
Aprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem Profunda

23 - Open Problems23 - Open Problems23 - Open Problems23 - Open Problems23 - Open Problems23 - Open Problems23 - Open Problems23 - Open Problems23 - Open Problems

Ludwig Krippahl



1

Open ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen Problems

Today, last lecture
■ (Some) Open problems in deep learning:
• Automated Architecture Search
• Verification & Validation
• Training with small data sets
• Bridging the neuro-symbolic gap

9:45 Introduction to PyTorch
■ Prof. Cláudia Soares, Zoom session
■ Afterwards, questions about assignment 2



2

Open ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen Problems

Automated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture Search



3

Automated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture Search

AutoML
■ Automating machine learning:
• https://automl.github.io/auto-sklearn/master/

• Test different algorithms and parameters to optimize classification

■ In classical ML additional problems of feature engineering and
selection

■ Deep learning should be better for this
• Deep neural networks are good at finding best features

■ However...



4

Automated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture Search

Finding the best network
■ A discontinuous optimization problem; needs a good strategy.
• Evolutionary methods, such as genetic algorithms

• Reinforcement learning:the agent performs a sequence of actions to build the
network

• Bayesian optimization: maximizes a black box function by fitting estimates of its
output

• E.g. Sequential Model-based Algorithm Configuration (SMAC), uses random forest
to predict performance

• Was used to build MLP that perform better than human designed in some
applications



5

Automated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture Search

Finding the best network
■ A discontinuous optimization problem; needs a good strategy.
■ Evaluating networks is expensive; needs speedup
• Train few epochs or on small subsets of data

• Extrapolate performance from first training epochs

• Inherit weights transforming the architecture in ways that preserve function

• E.g add a layer with identity operation

• Share weights between different models that are subsets of a large original trained
model



6

Automated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture SearchAutomated Architecture Search

Finding the best network
■ A discontinuous optimization problem; needs a good strategy.
■ Evaluating networks is expensive; needs speedup
■ Choose the search space.
• We need to know what elements to use in order to search them

• Convolution, residual blocks, recurrent, attention and transformers...

• And it is a huge search space...



7

Open ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen Problems

Validation and VerificationValidation and VerificationValidation and VerificationValidation and VerificationValidation and VerificationValidation and VerificationValidation and VerificationValidation and VerificationValidation and Verification



8

V & VV & VV & VV & VV & VV & VV & VV & VV & V

Validation and Verification
■ Software V & V is important, especially in critical applications
• Autonomous driving, medical diagnosis, credit risk prediction, ...

■ Validation
• Assessment of the conformity to the requirements

"Is the software being built correctly?"

■ Verification
• Assessment of the adequacy of the software to the use it will be put to

"Is the right software being built?"



9

V & VV & VV & VV & VV & VV & VV & VV & VV & V

Validation and Verification challenges in DNN
■ Very large state-space for the data and network responses
• Difficult to estimate how DNN responds in anomalous situations (with fatal

consequences)

• Possible solutions: probabilistic models, process control methods establishing
safety limits

■ Testing specifications
• Not easy to specify adequate tests for deep neural networks

• Genetic algorithms and other forms of test data generation are possible solutions

■ Formal methods are used in software for critical applications
• Formal descriptions of algorithms and requirements enable automated proofs

• This is hard for software in general, and more so for neural networks



10

Open ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen Problems

Dataset SizeDataset SizