example: JSP and Custom Tag

Although the XSLT route is conceptually the easiest way to think about

r ways exist. For this example I'll use JSPs and custom tags. Although thof othe
less
ch

The key rule of Two Step View is th

set

<%@ taglib uri="2step.tld" prefix = "2step" %>
<%@ page session="false"%>
<jsp:useBean id="helper" class="actionController.AlbumConHelper"/>

<%helper.init(request, response);%>
<2step:screen>
step:title><jsp:getProperty name = <2
2

"helper" property = "title"/></2step:title>
tep:field label = "Artist"><jsp:getProperty name = "helper" property = "artist"/></ <

s
2step:field>

<2step:table host = "helper" collection = "trackList" columns = "title, time"/>
</2step:screen>

 I'm using ge ControllerPa (333) for the JSP page with a helper object you can flick over to Page
Controller (333) to read more about that. The important thing here is to look at the tags that are part of the
2step namespace. They are the ones I'm using to invoke the second stage. Also notice that there is no HTML
on the JSP page; the only tags present are either second-stage tags or bean manipulation tags to get values out
of the helper.

ch second-stage tag has an implementation to pump out the necessary HTML for that logical screen
ent. The simplest of these is the title.

class TitleTag...

 public int doStartTag() throws JspException {
 try {
 pageContext.getOut().print("<H1>");
 } catch (IOException e) {
 throw new JspException("unable to print start");
 }
 return EVAL_BODY_INCLUDE;
 }
 public int doEndTag() throws JspException {
 try {
 pageContext.getOut().print("</H1>");
 } catch (IOException e) {
 throw new JspException("unable to print end");
 }
 return EVAL_PAGE;
 }

For those that haven't indulged, a custom tag works by implementing hook methods called at the beginning
and the end of the tagged text. This tag simply wraps its body content with an <H1> tag. A more complex tag,
such as the field, can take an attribute. The attribute is tied into the tag class using a setting method.

class FieldTag...

 private String label;
 public void setLabel(String label) {
 this.label = label;
 }

Once the value is set, you can use it in the output.

ass FieldTag...

tartTag() throws JspException {

.print("<P>" + label + ": ");
 {

);

 JspException {

Ea
elem

cl

 public int doS

 try {
 pageContext.getOut()
 } catch (IOException e)
 throw new JspException("unable to print start"
 }
 return EVAL_BODY_INCLUDE;
 }

c int doEndTag() throws publi

 try {
 pageContext.getOut().print("</P>");

atch (IOException e) {
ceptions helping me here?");

 }
_PAGE;

st sophisticated of the tags. As well as allowing the JSP writer to choose which columns to
ate rows. The tag implementation acts as the second stage, so the

-wide change can be made globally.

n property, the object on which the collection
 column names.

private String hostName;
 private String columns;
 public void setCollection(String collectionName) {
 this.collectionName = collectionName;
 }

ost(String hostName) {
= hostName;

ring columns) {

t of an object. There's a good argument for using the various
ething" method, but this will do for the

mple.

 try {
 String methodName = "get" + property.substring(0, 1).toUpperCase() +
 property.substring(1);
 Object result = obj.getClass().getMethod(methodName, null).invoke(obj, null);
 return result;

le to get property " + property + " from " + obj);

 the request property and

able>");
ion) getPropertyFromAttribute(hostName,

 } c
 throw new JspException("how are checked ex

 return EVAL
 }

e Table is the moTh

put in the table, it highlights altern
highlighting is done there so that a system

 of the collectioThe Table tag takes attributes for the name
ts, and a comma-separated list ofproperty si

class TableTag...

 private String collectionName;

 public void setH
 this.hostName
 }
 public void setColumns(St
 this.columns = columns;
 }

I made a helper method to get a property ou

ses that support Java beans, rather than just invoking a "getsomclas
aex

class TableTag...

 private Object getProperty(Object obj, String property) throws JspException {

 } catch (Exception e) {

JspException("Unab throw new
 }
 }

This tag doesn't have a body. When it's called it pulls the named collection out of
iterates through the collection to generate the rows of the table.

class TableTag...

 public int doStartTag() throws JspException {
 try {
 JspWriter out = pageContext.getOut();
 out.print("<t
 Collection coll = (Collect
 collectionName);
 Iterator rows = coll.iterator();
 int rowNumber = 0;

 while (rows.hasNext()) {

GHLIGHT_COLOR);

(rows.next());

");

;
}

property)

 {
 Object hostObject = pageContext.findAttribute(attribute);
 if (hostObject == null)
 throw new JspException("Attribute " + attribute + " not found.");

hostObject, property);

linen'";

kground to highlight them.

 collection.

ption, JspException {

]));

lumnList() {
ingTokenizer tk = new StringTokenizer(columns, ", ");

 String[] result = new String[tk.countTokens()];

 return result;

r less constraining on the uniformity of the site's
l HTML into it will find that easier to do. Of

use by people who
stakes. That's a trade-off a team

 out.print("<tr");
 = " + HI if ((rowNumber++ % 2) == 0) out.print(" bgcolor

t(">"); out.prin
 printCells
 out.print("</tr>");
 }
 out.print("</table>");
 } catch (IOException e) {

pException("unable to print out throw new Js
 }

 return SKIP_BODY

 private Object getPropertyFromAttribute(String attribute, String
 throws JspException

 return getProperty(
 }
 public static final String HIGHLIGHT_COLOR = "'

 linen bacDuring the iteration it sets every other row to the

To print the cells for each row, I use the column names as property values on the objects in the

bleTag... class Ta

ws IOExce private void printCells(Object obj) thro
t(); JspWriter out = pageContext.getOu

 for (int i = 0; i < getColumnList().length; i++) {
 out.print("<td>");

)[i out.print(getProperty(obj, getColumnList(
 out.print("</td>");
 }
 }

te String[] getCo priva
 Str

 for (int i = 0; tk.hasMoreTokens(); i++)
 result[i] = tk.nextToken();

 }

Compared to the XSLT implementation, this solution is rathe

g to slip some individualayout. An author of one page wantin
course, while this allows tweaking of design-intensive pages, it's also open to inappropriate
are unfamiliar with how things work. Sometimes constraints help prevent mi
has to dec

ide for themselves.

pplication Controller

 flow of an application.

A

r handling screen navigation and theA centralized point fo

Some applications contain a significant amount of logic about the screens to use at different points, which may

 certain screens at certain times in an application. This is the wizard style of interaction,
re the user is led through a series of screens in a certain order. In other cases we may see screens that are

involve invoking
whe
only brought in under certain conditions, or choices between different screens that depend on earlier input.

To some degree the various Model View Controller (330) input controllers can make some of these decisions,

trollers for different

in an Application Controller. Input controllers
the appropriate commands for execution against a model and the

correct view to use depending on the application context.

w It Works

An Application Controller has two main responsibilities: deciding which domain logic to run and deciding the

ew with which display the response. To do this it typically holds two structured collections of class
erences, one for domain commands to execute against in the domain layer and one of views (Figure 14.10

but as an application gets more complex this can lead to duplicated code as several con
screens need to know what to do in a certain situation.

cing all the flow logic You can remove this duplication by pla
n Controller for then ask the Applicatio

 Ho

vi
efr).

troller has two collections of references to classes, one for domain logic

and one for view.

Figure 14.10. An application con

For both the domain commands and the view, the application controller needs a way to store something it can

invoke. A Command [Gang of Four] is a good choice, since it allows it to easily get hold of and run a block of

 reflection.

The domain commands can be command objects that are part of the Application Controller layer, or they can
 references to a Transaction Script

code. Languages that can manipulate functions can hold references to them. Another option is to hold a string
that can be used to invoke a method by

be (110) or domain object methods in the domain layer.

r can hold a string as a reference.

page, or invokes m

of

he Application
Controller as an intermediate layer between the presentation and the domain.

An application can have multiple Application Controllers to handle each of its different parts. This allows you
to split up complex logic into several classes. In this case I usually see the work divided up into broad areas of

 user interface and build separate Application Controllers for each area. On a simpler application I might
need only a single Application Controller.

If you have multiple presentations, such as a Web front end, a rich client, and a PDA, you may be able to use
the same Application Controller for each presentation, but don't be too eager. Often different UIs need a
different screen flow to achieve a really usable user interface. However, reusing a single Application
Controller may reduce the development effort, and that decreased effort may be worth the cost of a more

kward UI.

If you're using server pages as your views, you can use the server page name. If you're using a class, a
command or a string for a reflective call makes sense. You might also use an XSLT transform, to which the

plication ControlleAp

One decision you'll need to make is how much to separate the Application Controller from the rest of the
presentation. At the first level this decision manifests itself in whether the Application Controller has
dependencies to the UI machinery. Perhaps it directly accesses the HTTP session data, forwards to a server

ethods on a rich-client class.

Although I've seen direct Application Controllers, my preference is for the Application Controller to have no
links to the UI machinery. For a start this makes it possible to test the Application Controller independently
the UI, which is a major benefit. It's also important to do this if you're going to use the same Application

ntroller with multiple presentations. For these reasons many people like to think of tCo

the

aw

A common way of thinking about a UI is as a state machine, where certain events trigger different responses
depending on the state of certain key objects in the application. In this case the Application Controller is
particularly amenable to using metadata to represent the state machine's control flow. The metadata can either

 set up by programming language calls (the simplest way) or it can be stored in a separate configuration file.be

You may find domain logic particular to one request placed in an Application Controller (379). As you migh
suspect, I come down pretty hard against that notion. However, the boundary between domain and application
logic does get very murky. Say I'm handling insurance applications and I need to show a separate screen of
questions only if the applicant is a smoker. Is this application logic or domain logic? If I have only a few such
cases I can probably put that kind of logic in the

t

Application Controller (379), but if it occurs in lots of place

need to design the
s I

Domain Model (116) in such a way to drive this.

hen to Use It

 W

If the flow and naviga
r

tion of your application are simple enough so that anyone can visit any screen in pretty
ch any order, the e's little value in a Application Controller. The strength of an Application Controller

comes from definite rules about the order in which pages should be visited and different views depending on
the state of objects.

A good signal to use an Application Controller is if you find yourself having to make similar changes in lots o

mu

f
different places when your application's flow changes.

urther Reading

Most of the ideas that underlie the writing of this pattern came from [Knight and Dai

 F

]. Although their ideas
aren't exactly new, I found their explanations remarkably clear and compelling.

 Example: State Model Application Controller (Java)

te models are a common way of thinking about user interfaces. They're particularly appropriate when you

Sta
need to react differently to events depending on the state of some object. In this example I have a simple state
model for a couple of commands on an asset (Figure 14.11). ThoughtWork's leasing experts would faint at th
virulent oversimplification of this model, but it will do as an example of a state-based Application Controller.

Figure 14.11. A simple state diagram for an asset.

e

As far as the code is concerned our rules are these:

• When we receive a return command and we're in the On lease state, we display a page to capture
information about the return of the asset.

• A return event in the in Inventory state is an error, so we show an illegal action page.
• When we receive a damage command we show different pages depending on whether the asset is in the

Inventory or the On lease state.

The input controller is a Front Controller (344). It services the request like this:

class FrontServlet...

 public void service(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException
 {

 "/" + appController.getView(commandString, getParameterMap(request)) +
jsp";
 forward(viewPage, request, response);

this scheme I'm assum Controllers, all of which implement the same interface.

r our commands the appropriate Application Controller is an asset application controller. It uses a response
 domain command I use a reference to a class;

 the view I use a string, which the front controller will turn into a URL for a JSP.

 this.viewUrl = viewUrl;
 }
 public DomainCommand getDomainCommand() {
 try {
 return (DomainCommand) domainCommand.newInstance();
 } catch (Exception e) {throw new ApplicationException (e);
 }

 }

 }

The application controller holds on to the responses using a map of maps indexed by the command string and
an asset status (Figure 14.12

 ApplicationController appController = getApplicationController(request);
 String commandString = (String) request.getParameter("command");
 DomainCommand comm =
 appController.getDomainCommand(commandString, getParameterMap(request));
 comm.run(getParameterMap(request));
 String viewPage =

".

 }

The flow of the service method is pretty straightforward: We find the right application controller for a given
request, ask the application controller for the domain command, execute the domain command, ask the
application controller for a view, and, finally, forward to the view.

ing a number of Application In

interface ApplicationController...

 DomainCommand getDomainCommand (String commandString, Map params);
 String getView (String commandString, Map params);

Fo
class to hold the domain commands and view references. For the
for

class Response...

 private Class domainCommand;
 private String viewUrl;
 public Response(Class domainCommand, String viewUrl) {
 this.domainCommand = domainCommand;

 public String getViewUrl() {
 return viewUrl;

).

class AssetApplicationController...

 private Response getResponse(String commandString, AssetStatus state) {
 return (Response) getResponseMap(commandString).get(state);
 }
 private Map getResponseMap (String key) {
 return (Map) events.get(key);
 }
 private Map events = new HashMap();

Figure 14.12. How the asset application controller stores its references to domain commands and views

When asked for a domain command, the controller looks at the request to figure out the asset ID, goes to the
domain to determine the status of that asset, looks up the appropriate domain command class, instantiates that

ss, and returns the new object.

class AssetApplicationController...

 public DomainCommand getDomainCommand (String commandString, Map params) {
 Response reponse = getResponse(commandString, getAssetStatus(params));
 return reponse.getDomainCommand();
 }
 private AssetStatus getAssetStatus(Map params) {
 String id = getParam("assetID", params);

 Asset asset = Asset.find(id);
 return asset.getStatus();
 }
 private String getParam(String key, Map params) {
 return ((String[]) params.get(key))[0];
 }

All the domain commands follow a simple interface that allows the front controller to run them.

interface DomainCommand...

 abstract public void run(Map params);

Once the domain command has done what it needs to do, the Application Controller comes into play again
when it's asked for the view.

class AssetApplicationController...

cla

 public String getView (String commandString, Map params) {
 return getResponse(commandString, getAssetStatus(params)).getViewUrl();

 }

In this case the Application Controller doesn't return the full URL to the JSP. It returns a string that the front

 in the responses. It also makes it

The Application Controller can be loaded for use with code.

ass AssetApplicationController...

 public void addResponse(String event, Object state, Class domainCommand, String view)
{
 Response newResponse = new Response (domainCommand, view);
 if (! events.containsKey(event))
 events.put(event, new HashMap());
 getResponseMap(e
 }
 private static void loadApplicationController(AssetApplicationController

controller turns into an URL. I do this to avoid duplicating the URL paths
easy to add further indirection later should I need it.

cl

vent).put(state, newResponse);

 appController) {
 appController = AssetApplicationController.getDefault();
 appController.addResponse("return", AssetStatus.ON_LEASE,
 GatherReturnDetailsCommand.class, "return");
 appController.addResponse("return", AssetStatus.IN_INVENTORY,
 NullAssetCommand.class, "illegalAction");

ience, but even so I'll leave it to you.

 appController.addResponse("damage", AssetStatus.ON_LEASE,
 InventoryDamageCommand.class, "leaseDamage");
 appController.addResponse("damage", AssetStatus.IN_INVENTORY,
 LeaseDamageCommand.class, "inventoryDamage");
 }

ing this from a file instead isn't rocket scDo

Chapter 15. Distribution Patterns

Remote Facade

Data Transfer Object

Remote Facade

 coarse-grained facade on fine-grained objects to improve efficiency oProvides a ver a network.

In an object-oriented model, you do best with small objects that have small methods. This gives you lots of
opportunity for control and substitution of behavior, and to use good intention revealing naming to make an

plication easier to understand. One of the consequences of such fine-grained behavior is that there's usually
reat deal of interaction between objects, and that interaction usually requires lots of method invocations.

ne-grained interaction works well, but this happy state does not exist when you
ote calls are much more expensive because there's a lot more to do: Data

y need to be routed through switches.
sides of the globe, the speed of light may be a factor.

all—

As a result any object that's intended to be us at
 the number of calls needed to get something done. Not only does this affect your method calls, it

 order and its order lines individually, you need to access and
tructure. You give up the clear
. Programming becomes more

ap
a g

Within a single address space fi

ke calls between processes. Remma
may have to be marshaled, security may need to be checked, packets ma
If the two processes are running on machines on opposite
The brutal truth is that any inter-process call is orders of magnitude more expensive than an in-process c
even if both processes are on the same machine. Such a performance effect cannot be ignored, even for
believers in lazy optimization.

ed as a remote objects needs a coarse-grained interface th
minimizes
also affects your objects. Rather than ask for an
update the order and order lines in a single call. This affects your entire object s

hodsintention and fine-grained control you get with small objects and small met
difficult and your productivity slows.

A Remote Facade is a coarse-grained facade [Gang of Four] over a web of fine-grained objects. None of the
ained objects have a remote interface, and the Remote Facade contains no domain logic. All the Remote

ade does is translate coarse-grained methods onto the underlying fine-grained objects.

ponsibilities into different objects; and as a result it has become the standard pattern for this problem. I

e
om a coarse-grained to a fine-grained interface.

e

fine-gr
Fac

 How It Works

mote Facade tackles the distribution problem which the standard OO approach of separating distinct Re
res
recognize that fine-grained objects are the right answer for complex logic, so I ensure that any complex logic
is placed in fine-grained objects that are designed to collaborate within a single process. To allow efficient
remote access to them, I make a separate facade object that acts as a remote interface. As the name implies, th

ade is merely a thin skin that switches frfac

In a simple case, like an address object, a Remote Facade replaces all the getting and setting methods of the
regular address object with one getter and one setter, often referred to as bulk accessors. When a client calls a
bulk setter, the address facade reads the data from the setting method and calls the individual accessors on th

l address object (see Figure 15.1rea) and does nothing more. This way all the logic of validation and
 address object where it can be factored cleanly and can be used by other fine-grained

al calls from the facade to the domain object

computation stays on the
jects.ob

Figure 15.1. One call to a facade causes sever

any fine-grained objects.
order, all its order lines, and

 in bulk like this, you need it to be in a form that can easily move over the wire. If
re present on both sides of the connection and they're serializable, you can transfer

thod creates a copy of the original address
 the actual address object's data.

 can't be simply replaced

In a more complex case a single Remote Facade may act as a remote gateway for m

 to get and update information for an For example, an order facade may be used
maybe some customer data as well.

In transferring information

ne-grained classes ayour fi
them directly by making a copy. In this case a getAddressData me

ject and uses it to updateobject. The setAddressData receives an address ob
(This assumes that the original address object needs to preserve its identity and thus
with the new address.)

Often you can't do this, however. You m
or it may be difficult to ser

ay not want to duplicate your domain classes on multiple processes,
ialize a segment of a domain model due to its complicated relationship structure.

ent may not want the whole model but just a simplified subset of it. In these cases it makes sense to use
ata Transfer Object

T e clih
 Da (401) as the basis of the transfer.

In the sketch I've shown a Remote Facade that corresponds to a single domain object. This isn't uncommon
and it's easy to understand, but it isn't the most usual case. A single Remote Facade would have a number of
methods, each designed to pass on information from several objects. Thus, getAddressData and

AddressData would be methods defined on a class like CustomerService, which would also have methods

anularity is one of the most tricky issues with Remote Facade. Some people like to make fairly small
mote Facades, such as one per use case. I prefer a coarser grained structure with much fewer Remote

are

u design a Remote Facade based on the needs of a particular client's usage—most commonly the need to
 for
s on

an order's status, invokes command methods on the facade. Quite often you'll have
ferent methods on the Remote Facade that do pretty much the same thing on the underlying objects. This is

. The facade is designed to make life simpler for external users, not for the internal
s of it as a different command, it is a different command, even if it all goes

cade can be pooled, which can improve
ever, if the interaction involves state across a

store session state somewhere using Client Session State

set
along the lines of getPurchasingHistory and updateCreditData.

Gr
Re
Facades. For even a moderate-sized application I might have just one and even for a large application I may
have only half a dozen. This means that each Remote Facade has a lot of methods, but since these methods
small I don't see this as a problem.

Yo
view and update information through a user interface. In this case you might have a single Remote Facade
a family of screens, for each of which one bulk accessor method loads and saves the data. Pressing button
a screen, say to change
dif
common and reasonable
system, so if the client process think
to the same internal command.

Remote Facade can be stateful or stateless. A stateless Remote Fa

iency, especially in a B2C situation. Howresource usage and effic
, then it needs to session (456) or Database Session

State (462), or an implementation of Server Session State (458). As stateful a Remote Facade can hold on to its
own state, which makes for an easy implementation of Server Session State (458), but this may lead to

emote
ontrol list can say
ural point at which

ol. A Remote Facade method can start a transaction, do all the internal work, and
mmit the transaction at the end. Each call makes a good transaction because you don't want a

return goes back to the client, since transactions aren't built to be efficient for such long

omain logic in it. Repeat after me three
 that has only minimal
ut it in your fine-grained

pt

performance issues when you have thousands of simultaneous users.

As well as providing a coarse-grained interface, several other responsibilities can be added to a R
Facade. For example, its methods are a natural point at which to apply security. An access c

lls on which methods. The Remote Facade methods also are a natwhich users can invoke ca
ly transactional contrto app

n cothe
transaction open when
running cases.

One of the biggest mistakes I see in a Remote Facade is putting d
times; "Remote Facade has no domain logic." Any facade should be a thin skin

 coordination either presponsibilities. If you need domain logic for workflow or
create a separate nonremotable objects or Transaction Scri (110) to contain it. You should be able to run the

ithout using the Remote Facades or having to duplicate any code. entire application locally w

 Remote Facade and Session Facade

Over the last couple of years the Session Facade [Alur et al.] pattern has been appearing in the J2E
community. In my earlier drafts I considered Remote Facade to be

E
 pattern as Session Facade and
nce. Remote Facade is all about

st descriptions of

n approach of using J2EE session beans to wrap entity beans. Any coordination of entity beans has to
one by another object since they can't be re-entrant.

 the same
ession Facade name. In practice, however, there's a crucial differeused the S

having a thin remote skin—hence my diatribe against domain logic in it. In contrast, mo
tting logic in it, usually of a workflow kind. A large part of this is due to the Session Facade involve pu

commo
be d

As a result, I see a Session Facade as putting several Transaction Scripts (110) in a remote interface. That's
reasonable ap

 a
proach, but it isn't the same thing as a Remote Facade. Indeed, I would argue that, since the

ssion Facade contains domain logic, it shouldn't be called a facade at all!

 Service Layer

Se

A concept familiar to facades is a Service Layer (133). The main difference is that a service layer doesn't have

t need to have only fine-grained methods. In simplifying the Domain Modelto be remote and thus doesn' (116),
ethods, but that's for clarity, not for network efficiency. Furthermore,

e Data Transfer Objects
you often end up with coarser-grained m

sthere's no need for a service layer to u (401). Usually it can happily return real domain
he client.

objects to t

If a Domain Model (116) is going to be used both within a process and remotely, you can have a Service
Layer (133) and layer a separate Remote Facade on top of it. If the process is only used remotely, it's probably
easier to fold the Service Layer (133) into the Remote Facade, providing the Service Layer (133) has no

 application logic in it, then I would make the Remote Facade a separate object.

emote Facade whenever you need remote access to a fine-grained object model. You gain the
antages of a coarse-grained interface while still keeping the advantage of fine-grained objects, giving you

The most common use of this pattern is between a presentation and a Domain Model

application logic. If there's any

 When to Use It

 RUse
vad

the best of both worlds.

 (116), where the two

may run on different processes. You'll get this between a swing UI and server domain model or with a servlet
and a server object model if the application and Web servers are different processes.

Most often you run into this with different processes on different machines, but it turns out that the cost of an
inter-process call on the same box is sufficiently large that you need a coarse-grained interface for any inter-
process communication regardless of where the processes live.

If all your access is within a single process, you don't need this kind of conversion. Thus, I wouldn't use this
pattern to communicate between a client Domain Model (116) and its presentation or between a CGI script
and Domain Model (116) running in one Web server. You don't see Remote Facade used with a Transaction
Script (110) as a rule, since a Transaction Script (110) is inherently coarser grained.

Remote Facades imply a synchronous—that is, a remote procedure call—style of distribution. Often you can
greatly improve the responsiveness of an application by going with asynchronous, message-based remote
communication. Indeed, an asynchronous approach has many compelling advantages. Sadly, discussion of
asynchronous patterns is outside the scope of this book.

 Example: Using a Java Session Bean as a Remote Facade (Java)

 you're working with the Enterprise Java platform, a good choice for a distributed facade is a session bean
cause its a remote object and may be stateful or stateless. In this example I'll run a bunch of POJOs (plain

old Java objects) inside an EJB container and access them remotely through a session bean that's designed as a
Remote Facade. Session beans aren't particularly complicated, so everything should make sense even if you
haven't done any work with them before.

I feel the need for a couple of side notes here. First, I've been surprised by how many people seem to believe
that yo s inside an EJB container in Java. I hear the question, "Are the domain objects
entity beans?" The answer is, they can be but they don't have to be. Simple Java objects work just fine, as in
this exa

y second side note is just to point out that this isn't the only way to use session beans. They can also be used
to host Transaction Scripts

If
be

u can't run plain object

mple.

M

 (110).

In this example I'll look at remote interfaces for accessing information about music albums. The Domain

Model (116) consists of fine-grained objects that represent an artist, and album, and tracks. Surrounding this
 packages that provide the data sources for the application (see Figure 15.2are several other).

Figure 15.2. Packages the remote interfaces.

In the figure, the dto package contains Data Transfer Objects (401) that help move data over the wire to the
client. They have simple accessor behavior and also the ability to serialize themselves in binary or XML
textual formats. In the remote package are assembler objects that move data between the domain objects and
the Data Transfer Objects (401). If you're interested in how this works see the Data Transfer Object (401)
discussion.

To explain the facade I'll assume that I can move data into and out of Data Transfer Objects (401) and
concentrate on the remote interfaces. A single logical Java session bean has three actual classes. Two of
make up the remote API (and in fact are Java interfaces); the other is the class that implements the API. The
two interfaces are the AlbumService itself and the home object, AlbumHome. The home object is used by the
naming service to get access to the distributed facade, but that's an EJB detail that I'll skip over here. Our
interest is in the Remote

them

 Facade itself; AlbumService. Its interface is declared in the API package to be used
 the client and is just a list of methods.

bum(String id, AlbumDTO dto) throws RemoteException;
 void addArtistNamed(String id, String name) throws RemoteException;
 void addArtist(String id, String xml) throws RemoteException;

by

class AlbumService...

 String play(String id) throws RemoteException;
 String getAlbumXml(String id) throws RemoteException;
 AlbumDTO getAlbum(String id) throws RemoteException;
 void createAlbum(String id, String xml) throws RemoteException;
 void createAlbum(String id, AlbumDTO dto) throws RemoteException;
 void updateAlbum(String id, String xml) throws RemoteException;
 void updateAl

 void addArtist(String id, ArtistDTO dto) throws RemoteException;
 ArtistDTO getArtist(String id) throws RemoteException;

Notice that even in this short example I see methods for two different classes in the Domain Model (116):

ist and album. I also see minor variations on the same method. Methods have variants that use either art
the Data Transfer Object (401) or an XML string to move data into the remote service. This allows the client

 public AlbumDTO getAlbum(String id) throws RemoteException {
 return new AlbumAssembler().writeDTO(Registry.findAlbum(id));
 }
 public String getAlbumXml(String id) throws RemoteException {
 AlbumDTO dto = new AlbumAssembler().writeDTO(Registry.findAlbum(id));
 return dto.toXmlString();
 }
 public void createAlbum(String id, AlbumDTO dto) throws RemoteException {
 new AlbumAssembler().createAlbum(id, dto);
 }
 public void createAlbum(String id, String xml) throws RemoteException {
 AlbumDTO dto = AlbumDTO.readXmlString(xml);
 new AlbumAssembler().createAlbum(id, dto);
 }
 public void updateAlbum(String id, AlbumDTO dto) throws RemoteException {
 new AlbumAssembler().updateAlbum(id, dto);
 }
 public void updateAlbum(String id, String xml) throws RemoteException {
 AlbumDTO dto = AlbumDTO.readXmlString(xml);
 new AlbumAssembler().updateAlbum(id, dto);
 }

 or two

to choose which form to use depending on the nature of the client and of the connection. As you can see, for
even a small application this can lead to many methods on AlbumService.

Fortunately, the methods themselves are very simple. Here are the ones for manipulating albums:

class AlbumServiceBean...

As you can see, each method really does nothing more than delegate to another object, so it's only a line
in length. This snippet illustrates nicely what a distributed facade should look like: a long list of very short
methods with very little logic in them. The facade then is nothing more than a packaging mechanism, which is
as it should be.

We'll just finish with a few words on testing. It's very useful to be able to do as much testing as possible in a
single process. In this case I can write te

sts for the session bean implementation directly: these can be run

thout deploying to the EJB container.

 newkob = AlbumDTO.readXmlString(new StringReader(buffer.toString()));
 }

un in memory. It showed how I can create an instance of the session
an outside the container and run tests on it, allowing a faster testing turnaround.

 Example: Web Service (C#)

as talking over this book with Mike Hendrickson, my editor at Addison-Wesley. Ever alert to the latest
zzwords, he asked me if I had anything about Web services in it. I'm actually loathe to rush to every

m

 its heart a Web service is nothing more than an interface for remote usage (with a slow string-parsing step

wi

class XmlTester...

 private AlbumDTO kob;
 private AlbumDTO newkob;
 private AlbumServiceBean facade = new AlbumServiceBean();
 protected void setUp() throws Exception {
 facade.initializeForTesting();
 kob = facade.getAlbum("kob");
 Writer buffer = new StringWriter();
 kob.toXmlString(buffer);

 public void testArtist() {
 assertEquals(kob.getArtist(), newkob.getArtist());
 }

That was one of the JUnit tests to be r
be

I w
bu
fashion—after all, given the languid pace of book publishing any "latest fashion" that I write about will see
quaint by the time you read about it. Still, it's a good example of how core patterns so often keep their value
even with the latest technological flip-flops.

At
thrown in for good measure). As such the basic advice of Remote Facade holds: Build your functionality in a
fine-grained manner and then layer a Remote Facade over the fine-grained model in order to handle Web
services.

For the example, I'll use the same basic problem I described previously, but concentrate just on the request for
information about a single album. Figure 15.3 shows the various classes that take part. They fall into the

iliar groups: album service, the Remote Facade; two Data Transfer Objectsfam (401); three objects in
a Domain Model (116); and an assembler to pull data from the Domain Model (116) into the Data Transfer
Objects (401).

Figure 15.3. Classes for the album Web service.

The Domain Model

 (116) is absurdly simple; indeed, for this kind of problem you're better off using a Table
Data Gateway (144) to create the Data Transfer Objects (401) directly. However, that would rather spoil the
example of a Remote Facade layered over a domain model.

class Album...

 public String Title;

 public IList Tracks {
 get {return ArrayList.ReadOnly(tracksData);}
 }
 public void AddTrack (Track arg) {
 tracksData.Add(arg);

Track (Track arg) {
;

= new ArrayList();

ss Artist...

 public String Title;
erformers {
n ArrayList.ReadOnly(performersData);}

 public void AddPerformer (Artist arg) {
 performersData.Add(arg);

ovePerformer (Artist arg) {

 public Artist Artist;

 }
 public void Remove
 tracksData.Remove(arg)
 }
 private IList tracksData

cla

 public String Name;

class Track...

 public IList P

 get {retur
 }

 }

 public void Rem
 performersData.Remove(arg);
 }
 private IList performersData = new ArrayList();

I use Data Transfer Objects (401) for passing the data over the wire. These are just data holders that flatten the
structure for the purposes of the Web service.

class AlbumDTO...

 public String Title;
 public String Artist;
 public TrackDTO[] Tracks;
ass TrackDTO...

cl

 public String Title;
 public String[] Performers;

Since this is .NET, I don't need to write any code to serialize and restore into XML. The .NET framework

mes with the appropriate serializer class to do the job. co

This is a Web service, so I also need to declare the structure of the Data Transfer Objects (401) in WSD

isual Stud
L. The

io tools will generate the WSDL for me, and I'm a lazy kind of guy, so I'll let it do that. Here's the
rresponds to the Data Transfer Objects

V
XML Schema definition that co (401):

"1" maxOccurs="1" name="Title" nillable="true" type="s:

 <s:complexType name="AlbumDTO">
 <s:sequence>
 <s:element minOccurs=
 string" />

 <s:element minO ccurs="1" maxOccurs="1" name="Artist" nillable="true" type="s:
 string" />
 <s:element minOccurs="1" maxOccurs="1" name="Tracks"

"true" type="s0:ArrayOfTrackDTO" /> nillable=
 </s:sequence>
 </s:complexType>

TrackDTO" <s:complexType name="ArrayOf
ce>

>

="TrackDTO"

 <s:sequence>
="true" type="s:

 <s:sequen
 <s:element minOccurs="0" maxOccurs="unbounded" name

> nillable="true" type="s0:TrackDTO" /
 </s:sequence>
 </s:complexType>

TO"> <s:complexType name="TrackD

 <s:element minOccurs="1" maxOccurs="1" name="Title" nillable
 string" />

mers" <s:element minOccurs="1" maxOccurs="1" name="Perfor
 nillable="true" type="s0:ArrayOfString" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfString">

nce> <s:seque
 <s:element minOccurs="0" maxOccurs="unbounded" name="string"

cularly verbose data structure definition, but it does the job.

To get the data from the Domain Model

 nillable="true" type="s:string" />
 </s:sequence>
 </s:complexType>

XML, it's a partiBeing

 (116) to the Data Transfer Object (401) I need an assembler.

class AlbumAssembler...

 public AlbumDTO WriteDTO (Album subject) {
 AlbumDTO result = new AlbumDTO();

 result.Artist = subject.Artist.Name;
 result.Title = subject.Title;
 ArrayList trackList = new ArrayList();
 foreach (Track t in subject.Tracks)

 result.Tracks = (TrackDTO[]) trackList.ToArray(typeof(TrackDTO));
 return result;

subject) {

 result.Performers = (String[]) performerList.ToArray(typeof (String));
 return result;
 }

"unable to find album with key: " +

s from the WSDL file. Here are the relevant bits:

>
 />

ration>

:GetAlbum" />

ut">

rs="1" name="key" nillable="true" type="s:

 trackList.Add (WriteTrack(t));

 }
 public TrackDTO WriteTrack (Track

 TrackDTO result = new TrackDTO();
 result.Title = subject.Title;

 result.Performers = new String[subject.Performers.Count];
w ArrayList(); ArrayList performerList = ne

 foreach (Artist a in subject.Performers)
 performerList.Add (a.Name);

The last piece we need is the service definition itself. This comes first from the C# class.

class AlbumService...

 [WebMethod]
 public AlbumDTO GetAlbum(String key) {

bumFinder()[key]; Album result = new Al
 if (result == null)

hrow new SoapException (t
 key, SoapException.ClientFaultCode);

result); else return new AlbumAssembler().WriteDTO(
 }

s isn't the real interface definition—that comeOf course, thi

<portType name="AlbumServiceSoap">

="GetAlbum"> <operation name
 <input message="s0:GetAlbumSoapIn" /

utput message="s0:GetAlbumSoapOut" <o
/ope <

</portType>
> <message name="GetAlbumSoapIn"

 <part name="parameters" element="s0
</message>

e="GetAlbumSoapO<message nam
 <part name="parameters" element="s0:GetAlbumResponse" />
</message>
<s:element name="GetAlbum">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccu
 string" />
 </s:sequence>
 </s:complexType>
</s:element>
<s:element name="GetAlbumResponse">

 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="GetAlbumResult"

 nillable="true" type="s0:AlbumDTO" />
 </s:sequence>
 </s:complexType>
</s:element>

As expected, WSDL is rather more garrulous than your average politician, but unlike so many of them, it does
 job done. I can now invoke the service by sending a SOAP message of the form

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

="http://martinfowler.com">

</soap:Body>
soap:Envelope>

ty
ote Facades and Data Transfer Objects

get the

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 <soap:Body>
 <GetAlbum xmlns

 <key>aKeyString</key>
 </GetAlbum>

</

The important thing to remember about this example isn't the cool gyrations with SOAP and .NET but the
fundamental layering approach. Design an application without distribution, then layer the distribution abili
on top of it with Rem (401).

Data Transfer Object

between processes in order to reduce the number of method calls.

An object that carries data

 as Remote Facade

When you're working with a remote interface, such (388), each call to it is expensive. As a

gram—indeed, it's

 is to create a Data Transfer Object that can hold all the data for the call. It needs to be serializable
to go across the connection. Usually an assembler is used on the server side to transfer data between the DTO
and any domain objects.

any people in the Sun community use the term "Value Object" for this pattern. I use it to mean something
e. See the discussion on page 487.

 Data Transfer Object is one of those objects our mothers told us never to write. It's often little
ch of fields and the getters and setters for them. The value of this usually hateful beast is that it

result you need to reduce the number of calls, and that means that you need to transfer more data with each
d to procall. One way to do this is to use lots of parameters. However, this is often awkwar

only a single value.often impossible with languages such as Java that return

The solution

M
els

 How It Works

In many ways, a
more than a bun

allows you to move several pieces of information over a network in a single call—a trick that's essential for
tributed systems.

henever a remote object needs some data, it asks for a suitable Data Transfer Object. The Data Transfer
ct will usually carries much more data than what the remote object requested, but it should carry all the

 the remote object will need for a while. Due to the latency costs of remote calls, its better to err on the

 data from. Thus, if a remote object requests data
out an order object, the returned Data Transfer Object will contain data from the order, the customer, the

line items, the products on the line items, the delivery information—all sorts of stuff.

You can't usually transfer objects from a Domain Model

dis

W
Obje

tada
side of sending too much data than have to make multiple calls.

A single Data Transfer Object usually contains more than just a single server object. It aggregates data from all
the server objects that the remote object is likely to want
ab

 (116). This is because the objects are usually
connected in a complex web that's difficult, if not impossible, to serialize. Also you usually don't want the
domain object classes on the server, which is tantamount to copying the whole Domain Model (116) there.
Instead you have to transfer a simplified form of the data from the domain objects.

, or

The fields in a Data Transfer Object are fairly simple, being primitives, simple classes like strings and dates
other Data Transfer Objects. Any structure between data transfer objects should be a simple graph structure—
normally a hierarchy—as opposed to the more complicated graph structures that you see in a Domain
Model (116). Keep these simple attributes because they have to be serializable and they need to be understood

 wire. As a result the Data Transfer Object classes and any classes they reference must be
present on both sides.

It makes sense to design the Data Transfer Object around the needs of a particular client. That's why you often
see them corresponding to Web pages or GUI screens. You may also see multiple Data Transfer Objects for an
order, depending on the particular screen. Of course, if different presentations require similar data, then it

kes sense to use a single Data Transfer Object to handle them all.

ata, but I don't

sitate to use different Data Transfer Objects if a particular request suggests it. It's one of those things you
se

A sim
es for each. Again, there's no blanket rule. If the data in each case is pretty similar, use one. If they're very

m the client and create and send back a different one, even if it's the same class. Other people alter
er Object. I don't have any strong opinions either way, but on the whole I prefer a

mu l ct for
the r sp
confusi

by both sides of the

ma

A related question to consider is using a single Data Transfer Object for a whole interaction versus different
ones for each request. Different Data Transfer Objects make it easier to see what data is transferred in each
call, but leads to a lot of Data Transfer Objects. One is less work to write, but makes it harder to see how each

ll transfers information. I'm inclined to use just one if there's a lot of commonality over the dca
he
can't make a blanket rule about, so I might use one Data Transfer Object for most of the interaction and u
different ones for a couple of requests and responses.

ilar question is whether to have a single Data Transfer Object for both request and response or separate
on
different, I use two.

Some people like to make Data Transfer Objects immutable. In this scheme you receive one Data Transfer

ject froOb
the request Data Transf

tab e Data Transfer Object because it's easier to put the data in gradually, even if you make a new obje
e onse. Some arguments in favor of immutable Data Transfer Object have to do with the naming

on with Value Object (486).

A comm that of a Record Seton form for Data Transfer Object is (508), that is, a set of tabular records—
exactly what you get back from a SQL query. Indeed, a Record Set (508) is the Data Transfer Object for a

L database. Architectures often use it throughout the design. A domain model can generate a Record SQ
Set (508) of data to transfer to a client, which the client treats as if it was coming directly from SQL. This is
useful if the client has tools that bind to Record Set (508) structures. The Record Set (508) can be entirely
created by the domain logic, but more likely it's generated from a SQL query and modified by the domain

ic before it's passed on to the presentation. This style lends itself to Table Modulelog (125).

s,

d
it's

rializing the Data Transfer Object

nto with objects in a
main model. As a result I always use the automatic mechanism if I can.

If you don't have an automatic mechanism, you can usually create one yourself. I've seen several code
generators that take a simple record descriptions and generate appropriate classes to hold the data, provide
accessors, and read and write the data serializations. The important thing is to make the generator only as
complicated as you actually need it to be, and don't try to put in features you only think you'll need. It can be a

od idea to write the first classes by hand and then use them to help you write the generator.

serialization and deserialization routines once and put them in a superclass. There may be a performance cost
this; you'll have to measure it to find out if the cost is significant.

o choose a mechanism that both ends of the connection will work with. If you control both ends,
u pick the easiest one; if you don't, you may be able to provide a connector at the end you don't own. Then
u can use a simple Data Transfer Object on both sides of the connection and use the connector to adapt to

lar
t

Another form of Data Transfer Object is as a generic collection data structure. I've seen arrays used for thi
but I discourage that because the array indices obscure the code. The best collection is a dictionary because
you can use meaningful strings as keys. The problem is that you lose the advantage of an explicit interface an
strong typing. A dictionary can be worth using for ad hoc cases when you don't have a generator at hand, as
easier to manipulate one than to write an explicit object by hand. However, with a generator I think you're
better off with an explicit interface, especially when you consider that it is being used as communication
protocol between different components.

 Se

Other than simple getters and setters, the Data Transfer Object is also usually responsible for serializing itself
into some format that will go over the wire. Which format depends on what's on either side of the connection,
what can run over the connection itself, and how easy the serialization is. A number of platforms provide built
in serialization for simple objects. For example, Java has a built-in binary serialization and .NET has built-in
binary and XML serializations. If there's a built-in serialization, it usually works right out of the box because
Data Transfer Objects are simple structures that don't deal with the complexities you run i
do

go

You can also use reflective programming to handle the serialization. That way you only have to write the

to

You have t
yo
yo
the foreign component.

One of the most common issues you face with Data Transfer Object is whether to use a text or a binary
serialization form. Text serializations are easy to read to learn what's being communicated. XML is popu
because you can easily get tools to create and parse XML documents. The big disadvantages with text are tha
it needs more bandwidth to send the same data (something particularly true of XML) and there's often a
performance penalty, which can be quite significant.

An important factor for serialization is the synchronization of the Data Transfer Object on each side of the
wire. In theory, whenever the server changes the definition of the Data Transfer Object, the client updates as
well but in practice this may not happen. Accessing a server with an out-of-date client always leads to
problems, but the serialization mechanism can make the problems more or less painful. With a pure binary

ialization of a Data Transfer Object the result will be that its communication is entirely lost, since any
ange to its structure usually causes an error on deserialization. Even an innocuous change, such as adding an

her serialization schemes can avoid this. One is XML serialization, which can usually be written in a way
t makes the classes more tolerant of changes. Another is a more tolerant binary approach, such as

e

ssembling a Data Transfer Object from Domain Objects

e

on the domain object. Nor do I want the domain objects to be dependent of the Data Transfer
ject since the Data Transfer Object structure will change when I alter interface formats. As a general rule, I
nt to keep the domain model independent of the external interfaces.

As a result I like to make a separate assembler object responsible for creating a Data Transfer Object from the
domain model and updating the model from it (Figure 15.4

ser
ch
optional field, will have this effect. As a result direct binary serialization can introduce a lot of fragility into
the communication lines.

Ot
tha
serializing the data using a dictionary. Although I don't like using a dictionary as the Data Transfer Object, it
can be a useful way of doing a binary serialization of the data, since that introduces some tolerance into th
synchronization.

 A

A Data Transfer Object doesn't know about how to connect with domain objects. This is because it should b
deployed on both sides of the connection. For that reason I don't want the Data Transfer Object to be
dependent
Ob
wa

). The assembler is an example of a Mapper (473)
in that it maps between the Data Transfer Object and the domain objects

Figure 15.4. An assembler object can keep the domain model and the data transfer objects independent

of each other.

I may also have multiple assemblers share the same Data Transfer Object. A common case for this is different

pdate semantics in different scenarios using the same data. Another reason to sepu arate the assembler is that
 Data Transfer Object can easily be generated automatically from a simple data description. Generating the

the
assembler is more difficult and indeed often impossible.

 When to Use It

Use a Data Transfer Object whenever you need to transfer multiple items of data between two processes in
single method call.

a

natives to Data Transfer Object, although I'm not a fan of them. One is to not use an

object at all but simply to use a setting method with many arguments or a getting method with several pass-by
reference arguments. The problem is that many languages, such as Java, allow only one object as a return
value, so, although this can be used for updates, it can't be used for retrieving information without playing
games with callbacks.

Another alternative is to use a some form of string representation directly, without an object acting as the

erface to it. Here the problem is that everything else is coupled to the string representation. It's good to hide
 precise representation behind an explicit interface; that way, if you want to change the string or replace it

 to communicate between components
ing XML. The XML DOM is a pain in the neck to manipulate, and it's much better to use a Data Transfer

n

There are some alter

int
the
with a binary structure, you don't have to change anything else.

particular, it's worth creating a Data Transfer Object when you wantIn
us
Object that encapsulates it, especially since the Data Transfer Object is so easy to generate.

Another common purpose for a Data Transfer Object is to act as a common source of data for various
components in different layers. Each component makes some changes to the Data Transfer Object and the
passes it on to the next layer. The use of Record Set (508) in COM and .NET is a good example of this, where
each layer knows how to manipulate record set based data, whether it comes directly from a SQL database or
has been modified by other layers. .NET expands on this by providing a built-in mechanism to serialize record

to XML.sets in

s, there's an interesting asynchronous use for Data Transfer

Although this book focuses on synchronous system
Object. This is where you want to use an interface both synchronously and asynchronously. Return a Data
Transfer Object as usual for the synchronous case; for the asynchronous case create a Lazy Load (200) of the
Data Transfer Object and return that. Connect the Lazy Load (200) to wherever the results from the
asynchronous call should appear. The user of the Data Transfer Object will block only when it tries to access

 results of the call.

the

Further Reading

[Alur et al.] discuss this pattern under the name Value Object, which I said earlier is equivalent to my Data
Transfer Object; my Value Object (486) is a different pattern entirely. This is a name collision; many peop

ts use to mean what I call Data
le

have used "Value Object" in the sense that I use it. As far as I can tell, i
. As a result, I've followed the mTransfer Object occurs only within the J2EE community ore general usage.

The Value Object Assembler [Alur et al.] is a discussion of the assembler. I chose not to make it a separate
pattern, although I use the "assembler" name rather than a name based on Mapper (473).

[Marinescu] discusses Data Transfer Object and several implementation variants. [Riehle et al.] discuss

xible ways to serialize, including switching between different forms of serialization. fle

 Example: Transferring Information About Albums (Java)

For this example I'll use the domain model in Figure 15.5 The data I want to transfer is the data about these
ked objects, and the structur for the data transfer objects is the one in Figure 15.6lin e

Figure 15.5. A class diagram of artists and albums.

Figure 15.6. A class diagram of data transfer objects.

 from the artist class is collapsed
rray of strings. This is typical of the

 are two data transfer objects present, one for
 I don't need one for the artist, as all the data is present on one of

sfer Object from the domain model. The assembler is called by whatever
ct is handling the remote interface, such as a Remote Facade

taThe data transfer objects simplify this structure a good bit. The relevant da

ented as an ainto the album DTO, and the performers for a track are repres
sfer object. Therecollapsing of structure you see for a data tran

 casethe album and one for each track. In this
the other two. I only have the track as a transfer object because there are several tracks in the album and each

han one data item. one can contain more t

Here's the code to write a Data Tran
obje (388).

 List newTracks = new ArrayList();
 Iterator it = subject.getTracks().iterator();
 while (it.hasNext()) {
 TrackDTO newDTO = new TrackDTO();
 Track thisTrack = (Track) it.next();
 newDTO.setTitle(thisTrack.getTitle());
 writePerformers(newDTO, thisTrack);
 newTracks.add(newDTO);

class AlbumAssembler...

 public AlbumDTO writeDTO(Album subject) {
 AlbumDTO result = new AlbumDTO();
 result.setTitle(subject.getTitle());
 result.setArtist(subject.getArtist().getName());
 writeTracks(result, subject);
 return result;
 }

 private void writeTracks(AlbumDTO result, Album subject) {

 }
((TrackDTO[]) newTracks.toArray(new TrackDTO[0]));

ormers(TrackDTO dto, Track subject) {
rrayList();

tPerformers().iterator();

getName());

rs((String[]) result.toArray(new String[0]));

d. For this example there's a
 an existing one. Here's the creation code:

tring id, AlbumDTO source) {
 Artist artist = Registry.findArtistNamed(source.getArtist());

 if (artist == null)
 throw new RuntimeException("No artist named " + source.getArtist());
 Album album = new Album(source.getTitle(), artist);
 createTracks(source.getTracks(), album);
 Registry.addAlbum(id, album);
 }
 private void createTracks(TrackDTO[] tracks, Album album) {

 < tracks.length; i++) {
 = new Track(tracks[i].getTitle());

erArray) {

== null)
untimeException("No artist named " + performerArray[i]);

es as they

 result.setTracks
 }

 private void writePerf
w A List result = ne

 Iterator it = subject.ge
 while (it.hasNext()) {

Artist) it.next(); Artist each = (
 result.add(each.
 }

 dto.setPerforme
 }

sually more involveUpdating the model from the Data Transfer Object is u
ingdifference between creating a new album and updat

class AlbumAssembler...

lic void createAlbum(S pub

 for (int i = 0; i
 Track newTrack

 album.addTrack(newTrack);
i].getPerformers()); createPerformers(newTrack, tracks[

 }
 }
 private void createPerformers(Track newTrack, String[] perform

 for (int i = 0; i < performerArray.length; i++) {
mer = Registry.findArtistNamed(performerArray[i]); Artist perfor

 if (performer
 throw new R

 newTrack.addPerformer(performer);
 }
 }

e DTO involves quite a few decisions. Noticeable here is how to deal with the artist namReading th
come in. My requirements are that artists should already be in a Registry (480) when I create the album, so if I

to create artists when they're

.

urce) {
;

RuntimeException("Album does not exist: " + source.getTitle());
le()) current.setTitle(source.getTitle());
tist().getName()) {

ist = Registry.findArtistNamed(source.getArtist());
 if (artist == null)

 throw new RuntimeException("No artist named " + source.getArtist());
 current.setArtist(artist);

can't find an artist this is an error. A different create method might decide
mentioned in the Data Transfer Object.

For this example I have a different method for updating an existing album

class AlbumAssembler...

blic void updateAlbum(String id, AlbumDTO so pu
 Album current = Registry.findAlbum(id)

== null) if (current
 throw new

 if (source.getTitle() != current.getTit
etArtist() != current.getAr if (source.g

 Artist art

 }

 updateTracks(source, current);
 }
 private void updateTracks(AlbumDTO so urce, Album current) {

etTitle());
learPerformers();

i), source.getTrackDTO(i).getPerformers());

te the existing domain object or destroy it and replace it with a
to update. In

other objects referring to it and its tracks. However, for the title
e objects that are there.

ther question concerns an artist changing. Is this changing the name of the existing artist or changing the
artist the album is linked to? Again, these questions have to be settled on a case-by-use case basis, and I'm
handling it by linking to a new artist.

In this example I've used native binary serialization, which means I have to be careful that the Data Transfer
Object classes on both sides of the wire are kept in sync. If I make a change to the data structure of the server
Data Transfer Object and don't change the client, I'll get errors in the transfer. I can make the transfer more
tolerant by using a map as my serialization.

shMap();

p arg) {
);
"title");
g.get("performers");

;

uch of this
 Supertype

 for (int i = 0; i < source.getTracks().length; i++) {
 current.getTrack(i).setTitle(source.getTrackDTO(i).g

 current.getTrack(i).c
 createPerformers(current.getTrack(
 }
 }

As for updates you can decide to either upda
new one. The question here is whether you have other objects referring to the object you want
this code I'm updating the album since I have
and performers of a track I just replace th

Ano

class TrackDTO...

 public Map writeMap() {
 Map result = new Ha
 result.put("title", title);
 result.put("performers", performers);
 return result;
 }
 public static TrackDTO readMap(Ma
 TrackDTO result = new TrackDTO(
 result.title = (String) arg.get(
 result.performers = (String[]) ar
 return result
 }

Now, if I add a field to the server and use the old client, although the new field won't be picked up by the
client, the rest of the data will transfer correctly.

Of course, writing the serialization and deserialization routines like this is tedious. I can avoid m

ium by using a reflective routine such as this on the ted Layer (475):

.getClass().getDeclaredFields();
;

+)
 result.put(fields[i].getName(), fields[i].get(this));

}catch (Exception e) {throw new ApplicationException (e);

class DataTransferObject...

 public Map writeMapReflect() {
 Map result = null;
 try {

= this Field[] fields
 result = new HashMap()
 for (int i = 0; i < fields.length; i+

 }

 result; return
 }

 public static TrackDTO readMapReflect(Map arg) {
 TrackDTO result = new TrackDTO();
 try {
 Field[] fields = result.getClass().getDeclaredFields();
 for (int i = 0; i < fields.length; i++)

 fields[i].set(result, arg.get(fields[i].getName()));
 }catch (Exception e) {throw new ApplicationException (e);

 }

 handle primitives).

rite this, Java's XML handling is very much in flux and APIs, still volatile, are generally getting better.
, but the basic concept of

co

ou
s completely automatically for a

his

akes working with XML much easier than using the W3C
d interfaces. I write methods to read and write an XML element to represent that class each Data

Transfer Object class.

class AlbumDTO...

 Element toXmlElement() {
 Element root = new Element("album");
 root.setAttribute("title", title);
 root.setAttribute("artist", artist);
 for (int i = 0; i < tracks.length; i++)
 root.addContent(tracks[i].toXmlElement());
 return root;

 }
 static AlbumDTO readXml(Element source) {
 AlbumDTO result = new AlbumDTO();
 result.setTitle(source.getAttributeValue("title"));

 List trackList = new ArrayList();
 Iterator it = source.getChildren("track").iterator();

 while (it.hasNext())

DTO[]) trackList.toArray(new TrackDTO[0]));

 }

 Element toXmlElement() {
 Element result = new Element("track");

);
gth; i++) {

 Element performerElement = new Element("performer");
 performerElement.setAttribute("name", performers[i]);
 result.addContent(performerElement);
 }

 return result;
 }

ave to add extra code toSuch a routine will handle most cases pretty well (although you'll h

 Example: Serializing Using XML (Java)

As I w
By the time you read it this section may be out of date or completely irrelevant

nverting to XML is pretty much the same.

First I get the data structure for the Data Transfer Object; then I need to decide how to serialize it. In Java y
get free binary serialization simply by using a marker interface. This work
Data Transfer Object so it's my first choice. However, text-based serialization is often necessary. For t
example then, I'll use XML.

s example, I'm using JDOM since that mFor thi
darstan

 result.setArtist(source.getAttributeValue("artist"));

 trackList.add(TrackDTO.readXml((Element) it.next()));
 result.setTracks((Track
 return result;

class TrackDTO...

 result.setAttribute("title", title
 for (int i = 0; i < performers.len

 return result;
 }
 static TrackDTO readXml(Element arg) {
 TrackDTO result = new TrackDTO();
 result.setTitle(arg.getAttributeValue("title"));
 Iterator it = arg.getChildren("performer").iterator();
 List buffer = new ArrayList();
 while (it.hasNext()) {
 Element eachElement = (Element) it.next();
 buffer.add(eachElement.getAttributeValue("name"));
 }
 result.setPerformers((String[]) buffer.toArray(new String[0]));
 return result;
 }

Of course, these methods only create the elements in the XML DOM. To perform the serialization I need to
read and write text. Since the track is transferred only in the context of the album, I just need to write this
album code.

class AlbumDTO...

 public void toXmlString(Writer output) {
 Element root = toXmlElement();
 Document doc = new Document(root);
 XMLOutputter writer = new XMLOutputter();
 try {
 writer.output(doc, output);

 }
c AlbumDTO readXmlString(Reader input) {

 SAXBuilder builder = new SAXBuilder();
 Document doc = builder.build(input);

 throw new RuntimeException();
 }
 }

Although it isn't rocket science, I'll be glad when JAXB makes this kind of stuff unnecessary.

 }catch (IOException e) {
 e.printStackTrace();
 }

 public stati
 try {

 Element root = doc.getRootElement();
 AlbumDTO result = readXml(root);
 return result;
 }catch (Exception e) {
 e.printStackTrace();

Chapter 16. Offline Concurrency Patterns

Optimistic Offline Lock

Pessimistic Offline Lock

Coarse-Grained Lock

Implicit Lock

ptimistic Offline Lock

by David Rice

Prevents conflicts between concurrent business transactions by detecting a conflict and rolling back the
transaction.

O

side the confines of a
ion, we can't depend on our database manager alone to ensure that the business

record data in a consistent state. Data integrity is at risk once two sessions begin to
 lost updates are quite possible. Also, with one session editing data that another

s likely.

ng that the changes about to be committed by one
n is, in a sense,

en a business transaction executes across a series of system transactions. Once outOft

single system transact
transaction will leave the
work on the same records and
is reading an inconsistent read become

Optimistic Offline Lock solves this problem by validati
session don't conflict with the changes of another session. A successful pre-commit validatio

ith the changes to the record data. So long as the validation obtaining a lock indicating it's okay to go ahead w
and the updates occur within a single system transaction the business transaction will display consistency.

Whereas Pessimistic Offline Lock (426) assumes that the chance of session conflict is high and therefore

w. The

 How It Works

 that, in the time since a session loaded a record, another
e but is valid only during the system transaction in which

action not corrupt record data it must acquire an Optimistic
during the system transaction in which it applies changes to

rsion number with each record in your system. When a

limits the system's concurrency, Optimistic Offline Lock assumes that the chance of conflict is lo
expectation that session conflict isn't likely allows multiple users to work with the same data at the same time.

An Optimistic Offline Lock is obtained by validating

cquired at any timsession hasn't altered it. It can be a
it is obtained. Thus, in order that a business trans
Offline Lock for each member of its change set
the database.

The most common implementation is to associate a ve

record is loaded that number is maintained by the session along with all other session state. Getting the
ion stored in your session data to the current version

, including an increment of the version, can be
ata, as a session with an old version

ria of any SQL
 single SQL statement can both acquire the lock and update the

s that the record has been changed or deleted. With a
 system transaction to prevent any changes from

this point the business transaction must either abort or attempt to resolve the

In addition to a version number for each record, storing information as to who last modified a record and when
can be quite useful when managing concurrency conflicts. When informing a user of a failed update due to a
concurrency violation a proper application will tell when the record was altered and by whom. It's a bad idea
to use the modification timestamp rather than a version count for your optimistic checks because system

cks are simply too unreliable, especially if you're coordinating across multiple servers.

e row. The advantage
h can be handy if you

is complicates the UPDATE
large where clause, which may also be a performance impact depending on how

 the primary key index.

ATE optimistic check.

Optimistic Offline Lock is a matter of comparing the vers
in the record data. Once the verification succeeds, all changes
committed. The version increment is what prevents inconsistent record d
can't acquire the lock.

MS data store the verification is a matter of adding the version number to the criteWith an RDB
statements used to update or delete a record. A
record data. The final step is for the business transaction to inspect the row count returned by the SQL
execution. A row count of 1 indicates success; 0 indicate

 of 0 the business transaction must rollback therow count
entering the record data. At

t and retry.conflic

clo

In an alternative implementation the where clause in the update includes every field in th

field, whichere is that you can use the where clause without using some form of version
the database tables. The problem is that thcan't add a version field by altering

statement with a potentially
clever the database is about using

Figure 16.1. UPD

Often implementing Optimistic Offline Lock is left at including the version in UPDATE and DELETE
statements, but this fails to address the problem of an inconsistent read. Think of a billing system that creates

appropriate sales tax. A session creates the charge and then looks up the customer's
 tax on it, but during the charge generation session a separate customer maintenance

 rate calculated by the charge
ion didn't make any changes to the

charges and calculates
ress to calculate theadd

session edits the customer's address. As tax rates depend on location, the
alid, but since the charge generation sessgeneration session might be inv

address the conflict won't be detected.

t an inconsThere's no reason why Optimistic Offline Lock can't be used to detec
ize that its correc

istent read. In the example
tness depends on the value of the

 on the address as well, perhaps by adding the
 to be version-checked. The latter requires a bit

tates its intent. If you're checking for a consistent
date, be especially aware of your system

ead will only work with repeatable read or stronger isolation.

sistent read problems. Often a transaction depends only on
your

king conditions rather than the version, as fewer concurrent updates will result in
r you understand your concurrency issues, the better

above the charge generation session needs to recogn
customer's address. It therefore should perform a version check

itemsaddress to the change set or maintaining a separate list of
ore clearly smore work to set up, but results in code that m

read simply by rereading the version rather than an artificial up
transaction isolation level. The version rer
Anything weaker requires an increment of the version.

A version check might be overkill for certain incon
the presence of a record or maybe the value of only one of its fields. In such a case you might improve
system's liveliness by chec
the failure of competing business transactions. The bette

ge them in your code. you can mana

The Coarse-Grained Lock (438) can help with certain inconsiste

n is to simply exe
nt read conundrums by treating a group of
cute all of the steps of the problematic

ve worth the

As with all locking schemes, Optimistic Offline Lock by itself doesn't provide adequate solutions to some of
the trickier concurrency and temporal issues in a business application. I can't stress enough that in a business
application concurrency management is as much a domain issue as it is a technical one. Is the customer
ddress scenario above really a conflict? It might be okay that I calculated the sales tax with an older version

the customer, but which version should I actually be using? This is a business issue. Or consider a
collection. What if two sessions simultaneously add items to a collection? The typical Optimistic Offline Lock
scheme won't prevent this even though it might very well be a violation of business rules.

There's one system using Optimistic Offline Locks that we all should be familiar with: source code
management (SCM). When an SCM system detects a conflict between programmers it usually can figure out
the correct merge and retry the commit. A quality merge strategy makes Optimistic Offline Lock very
powerful not only because the system's concurrency is quite high but because users rarely have to redo any
work. Of course, the big difference between an SCM system and an enterprise business application is that the

ust implement only one type of merge while the business system might implement hundreds. Some
ght be of such complexity that they're not worth the cost of coding. Others might be of such value to the

business that the merge should be coded by all means. Despite rarely being done, the merging of business
objects is possible. In fact, merging business data is a pattern unto its own. I'll leave it at that rather than

utcher the topic, but do understand the power that merging adds to Optimistic Offline Lock.

ly lets us know during the last system transaction if a business transaction will
now earlier if a conflict has occurred. For this you can provide a

yone else has updated the data. It can't guarantee that you won't get a

objects as a single lockable item. Another optio
business transaction within a long-running transaction. The ease of implementation might pro
resource hit of using a few long transactions here and there.

Detection of an inconsistent read gets a bit difficult when your transaction is dependent on the results of a
dynamic query rather than the reading of specific records. It's possible for you to save the initial results and
compare them to the results of the same query at commit time as a means of obtaining an Optimistic Offline
Lock.

a
of

SCM m
mi

b

Optimistic Offline Lock on
commit. But it's occasionally useful to k
checkCurrent method that checks if an

conflict, but it may be worthwhile to stop a complicated process if you can tell in advance that it won't
commit. Use this checkCurrent at any time that failing early may be useful, but remember that it never

n to Use It

ed
p using the

stem. Pessimistic Offline Lock

guarantees that you won't fail at commit time.

he W

Optimistic concurrency management is appropriate when the chance of conflict between any two business
transactions is low. If conflicts are likely it's not user friendly to announce one only when the user has finish
his work and is ready to commit. Eventually he'll assume the failure of business transactions and sto
sy (426) is more appropriate when the chance of conflict is high or the expense

e errors as
mistic Offline Lock

of a conflict is unacceptable.

ent and not prone to the same defects and runtimAs optimistic locking is much easier to implem
a Pessi (426), consider using it as the default approach to business transaction conflict

istic version works well as a complement to its optimistic
optimistic approach to conflict avoidance, ask when the

ment will maximize

er with Data Mappers

management in any system you build. The pessim
nterpart, so rather than asking when to use an cou

optimistic approach alone isn't good enough. The correct approach to concurrency manage
concurrent access to data while minimizing conflicts.

ple: Domain Lay Exam (165) (Java)

 with a version column
teria. Of course, you'll

odel

The shortest example of Optimistic Offline Lock would involve only a database table

s part of their update criand UPDATE and DELETE statements that use that version a
be building more sophisticated applications so I present an implementation using a Domain M (116)
and Data Mappers (165). This will reveal more of the issues that commonly arise when implementing

line Lock.

ain Layer Supertype

Optimistic Off

One of the first things to do is to make sure that your dom (475) is capable of storing any

 Offline Lock—namely, modification and version data.

class DomainObject...

 private Timestamp modified;

By;

l database, so each table must also store version and modification data. Here's
e as well as the standard CRUD SQL necessary to support the Optimistic

le customer...

L customer CRUD...

, ?)

y = ?, modified = ?, version = ?

information required to implement Optimistic

 private String modified
 private int version;

Our data is stored in a relationa

 schema for a customer tablthe
Offline Lock:

tab

 create table customer(id bigint primary key, name varchar, createdby varchar,
 created datetime, modifiedby varchar, modified datetime, version int)

SQ

INSERT INTO customer VALUES (?, ?, ?, ?, ?, ?
 SELECT * FROM customer WHERE id = ?
 UPDATE customer SET name = ?, modifiedB
 WHERE id = ? and version = ?

? DELETE FROM customer WHERE id = ? and version =

Once you have more than a few tables and domain objects, you'll want to introduce a Layer Supertype (475)
for your Data Mappers (165) that handles the tedious, repetitive segments of O/R mapping. This not only saves

 work when writing Data Mappersa lot of (165) but also allows the use of an Implicit Lock (449) to prevent a
 bit of locking mechanics.

The first piece to move into your abstract mapper is SQL construction. This requires that you provide mappers
with a bit of metadata about your tables. An alternative to having your mapper build SQL at runtime is to
code-generate it. However, I'll leave the construction of SQL statements as an exercise for the reader. In the
abstract mapper below you'll see that I've made a number of assumptions about the column names and

sitions for our modification data. This becomes less feasible with legacy data. The abstract mapper will
likely require a bit of column metadata to be supplied by each concrete mapper.

Once the abstract mapper has SQL statements it can manage the CRUD operations. Here's how a find
executes:

ass AbstractMapper...

public AbstractMapper(String table, String[] columns) {
ble = table;

tSession().getIdentityMap().get(id);

rs = null;
try {

 conn = ConnectionManager.INSTANCE.getConnection();
 stmt = conn.prepareStatement(loadSQL);
 stmt.setLong(1, id.longValue());
 rs = stmt.executeQuery();
 if (rs.next()) {
 obj = load(id, rs);
 String modifiedBy = rs.getString(columns.length + 2);
 Timestamp modified = rs.getTimestamp(columns.length + 3);

By, version);
 AppSessionManager.getSession().getIdentityMap().put(obj);
 } else {
 throw new SystemException(table + " " + id + " does not exist");
 }
 } catch (SQLException sqlEx) {
 throw new SystemException("unexpected error finding " + table + " " + id);
 } finally {
 cleanupDBResources(rs, conn, stmt);
 }
 }

 ResultSet rs) throws SQLException;

ote here. First, the mapper checks an Identity Map

developer from subverting a locking strategy by forgetting to code a

po

cl

 this.ta
 this.columns = columns;
 buildStatements();
 }
 public DomainObject find(Long id) {
 DomainObject obj = AppSessionManager.ge
 if (obj == null) {
 Connection conn = null;
 PreparedStatement stmt = null;
 ResultSet

 int version = rs.getInt(columns.length + 4);
 obj.setSystemFields(modified, modified

 return obj;
 }
 protected abstract DomainObject load(Long id,

There are a few items of n (195) to make sure that the object
isn't loaded already. Not using an Identity Map (195) could result in different

in a business transaction, leading to undefine
 versions of an object being

d behavior in your application as well as
 Once a result set is obtained the mapper defers to an abstract load method
ement to extract its fields and return an activated object. The mapper calls

temFields() to set the version and modification data on the abstract domain object. While a constructor
m the more appropriate means of passing this data, doing so would push part of the version storage

loaded at different times
make a mess of any version checks.

ch concrete mapper must implthat ea
yssetS

ght seemi

responsibility down to each concrete mapper and domain object and thus weaken the Implicit Lock (449).

 Customer.activate(id, name, addresses);

ge execution of update and delete operations. The job here is to check
tabase operation returns a row count of 1. If no rows have been updated, the optimistic lock can't be

d and the mapper must then throw a concurrency exception. Here is the delete operation:

ete(DomainObject object) {
nager.getSession().getIdentityMap().remove(object.getId());

 Connection conn = null;

 try {
 = ConnectionManager.INSTANCE.getConnection();

 st = conn.prepareStatement(deleteSQL);
 stmt.setLong(1, object.getId().longValue());

 throwConcurrencyException(object);
 }

 } catch (SQLException e) {

 conn = ConnectionMan er.INSTANCE.getConnection();
 stmt = conn.prepareStatement(checkVersionSQL);
 stmt.setInt(1, (int) object.getId().longValue());
 rs = stmt.executeQuery();
 if (rs.next()) {
 int version = rs.getInt(1);
 String modifiedBy = rs.getString(2);
 Timestamp modified = rs.getTimestamp(3);
 if (version > object.getVersion()) {

String when = DateFormat.getDateTimeInstance().format(modified);
 throw new ConcurrencyException(table + " " + object.getId() +
 " modified by " + modifiedBy + " at " + when);
 } else {
 throw new SystemException("unexpected error checking timestamp");
 }
 } else {
 throw new ConcurrencyException(table + " " + object.getId() +
 " has been deleted");
 }
 } finally {
 cleanupDBResources(rs, conn, stmt);
 }

Here's what a concrete load() method looks like:

class CustomerMapper extends AbstractMapper...

ltSet rs) throws SQLException { protected DomainObject load(Long id, Resu
g name = rs.getString(2); Strin

turn re
 }

The abstract mapper will similarly mana
that th

ine
e da

obta

class class AbstractMapper...

 public void del
 AppSessionMa

 PreparedStatement stmt = null;

 conn

mt

 int rowCount = stmt.executeUpdate();
 if (rowCount == 0) {

 throw new SystemException("unexpected error deleting");
 } finally {
 cleanupDBResources(conn, stmt);
 }
 }
 protected void throwConcurrencyException(DomainObject object) throws SQLException {
 Connection conn = null;
 PreparedStatement stmt = null;
 ResultSet rs = null;
 try {

ag

 }

The SQL used to check the version in a concurrency exception also needs to be known by the abstract mapper.
Your mapper should construct it when it constructs the CRUD SQL. It will look something like this:

checkVersionSQL...

 SELECT version, modifiedBy, modified FROM customer WHERE id = ?

This code doesn't give much of a feel for the various pieces executing across multiple system transactions
within a single business transaction. The most important thing to remember is that acquisition of Optimistic
Offline Locks must occur within the same system transaction that holds the commit of your changes in order
to maintain record data consistency. With the check bundled into UPDATE and DELETE statements this
won't be a problem.

ke a look at the use of a version object in the Coarse-Grained Lock

Ta (438) sample code. While Coarse-
Grained Lock (438) can solve some inconsistent read problems, a simple nonshared version object can help

ent() detect inconsistent reads because it's a convenient place to add optimistic check behavior such as increm
or checkVersionIsLatest(). Here's a Unit of Work (184) where we add consistent read checks to our commit
process via the more drastic measure of incrementing the version because we don't know the isolation level:

class UnitOfWork...

 private List reads = new ArrayList();
 public void registerRead(DomainObject object) {
 reads.add(objec
 }

t);

 public void commit() {

temTransaction();
 throw e;

 }
 }
 public void checkConsistentReads() {
 for (Iterator iterator = reads.iterator(); iterator.hasNext();) {
 DomainObject dependent = (DomainObject) iterator.next();
 dependent.getVersion().increment();

 try {
 checkConsistentReads();
 insertNew();
 deleteRemoved();
 updateDirty();
 } catch (ConcurrencyException e) {
 rollbackSys

 }
 }

Notice that the Unit of Work (184) rolls back the system transaction when it detects a concurrency violation.
Most likely you would decide to roll back fo

r any exception during the commit. Do not forget this step! As an

alternative to version objects, you can add version checks to your mapper interface.

Pessimistic Offline Lock

 David Rice

Prevents conflicts between concurrent business transactions by allowing only one business transaction at a

by

time to access data.

ce offline concurrency involves manipulating data for a business transaction that spans multiple requests,
.

Sin
the simplest approach would seem to be having a system transaction open for the whole business transaction
Sadly, however, this doesn't always work well because transaction systems aren't geared to work with long
transactions. For that reason you have to use multiple system transactions, at which point you're left to your
own devices to manage concurrent access to your data.

The first approach to try is Optimistic Offline Lock (416). However, that pattern has its problems. If
people access the same data within a business transaction, one of them will comm

 several
it easily but the others will

nflict and fail. Since the conflict is only detected at the end of the business transaction, the victims will do
le thing will fail and their time will have

ess transactions the system will soon become very

iding them altogether. It forces a business transaction to
use it, so that, most of the time, once you begin a business

tion you can be pretty sure you'll complete it without being bounced by concurrency control.

 How It Works

You implement Pessimistic Offline Lock in three phases: determining what type of locks you need, building a
lock manager, and defining procedures cks. Additionally, if you're using
Pessimistic Offline Lock as a complement to Optimistic Offline Lock

co
all the transaction work only to find at the last minute that the who
been wasted. If this happens a lot on lengthy busin
unpopular.

Pessimistic Offline Lock prevents conflicts by avo
acquir

sac
e a lock on a piece of data before it starts to

tran

for a business transaction to use lo
 (416) you need to determine which

record types to lock.

As for lock types, the first option is an exclusive write lock, which require only that a business transaction
acquire a lock in order to edit session data. This avoids conflict by not allowing two business transactions to
make changes to the same record simultaneously. What this locking scheme ignores is the reading of data, so

if it's not critical that a view session have the most recent data this strategy will suffice.

If it becomes critical that a business transaction must always have the most recent data, regardless of its
intention to edit, use the exclusive read lock. This requires that a business transaction acquire a lock simply to
load the record. Clearly such a strategy has the potential to severely restrict a system's concurrency. For most
enterprise systems the exclusive write lock will afford much more concurrent record access than this lock will.

A third strategy combines the two lock types to provide the restrictive locking of the exclusive read lock as
well as the increased concurrency of the exclusive write lock. Called the read/write lock, it's a bit more
complicated than the first two. The relationship of the read and write locks is the key to getting the best of both
worlds:

• Read and write locks are mutually exclusive. A record can't be write-locked if any other business
transaction owns a read lock on it; it can't be read-locked if any other business transaction owns a write
lock on it.

• Concurrent read locks are acceptable. The existence of a single read lock prevents any business
transaction from editing the record, so there's no harm in allowing any number of sessions as readers
once one has been allowed to read.

Allowing multiple read locks is what increases system concurrency. The downside of this scheme is that it's a
bit nasty to implement and presents more of a challenge for domain experts to wrap their heads around when
they're modeling the system.

In choosing the correct lock type think about maximizing system concurrency, meeting business needs, and
minimizing code complexity. Also keep in mind that the locking strategy must be understood by domain
modelers and analysts. Locking is not just a technical problem; the wrong lock type, simply locking every
record, or locking the wrong types of records can result an ineffective Pessimistic Offline Lock strategy. An
ineffective Pessimistic Offline Lock strategy is one that doesn't prevent conflict at the onset of the business
transaction or that degrades the concurrency of your multi-user system such that it seems more like single-user
system. The wrong locking strategy can't be saved by a proper technical implementation. In fact, it's not a bad
idea to include Pessimistic Offline Lock in your domain model.

Once you've decided upon your lock type, define your lock manager. The lock manager's job is to grant or
deny any request by a business transaction to acquire or release a lock. To do its job it needs to know what's
being locked as well as the intended owner of the lock—the business transaction. It's quite possible that your
concept of a business transaction isn't some thing that can be uniquely identified, which makes it a bit difficult
to pass a business transaction to the lock manager. In this case consider your concept of a session, as you're
more likely to have a session object at your disposal. The terms "session" and "business transaction" are fairly
interchangeable. As long as business transactions execute serially within a session the session will be fine as a
Pessimistic Offline Lock owner. The code example should shed some light on this idea.

The lock manager shouldn't consist of much more than a table that maps locks to owners. A simple one might
wrap an in-memory hash table, or it might be a database table. Whatever, you must have one and only one lock
table, so if it's in memory be sure to use a singleton [Gang of Four]. If your application server is clustered, an
in-memory lock table won't work unless it's pinned to a single server instance. The database-based lock
manager is probably more appropriate once you're in a clustered application server environment.

The lock, whether implemented as an object or as SQL against a database table, should remain private to the

lock manager. Business transactions should interact only with the lock manager, never with a lock object.

Now it's time to define the protocol according to which a business transaction must use the lock manager. This

 how to act when a lock can't be

What to lock depends upon when to lock, so let's look at when first. Generally, the business transaction should
acquire a lock before loading the data, as there's not much point in acquiring a lock without a guarantee that
you'll have the latest version of the locked item. Since we're acquiring locks within a system transaction,
howeve nces where the order of the lock and load won't matter. Depending on your lock
type, if you're using serializable or repeatable read transactions, the order in which you load objects and
acquire An option is to perform an optimistic check on an item after you acquire the
Pessimistic Offline Lock. You should be very sure that you have the latest version of an object after you've

lates to acquiring the lock before loading the data.

ems that we're locking objects or records or just about anything, but what we
r primary key, that we use to find those objects. This allows us to obtain the

lock before we load them. Locking the object works fine so long as it doesn't force you to break the rule about
 object's being current after you acquire its lock.

or releasing locks is to do it when the business transaction completes. Releasing a lock prior

to com type and your intention to use that object again
thin the transaction. Still, unless you have a very specific reason to release early, such as a particularly nasty

d
ther early in the transaction. The

developer and designer can certainly help the situation by not waiting until late in the transaction to acquire a
particularly contentious lock. If at all possible acquire all of your locks before the user begins work.

For any given item that you intend to lock, access to the lock table must by serialized. With an in-memory lock
table it's easiest to serialize access to the entire lock manager with whatever constructs your programming
language provides. If you need concurrency greater than this affords, be aware you are entering complex
territory.

the lock table is stored in a database the first rule, of course, is to interact with it within a system transaction.

ad/write locks in a database makes things a bit more
ficult since the logic requires reads of the lock table in addition to inserts and so it becomes imperative to

protocol has to include what to lock and when, when to release a lock, and
acquired.

r, there are circumsta

 locks might not matter.

locked it, which usually trans

Now, what are we locking? It se
usually lock is actually the ID, o

an

The simplest rule f
pletion might be allowable, depending on your lock

wi
system liveliness issue, stick to doing it upon completion of the business transaction.

The easiest course of action for a business transaction that can't acquire a lock is to abort. The user should fin

is acceptable since Pessimistic Offline Lock should result in failure rath

If
Take full advantage of the serialization capabilities that a database provides. With the exclusive read and
exclusive write locks serialization is a simple matter of having the database enforce a uniqueness constraint on

e column storing the lockable item's ID. Storing reth
dif
avoid inconsistent reads. A system transaction with an isolation level of serializable provides ultimate safety as
it guarantees no inconsistent reads. Using serializable transactions throughout our system might get us into
performance trouble, but a separate serializable system transaction for lock acquisition and a less strict
isolation level for other work might ease this problem. Another option is to investigate whether a stored
procedure might help with lock management. Concurrency management can be tough, so don't be afraid to

fer to your database at key moments.de

The serial nature of lock management screams performance bottleneck. A big consideration here is lock

granularity, as the fewer locks required the less of a bottleneck you'll have. A Coarse-Grained Lock (438) ca
address lock table contention.

n

ith a system transaction pessimistic locking scheme, such as "SELECT FOR UPDATE " or entity EJBs,
adlock is a distinct possibility because these locking mechanisms will wait until a lock becomes available.

 on B, both transactions might sit and wait forever for the other lock. Given that we're spanning

ltiple system transactions, waiting for a lock doesn't make much sense, especially since a business
nsaction might take 20 minutes. Nobody wants to wait for those locks. And this is good because coding for

ssions. If a client machine crashes in the middle of a
nsaction that lost transaction is unable to complete and release any owned locks. This is a big deal for a
eb application where sessions are regularly abandoned by users. Ideally you'll have a timeout mechanism

 becomes invalid. Another option is to associate a timestamp with
ch lock and consider invalid any lock older than a certain age.

ock is appropriate when the chance of conflict between concurrent sessions is high. A

user should never have to throw away work. Locking is also appropriate when the cost of a conflict is too high
ardless of its likelihood. Locking every entity in a system will almost surely create tremendous data

W
de
Think of deadlock this way. Two users need resources A and B. If one gets the lock on A and the other gets
the lock
mu
tra
a wait involves timeouts and quickly gets complicated. Simply have your lock manager throw an exception as
soon as a lock is unavailable. This removes the burden of coping with deadlock.

A final requirement is managing lock timeouts for lost se
tra
W
managed by your application server rather than make your application handle timeouts. Web application
servers provide an HTTP session for this. Timeouts can be implemented by registering a utility object that
releases all locks when the HTTP session
ea

 When to Use It

Pessimistic Offline L

reg
contention problems, so remember that Pessimistic Offline Lock is very complementary to Optimistic Offline
Lock (416) and only use Pessimistic Offline Lock where it's truly required.

If you have to use Pessimistic Offline Lock, you should also consider a long transaction. Long transactions are

n't use these techniques if your business transactions fit within a single system transaction. Many system
nsaction pessimistic locking techniques ship with the application and database servers you're already using,

 a
 techniques presented in this book depend on

ur system having a real transaction monitor of its own.

ocks
n we'll demonstrate how the lock manager might be used for a business

ction that spans multiple system transactions.

 manager interface.

never a good thing, but in some situations they may be no more damaging than Pessimistic Offline Lock and
much easier to program. Do some load testing before you choose.

Do
tra
among them the "SELECT FOR UPDATE" SQL statement for database locking and the entity EJB for
application server locking. Why worry about timeouts, lock visibility, and such, when there's no need to?
Understanding these locking types can certainly add a lot of value to your implementation of Pessimistic
Offline Lock. Understand, though, that the inverse isn't true! What you read here won't prepare you to write
database manager or transaction monitor. All the offline locking
yo

 Example: Simple Lock Manager (Java)

In this example we'll first build a lock manager for exclusive read locks—remember that you need these l
to read or edit an object. The
transa

The first step is to define our lock

interface ExclusiveReadLockManager...

 public static final ExclusiveReadLockManager INSTANCE =
n(ExclusiveReadLockManager.class);

 public void acquireLock(Long lockable, String owner) throws ConcurrencyException;
releaseLock(Long lockable, String owner);
relaseAllLocks(String owner);

g
cause the example will be a Web application, and the HTTP session ID makes a good lock owner within it.

ocking mechanism. Acquiring a lock is a matter of successfully inserting a row into the
k table. Releasing it is a matter of deleting that row. Here's the schema for the lock table and part of the
k manager implementation:

class ExclusiveReadLockManagerDBImpl implements ExclusiveLockManager...

 private static final String INSERT_SQL =
 "insert into lock values(?, ?)";
 private static final String DELETE_SINGLE_SQL =

 private static final String DELETE_ALL_SQL =
 "delete from lock where ownerid = ?";

 = null;
 PreparedStatem nt pstmt = null;
 try {

 pstmt.executeUpdate();
 } catch (SQLException sqlEx) {

owner) {
 Connection conn = null;
 PreparedStatement pstmt = null;

 } catch (SQLException sqlEx) {
 throw new SystemException("unexpected error releasing lock on " + lockable);
 } finally {
 closeDBResources(conn, pstmt);
 }

 (ExclusiveReadLockManager) Plugins.getPlugi

 public void
 public void

Notice that we're identifying lockable with a long and owner with a string. Lockable is a long because each
table in our database uses a long primary key that's unique across the entire system and so serves as a nice
lockable ID (which must be unique across all types handled by the lock table). The owner ID is a strin
be

We'll write a lock manager that interacts directly with a lock table in our database rather than with a lock
object. Note that this is our own table called lock, like any other application table, and not part of the
database's internal l
loc
loc

table lock...

 create table lock(lockableid bigint primary key, ownerid bigint)

 "delete from lock where lockableid = ? and ownerid = ?";

 private static final String CHECK_SQL =
 "select lockableid from lock where lockableid = ? and ownerid = ?";
 public void acquireLock(Long lockable, String owner) throws ConcurrencyException {
 if (!hasLock(lockable, owner)) {
 Connection conn

e

 conn = ConnectionManager.INSTANCE.getConnection();
 pstmt = conn.prepareStatement(INSERT_SQL);
 pstmt.setLong(1, lockable.longValue());
 pstmt.setString(2, owner);

 throw new ConcurrencyException("unable to lock " + lockable);
 } finally {
 closeDBResources(conn, pstmt);
 }
 }
 }
 public void releaseLock(Long lockable, String

 try {
 conn = ConnectionManager.INSTANCE.getConnection();
 pstmt = conn.prepareStatement(DELETE_SINGLE_SQL);
 pstmt.setLong(1, lockable.longValue());
 pstmt.setString(2, owner);
 pstmt.executeUpdate();

 }

Not shown in the lock manager are the public releaseAllLocks() and the private hasLock() methods.
releaseAllLocks() does exactly as its name implies and releases all locks for an owner. hasLock() queries the
database to check if an owner already owns a lock. It's not uncommon for session code to attempt to acquire a
lock it already owns. This means that acquireLock() must first check that the owner doesn't already have the

k before attempting to insert the lock row. As the lock table is usually a point of resource contention, these
etitive reads can degrade application performance. It may be necessary for you to cache owned locks at the

ion session to distinguish it from the HTTP session. Application sessions will store their
, a user name, and an Identity Map

loc
rep
session level for the ownership checks. Be careful doing this.

Now let's put together a simple Web application to maintain customer records. First we'll set up a bit of
infrastructure to facilitate business transaction processing. Some concept of a user session will be required by
the layers beneath the Web tier, so we won't be able to rely solely on the HTTP session. Let's refer to this new
session as the applicat
ID (195) to cache objects loaded or created during the business transaction.

ey'll be associated with the currently executing thread in order that they be found.

d;
ap imap;

public AppSessio (String user, String id, IdentityMap imap) {
 this.user = user;

cal();
 public static AppSession getSession() {
 return (AppSession) current.get();

e're going to use a Front Controller

Th

class AppSession...

 private String user;
 private String i
 private IdentityM

n

 this.imap = imap;
 this.id = id;
 }

class AppSessionManager...

 private static ThreadLocal current = new ThreadLo

 }
 public static void setSession(AppSession session) {
 current.set(session);
 }

W (344) to handle requests, so we'll need to define a command. The first

mand implements Command...

 public void init(HttpServletRequest req, HttpServletResponse rsp) {
 this.req = req;
 this.rsp = rsp;
 }

 HttpSession httpSession = getReq().getSession(true);
ession = (AppSession) httpSession.getAttribute(APP_SESSION);

 if (appSessio != null) {
 ExclusiveReadLockManager.INSTANCE.relaseAllLocks(appSession.getId());
 }

thing each command must do is indicate its intention to either start a new business transaction or continue one
that already exists. This is a matter of setting up a new application session or finding the current one. Here we
have an abstract command that provides convenience methods for establishing business transaction context.

interface Command...

 public void init(HttpServletRequest req, HttpServletResponse rsp);
 public void process() throws Exception;

bstract class BusinessTransactionComa

 protected void startNewBusinessTransaction() {

 AppSession appS

n

 appSession = new AppSession(getReq().getRemoteUser(),
 httpSession.getId(), new IdentityMap());
 AppSessionManager.setSession(appSession);
 httpSession.setAttribute(APP_SESSION, appSession);
 httpSession.setAttribute(LOCK_REMOVER,
 new LockRemover(appSession.getId()));
 }

d continueBusinessTransaction() {

 AppSession appSession = (AppSession) httpSession.getAttribute(APP_SESSION);
 AppSessionManager.setSession(appSession);

 protected HttpServletResponse getRsp() {
 return rsp;

tice that when we establish a new application session we remove locks for any existing one. We also add a

 private String sessionId;
 public LockRemover(String sessionId) {

 }
tpSessionBindingEvent event) {

 beginSystemTransaction();
 ExclusiveReadLockManager.INSTANCE.relaseAllLocks(this.sessionId);

 handleSeriousError(e);

 protected voi
 HttpSession httpSession = getReq().getSession();

 }
 protected HttpServletRequest getReq() {
 return req;
 }

 }

oN
listener to the HTTP session's binding events that will remove any locks owned by an application session
when the corresponding HTTP session expires.

class LockRemover implements HttpSessionBindingListener...

 this.sessionId = sessionId;

 public void valueUnbound(Ht
 try {

 commitSystemTransaction();
 } catch (Exception e) {

 }
 }

Our commands contain both standard business logic and lock management, and each command must execute
within the bounds of a single system transaction. To ensure this we can decorate [Gang of Four] it with a
transactional command object. Be sure that all locking and standard domain business for a single request occur

thin a single system transaction. The methods that define system transaction boundaries depend on your

ass TransactionalComamnd implements Command...

ommand impl) {

 }
 public void process() throws Exception {

throw e;
 }
 }

wi
deployment context. It's mandatory to roll back the system transaction when a concurrency exception, and any
other exception in this case, is detected, as that will prevent any changes from entering the permanent record
data when a conflict occurs.

cl

 public TransactionalCommand(C
 this.impl = impl;

 beginSystemTransaction();
 try {
 impl.process();
 commitSystemTransaction();
 } catch (Exception e) {
 rollbackSystemTransaction();

Now it's a matter of writing the controller servlet and concrete commands. The controller servlet has the
responsibility of wrapping each command with transaction control. The concrete commands are required
establish business transaction context, execute domain logic, and acquire and release locks where appropriate

to
.

ass ControllerServlet extends HttpServlet...

ommand");
 Command cmd = getCommand(cmdName);
 cmd.init(req, rsp);

 String className = (String) commands.get(name);
 Command cmd = (Command) Class.forName(className).newInstance();

 }

 Long customerId = new Long(getReq().getParameter("customer_id"));
 ExclusiveReadLockManager.INSTANCE.acquireLock(

ANCE.releaseLock(customer.getId(),
 AppSessionManager.getSession().getId());

 forward("/customerSaved.jsp");
 }

The commands just shown will prevent any two sessions from working with the same customer at the same

e. Any other command in the application that works with a customer object must be sure either to acquire
 lock or to work only with a customer locked by a previous command in the same business transaction.

cit

cl

 protected void doGet(HttpServletRequest req, HttpServletResponse rsp)
 throws ServletException, IOException {
 try {
 String cmdName = req.getParameter("c

 cmd.process();
 } catch (Exception e) {
 writeException(e, rsp.getWriter());
 }
 }
 private Command getCommand(String name) {
 try {

 return new TransactionalCommand(cmd);
 } catch (Exception e) {
 e.printStackTrace();
 throw new SystemException("unable to create command object for " + name);
 }

class EditCustomerCommand implements Command...

 public void process() throws Exception {
 startNewBusinessTransaction();

 customerId, AppSessionManager.getSession().getId());
 Mapper customerMapper = MapperRegistry.INSTANCE.getMapper(Customer.class);
 Customer customer = (Customer) customerMapper.find(customerId);
 getReq().getSession().setAttribute("customer", customer);
 forward("/editCustomer.jsp");
 }

class SaveCustomerCommand implements Command...

 public void process() throws Exception {
 continueBusinessTransaction();
 Customer customer = (Customer) getReq().getSession().getAttribute("customer");
 String name = getReq().getParameter("customerName");
 customer.setName(name);
 Mapper customerMapper = MapperRegistry.INSTANCE.getMapper(Customer.class);
 customerMapper.update(customer);
 ExclusiveReadLockManager.INST

tim
the
Given that we have a hasLock() check in the lock manager we could simply acquire the lock in every
command. This might be bad for performance, but it would certainly guarantee that we have a lock. Impli
Lock (449) discusses other foolproof approaches to locking mechanics.

The amount of framework code might seem a bit out of proportion to the amount of domain code. Indeed,
Pessimistic Offline Lock requires at a minimum choreographing an application session, a business transaction,
a lock manager, and a system transaction, which is clearly a challenge. This example serves more as an
inspiration than as an architecture template, as it lacks robustness in many areas.

 David Rice and Matt Foemmel

Coarse-Grained Lock

by

Locks a set of related objects with a single lock.

Objects can often be edited as a group. Perhaps you have a customer and its set of addresses. If so, when using
the application it makes sense to lock all of these items if you want to lock any one of them. Having a separate
lock for individual objects presents a number of challenges. First, anyone manipulating them has to write code
that can find them all in order to lock them. This is easy enough for a customer and its addresses, but it gets
tricky as you get more locking groups. And what if the groups get complicated? Where is this behavior when
your framework is managing lock acquisition? If your locking strategy requires that an object be loaded in
order to be locked, such as with Optimistic Offline Lock (416), locking a large group affects performance.
And with Pessimistic Offline Lock (426) a large lock set is a management headache and increases lock table
contention.

A Coarse-Grained Lock is a single lock that covers many objects. It not only simplifies the locking action
itself but also frees you from having to load all the members of a group in order to lock them.

 How It Works

The first step in implementing Coarse-Grained Lock is to create a single point of contention for locking a
group of objects. This makes only one lock necessary for locking the entire set. Then you provide the shortest
path possible to finding that single lock point in order to minimize the group members that must be identified
and possibly loaded into memory in the process of obtaining that lock.

With Optimistic Offline Lock (416), having each item in a group share a version (see Figure 16.2) creates the
single point of contention, which means sharing the same version, not an equal version. Incrementing this
version will lock the entire group with a shared lock. Set up your model to point every member of the group at

the shared version and you have certainly minimized the path to the point of contention.

Figure 16.2. Sharing a version.

A shared istic Offline LockPessim (426) requires that each member of the group share some sort of lockable
token, ust then be acquired. As Pessimistic Offline Lockon which it m (426) is often used as a complement
to Optimistic Offline Lock (416), a shared version object makes an excellent candidate for the lockable token
role (Figure 16.3)

Figure 16.3. Locking a shared version.

Eric Evans and David Siegel [Evans] define an aggregate as a cluster of associated objects that we treat as a
unit for data changes. Each aggregate has a root that provides the only access point to members of the set and a
boundary that defines what's included in the set. The aggregate's characteristics call for a Coarse-Grained
Lock, since working with any of its members requires locking all of them. Locking an aggregate yields an

ernative to a shared lock that I call a root lock (see Figure 16.4alt). By definition locking the root locks all
members of the aggregate. The root lock gives us a single point of contention.

Figure 16.4. Locking the root.

sing a root lock as a Coarse-Grained Lock makes it necessary to implement navigation to the root in yoU
object g

ur
raph. This allows a locking mechanism, when asked to lock any object in the aggregate, to navigate to

the root and lock it instead. This navigation can be accomplished in a couple of ways. You can maintain a
direct navigation to the root for each object in the aggregate, or you can use a sequence of intermediate
relationships. For example, in a hierarchy the obvious root is the top level parent, to which you can link the

scendents directly. Alternatively, you can give each node a link to its immediate parent and navigate that
ucture to reach the root. In a large graph the latter strategy might cause performance problems as each

de
trs

parent must be loaded in order to determine whether it has a parent of its own. Be sure to use a Lazy
Load (200) when loading the objects that make up the path to your root. This not only prevents objects from
being loaded before they're needed but prevents an infinite mapping loop when you map a bidirectional
elationship. Be wary of the fact that

r Lazy Loads (200) for a single aggregate can occur across multiple system
nsactions and so you may end up with an aggregate built from inconsistent parts. Of course, that's not good.

t

tra

Note that a shared lock also works for aggregate locking as locking any object in the aggregate will
simultaneously lock the root.

The shared lock and root lock implementations of Coarse-Grained Lock both have their trade-offs. When
using a relational database the shared lock carries the burden that almost all of your selects will require a join
to the version table. But loading objects while navigating to the root can be a performance hit as well. The roo
lock and Pessimistic Offline Lock (426) perhaps make an odd combination. By the time you navigate to the
root and lock it you may need to reload a few objects to guarantee their freshness. And, as always, building a
system against a legacy data store will place numerous constraints on your implementation choice. Locking
implementations abound, and the subtleties are even more numerous. Be sure to arrive at an implemen
that suits your needs.

tation

e lease and all of its assets being locked.

A very positive outcome of using Coarse-Grained Locks is that acquiring and releasing lock is cheaper. This is

 When to Use It

The most obvious reason to use a Coarse-Grained Lock is to satisfy business requirements. This is the case
when locking an aggregate. Consider a lease object that owns a collection of assets. It probably doesn't make

usiness sense for one user to edit the lease and another user to simultaneously edit an asset. Locking either b
the asset or the lease ought to result in th

certainly a legitimate motivation for using them. The shared lock can be used beyond the concept of the
vans[E] aggregate, but be careful when working from nonfunctional requirements such as performance.

Beware of creating unnatural object relationships in order to facilitate Coarse-Grained Lock.

 Example: Shared Optimistic Offline Lock (416) (Java)

For this example we have a domain model with Layer Supertype (475), a relational database as our persistent

re, and Data Mapperssto (165).

The first thing to do is create a version class and table. To keep things simple we'll create a rather versatile

s that will not only store its value but will also have a static finder method. Note that we're using
 identity map to cache versions for a session. If objects share a version it's critical that they all point to the

exact same instance of it. As the version class is a part of our domain model it's probably poor form to put
database code in there, so I'll leave separating version database code into the mapper layer as an exercise for
you.

table version...

 create table version(id bigint primary key, value bigint,
 modifiedBy varchar, modified datetime)

class Version...

 private Long id;
 private long value;
 private String modifiedBy;
 private Timestamp modified;
 private boolean locked;
 private boolean isNew;
 private static final String UPDATE_SQL =
 "UPDATE version SET VALUE = ?, modifiedBy = ?, modified = ? " +
 "WHERE id = ? and value = ?";

 private static final String INSERT_SQL =
 "INSERT INTO version VALUES (?, ?, ?, ?)";

sionManager.getSession().getIdentityMap().getVersion(id);

 version = load(id);

 private static Version load(Long id) {

 PreparedStatement pstmt = null;
 Version version = null;

ring(3);
imestamp(4);

 version = new Version(id, value, modifiedBy, modified);
 AppSessionManager.getSession().getIdentityMap().putVersion(version);

version clas
an

 private static final String DELETE_SQL =
 "DELETE FROM version WHERE id = ? and value = ?";

 private static final String LOAD_SQL =
 "SELECT id, value, modifiedBy, modified FROM version WHERE id = ?";
 public static Version find(Long id) {
 Version version = AppSes
 if (version == null) {

 }
 return version;
 }

 ResultSet rs = null;

 Connection conn = null;

 try {
 conn = ConnectionManager.INSTANCE.getConnection();
 pstmt = conn.prepareStatement(LOAD_SQL);
 pstmt.setLong(1, id.longValue());
 rs = pstmt.executeQuery();
 if (rs.next()) {
 long value = rs.getLong(2);
 String modifiedBy = rs.getSt
 Timestamp modified = rs.getT

 } else {

 throw new ConcurrencyException("version " + id + " not found.");
 }
 } catch (SQLException sqlEx) {

 throw new SystemException("unexpected sql error loading version", sqlE
 } finally {

x);

 cleanupDBResources(rs, conn, pstmt);
 }

ate itself. The database insert is separated from the creation to allow

 return version;
 }

The version also knows how to cre
deferment of insertion until at least one owner is inserted into the database. Each of our domain Data
Mappers (165) can safely call insert on the version when inserting the corresponding domain object. The

 tracks whether it's new to make sure it will only be inserted once.

 }
 public void insert() {

 pstmt = conn.prepareStatement(INSERT_SQL);
 pstmt.setLong(1, this.getId().longValue());

 AppSessionManager.getSession().getIdentityMap().putVersion(this);

l error inserting version", sqlEx);

 cleanupDBResources(conn, pstmt);

that multiple objects in a change set will share the same version, so the version first makes sure
ementing itself. After calling the database, the increment() method must

eck that the version row was indeed updated. If it returns a row count of zero, it has detected a concurrency

ass Version...

 throws ConcurrencyException {

pareStatement(UPDATE_SQL);

version

class Version...

 public static Version create() {
 Version version = new Version(IdGenerator.INSTANCE.nextId(), 0,
 AppSessionManager.getSession().getUser(), now());
 version.isNew = true;
 return version;

 if (isNew()) {
 Connection conn = null;
 PreparedStatement pstmt = null;
 try {
 conn = ConnectionManager.INSTANCE.getConnection();

 pstmt.setLong(2, this.getValue());
 pstmt.setString(3, this.getModifiedBy());
 pstmt.setTimestamp(4, this.getModified());
 pstmt.executeUpdate();

 isNew = false;
 } catch (SQLException sqlEx) {

unexpected sq throw new SystemException("
 } finally {

 }
 }
 }

Next, we have an increment() method that increases the value of the version in the corresponding database
row. It's likely
it's not already locked before incr
ch
violation and throws an exception.

cl

 public void increment()

 if (!isLocked()) {
 Connection conn = null;
 PreparedStatement pstmt = null;
 try {

onManager.INSTANCE.getConnection(); conn = Connecti
 pstmt = conn.pre

 pstmt.setLong(1, value + 1);
By()); pstmt.setString(2, getModified

 pstmt.setTimestamp(3, getModified());

 pstmt.setLong(4, id.longValue());
 pstmt.setLong(5, value);
 int rowCount = pstmt.executeUpdate();

 throwConcurrencyException();

 } catch (SQLException sqlEx) {
 throw new SystemException("unexpected sql error incrementing version",

sqlEx);
 } finally {
 cleanupDBResources(conn, pstmt);
 }
 }
 }
 private void throwConcurrencyException() {

 load(this.getId());
eption(

 + " at " +
sion.getModified()));

voke increment only in the system transaction in which you commit the
ctions will result in false

le point of an optimistic

t to see if your data is still current with the database in an earlier
 method to the version class that simply checks i

 if (rowCount == 0) {

 }
 value++;
 locked = true;

 Version currentVersion =
 throw new ConcurrencyExc

 "version modified by " + currentVersion.modifiedBy
tVer DateFormat.getDateTimeInstance().format(curren

 }

With the code here be sure to in
business transaction. The isLocked flag makes it so that incrementing in earlier transa

a problem because the wholock acquisition during the commit transaction. This isn't
lock is that you only get the lock when you commit.

When you use this pattern you may wan
system transaction. You can do this by adding a checkCurrent f
an Optimistic Offline Lock (416) is available without updating.

remove the version from the database. If the returned
his is because the Optimistic Offline Lock

Not shown is a delete method that executes the SQL to

hrown. Trow count is zero, a concurrency exception is t (416)
t of the objects using this version. That should never happen.

y to delete a shared version. If you're sharing a version across an
scenarios make things much more

reference count of its owners and delete itself
his could make for a version object that's rather sophisticated.

aking it a full-blown domain object. This makes
 object without a version.

 let's look at how we use the shared version. The domain Layer Supertype

probably wasn't obtained when de
hen it's oka

leting the las
The real trick is knowing w
aggregate, simply delete it after you delete the aggregate root. Other

n object to keep a problematic. One possibility is for the versio
when the count reaches zero. Be warned that t

our version gets complicated you might consider mOnce y
good sense, but, of course, it will be a special domain

owN (475) contains a version object
rather than a simple count. Each Data Mapper (165) can set the version when loading the domain object.

ass DomainObjectcl ...

mestamp modified, String modifiedBy) {

 private Long id;;

 private Timestamp modified;
tring modifiedBy; private S

 private Version version;
, Ti public void setSystemFields(Version version

 this.version = version;
 this.modified = modified;
 this.modifiedBy = modifiedBy;
 }

For creation, let's look at an aggregate consisting of a custom
method will create the shared version. Customer will hav

er root and its addresses. The customer's create
e an addAddress() method that creates an address,

ur abstract database mapper will insert the version before it inserts
onding domain objects. Remember that the version will ensure that it's only inserted once.

class Customer extends DomainObject...

 public static Customer create(String name) {
 return new Customer(IdGenerator.INSTANCE.nextId(), Version.create(),
 name, new ArrayList());

 }

class Customer extends DomainObject...

 public Address addAddress(String line1, String city, String state) {
 Address address = Address.create(this, getVersion(), line1, city, state);
 addresses.add(address);
 return address;
 }

class Address extends DomainObject...

tatic Address create(Customer customer, Version version,
 String line1, String city, String state) {
 return new Address(IdGenerator.INSTANCE.nextId(), version, customer,
 line1, city, state);

ass AbstractMapper...

 public void insert(DomainObject object) {

I

passin
resp

g along the customer's version. O
cor

 public s

 }

cl

 object.getVersion().insert();

ncrement should be called on a version by the Data Mapper (165) before it updates or deletes an object.

apper...

 public void update(DomainObject object) {

 public void delete(DomainObject object) {
 object.getVersion().increment();

As this is an aggregate, we delete the addresses when we delete the customer. This allows us to delete the
version immediately after that.

class CustomerMapper extends AbstractMapper...

 public void delete(DomainObject object) {
 Customer cust = (Customer) object;
 for (Iterator iterator = cust.getAddresses().iterator(); iterator.hasNext();) {

 add = (Address) iterator.next();
egistry.getMapper(Address.class).delete(add);

 }
 super.delete(object);
 cust.getVersion().delete();
 }

Example: Shared Pessimistic Offline Lock

class AbstractM

 object.getVersion().increment();

class AbstractMapper...

 Address
 MapperR

 (426) (Java)

We need some sort of lockable token that we can associate with all objects in the related set. As discussed
above we'll use Pessimistic Offline Lock (426) as a complement to Optimistic Offline Lock (416) so we can
use as the lockable token the shared version. We'll use all of the same code to arrive at a shared version.

The only issue is that some of our data must be loaded in order to get the version. If we acquire the Pessimistic

Offline Lock (426) after loading its data, how do we know that the data is current? Something we can easily do
is increment the version within the system transaction where we obtained the Pessimistic Offline Lock (426).
Once that system transaction commits, our pessimistic lock is valid and we know that we have the latest copy

any data sharing that version, regardless of where we loaded within the system transaction.

and...

 try {
 Customer customer = (Customer)
pperRegistry.getMapper(Customer.class).find(id);

ireLock
ager.getSession().getId());

 customer.getVersion().increment();
 TransactionManager.INSTANCE.commit();

 throw e;

You can see that the version increment might be something that you would want to build into your lock
manager. At least you want to decorate [Gang of Four

of

class LoadCustomerComm

Ma
 ExclusiveReadLockManager.INSTANCE.acqu
 (customer.getId(), AppSessionMan

 } catch (Exception e) {
 TransactionManager.INSTANCE.rollback();

 }

] your lock manager with code that increments the
version. Your production code will, of course, require more robust exception handling and transaction control
than the example shows.

 Example: Root Optimistic Offline Lock (416) (Java)

This example makes most of the same assumptions as the previous examples, including a domain Layer
Supertype (475) and Data Mappers (165). There's a version object, but in this case it won't be shared. It simply

nt increment() method to more easily allow acquisition of the Optimistic Offline provides a convenie
Lock (416) outside of the Data Mapper (165). We're also using a Unit of Work (184) to track our change set.

so we'll use child-to-parent navigation to find the root. We'll
need to accommodate this in our domain and data models.

class DomainObject...

 public DomainObject(Long id, DomainObject parent {

nt;

e our root locks before we commit the Unit of Work.

xception {
ifiedObjects.iterator(); iterator.hasNext();) {

 object = (DomainObject) iterator.next();

Our aggregate contains parent-child relationships,

 private Long id;
 private DomainObject parent;

)
 this.id = id;
 this.parent = pare

 }

Once we have our owners we can acquir

 class UnitOfWork...

 public void commit() throws SQLE

iterator = _mod for (Iterator
 DomainObject

 for (DomainObject
 owner.getVersion

owner = object; owner != null; owner = owner.getParent()) {
().increment();

 }
 }
 for (Iterator iterator = _modifiedObjects.iterator(); iterator.hasNext();) {
 DomainObject object = (DomainObject) iterator.next();

 Mapper mapper = MapperRegistry.getMapper(object.getClass());
ect);

 }

 mapper.update(obj
 }

Implicit Lock

by David Rice

Allows framework or layer supertype code to acquire offline locks.

The key to any locking scheme is that there are no gaps in its use. Forgetting to write a single line of code that
acquires a lock can render an entire offline locking scheme useless. Failing to retrieve a read lock where other

nsactions use write locks means you might not get up-to-date session data; failing to use a version count

lly
t go

detected by all of your test suites.

One solution is to not allow developers to make such a mistake. Locking tasks that cannot be overlooked
should be handled not explicitly by developers but implicitly by the application. The fact that most enterprise
applications make use of some combination of framework, Layer Supertypes

tra
properly can result in unknowingly writing over someone's changes. Generally, if an item might be locked
anywhere it must be locked everywhere. Ignoring its application's locking strategy allows a business
transaction to create inconsistent data. Not releasing locks won't corrupt your record data, but it will eventua
bring productivity to a halt. Because offline concurrency management is difficult to test, such errors migh
un

 (475), and code generation
provides us with ample opportunity to facilitate Implicit Lock.

 How It Works

Implementing Implicit Lock is a matter of factoring your code such that any locking mechanics that absolutely
cannot be skipped can be carried out by your application framework. For lack of a better word we'll use
"framework" to mean a combination of Layer Supertypes (475), framework classes, and any other "plumbing"

de. Code generation tools are another avenue to enforce proper locking. I realize this is by no means a
ground-breaking idea. You're very likely to head down this path once you've coded the same locking
mechanics a few times over in your application. Still, I've seen it done poorly often enough that it merits a
quick look.

The first step is to assemble a list of what tasks are mandatory for a business transaction to work within your
locking strategy. For Optimistic Offline Lock

co

 (416) that list will contain items such as storing a version count
for each record, including the version in update SQL criteria, and storing an incremented version when
changing the record. The Pessimistic Offline Lock (426) list will include items along the lines of acquiring any
lock necessary to load a piece of data—typically the exclusive read lock or the read portion of the read/write
lock—and releasing all locks when the business transaction or session completes.

Note that the Pessimistic Offline Lock (426) list doesn't include acquiring any lock necessary only for editing

iece of data—that is, exclusive write lock and the write portion of the read/write lock. Yes, these are
mandatory if your business transaction wants to edit the data, but implicitly acquiring them presents, should
the locks be unavaila licitly acquire a
write lock, such as the registration of a dirty object within a Unit of Work

a p

ble, a couple of difficulties. First, the only points where we might imp
 (184), offer us no promise should

the locks be unavailable, that the transaction will abort as soon as the user begins to work. The application
can't figure out on its own when is a good time to acquire these locks. A transaction not failing rapidly
conflicts with an intent of Pessimistic Offline Lock (426)—that a user not have to perform work twice.

Second, and just as important, is that these lock types most greatly limit system concurrency. Avoiding

plicit Lock here helps us think about how we impact concurrency by forcing the issue out of the technical
arena and into the business domain. Still we have to make sure that locks necessary for writing are acquired
before changes are committed. What your framework can do is ensure that a write lock has already been
obtained before committing any changes. Not having acquired the lock by commit time is a programmer error
and the code should at least throw an assertion failure. I advise skipping the assertion and throwing a
concurrency exception here, as you really don't want any such errors in your production system when
assertions are turned off.

A word of caution about using the Implicit Lock. While it allows developers to ignore much of the locking
mechanics it doesn't allow them to ignore consequences. For example, if developers are using Implicit Lock
with a pessimistic locking scheme that waits for locks, they still need to think about deadlock possibilities. The
danger with Implicit Lock is that business transactions can fail in unexpected ways once developers stop
thinking about locking.

aking locking work is a matter of determining the best way to get your framework to implicitly carry out the

Im

M
locking mechanics. See Optimistic Offline Lock (416) for samples of implicit handling of that lock type. The
possibilities for a quality Implicit Lock implementation are far too numerous to demonstrate them all here.

hen to Use It

Implicit Lock should be used in all but the simplest of applications that have no concept of framework. The
risk of a single forgotten lock is too great.

 Example: Implicit Pessimistic Offline Lock

 W

 (426) (Java)

t's consider a system that uses an exclusive read lock. Our architecture contains a Domain ModelLe (116), and
we're using Data Mappers (165) to mediate between our domain objects and our relational database. W
exclusive read lock the framework must acquire a lock on a domain object before allowing a business
transaction to do anything with it.

Any domain object used in a business transaction is located via the find() method on a mapp

ith the

er. This is true
ether the business transaction uses the mapper directly by invoking find() or indirectly by navigating the
ject graph. Now it's possible for us to decorate [Gang of Four

wh
ob] our mappers with required locking

 public void update(DomainObject obj);
 public void delete(DomainObject obj);

class LockingMapper implements Mapper...

apper impl;
 public LockingMapper(Mapper impl) {
 this.impl = impl;
 }

 id, AppSessionManager.getSession().getId());
 return impl.find(id);
 }

 impl.delete(obj);

ommon to look up an object more than once in a session, for the above code to work the

lock manager must first check that the session doesn't already have a lock before it obtains one. If we were
ing an exclusive write lock rather than the exclusive read lock we'd write a mapper decorator that checked

e of the nice thin s about decorators is that the object being wrapped doesn't even know that it's
ctionality is being enhanced. Here we can wrap the mappers in our registry:

 public void registerMapper(Class cls, Mapper mapper) {
 mappers.put(cls, new LockingMapper(mapper));

 }

functionality. We'll write a locking mapper that acquires a lock before attempting to find an object.

interface Mapper...

 public DomainObject find(Long id);
 public void insert(DomainObject obj);

 private M

 public DomainObject find(Long id) {
 ExclusiveReadLockManager.INSTANCE.acquireLock(

 public void insert(DomainObject obj) {
 impl.insert(obj);
 }
 public void update(DomainObject obj) {
 impl.update(obj);
 }
 public void delete(DomainObject obj) {

 }

Because it's quite c

us
for previous lock acquisition on update and delete rather than actually acquiring a lock.

gOn
fun

LockingMapperRegistry implements MappingRegistry...

 private Map mappers = new HashMap();

 }
 public Mapper getMapper(Class cls) {
 return (Mapper) mappers.get(cls);

When the business transaction gets its hands on a mapper it thinks that it's about to invoke a standard update

method, but what really happens is shown in Figure 16.5.

Figure 16.5. Locking mapper.

Chapter 17. Session State Patterns

Client Session State

Server Session State

Database Session State

Client Session State

Stores session state on the client.

 How It Works

vE en the most server-oriented designs need at least a little Client Session State, if only to hold a session
e

e server to be completely stateless.

Most of the time you'll want to use Data Transfer Object

identifier. With some applications you can consider putting all of the session data on the client, in which cas
the client sends the full set of session data with each request and the server sends back the full session state
with each response. This allows th

 (401) to handle the data transfer. The Data Transfer
Object (401) can serialize itself over the wire and thus allow even complex data to be transmitted.

The client also needs to store the data. If it's a rich-client application it can do this within its own structures,
such as the fields in its interface—although I would drink Budweiser rather than do that. A set of nonvisual
objects often makes a better bet, such as the Data Transfer Object (401) itself or a domain model. Either way

.

With an HTML interface, things get a bit more complicated. There are three common ways to do client session

te: URL parameters, hidden fields, and cookies.

ll amount of data. Essentially all URLs on any response
eter. The clear limit to doing this is that the size of an URL is limited, but

ular choice for something like a
ion ID. Some platforms will do automatic URL rewriting to add a session ID. Changing the URL may be a

blem with bookmarks, so that's an argument against using URL parameters for consumer sites.

sent to the browser that isn't displayed on the Web page. You get it with a tag of the
our session state into it when you

it's not usually a big problem

sta

 work with for a smaURL parameters are the easiest to
ke the session state as a parampage ta

if you only have a couple of data items it works well, that's why it's a pop
sess
pro

A hidden field is a field
form <INPUT type = "hidden">. To make a hidden field work you serialize y

make a response and read it back in on each requ
l

est. You'll need a format for putting the data in the hidden
d. XML is an obvious standard choice, but of course it's rather wordy. You can also encode the data in

nly hidden from the displayed page;
yone can look at the data by looking at the page source.

 can lose all the session data if you navigate to

nt back and forth automatically. Just like
idden field you can use a cookie by serializing the session state into it. You're limited in how big the cookie

le don't like cookies and turn them off. If they do that, your site will stop working.
wever, more and more sites are dependent on cookies now, so that will happen less often, and certainly isn't

Realize that cookies are no more secure than anything else, so assume that prying of all kinds can happen.
Cookies also work only within a single domain name, so if your site is separated into different domain names

 cookies won't travel between them.

his can
ts of data.

ber of advantages. In particular, it reacts well in supporting stateless server
if the client fails all is lost, but often the

just a
lds everything works nicely. With large amounts of data the issues of where to store the data and the

ything with every request become prohibitive. This is especially true if your stars

ere's also the security issue. Any data sent to the client is vulnerable to being looked at and altered.
ryption is the only way to stop this, but encrypting and decrypting with each request are a performance

 aren't sending anything you would rather hide from
at what got sent out is the same as what gets sent back.

ta coming back will need to be completely revalidated.

You almost always have to use Client Session State for session identification. Fortunately, this should be just
e number, which won't burden any of the above schemes. You should still be concerned about session

n a malicious user changes his session ID to see if he can snag someone
e's session. Most platforms com up with a random session ID to reduce this risk; if not run, a simple

session ID through a hash.

fie
some text-based encoding scheme. Remember that a hidden field is o
an

ges. YouBeware a mixed site that has older or fixed Web pa
them.

The last, and sometimes controversial, choice is cookies, which are se
a h
can be. Also, many peop
Ho
a problem for a purely in-house system.

the

Some platforms can detect whether cookies are enabled; and if not, they can use URL rewriting. T

lient session state very easy for very small amounmake c

When to Use It

Client Session State contains a num
objects with maximal clustering and failover resiliency. Of course,
user expects that anyway.

The arguments against Client Session State vary exponentially with the amount of data involved. With
few fie
time cost of transferring ever
include an http client.

Th
Enc
burden. Without encryption you have to be sure you
prying eyes. Fingers can pry too, so don't assume th
Any da

on
stealing, which is what happens whe

eels

Server Session State

Keeps the session state on a server system in a serialized form.

 How It Works

 held in memory on an application server. You can have
s these session objects keyed by a session ID; all the client needs to do

 the map to process the request.

erver carries enough memory to perform this task.
plication server—that is, no clustering—and that, if the application

e abandoned and all work done so far to be lost in the great bit-

 is actually not a problem. However, for others it may be
ases where the assumptions are no longer valid, and these

 complexity to an essentially simple pattern.

d by the session objects. Indeed, this is the common
urse, is not to keep resources in memory but instead

e all the session state to a memento [Gang of Four

the simplest form of this pattern a session object isIn
some kind of map in memory that hold

o give the session ID and the session object can be retrieved fromis t

asic scenario assumes, of course, that the application sThis b
It also assumes that there's only one ap
server fails, it's appropriate for the session to b
bucket in the sky.

For many applications this set of assumptions

roblematic. There are ways of dealing with cp
introduce common variations that add

The first issue is that of dealing with memory resources hel
objection to Server Session State. The answer, of co
s rialize] for persistent storage. This presents two questions:

hat form do you persist the Server Session State, and where do you persist it?

 to use is usually as simple a form as possible, since the accent of Server Session State is its
orms provide a simple binary serialization mechanism that allows you

nto another form, such as text—

 binary form is usually easier, since it requires little programming, while the textual form usually requires
ast a little code. Binary serializations also require less disk space; although total disk space is rarely a

 graphs will take longer to activate into memory.

There are two common issues with binary serialization. First, the serialized form is not human readable—
 if humans want to read it. Second, there may be problems with versioning. If you modify a

any
 you may have a

ster of machines running, some upgraded and some not.

m or in a local database. This is the simple route, but it may not
support efficient clustering or failover. To support these the passivated Server Session State needs to be

lly accessible, such as on shared server. This will support clustering and failover at the cost
of a longer time to activate the server—although caching may well eliminate much of this cost.

In w

The form
simplicity in programming. Several platf
to serialize a graph of objects quite easily. Another route is to serialize i
fashionably as an XML file.

The

 leat
concern, large serialized

which is a problem
class by, say, adding a field after you've serialized it, you may not be able to read it back. Of course, not m
essions are likely to span an upgrade of the server software unless it's a 24/7 server wheres

clu

This brings us to the question of where to store the Server Session State. An obvious possibility is on the
application server itself, either in the file syste

somewhere genera

This line of reasoning may lead, ironically to storing the serialized Server Session State in the database using a
session table indexed by the session ID. This table would require a Serialized LOB (272) to hold the serialized

Server Session State. Database performance varies when it comes to handling large objects, so the
rformance aspects of this one are very database dependent. pe

At this point we're right at the boundary between Server Session State and Database Session State (462). T
boundary is completely arbitrary, but I've drawn the line at the point where you convert the data in the Server
Session State into tabular form.

his

 twelve database segments and every two hours rotating the
ments, deleting everything in the oldest segment and then directing all inserts to it. While this meant that

y session that was active for twenty-four hours got unceremoniously dumped, that would be sufficiently rare

r

The two most common techniques for Server Session State are using the http session and using a stateful
session bean. The http session is the simple route and causes the session data to be stored by the Web server.
In most cases this leads to server affinity and it can't cope with failover. Some vendors are implementing a

ared http session capability that allows you to store http session data in a database that's available to all
plication servers. (You can also do this manually, of course.)

e other common route is via a stateful session bean, which requires an EJB server. The EJB container
handles all persistence and passivation, so this makes it very easy to program to. The main disadvantage is that
the specification doesn't ask the application server to avoid server affinity. However, some application servers

vide this capability. One, IBM's WebSphere, can serialize a stateful session bean into a BLOB in DB2,
lication servers to get at its state.

 if you fall into the range
of speed difference between stateful and stateless that makes any difference to your application.

oad-tested apps with a couple of hundred of concurrent users and not found any
performance problems due to stateful beans on that size of user load. If the performance advantage isn't

nificant for your loads, and stateful beans are easier, then you should use them. There are other reasons to

is to use an entity bean. On the whole, I've been pretty dismissive of entity beans, but you
can use one to store a Serialized LOB

If you're storing Server Session State in a database, you'll have to worry about handling sessions going away,
especially in a consumer application. One route is to have a daemon that looks for aged sessions and deletes
them, but this can lead to a lot of contention on the session table. Kai Yu told me about an approach he used
with success: partitioning the session table into
seg
an
to not be a problem.

All these variations take more and more effort to do, but the good news is that application servers increasingly
support these capabilities automatically. Thus, it may well be that application server vendors can worry thei
ugly little heads about them.

 Java Implementation

sh
ap

Th

pro
which allows multiple app

A lot of people say that, since stateless session beans perform better, you should always use them instead of
stateful beans. Frankly, that's hogwash. Load-test with your environment first to see

ThoughtWorks has l

sig
be wary of stateful beans—failover may be more problematic depending on your vendor, but the performance
difference only appears under a heavy load.

other alternative An
 (272) of session data. This is pretty simple and less likely to raise many

of the issues that usually surround entity beans.

 .NET Implementation

Server Session State is easy to implement with the built-in session state capability. By default .NET stores
e

 or on any other machine on the network. With a separate state service you can reset the
eb server and still retain the session state. You make the change between in-process state and a state service
the configuration file, so you don't have to change the application.

Use It

e great appeal of Server Session State is its simplicity. In a number of cases you don't have to do any

s work. Whether you can get away with that depends on if you can get away
th the in-memory implementation and, if not, how much help your application server platform gives you.

Even without that you may well find that the effort you do need is small. Serializing a BLOB to a database
table may turn out to be much less effort than converting the server objects to tabular form.

Where the programming effort comes into play is in session maintenance, particularly if you have to roll your
own support to enable clustering and failover. It may work out to be more trouble than your other options,
especially if you don't have much session data to deal with or if your session data is easily converted to tabular
form.

session data in the server process itself. You can also adjust the storage using a state service, which can resid
on the local machine
W
in

 When to

Th
programming at all to make thi
wi

Database Session State

Stores session data as committed data in the database.

ow It Works

all goes out from the client to the server, the server object first pulls the data required for the request
from the database. Then it does the work it needs to do and saves back to the database all the data required.

order to pull information from the database, the server object will need some information about the session,

er here is the fact that session data is usually considered local to the session and
shouldn't affect other parts of the system until the session as a whole is committed. Thus, if you're working on
an order in a session and you want to save its intermediate state to the database, you usually need to handle it
differently from an order that's confirmed at the end of a session. This is because you don't want pending

ers to appear that often in queries run against the database for such things as book availability and daily
enue.

 H

When a c

In
which requires at least a session ID number to be stored on the client. Usually, however, this information is
nothing more than the appropriate set of keys needed to find the appropriate amount of data in the database.

The data involved is typically a mix of session data that's only local to the current interaction and committed
data that's relevant to all interactions.

e of the key issues to considOn

ord
rev

So how do you separate the session data? Adding a field to each database row that may have session data is
one route.The simplest form of this just requires a Boolean isPending field. However, a better way is to stor
session ID as a pending field, which makes it much easier to find all the data for a particular session. All
queries that want only record data now need to be modified with a sessionID is not NULL clause, or need a
view that filters out that data.

e a

eed
ove the

of their own.

y in
 save

ode,

ten the record data will have integrity rules that don't apply to pending data. In this case the pending tables
ow you to forgo the rules when you don't want them but to enforce them when you do. Validation rules as

ding data. You may face different validation rules depending on
ere you are in the session, but this usually appears in server object logic.

If you use pending tables, they should be exact clones of the real tables. That way you can keep your mapping
log as e
pendin

You'll need a mechanism to clean out the session data if a session is canceled or abandoned. Using a session
ID you can find all data with it and delete it. If users abandon the session without telling you, you'll need some
kind of timeout mechanism. A daemon that runs every few minutes can look for old session data. This requires
a table in the database that keeps track of the time of the last interaction with the session.

Rollback is made much more complicated by updates. If you update an existing order in a session that allows a
rollback of the whole session, how do you perform the rollback? One option is not to allow cancellation of a
session like this. Any updates to existing record data become part of the record data at the end of the request.
This is simple and often fits the users' view of the world. The alternative is awkward whether you use pending
fields or pending tables. It's easy to copy all the data that may be modified into pending tables, modify it there,
and commit it back to the record tables at the end of the session. You can do this with a pending field, but only

he session ID becomes part of the key. In this way you can keep the old and new IDs in the same table at

ending tables that are only read by objects that handle a session, then there
y be little point in tabularizing the data. It's better to use a Serialized LOB

Using a session ID field is a very invasive solution because all applications that touch the record database n
to know the field's meaning to avoid getting session data. Views will sometimes do the trick and rem
invasiveness, but they often impose costs

A second alternative is a separate set of pending tables. So if you have orders and order lines tables alread
your database, you would add tables for pending orders and pending order lines. Pending session data you
to the pending table; when it becomes record data you save it to the real tables. This removes much of the
invasiveness. However, you'll need to add the appropriate table selection logic to your database mapping c
which will certainly add some complications.

Of
all
well typically aren't applied when saving pen
wh

ic similar as possible. Use the same field names between the two tables, but add a session ID field to th
g tables so you can easily find all the data for a session.

if t
the same time, which can get very messy.

If you're going to use separate p
ma (272). At this point we've crossed

 boundary into a Server Session Statethe (458).

l

kes
tabase Session State a lot easier to work with.

You can avoid all of the hassles of pending data by not having any. That is, you design your system so that al
data is considered record data. This isn't always possible, of course, and if it is it can be so awkward that
designers would be better off thinking about explicit pending data. Still, if you have the option it ma
Da

 When to Use It

Database Session State is one alternative to handling session state; it should be compared with Server Session
State (458) and Client Session State (456).

The first aspect to consider with this pattern is performance. You'll gain by using stateless objects on the
server, thus enabling pooling and easy clustering. However, you'll pay with the time needed to pull the data in
and out of the database with each request. You can reduce this cost by caching the server object so you won't
have to read the data out of the database whenever the cache is hit, but you'll still pay the write costs.

The second main issue is the programming effort, most of which centers around handling session state. If you
have no session state and are able to save all your data as record data in each request, this pattern is an obvious
choice because you lose nothing in either effort or performance (if you cache your server objects).

a choice between Database Session State and Server Session State

In (458) the biggest issue may be how easy
it is to support clustering and failover with Server Session State (458) in your particular application server.
Clustering and failover with Database Session State are usually more straightforward, at least with the regular
solutions.

Chapter 18. Base Patterns

Gateway

Mapper

Layer Supertype

Separated Interface

Registry

Value Object

Money

Special Case

Plugin

Service Stub

Record Set

Gateway

An object that encapsulates access to an external system or resource.

 isolation. Even the purest object-oriented system often has to deal with
 CICS transactions, and XML data structures.

Interesting software rarely lives in
things that aren't objects, such as relational database tables,

When accessing external resources like this, you'll usually get APIs for them. However, these APIs are

resource into account. Anyone
o needs to understand a resource needs to understand its API—whether JDBC and SQL for relational

 JDOM for XML. Not only does this make the software harder to understand, it also
shift some data from a relational database to an XML message at

 into a class whose
teway, which translates

zed API.

eality this is a very simple wrapper pattern. Take the external resource. What does the application need to
 with it? Create a simple API for your usage and use the Gateway to translate to the external source.

e of the key uses for a Gateway is as a good point at which to apply a Service Stub

naturally going to be somewhat complicated because they take the nature of the
wh
databases or W3C or
makes it much harder to change should you
some point in the future.

The answer is so common that it's hardly worth stating. Wrap all the special API code

ce looks like a regular object. Other objects access the resource through this Gainterfa
the simple method calls into the appropriate speciali

 How It Works

In r
do

On (504). You can often

er the design of the Gateway to make it easier to apply a Service Stubalt (504). Don't be afraid to do this—well
placed Service Stubs (504) can make a system much easier to test and thus much easier to write.

e essential roles of adapting the external service and
should be as minimal as possible and yet able to handle

way's clients.

ten it's a good idea to use code generation to create Gateways. By defining the structure of the external
p it. You might use relational metadata to create a wrapper

 table, or an XML schema or DTD to generate code for a Gateway for XML. The resulting
but they do the trick. Other objects can carry out more complicated manipulations.

ay in terms of more than one object. The obvious form is to
ack end acts as a minimal overlay to the external resource

end then transforms the awkward API into a more
ood if the wrapping of the external service and
use each responsibility is handled by a single

onversely, if the wrapping of the external service is simple, one class can handle that and any
ptation that's needed.

 Gateway whenever you have an awkward interface to something that feels external.
le system, use a Gateway to contain it. There's hardly

code elsewhere in the system becomes much easier to read.

Keep a Gateway as simple as you can. Focus on th

teway providing a good point for stubbing. The Ga
these tasks. Any more complex logic should be in the Gate

Of
resource, you can generate a Gateway class to wra
class for a relational
Gateways are dumb

mes a good strategy is to build the GatewSometi
use two objects: a back end and a front end. The b
and doesn't simplify the resource's API at all. The front
convenient one for your application to use. This approach is g

s are reasonably complicated, becathe adaptation to your need
class. C
ada

 When to Use It

u should considerYo
Rather than let the awkwardness spread through the who
any downside to making the Gateway, and the

Gateway usually makes a system easier to test by giving you a clear point at which to deploy Service
Stubs (504). Even if the external system's interface is fine, a Gateway is useful as a first move in
applying Service Stub (504).

A clear benefit of Gateway is that it also makes it easier for you to swap out one kind of resource for another.

he Gateway class—the change doesn't ripple
erful form of protected variation. In many cases

t using Gateway. However, don't forget that even if
the simplicity and testability

en you have a couple of subsystems like this, another choice for decoupling them is a Mapper

Any change in resources means that you only have to alter t
h the rest of the system. Gateway is a simple and powthroug

reasoning about this flexibility is the focus of debate abou
you don't think the resource is ever going to change, you can benefit from
Gateway gives you.

Wh (473).

wever, MapperHo (473) is more complicated than Gateway. As a result, I use Gateway for the majority of my

 struggled a fair bit with whether to make this a new pattern as opposed to referencing
 [Gang of Four

external resource access.

I must admit that I've
existing patterns such as Facade and Adapter]. I decided to separate it out from these other

ade.

e service for general
cade always implies a

different interface to rapped facade entirely,
being used for substitution or testing purposes.

 Adapter alters an implementation's interface to match another interface you need to work with. With
Gateway there usually isn't an existing interface, although you might use an adapter to map an

apter is part of the Gateway implementation.
• Mediator usually separates multiple objects so that they don't know about each other but do know

diator. With a Gateway there are usually only two objects involved and the resource that's

s used it to handle
with Enterprise Application Integration (EAI) software. We decided that this would be a good

el of ludicrous simplicity, we'll build a gateway to an interface that just sends a
essage service. The interface is just a single method.

);

essage; the second is the arguments of the message.
 any kind of message, so it needs a generic interface like this. When

you configure the message system you specify the types of message the system will send and the number and
m message with the string "CNFRM" and
nd a string for the ticker code. The

ing system checks the types of the arguments for us and generates an error if we send a wrong message
e right message with the wrong arguments.

 necessary, flexibility, but the generic interface is awkward to use because it isn't explicit.

patterns because I think there's a useful distinction to be m

• While Facade simplifies a more complex API, it's usually done by the writer of th
ause. A Gateway is written by the client for its particular use. In addition, a F

 what it's covering, whereas a Gateway may copy the w

•

implementation to a Gateway interface. In this case the ad

about the me
being wrapped doesn't know about the Gateway.

ietary Messaging Service (Java)Example: A Gateway to a Propr

ike Rettig, and he described how he'I was talking about this pattern with my colleague, M
interfaces
inspiration for a Gateway example.

p things at the usual levTo kee
message using the m

int send(String messageType, Object[] args

The first argument is a string indicating the type of the m
The messaging system allows you to send

types of arguments for them. Thus, we might configure the confir
have arguments for an ID number as a string, an integer amount, a
messag
or th

This is laudable, and

You can't tell by looking at the interface what the legal message types are or what arguments are needed for a
rtain message type. What we need instead is an interface with methods like this:

 amount, String symbol);

teway().sendConfirmation(id, amount,

 }

s the gateway's role to make a more
nvenient interface. It does mean, though, that every time we add or change a message type in the messaging

urn error code.
ro indicates success; anything else indicates failure, and different numbers indicate different errors. This is a

ossible errors is something that we'll naturally ignore. I'll focus on just two: sending a

message with an unknown message type and sending a message where one of the arguments is null. The return
des are defined in the messaging system's interface.

The two errors have a significant difference. The unknown message type error indicates an error in the
gateway class; since any client is only calling a fully explicit method, clients should never generate this error.
They might pass in a null, however, and thus see the null parameter error. This error isn't a checked exception
since it indicates a programmer error—not something that you would write a specific handler for. The gateway

uld actually check for nulls itself, but if the messaging system is going to raise the same error it probably
't worth it.

 private MessageSender sender;
 public void sendConfirmation(String orderID, int amount, String symbol) {

 int returnCode = doSend(msg, args);
 if (returnCode == MessageSender.NULL_PARAMETER)

ce

 public void sendConfirmation(String orderID, int

That way if we want a domain object to send a message, it can do so like this:

class Order...

 public void confirm() {
 if (isValid()) Environment.getMessageGa
mbol); sy

Here the name of the method tells us what message we're sending, and the arguments are typed and given
names. This is a much easier method to call than the generic method. It'
co
system we need to change the gateway class, but we would have to change the calling code anyway. At least
this way the compiler can help us find clients and check for errors.

There's another problem. When we get an error with this interface it tells us by giving us a ret
Ze
natural way for a C programmer to work, but it isn't the way Java does things. In Java you throw an exception
to indicate an error, so the Gateway's methods should throw exceptions rather than return error codes.

The full range of p

co

public static final int NULL_PARAMETER = -1;
public static final int UNKNOWN_MESSAGE_TYPE = -2;
public static final int SUCCESS = 0;

co
sni

For these reasons the gateway has to both translate from the explicit interface to the generic interface and
ranslate the return codes into exceptions. t

class MessageGateway...

 protected static final String CONFIRM = "CNFRM";

 Object[] args = new Object[]{orderID, new Integer(amount), symbol};
 send(CONFIRM, args);
 }
 private void send(String msg, Object[] args) {

 throw new NullPointerException("Null Parameter bassed for msg type: " + msg);
 if (returnCode != MessageSender.SUCCESS)

 "Unexpected error from messaging system #:" + returnCode);

 Assert.notNull(sender);

So far, it's hard to see the point of the doSend method, but it's there for another key role for a gateway—
testing. We can test objects that use the gateway without the message-sending service being present. To do this
we need to create a Service Stub

 throw new IllegalStateException(

 }
 protected int doSend(String msg, Object[] args) {

 return sender.send(msg, args);
 }

 (504). In this case the gateway stub is a subclass of the real gateway and

ass MessageGatewayStub...

] args) {
 int returnCode = isMessageValid(messageType, args);
 if (returnCode == MessageSender.SUCCESS) {

 return returnCode;

private int isMessageValid(String messageType, Object[] args) {
urn -999;

 if (!legalMessageTypes().contains(messageType))
NKNOWN_MESSAGE_TYPE;

 (int i = 0; i < args.length; i++) {
;

;

ypes() {
 List result = new ArrayList();
 result.add(CONFIRM);

= false;

{
agesSent;

ay of helping us test that the gateway works correctly

ss GatewayTester...

 gate().sendConfirmation(null, 5, "US");

 return (MessageGatewayStub) Environment.getMessageGateway();

overrides doSend.

cl

 protected int doSend(String messageType, Object[

 messagesSent++;
 }

 }

 if (shouldFailAllMessages) ret

 return MessageSender.U
 for
 Object arg = args[i]
 if (arg == null) {
 return MessageSender.NULL_PARAMETER;

}
 }
 return MessageSender.SUCCESS
 }
 public static List legalMessageT

 return result;
 }
 private boolean shouldFailAllMessages
 public void failAllMessages() {
 shouldFailAllMessages = true;
 }
 public int getNumberOfMessagesSent()
 return mess
 }

Capturing the number of messages sent is a simple w
with tests like these.

cla

 public void testSendNullArg() {
 try {

 fail("Didn't detect null argument");
 } catch (NullPointerException expected) {
 }
 assertEquals(0, gate().getNumberOfMessagesSent());
 }
 private MessageGatewayStub gate() {

 }
ted void setUp() throws Exception {
ironment.testInit();

 }

hat classes can find it from a well-known place. Here I've used a static
vironment interface. You can switch between the real service and the stub at configuration time by using

 protec
 Env

You usually set up the Gateway so t
en
a Plugin (499), or you can have the test setup routines initialize the environment to use the Service Stub (504).

In this case I've used a subclass of the gateway to stub the messaging service. Another route is to subclass (or
reimplement) the service itself. For testing you connect the gateway to the sending Service Stub

 (504); it
works if reimplementation of the service isn't too difficult. You always have the choice of stubbing the service
or stubbing the gateway. In some cases it's even useful to stub both, using the stubbed gateway for testing
clients of the gateway and the stubbed service to test the gateway itself.

Mapper

An object that sets sup a communication between two independent objects.

Sometimes you need to set up communications between two subsystems that still need to stay ignorant of each
other. This may be because you can't modify them or you can but you don't want to create dependencies
between the two or even between them and the isolating element.

 How It Works

A mapper is an insulating layer between subsystems. It controls the details of the communication between
them without either subsystem being aware of it.

A mapper often shuffles data from one layer to another. Once activated for this shuffling, it's fairly easy to see
how it works. The complicated part of using a mapper is deciding how to invoke it, since it can't be directly

oked by either of the subsystems that it's mapping between. Sometimes a third subsystem drives the inv
mapping and invokes the mapper as well. An alternative is to make the mapper an observer [Gang of Four] of
one or the other subsystem. That way it can be invoked by listening to events in one of them.

How a mapper works depends on the kind of layers it's mapping. The most common case of a mapping layer

that we run into is in a Data Mapper (165), so look there for more details on how a Mapper is used.

 When to Use It

Essentially a Mapper decouples different parts of a system. When you want to do this you have a choice
between Mapper and Gateway (466). Gateway (466) is by far the most common choice because it's much
simpler to use a Gateway (466) than a Mapper both in writing the code and in using it later.

As a result you should only use a Mapper when you need to ensure that neither subsystem has a dependency
on this interaction. The only time this is really important is when the interaction between the subsystems is

ated and somewhat independent to the main purpose of both subsystems. Thus, in
enterprise applications we mostly find Mapper used for interactions with a database, as in Data Mapper
particularly complic

 (165).

lar to Mediator [Gang of Four

Mapper is simi] in that it's used to separate different elements. However, the
objects that use a mediator are aware of it, even if they aren't aware of each other; the objects that a Mapper

separates aren't even aware of the mapper.

ayer Supertype

A type that acts as the supertype for all types in its laye

It's not uncommon for all the objects in a layer to have methods you don't want to have duplicated throughout

 system. You can move all of this behavior into a common Layer Supertype.

ds to a very short pattern. All you need is a superclass for all the
 in a Domain

L

r.

the

 How It Works

Layer Supertype is a simple idea that lea
objects in a layer—for example, a Domain Object superclass for all the domain objects
Model (116). Common features, such as the storage and handling of Identity Fields (216), can go there.

ly all Data MappersSimilar (165) in the mapping layer can have a superclass that relies on the fact that all
ain objects have a common superclass.

 one kind of object in a layer, it's useful to have more than one Layer Supertype.

on features from all objects in a layer. I Often do this automatically
t of use of common features.

mon superclass for ID handling.

dom

If you have more than

 When to Use It

Use Layer Supertype when you have comm
because I make a lo

 Example: Domain Object (Java)

Domain objects can have a com

class DomainObject...

private Long ID;

ert.notNull("Cannot set a null ID", ID);
this.ID = ID;

 this.ID = ID;

 public Long getID() {
 return ID;
 }
 public void setID(Long ID) {
 Ass

 }
 public DomainObject(Long ID) {

 }
 public DomainObject() {
 }

Separated Interface

Defines an interface in a separate package from its implementation.

em, you can improve the quality of its design by reducing the coupling between the
do this is to group the classes into packages and control the dependencies

 classes in one package can call classes in another—for
l classes in the presentation package.

As you develop a syst
system's parts. A good way to
between them.You can then follow rules about how
example, one that says that classes in the domain layer may not cal

However, you might need to invoke methods that contradict the general dependency structure. If so, use

ted Interface to define an interface in one package but implement it in another. This way a client that
eds the dependency to the interface can be completely unaware of the implementation. The Separated
erface provides a good plug point for Gateway

Separa
ne
Int (466).

ery simple to employ. Essentially it takes advantage of the fact that an implementation has a
s interface but not vice versa. This means you can put the interface and the implementation in

arate packages and the implementation package has a dependency to the interface package. Other packages
plementation package.

f course, the software won't work at runtime without some implementation of the interface. This can be

 How It Works

This pattern is v
ependency to itd
eps

can depend on the interface package without depending on the im

O
either at compile time using a separate package that ties the two together or at configuration time
using Plugin (499).

ou can place the interface in the client's package (as inY the sketch) or in a third package (Figure 18.1). If
re's only one client for the implementation, or all the clients are in the same package, then you might as

opers. This would be the case if the developers of the implementation
re responsible for it.

re 18.1. Placing the Separated Interface in a third package.

the
well put the interface in with the client. A good way of thinking about this is that the developers of the client
package are responsible for defining the interface. Essentially the client package indicates that it will work
with any other package that implements the interface it defines. If you have multiple client packages, a third
interface package is better. It's also better if you want to show that the interface definition isn't the
esponsibility of the client package develr
ew

Figu

You have to consider what language feature to use for the interface. For languages that have an interface

construct, such as Java and C#, the interface keyword is the obvious choice. However, it may not be the best.

An abstract class can make a good interface because you can have common, but optional, implementation
behavior in it.

One of the awkward things about separate interfaces is how to instantiate the implementation. It usually
requires knowledge of the implementation class. The common approach is to use a separate factory object,
where again there is a Separated Interface for the factory. You still have to bind an implementation to the
factory, and Plugin (499) is a good way to do this. Not only does it mean there is no dependency, but it also
defers the decision about implementation class to configuration time.

go all the way to PluginIf you don't want to (499), a simpler alternative is to let yet another package that
knows both the interface and the implementation instantiate the right objects at application startup. Any

jects that use Separated Interface can either themselves be instantiated or have factories instantiated at

hen to se It

break a dependency between two parts of the system. Here are
some examples:

• You've built some abstract code for common cases into a framework package that needs to call some
particular application code.

• You have some code in one layer that needs to call code in another layer that it shouldn't see, such as
domain code calling a Data Mapper

ob
startup.

 U W

You use Separated Interface when you need to

 (165).
• You need to call functions developed by another development group but don't want a dependency into

their APIs.

ces for every class they write. I think this is

lications I recommend using a separate interface only if you want to break a dependency or you want to
entation together and need to

e delayed until you need to do it.

a little silly.

ncy check at build
hen all dependencies have to be removed. For a smaller system enforcing dependency rules is less of an

e, but for bigger systems it's a very worthwhile discipline.

I come across many developers who have separate interfa
excessive, especially for application development. Keeping separate interfaces and implementations is extra

rk, especially since you often need factory classes (with interfaces and implementations) as well. For wo
pap

have multiple independent implementations. If you put the interface and implem
parate them later, this is a simple refactoring that can bse

There is a degree to where the determined management of dependencies in this way can get
Having only a dependency to create an object, and using the interface ever after, is usually enough. The
trouble

e. T
 comes when you want to enforce dependency rules, such as by doing a depende

tim
uiss

Registry

A well-known object that other objects can use to find common objects and services.

When you want to find an object you usually start with another object that has an association to it, and use the

a customer, you start with the customer

get to the finder?

isn't as global as it may appear.

 a Registry in terms of interface and implementation.

e quite different, although people often make the mistake of thinking they

The first thing to think of is the interface, and for Registries my preferred interface is static methods. A static
method on a class is easy to find anywhere in an application. Furthermore, you can encapsulate any logic you
like within the static method, including delegation to other methods, either static or instance.

However, just because your methods are static doesn't mean that your data should be in static fields. Indeed, I
almost never use static fields unless they're constants.

fore you decide on how to hold your data, think about the data's scope. The data for a Registry can vary
. Some of it is global across an entire process; some, global across a thread;

nt scopes call for different implementations, but they don't call for
 call to a static method yields

 but you can also

 use static mutable
 substitute a Registry

Plugin

association to navigate to it. Thus, if you want to find all the orders for
object and use a method on it to get the orders. However, in some cases you won't have an appropriate object

ve a reference. In this case you need some to start with. You may know the customer's ID number but not ha
kind of lookup method—a finder—but the question remains: How do you

istry is essentially a global object, or at least it looks like one—even if it A Reg

 How It Works

As with any object, you have to think about the design of
And like many objects, the two ar

the same. should be

Be
with different execution contexts

 some, global across a session. Differeand
different interfaces. The application programmer doesn't have to know whether a
process-scoped or thread-scoped data. You can have different Registries for different scopes,

nt methods are at different scopes. have a single Registry in which differe

If your data is common to a whole process, a static field is an option. However, I rarely

ution. It can be extremely useful to be able tofields because they don't allow for substit
ular purpose, especially for testing (for a partic (499) is a good way to do this).

For a process-scoped Registry, then, the usual option is a singleton [Gang of Four

]. The Registry class
ntains a single static field that holds a Registry instance. When people use a singleton they often make its

caller explicitly access the underlying data (Registry.soleInstance.getFoo()), but I prefer a static method that
 object from me (Registry.getFoo()). This works particularly well since C-based languages
ds to access private instance data.

pplications, but can be a problem for multi-threaded
applications. This is because it's too easy for multiple threads to manipulate the same object in unpredictable

co

hides the singleton
allow static metho

Singletons are widely used in single-threaded a

ways. You may be able to solve this with synchronization, but the difficulty of writing the synchronization
code is likely to drive you into an insane asylum before you get all the bugs out. For that reason I don't

ommend using a singleton for mutable data in a multi-threaded environment. It does work well for

data
nd never need changing, or it may be updated rarely with some kind

process interrupt.

uch as Java's thread local. Another technique is
ictionary keyed by thread whose value is an appropriate data object. A request for a connection results in a
kup in that dictionary by the current thread.

getDbConnection(), which is the same form when I'm accessing
cess-scoped data.

but it
t into a thread-scoped registry when a request begins. Any subsequent accesses for session data can

look up the data in a map that's keyed by session using the session ID that's held in thread-specific storage.

you're using a thread-scoped Registry with static methods, you may run into a performance issue with

y

There are alternatives to using a Registry. One is to pass around any widely needed data in parameters. The
problem with this is that parameters are added to method calls where they aren't needed by the called method
but only by some other method that's called several layers deep in the call tree. Passing a parameter around

en it's not needed 90 percent of the time is what leads me to use a Registry instead.

Another alternative I've seen to a Registry is to add a reference to the common data to objects when they're
created. Although this leads to an extra parameter in a constructor, at least it's only used by that constructor.
It's still more trouble than it's often worth, but if you have data that's only used by a subset of classes, this

hnique allows you to restrict things that way.

One of the problems with a Registry is that it has to be modified every time you add a new piece of data. This

rec
immutable data, since anything that can't change isn't going to run into thread clash problems. Thus, something
like a list of all states in the United States makes a good candidate for a process-scoped Registry. Such
can be loaded when a process starts up a
of

A common kind of Registry data is thread scoped. A good example is a database connection. In this case many
environments give you some form of thread-specific storage, s
a d
loo

The important thing to remember about thread-scoped data is that it looks no different from process-scoped
data. I can still use a method such as Registry.
pro

A dictionary lookup is also a technique you can use for session-scoped data. Here you need a session ID,
can be pu

If
multiple threads going through them. In that case direct access to the thread's instance will avoid the
bottleneck.

Some applications may have a single Registry; some may have several. Registries are usually divided up b
system layer or by execution context. My preference is to divide them up by how they are used, rather than
implementation.

 When to Use It

Despite the encapsulation of a method, a Registry is still global data and as such is something I'm
uncomfortable using. I almost always see some form of Registry in an application, but I always try to access
objects through regular inter-object references instead. Basically, you should only use a Registry as a last
resort.

wh

tec

is why some people prefer to use a map as their holder of global data. I prefer the explicit class because it
keeps the methods explicit, so there's no confusion about what key you use to find something. With an explici
class you can just look at the source code or generated documentation to see what's available. With a map you
have to find places in the system where data is read or written to the map to find out what key is used or to rely
on documentation that quickly becomes stale. An explicit class

t

 also allows you to keep type safety in a
tically typed language as well as to encapsulate the structure of the Registry so that you can refactor it as the
stem grows. A bare map also is unencapsulated, which makes it harder to hide the implementation. This is

 Example: A Singleton Registry (Java)

sta
sy
particularly awkward if you have to change the data's execution scope.

So there are times when it's right to use a Registry, but remember that any global data is always guilty until
proven innocent.

Consider an application that reads data from a database and then munges on it to turn it into information. Well,
imagine a fairly simple system that uses Row Data Gateways (152) for data access. This system has finder
objects to encapsulate the database queries. The finders are best made as instances because that way we can

bstitute them to make a Service Stubsu (504) for testing. We need a place to put them; a Registry is the
vious choice.

A singleton registry is a very simple example of the Singleton pattern [Gang of Four

ob

]. You have a static
le for the single instance.

 protected PersonFinder personFinder = new PersonFinder();

To make access easier, however, I make the public methods static.

class Registry...

 public static PersonFinder personFinder() {
 return getInstance().personFinder;
 }

variab

class Registry...

 private static Registry getInstance() {
 return soleInstance;
 }
 private static Registry soleInstance = new Registry();

Everything that's stored on the registry is stored on the instance.

class Registry...

I can reinitialize the registry simply by creating a new sole instance.

class Registry...

 public static void initialize() {
 soleInstance = new Registry();
 }

If I want to use Service Stubs (504) for testing, I use a subclass instead.

class RegistryStub extends Registry...

tub() {
= new PersonFinderStub();

e finder Service Stub

 public RegistryS
 personFinder
 }

Th (504) just returns hardcoded instances of the person Row Data Gateway (152).

 return new Person("Fowler", "Martin", 10);
 }

ew IllegalArgumentException("Can't find id: " + String.valueOf(id));

ut a method on the registry to initialize it in stub mode, but by keeping all the stub behavior in the subclass I
ll the code required for testing.

 soleInstance = new RegistryStub();
 }

att Foemmel and Martin Fowler

ir own
istry. Java provides Thread Specific Storage variables [Schmidt

class PersonFinderStub...

 public Person find(long id) {
 if (id == 1) {

 throw n
 }

I p
can separate a

class Registry...

 public static void initializeStub() {

 Example: Thread-Safe Registry (Java)

M

The simple example above won't work for a multi-threaded application where different threads need the
reg] that are local to a thread, helpfully called

ead local variables. You can use them to create a registry that's unique for a thread.

) instances.get();
 }

 it. You typically do this on a

ass ThreadLocalRegistry...

egin() {

 public static void end() {
 Assert.notNull(getInstance());

es.set(null);

thr

class ThreadLocalRegistry...

 private static ThreadLocal instances = new ThreadLocal();
 public static ThreadLocalRegistry getInstance() {
 return (ThreadLocalRegistry

The Registry needs to be set up with methods for acquiring and releasing
transaction or session call boundary.

cl

 public static void b
 Assert.isTrue(instances.get() == null);
 instances.set(new ThreadLocalRegistry());
 }

 instanc
 }

You can then store person finders as before.

ass ThreadLocalRegistry...

ew PersonFinder();;

 }

 end methods.

y {
 ThreadLocalRegistry.begin();

 PersonFinder f1 = ThreadLocalRegistry.personFinder();
 Person martin = Registry.personFinder().find(1);
 assertEquals("Fowler", martin.getLastName());

d();

small simple object, like money or a date range, whose equality isn't based on identity.

ound it useful to distinguish between reference objects and Value
jects. Of the two a Value Object is usually the smaller; it's similar to the primitive types present in many
guages that aren't purely object-oriented.

erence between a reference object and Value Object can be a tricky thing. In a broad sense we
e to think that Value Objects are small objects, such as a money object or a date, while reference objects are

er. Such a definition is handy but annoyingly informal.

 how they deal with equality. A reference object
es identity as the basis for equality—maybe the identity within the programming system, such as the built-in

 programming languages, or maybe some kind of ID number, such as the primary key in a
of equality on field values within the class. Thus, two date
r values are the same.

sts itself in how you deal with them. Since Value Objects are small and easily created,
rence. You don't really care about how many March 18,

jects share the same physical date object or

r value objects to work properly in these cases it's

lds change. The reason for
same value object and one of

cl

 private PersonFinder personFinder = n
 public static PersonFinder personFinder() {
 return getInstance().personFinder;

Calls from the outside wrap their use of a registry in the begin and

tr

} finally {ThreadLocalRegistry.en
}

Value Object

A

With object systems of various kinds, I've f
Ob
lan

 How It Works

efining the diffD
ikl

large, such as an order or a custom

he key difference between reference and value objects lies inT
su

identity of OO
relational database. A Value Object bases its notion

 if their day, month, and yeaobjects may be the same

This difference manife
they're often passed around by value instead of by refe
2001, objects there are in your system. Nor do you care if two ob

hether they have different yet equal copies. w

Most languages have no special facility for value objects. Fo
a very good idea to make them immutable—that is, once created none of their fie
this is to avoid aliasing bugs. An aliasing bug occurs when two objects share the

the owners changes the values in it. Thus, if Martin has a hire date of March 18 and we know that Cindy was
hired on the same day, we may set Cindy's hire date to be the same as Martin's. If Martin then changes the

 date to May, Cindy's hire date changes too. Whether it's correct or not, it isn't what people

alue Objects immutable fulfills that expectation.

bjects shouldn't be persisted as complete records. Instead use Embedded Value

month in his hire
expect. Usually with small values like this people expect to change a hire date by replacing the existing date
object with a new one. Making V

Value O (268) or Serialized
LOB (272). Since Value Objects are small, Embedded Value (268) is usually the best choice because it also

t of binary serializing, you may find that optimizing the serialization of Value Objects can
improve performance, particularly in languages like Java that don't treat for Value Objects in a special way.

r an example of a Value Object> see Money

allows SQL querying using the data in a Value Object.

If you're doing a lo

Fo (488).

ET has a first-class treatment of Value Object. In C# an object is marked as a Value Object by declaring it
stead as a class. The environment then treats it with value semantics.

Treat something as a Value Object when you're basing equality on something other than an identity. It's worth

ame Collisions

ly recently I've seen the J2EE

 .NET Implementation

.N
as a struct in

 When to Use It

considering this for any small object that's easy to create.

 N

I've seen the term Value Object used for this pattern for quite some time. Sad
community [Alur et al.] use the term "value object" to mean Data Transfer Object (401), which has caused a

rm in the teacup of the patterns community. This is just one of those clashes over names that happen all the
cently [Alur et al.

sto
time in this business. Re] decided to use the term transfer object instead.

 use Value Object in this way in this text. If nothing else it allows me to be consistent with my
vious writings!

oney

I continue to
pre

M

Represents a monetary value.

l your calculations are done in a single currency, this
't a huge problem, but once you involve multiple currencies you want to avoid adding your dollars to your

ut taking the currency differences into account. The more subtle problem is with rounding. Monetary
 this it's easy to lose pennies (or your

The good thing about object-oriented programming is that you can fix these problems by creating a Money
class that handles them. Of course, it's still surprising that none of the mainstream base class libraries actually

t Works

er an integral type or a fixed decimal type. The decimal type is easier for some manipulations,

nded to the smallest complete unit, such as cents in the dollar. However, there are times when fractional
its are needed. It's important to make it clear what kind of money you're working with, especially in an

at uses both kinds. It makes sense to have different types for the two cases as they behave quite

oney is a Value Object

A large proportion of the computers in this world manipulate money, so it's always puzzled me that money

in any mainstream programming language. The lack of a type causes isn't actually a first class data type
blems, the most obvious surrounding currencies. If alpro

isn
yen witho
calculations are often rounded to the smallest currency unit. When you do
local equivalent) because of rounding errors.

do this.

ow I H

The basic idea is to have a Money class with fields for the numeric amount and the currency. You can store the
amount as eith
the integral for others. You should absolutely avoid any kind of floating point type, as that will introduce the
kind of rounding problems that Money is intended to avoid. Most of the time people want monetary values
rou
un
application th
differently under arithmetic.

M (486), so it should have its equality and hash code operations overridden to be based
on the currency and amount.

oney needs arithmetic operations so that you can use money objects as easily as you use numbers. But
thmetic operations for money have some important differences to money operations in numbers. Most

obviously, any addition or subtraction needs to be currency aware so you can react if you try to add together
monies of different currencies. The simplest, and most common, response is to treat the adding together of
disparate currencies as an error. In some more sophisticated situations you can use Ward Cunningham's idea o

M
ari

f
n one object. This object

n then participate in calculations just like any money object. It can also be valued into a currency.

sion end up being more complicated due to rounding problems. When you multiply

a money bag. This is an object that contains monies of multiple currencies together i
ca

Multiplication and divi
money you do it with a scalar. If you want to add 5% tax to a bill you multiply by 0.05, so you see
multiplication by regular numeric types.

The awkward complication comes with rounding, particularly when allocating money between different
places. Here's Matt Foemmel's simple conundrum. Suppose I have a business rule that says that I have to

ney to two accounts: 70% to one and 30% to another. I have 5 cents
to allocate. If I do the math I end up with 3.5 cents and 1.5 cents. Whichever way I round these I get into

uble. If I do the usual rounding to nearest then 1.5 becomes 2 and 3.5 becomes 4. So I end up gaining a
penny. Rounding down gives me 4 cents and rounding up gives me 6 cents. There's no general rounding

aining a penny.

.

• Perhaps the most common is to ignore it—after all, it's only a penny here and there. However this tends
to make accountants understandably nervous.

• When allocating you always do the last allocation by subtracting from what you've allocated so far.
This avoids losing pennies, but you can get a cumulative amount of pennies on the last allocation.

• Allow users of a Money class to declare the rounding scheme when they call the method. This permits
a programmer to say that the 70% case rounds up and the 30% rounds down. Things can get
complicated when you allocate across ten accounts instead of two. You also have to remember to
round. To encourage people to remember I've seen some Money classes force a rounding parameter
into the multiply operation. Not only does this force the programmer to think about what rounding she
needs, it also might remind her of the tests to write. However, it gets messy if you have a lot of tax
calculations that all round the same way.

• My favorite solution: have an allocator function on the money. The parameter to the allocator is a list
of numbers, representing the ratio to be allocated (it would look something like
aMoney.allocate([7,3])). The allocator returns a list of monies, guaranteeing that no pennies get
dropped by scattering them across the allocated monies in a way that looks pseudo-random from the
outside. The allocator has faults: You have to remember to use it and any precise rules about where the
pennies go are difficult to enforce.

The fundamental issue here is between using multiplication to determine proportional charge (such as a tax)
and using it to allocate a sum of money across multiple places. Multiplication works well for the former, but
an allocator works better for the latter. The important thing is to consider your intent in using multiplication or
division on a monetary value.

You may want to convert from one currency to another with a method like
aMoney.convertTo(Currency.DOLLARS). The obvious way to do this is to look up an exchange rate and
multiply by it. While this works in many situations, there are cases where it doesn't—again due to rounding.
The conversion rules between the fixed euro currencies had specific roundings applied that made simple
multiplication unworkable. Thus, it's wise to have a convertor object to encapsulate the algorithm.

Comparison operations allow you to sort monies. Like the addition operation, conversions need to be currency
aware. You can either choose to throw an exception if you compare different currencies or do a conversion.

A Money can encapsulate the printing behavior. This makes it much easier to provide good display on user
interfaces and reports. A Money class can also parse a string to provide a currency-aware input mechanism,
which again is very useful for the user interface. This is where your platform's libraries can provide help.
Increasingly platforms provide globalization support with specific number formatters for particular countries.

Storing a Money in a database always raises an issue, since databases also don't seem to understand that
money is important (although their vendors do.) The obvious route to take is to use Embedded Value

allocate the whole amount of a sum of mo

tro

scheme I can apply to both that will avoid losing or g

I've seen various solutions to this problem

 (268),

which results in storing a currency for every money. That can be overkill when, for instance, an account may
have all its entries be in pounds. In this case you may store the currency on the account and alter the database
mapping to pull the account's currency whenever you load entries.

 TWhen to Use It T

T T

I use Money for pretty much all numeric calculation in object-oriented environments. The primary reason is to
encapsulate the handling of rounding behavior, which helps reduce the problems of rounding errors. Another
reason to use Money is to make multi-currency work much easier. The most common objection to Money is
performance, although I've only rarely heard of cases where it makes any noticeable difference, and even then
the encapsulation often makes tuning easier.

 TExample: A Money Class (Java)T

T T

by Matt Foemmel and Martin Fowler

The first decision is what data type to use for the amount. If anyone needs convincing that a floating point
number is a bad idea, ask them to run this code.

double val = 0.00;
for (int i = 0; i < 10; i++) val += 0.10;
System.out.println(val == 1.00);

With floats safely disposed of, the choice lies between fixed-point decimals and integers, which in Java boils
down to BigDecimal, BigInteger and long. Using an integral value actually makes the internal math easier, and
if we use long we can use primitives and thus have readable math expressions.

class Money...

 private long amount;
 private Currency currency;

I'm using an integral amount, that is, the amount of the smallest base unit, which I refer to as cents in the code
because it's as good a name as any. With a long we get an overflow error if the number gets too big. If you
give us $92,233,720,368,547,758.09 we'll write you a version that uses BigInteger.

It's useful to provide constructors from various numeric types.

public Money(double amount, Currency currency) {
 this.currency = currency;
 this.amount = Math.round(amount * centFactor());
}
public Money(long amount, Currency currency) {
 this.currency = currency;
 this.amount = amount * centFactor();
}
 private static final int[] cents = new int[] {1, 10, 100, 1000 };
private int centFactor() {
 return cents[currency.getDefaultFractionDigits()];
}

Different currencies have different fractional amounts. The Java 1.4 Currency class will tell you the number of

fractional digits in a class. We can determine how many minor units there are in a major unit by raising ten to
the power, but that's such a pain in Java that the array is easier (and probably quicker). We're prepared to live
with the fact that this code breaks if someone uses four fractional digits.

Although most of the time you'll want to use money operation directly, there are occasions when you'll need
access to the underlying data.

class Money...

 public BigDecimal amount() {
 return BigDecimal.valueOf(amount, currency.getDefaultFractionDigits());
 }
 public Currency currency() {
 return currency;
 }

You should always question your use of accessors. There's almost always a better way that won't break
encapsulation. One example that we couldn't avoid is database mapping, as in HTUEmbedded Value UTH (268).

If you use one currency very frequently for literal amounts, a helper constructor can be useful.

class Money...

 public static Money dollars(double amount) {
 return new Money(amount, Currency.USD);
 }

As Money is a HTUValue ObjectUTH (486) you'll need to define equals.

class Money...

 public boolean equals(Object other) {
 return (other instanceof Money) && equals((Money)other);
 }
 public boolean equals(Money other) {
 return currency.equals(other.currency) && (amount == other.amount);
 }

And wherever there's an equals there should be a hash.

class Money...

 public int hashCode() {
 return (int) (amount ^ (amount >>> 32));
 }

We'll start going through the arithmetic with addition and subtraction.

class Money...

 public Money add(Money other) {
 assertSameCurrencyAs(other);
 return newMoney(amount + other.amount);
 }
 private void assertSameCurrencyAs(Money arg) {
 Assert.equals("money math mismatch", currency, arg.currency);
 }

 private Money newMoney(long amount) {
 Money money = new Money();
 money.currency = this.currency;
 money.amount = amount;
 return money;
 }

Note the use of a private factory method here that doesn't do the usual conversion into the cent-based amount.
We'll use that a few times inside the Money code itself.

With addition defined, subtraction is easy.

class Money...

 public Money subtract(Money other) {
 assertSameCurrencyAs(other);
 return newMoney(amount - other.amount);
 }

The base method for comparison is compareTo.

class Money...

 public int compareTo(Object other) {
 return compareTo((Money)other);
 }
 public int compareTo(Money other) {
 assertSameCurrencyAs(other);
 if (amount < other.amount) return -1;
 else if (amount == other.amount) return 0;
 else return 1;
 }

Although that's all you get on most Java classes these days, we find code is more readable with the other
comparison methods such as these.

class Money...

 public boolean greaterThan(Money other) {
 return (compareTo(other) > 0);
 }

Now we're ready to look at multiplication. We're providing a default rounding mode but you can set one
yourself as well.

class Money...

 public Money multiply(double amount) {
 return multiply(new BigDecimal(amount));
 }
 public Money multiply(BigDecimal amount) {
 return multiply(amount, BigDecimal.ROUND_HALF_EVEN);
 }
 public Money multiply(BigDecimal amount, int roundingMode) {
 return new Money(amount().multiply(amount), currency, roundingMode);
 }

If you want to allocate a sum of money among many targets and you don't want to lose cents, you'll want an
allocation method. The simplest one allocates the same amount (almost) amongst a number of targets.

class Money...

 public Money[] allocate(int n) {
 Money lowResult = newMoney(amount / n);
 Money highResult = newMoney(lowResult.amount + 1);
 Money[] results = new Money[n];
 int remainder = (int) amount % n;
 for (int i = 0; i < remainder; i++) results[i] = highResult;
 for (int i = remainder; i < n; i++) results[i] = lowResult;
 return results;
 }

A more sophisticated allocation algorithm can handle any ratio.

class Money...

 public Money[] allocate(long[] ratios) {
 long total = 0;
 for (int i = 0; i < ratios.length; i++) total += ratios[i];
 long remainder = amount;
 Money[] results = new Money[ratios.length];
 for (int i = 0; i < results.length; i++) {
 results[i] = newMoney(amount * ratios[i] / total);
 remainder -= results[i].amount;
 }
 for (int i = 0; i < remainder; i++) {
 results[i].amount++;
 }
 return results;
 }

You can use this to solve Foemmel's Conundrum.

class Money...

 public void testAllocate2() {
 long[] allocation = {3,7};
 Money[] result = Money.dollars(0.05).allocate(allocation);
 assertEquals(Money.dollars(0.02), result[0]);
 assertEquals(Money.dollars(0.03), result[1]);
 }

TSpecial CaseT

T T

A subclass that provides special behavior for particular cases.

Nulls are awkward things in object-oriented programs because they defeat polymorphism. Usually you can
invoke foo freely on a variable reference of a given type without worrying about whether the item is the exact
type or a subclass. With a strongly typed language you can even have the compiler check that the call is
correct. However, since a variable can contain null, you may run into a runtime error by invoking a message
on null, which will get you a nice, friendly stack trace.

If it's possible for a variable to be null, you have to remember to surround it with null test code so you'll do the
right thing if a null is present. Often the right thing is same in many contexts, so you end up writing similar
code in lots of places—committing the sin of code duplication.

Nulls are a common example of such problems and others crop up regularly. In number systems you have to
deal with infinity, which has special rules for things like addition that break the usual invariants of real
numbers. One of my earliest experiences in business software was with a utility customer who wasn't fully
known, referred to as "occupant." All of these imply altering the usual behavior of the type.

Instead of returning null, or some odd value, return a Special Case that has the same interface as what the
caller expects.

 THow It Works T

T T

The basic idea is to create a subclass to handle the Special Case. Thus, if you have a customer object and you
want to avoid null checks, you make a null customer object. Take all of the methods for customer and override
them in the Special Case to provide some harmless behavior. Then, whenever you have a null, put in an
instance of null customer instead.

There's usually no reason to distinguish between different instances of null customer, so you can often
implement a Special Case with a flyweight [HTUGang of Four UTH]. You can't do it all the time. For a utility you can
accumulate charges against an occupant customer even you can't do much billing, so it's important to keep
your occupants separate.

A null can mean different things. A null customer may mean no customer or it may mean that there's a
customer but we don't know who it is. Rather than just using a null customer, consider having separate Special
Cases for missing customer and unknown customer.

A common way for a Special Case to override methods is to return another Special Case, so if you ask an
unknown customer for his last bill, you may well get an unknown bill.

IEEE 754 floating-point arithmetic offers good examples of Special Case with positive infinity, negative
infinity, and not-a-number (NaN). If you divide by zero, instead of getting an exception that you have to deal
with, the system just returns NaN, and NaN participates in arithmetic just like any other floating point number.

 TWhen to Use It T

T T

Use Special Case whenever you have multiple places in the system that have the same behavior after a
conditional check for a particular class instance, or the same behavior after a null check.

 TFurther ReadingT

T T

I haven't seen Special Case written up as a pattern yet, but Null Object has been written up in [HTUWoolfUTH]. If you'll
pardon the unresistable pun, I see Null Object as special case of Special Case.

 TExample: A Simple Null Object (C#) T

T T

Here's a simple example of Special Case used as a null object.

We have a regular employee.

class Employee...

 public virtual String Name {
 get {return _name;}
 set {_name = value;}
 }
 private String _name;
 public virtual Decimal GrossToDate {
 get {return calculateGrossFromPeriod(0);}
 }
 public virtual Contract Contract {
 get {return _contract;}
 }
 private Contract _contract;

The features of the class could be overridden by a null employee

class NullEmployee : Employee, INull...

 public override String Name {
 get {return "Null Employee";}
 set {}
 }
 public override Decimal GrossToDate {
 get {return 0m;}
 }
 public override Contract Contract {
 get {return Contract.NULL;}
 }

Notice that when you ask a null employee for its contract you get a null contract back.

The default values here avoid a lot of null tests if they end up with the same null values. The repeated null
values are handled by the null object by default. You can also test for nullness explicitly either by giving the
customer an isNull method or by using a type test for a marker interface.

TPlugin T

T T

by David Rice and Matt Foemmel

Links classes during configuration rather than compilation.

HTUSeparated InterfaceUTH (476) is often used when application code runs in multiple runtime environments, each
requiring different implementations of particular behavior. Most developers supply the correct implementation
by writing a factory method. Suppose you define your primary key generator with a HTUSeparated InterfaceUTH (476)
so that you can use a simple in-memory counter for unit testing but a database-managed sequence for
production. Your factory method will most likely contain a conditional statement that looks at a local
environment variable, determines if the system is in test mode, and returns the correct key generator. Once you
have a few factories you have a mess on your hands. Establishing a new deployment configuration—say
"execute unit tests against in-memory database without transaction control" or "execute in production mode
against DB2 database with full transaction control"—requires editing conditional statements in a number of
factories, rebuilding, and redeploying. Configuration shouldn't be scattered throughout your application, nor
should it require a rebuild or redeployment. Plugin solves both problems by providing centralized, runtime
configuration.

 THow It Works T

T T

The first thing to do is define with a HTUSeparated InterfaceUTH (476) any behaviors that will have different
implementations based on runtime environment. Beyond that, we use the basic factory pattern, only with a few
special requirements. The Plugin factory requires its linking instructions to be stated at a single, external point
in order that configuration can be easily managed. Additionally, the linking to implementations must occur
dynamically at runtime rather than during compilation, so that reconfiguration won't require a rebuild.

Figure 18.2. A caller obtains a Plugin implementation of a separated interface.

A text file works quite well as the means of stating linking rules. The Plugin factory will simply read the text
file, look for an entry specifying the implementation of a requested interface, and return that implementation.

Plugin works best in a language that supports reflection because the factory can construct implementations
without compile-time dependencies on them. When using reflection, the configuration file must contain
mappings of interface names to implementation class names. The factory can sit independently in a framework
package and needn't be changed when you add new implementations to your configuration options.

Even when not using a language that supports reflection it's still worthwhile to establish a central point of
configuration. You can even use a text file to set up linking rules, with the only difference that your factory
will use conditional logic to map an interface to the desired implementation. Each implementation type must
be accounted for in the factory—not a big a deal in practice. Just add another option within the factory method
whenever you add a new implementation to the code base. To enforce layer and package dependencies with a
build-time check, place this factory in its own package to avoid breaking your build process.

 TWhen to Use It T

T T

Use Plugin whenever you have behaviors that require different implementations based on runtime
environment.

 TExample: An Id Generator (Java) T

T T

As discussed above, key, or ID, generation is a task whose implementation might vary between deployment
environments (HTUFigure 18.3UTH).

Figure 18.3. Multiple ID generators.

First we'll write the IdGenerator HTUSeparated InterfaceUTH (476) as well as any needed implementations.

interface IdGenerator...

 public Long nextId();

class OracleIdGenerator implements IdGenerator...

 public OracleIdGenerator() {
 this.sequence = Environment.getProperty("id.sequence");
 this.datasource = Environment.getProperty("id.source");
 }

In the OracleIdGenerator, nextId() select the next available number out of the defined sequence from the
defined data source.

class Counter implements IdGenerator...

 private long count = 0;
 public synchronized Long nextId() {
 return new Long(count++);
 }

Now that we have something to construct, let's write the plugin factory that will realize the current interface-
to-implementation mappings.

class PluginFactory...
 private static Properties props = new Properties();

 static {

 try {
 props.load(PluginFactory.class.getResourceAsStream("/plugins.properties"));
 } catch (Exception ex) {
 throw new ExceptionInInitializerError(ex);

 }
 }

 public static Object getPlugin(Class iface) {

 String implName = props.getProperty(iface.getName());
 if (implName == null) {
 throw new RuntimeException("implementation not specified for " +
 iface.getName() + " in PluginFactory propeties.");
 }
 try {
 return Class.forName(implName).newInstance();
 } catch (Exception ex) {
 throw new RuntimeException("factory unable to construct instance of " +
 iface.getName());
 }
 }

Note that we're loading the configuration by looking for a system property named plugins that will locate the
file containing our linking instructions. Many options exist for defining and storing linking instructions, but
we find a simple properties file the easiest. Using the system property to find the file rather then looking on the
classpath makes it simple to specify a new configuration anywhere on your machine. This can be very
convenient when moving builds between development, test, and production environments. Here's how two
different configuration files, one for test and one for production, might look:

config file test.properties...

 # test configuration
 IdGenerator=TestIdGenerator

config file prod.properties...

 # production configuration
 IdGenerator=OracleIdGenerator

Let's go back to the IdGenerator interface and add a static INSTANCE member that's set by a call to the Plugin
factory. It combines Plugin with the singleton pattern to provide an extremely simple, readable call to obtain
an ID.

class IdGenerator...

 public static final IdGenerator INSTANCE =
 (IdGenerator) PluginFactory.getPlugin(IdGenerator.class);

We can now make that call knowing that we'll get the right ID for the right environment.

class Customer extends DomainObject...

 private Customer(String name, Long id) {
 super(id);
 this.name = name;
 }
 public Customer create(String name) {
 Long newObjId = IdGenerator.INSTANCE.nextId();
 Customer obj = new Customer(name, newObjId);
 obj.markNew();
 return obj;
 }

TService StubT

T T

by David Rice

Removes dependence upon problematic services during testing.

Enterprise systems often depend on access to third-party services such as credit scoring, tax rate lookups, and
pricing engines. Any developer who has built such a system can speak to the frustration of being dependent on
resources completely out of his control. Feature delivery is unpredictable, and as these services are often
remote reliability and performance can suffer as well.

At the very least these problems slow the development process. Developers sit around waiting for the service
to come back on line or maybe put some hacks into the code to compensate for yet to be delivered features.
Much worse, and quite likely, such dependencies will lead to times when tests can't execute. When tests can't
run the development process is broken.

Replacing the service during testing with a Service Stub that runs locally, fast, and in memory improves your
development experience.

 THow It Works T

T T

The first step is to define access to the service with a HTUGatewayUTH (466). The HTUGatewayUTH (466) should not be a class
but rather a HTUSeparated InterfaceUTH (476) so you can have one implementation that calls the real service and at
least one that's only a Service Stub. The desired implementation of the HTUGatewayUTH (466) should be loaded using
a HTUPluginUTH (499). The key to writing a Service Stub is that you keep it as simple as possible—complexity will
defeat your purpose.

Let's walk through the process of stubbing a sales tax service that provides state sales tax amount and rate,
given an address, product type, and sales amount. The simplest way to provide a Service Stub is to write two
or three lines of code that use a flat tax rate to satisfy all requests.

Tax laws aren't that simple, of course. Certain products are exempt from taxation in certain states, so we rely
on our real tax service to know which product and state combinations are tax exempt. However, a lot of our
application functionality dependents on whether taxes are charged, so we need to accommodate tax exemption
in our Service Stub. The simplest means of adding this behavior to the stub is via a conditional statement that
exempt a specific combination of address and product and then uses that same data in any relevant test cases.

The number of lines of code in our stub can still be counted on one hand.

A more dynamic Service Stub maintains a list of exempt product and state combinations, allowing test cases to
add to it. Even here we're at about 10 lines of code. We're keeping things simple given our aim of speeding the
development process.

The dynamic Service Stub brings up an interesting question regarding the dependency between it and test
cases. The Service Stub relies on a setup method for adding exemptions that isn't in the original tax
service HTUGatewayUTH (466) interface. To take advantage of a HTUPluginUTH (499) to load the Service Stub, this method
must be added to the HTUGatewayUTH (466, which is fine as it doesn't add much noise to your code and is done in the
name of testing. Be sure that the HTUGatewayUTH (466) implementation that calls the real service throws assertion
failures within any test methods.

 TWhen to Use It T

T T

Use Service Stub whenever you find that dependence on a particular service is hindering your development
and testing.

Many practitioners of Extreme Programming use the term Mock Object, for a Service Stub. We've stuck with
Service Stub because it's been around longer.

 TExample: Sales Tax Service (Java)T

T T

Our application uses a tax service that deployed as a Web service. The first item we'll take care of is defining
a HTUGatewayUTH (466) so that our domain code isn't forced to deal with the wonders of Web services.
The HTUGatewayUTH (466) is defined as an interface to facilitate loading of any HTUService Stubs UTH that we write. We'll
use HTUPluginUTH (499) to load the correct tax service implementation.

interface TaxService...

 public static final TaxService INSTANCE =
 (TaxService) PluginFactory.getPlugin(TaxService.class);
 public TaxInfo getSalesTaxInfo(String productCode, Address addr, Money saleAmount);

The simple flat rate Service Stub would look like this:

class FlatRateTaxService implements TaxService...

 private static final BigDecimal FLAT_RATE = new BigDecimal("0.0500");
 public TaxInfo getSalesTaxInfo(String productCode, Address addr, Money saleAmount) {
 return new TaxInfo(FLAT_RATE, saleAmount.multiply(FLAT_RATE));
 }

Here's a Service Stub that provides tax exemptions for a particular address and product combination:

class ExemptProductTaxService implements TaxService...

 private static final BigDecimal EXEMPT_RATE = new BigDecimal("0.0000");
 private static final BigDecimal FLAT_RATE = new BigDecimal("0.0500");
 private static final String EXEMPT_STATE = "IL";
 private static final String EXEMPT_PRODUCT = "12300";
 public TaxInfo getSalesTaxInfo(String productCode, Address addr, Money saleAmount) {

 if (productCode.equals(EXEMPT_PRODUCT) &&
addr.getStateCode().equals(EXEMPT_STATE)) {
 return new TaxInfo(EXEMPT_RATE, saleAmount.multiply(EXEMPT_RATE));
 } else {
 return new TaxInfo(FLAT_RATE, saleAmount.multiply(FLAT_RATE));
 }
 }

Now here's a more dynamic Service Stub whose methods allow a test case to add and reset exemption
combinations. Once we feel it necessary to add these test methods we need to go back and add these methods
to our simpler Service Stubs as well as to the implementation that calls the actual tax Web service. The unused
test methods should all throw assertion failures.

class TestTaxService implements TaxService...

 private static Set exemptions = new HashSet();
 public TaxInfo getSalesTaxInfo(String productCode, Address addr, Money saleAmount) {
 BigDecimal rate = getRate(productCode, addr);
 return new TaxInfo(rate, saleAmount.multiply(rate));
 }
 public static void addExemption(String productCode, String stateCode) {
 exemptions.add(getExemptionKey(productCode, stateCode));
 }
 public static void reset() {
 exemptions.clear();
 }
 private static BigDecimal getRate(String productCode, Address addr) {
 if (exemptions.contains(getExemptionKey(productCode, addr.getStateCode()))) {
 return EXEMPT_RATE;
 } else {
 return FLAT_RATE;
 }
 }

Not shown is the implementation that calls the Web service providing our real tax data, to which our
production HTUPluginUTH (499) configuration would link the tax service interface. Our test HTUPluginUTH (499)
configurations would link to the appropriate Service Stub above.

Finally, any caller to the tax service must access the service via the HTUGatewayUTH (466). We have a charge
generator here that creates standard charges and then calls the tax service in order to create any corresponding
taxes.

class ChargeGenerator...

 public Charge[] calculateCharges(BillingSchedule schedule) {
 List charges = new ArrayList();
 Charge baseCharge = new Charge(schedule.getBillingAmount(), false);
 charges.add(baseCharge);
 TaxInfo info = TaxService.INSTANCE.getSalesTaxInfo(
 schedule.getProduct(), schedule.getAddress(), schedule.getBillingAmount());
 if (info.getStateRate().compareTo(new BigDecimal(0)) > 0) {
 Charge taxCharge = new Charge(info.getStateAmount(), true);
 charges.add(taxCharge);
 }
 return (Charge[]) charges.toArray(new Charge[charges.size()]);
 }

TRecord Set T

T T

An in-memory representation of tabular data.

In the last twenty years, the dominant way to represent data in a database has been the tabular relational form.
Backed by database companies big and small, and a fairly standard query language, almost every new
development I see uses relational data.

On top of this has come a wealth of tools for building UI's quickly. These data-aware UI frameworks rely on
the fact that the underlying data is relational, and they provide UI widgets of various kinds that make it easy to
view and manipulate this data with almost no programming.

The dark side of these environments is that, while they make display and simple updates ridiculously easy,
they have no real facilities in which to place business logic. Any validations beyond "is this a valid date," and
any business rules or computations have no good place to go. Either they're jammed into the database as stored
procedures or they're mingled with UI code.

The idea of the Record Set is to give you your cake and let you eat it, by providing an in-memory structure that
looks exactly like the result of an SQL query but can be generated and manipulated by other parts of the
system.

 THow It Works T

T T

A Record Set is usually something that you won't build yourself, provided by the vendor of the software
platform you're working with. Examples include the data set of ADO.NET and the row set of JDBC 2.0.

The first essential element of a Record Set is that it looks exactly like the result of a database query. That
means you can use the classical two-tier approach of issuing a query and throwing the data directly into a data-
aware UI with all the ease that these two-tier tools give you. The second essential element is that you can
easily build a Record Set yourself or take one that has resulted from a database query and easily manipulate it
with domain logic code.

Although platforms often give you a Record Set, you can create one yourself. The problem is that there isn't
that much point without the data-aware UI tools, which you would also need to create yourself. In any case it's
fair to say that building a Record Set structure as a list of maps, which is common in dynamically typed
scripting languages, is a good example of this pattern.

The ability to disconnect the Record Set from its link to the data source is very valuable. This allows you to

pass the Record Set around a network without having to worry about database connections. Furthermore, if
you can then easily serialize the Record Set it can also act as a HTUData Transfer ObjectUTH (401) for an application.

Disconnection raises the question of what happens when you update the Record Set. Increasingly platforms are
allowing the Record Set to be a form of HTUUnit of WorkUTH (184), so you can modify it and then return it to the data
source to be committed. A data source can typically use HTUOptimistic Offline LockUTH (416) to see if there are any
conflicts and, if not, write the changes out to the database.

 Explicit Interface

Most Record Set implementations use an implicit interface. This means that to get information out of the
Record Set you invoke a generic method with an argument to indicate which field you want. For example, to
get the passenger on an airline reservation you use an expression like aReservation["passenger"]. An explicit
interface requires a real reservation class with defined methods and properties. With an explicit reservation the
expression for a passenger might be aReservation.passenger.

Implicit interfaces are flexible in that you can use a generic Record Set for any kind of data. This saves you
having to write a new class every time you define a new kind of Record Set. In general, however, I find
implicit interfaces to be a Bad Thing. If I'm programming with a reservation, how do I know how to get the
passenger? Is the appropriate string "passenger" or "guest" or "flyer"? The only way I can tell is to wander
around the code base trying to find where reservations are created and used. If I have an explicit interface I can
look at the definition of the reservation to see what property I need.

This problem is exacerbated with statically typed languages. If I want the last name of the passenger, I have to
resort to some horrible expression such as ((Person)aReservation["passenger"]).lastName, but then the
compiler loses all type information and I have to manually enter it in to get the information I want. An explicit
interface can keep the type information so I can use aReservation.passenger.lastName.

For these reasons, I generally frown on implicit interfaces (and their evil cousin, passing data around in
dictionaries). I'm also not too keen on them with Record Sets, but the saving grace here is that the Record Set
usually carries information on the legal columns in it. Furthermore, the column names are defined by the SQL
that creates the Record Set, so it's not too difficult to find the properties when you need them.

But it's nice to go further and have an explicit interface. ADO.NET provides this with its strongly typed data
sets, generated classes that provide an explicit and fully typed interface for a Record Set. Since an ADO.NET
data set can contain many tables and the relationships between them, strongly typed data sets also provide
properties that can use that relationship information. The classes are generated from the XSD data set
definition.

Implicit interfaces are more common, so I've used untyped data sets in my examples for this book. For
production code in ADO.NET, however, I suggest using data sets that are typed. In a non-ADO.NET
environment, I suggest using code generation for your own explicit Record Sets.

 TWhen to Use It T

T T

To my mind the value of Record Set comes from having an environment that relies on it as a common way of
manipulating data. A lot of UI tools use Record Set, and a compelling reason to use them yourself. If you have
such an environment, you should use HTUTable ModuleUTH (125) to organize your domain logic: Get a Record Set

from the database; pass it to a HTUTable ModuleUTH (125) to calculate derived information; pass it to a UI for display
and editing; and pass it back to a HTUTable ModuleUTH (125) for validation. Then commit the updates to the database.

In many ways the tools that make Record Set so valuable appeared because of the ever-presence of relational
databases and SQL and the absence of any real alternative structure and query language. Now, of course,
there's XML, which has a widely standardized structure and a query language in XPath, and I think it's likely
that we'll see tools that use a hierarchic structure in the same way that current tools now use Record Set.
Perhaps this is actually a particular case of a more generic pattern: something like Generic Data Structure. But
I'll leave thinking about that pattern until then.

TReferencesT

T T

[Alexander et al.]
Alexander, et al. A Pattern Language. Oxford, 1977.
An inspiration for many people in the patterns movement. I'm less enamored of it than most, but it's worth
looking at to understand an approach that so many draw so much from.

[Alpert et al.]
Alpert, Brown and Woolf. Design Patterns Smalltalk Companion. Addison-Wesley, 1998.
Little known outside the Smalltalk community, this book expands and explains many of the classic patterns.

[Alur et al.]
Alur, Crupi, and Malks. Core J2EE Patterns: Best Practices and Design Strategies. Prentice Hall, 2001.
One of the new wave of patterns books that put new life into the form. Although the patterns are expressed
specifically for the J2EE platform, most also make sense in other places.

[Ambler]
HTUhttp://www.ambysoft.com/mappingObjects.html UTH

A useful source of ideas on object-relational mapping.

[Beck XP 2000]
Beck, Extreme Programming Explained. Addison-Wesley, 2000.
The manifesto for Extreme Programming. It should be read by anyone interested in software process.

[Beck Patterns]
Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.
Undeservedly little read because of its Smalltalk base. It has more good advice for other OO languages than
most books that are specially written for them. The only downside is that you might realize how much we all
miss by not programming in Smalltalk.

[Beck TDD]
Beck. Test-Driven Development: By Example. Addison-Wesley, 2003.
Due to be out on the same day as this book. TDD is Kent's guide to the tight cycle of testing and refactoring
that can evolve a design.

[Bernstein and Newcomer]
Bernstein and Newcomer. Principles of Transaction Processing. Morgan Kaufmann, 1997.
An excellent introduction to the head-hurting world of transactions.

[Brown et al.]
Brown et al. Enterprise Java Programming with IBM Websphere. Addison-Wesley, 2001.

Although two-thirds of this book is a software manual, the other third packs more good design advice than do
most entire books devoted to the subject.

[Brown and Whitenack]
HTUhttp://members.aol.com/kgb1001001/chasms.htmUTH

One of the earliest, and best, papers on object-relational mapping.

[Cockburn UC]
Cockburn. Writing Effective Use Cases. Addison-Wesley, 2001.
By far the best reference on use cases.

[Cockburn PloP]
Cockburn, T"Prioritizing Forces in Software Design,"T in [HTUPLoPD 2 UTH].
A discussion of application boundaries.

[Coleman et al.]
Coleman, Arnold, and Bodoff. Object-Oriented Development: The Fusion Method, Second Edition. Prentice
Hall, 2001.
Although much of this pre-UML book is primarily of historic interest, its discussion of the interface model is
very helpful to those designing a service layer.

[Evans and Fowler]
HTUhttp://martinfowler.com/apsupp/spec.pdfUTH

A discussion of the Specification pattern.

[Evans]
Evans. Domain Driven. Addison Wesley, in preparation.
A book on developing domain models. Although I don't usually like to reference books not yet published, the
manuscript promises a fascinating discussion of an important and difficult aspect of enterprise application
developments.

[Fowler Temporal Patterns]
HTUhttp://martinfowler.com/ap2/timeNarrative.htmlUTH

Patterns dealing with object histories that change over time.

[Fowler AP]
Fowler. Analysis Patterns. Addison-Wesley, 1997.
Domain model patterns.

[Fowler Refactoring]
Fowler, Refactoring. Addison-Wesley, 1999.
A technique for improving the design of an existing code base.

[Fowler CI]
HTUhttp://martinfowler.com/articles/continuousIntegration.htmlUTH

An essay that explains how to automatically build software several times a day.

[Gang of Four]
Gamma, Helm, Johnson, and Vlissides. Design Patterns. Addison-Wesley, 1995.
The seminal book on patterns.

[Hay]
Hay. Data Model Patterns. Dorset House, 1995.
Patterns of conceptual models from a relational perspective.

[Jacobson et al.]
Jacobson et al. Object-Oriented Software Engineering. Addison-Wesley, 1992.
An early book on OO design; introduces use cases and the interface-controller-entity approach to design.

[Keller and Coldewey]
HTUhttp://www.objectarchitects.de/ObjectArchitects/orpatterns/index.htmUTH

An excellent resource for object-relational mapping.

[Kirtland]
Kirtland. Designing Component-Based Applications. Microsoft Press, 1998.
Description of the DNA architecture.

[Knight and Dai]
Knight and Dai. T" Objects and the Web."T IEEE Software, March/April 2002.
An excellent paper on model view controller, its evolution and use in Web applications.

[Larman]
Larman. Applying UML and Patterns, Second Edition. Prentice Hall, 2001.
Currently my first-choice introduction to OO design.

[Lea]
Lea. Concurrent Programming in Java, Second Edition. Addison-Wesley, 2000.
If you want to program with multiple threads, you need to understand this book first.

[Marinescu]
Marinescu. EJB Design Patterns. New York: John Wiley, 2002.
Recent patterns book for Java's EJB.

[Martin and Odell]
Martin and Odell. Object Oriented Methods: A Foundation (UML Edition). Prentice Hall, 1998.
Object modeling from a conceptual perspective, as well as investigation into the foundations of what modeling
is about.

[Nilsson]
Nilsson. .NET Enterprise Design with Visual Basic .NET and SQL Server 2000. Sams, 2002.
A solid book on architecture for the Microsoft platform.

[Peckish]
two million (see page 79)

[PLoPD 2]
Vlissides, Coplien, and Kerth (eds.). Pattern Languages of Program Design 2. Addison-Wesley, 1996.
Compendium of patterns papers.

[PLoPD 3]
Martin, Buschmann, and Rielhe (eds.). Pattern Languages of Program Design 3. Addison-Wesley, 1998.
Compendium of patterns papers.

[POSA]
Buschmann et al. Pattern-Oriented Software Architecture. Wiley, 2000.
The best book on broader architectural patterns.

[Riehle et al.]
Riehle, Siberski, Baumer, Megert, and Zullighoven. T"Serializer,"T in [HTUPLoPD 3 UTH].
In-depth description of serialization of object structures, particularly when you need to serialize into different
forms.

[Schmidt]
Schmidt, Stal, Rohnert, and Buschmann. Pattern-Oriented Software Architecture, Volume 2. New York: John
Wiley, 2000.
Patterns for concurrent and distributed systems. More for people who design application servers than for those
who use application servers, but it's good to have some knowledge of these ideas when you use the results.

[Snodgrass]
Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan-Kaufmann, 1999.
How to deal with tracking historic information in relational databases.

[Struts]
HTUhttp://jakarta.apache.org/struts/UTH

A Web presentation framework for Java that's growing in popularity.

[Waldo et al.]
Waldo, Wyant, Wollrath, and Kendall. A Note on Distributed Computing. SMLI TR-94-
29, HTUhttp://research.sun.com/technical-reports/1994/smli_tr-94-29.pdfUTH, Sun Microsystems, 1994.
A classic paper on why "transparent distributed objects" is a dangerous oxymoron.

[wiki]
HTUhttp://c2.com/cgi/wiki UTH

The original wiki web, developed by Ward Cunningham. A rambling but fascinating open Web site where all
sorts of people share all sorts of ideas.

[Woolf]
Woolf. T"Null Object,"Tin [HTUPLoPD 3 UTH].
A description of the Null Object pattern.

[Yoder]
HTUhttp://www.joeyoder.com/Research/objectmappingsUTH

A good source of object-relational patterns.

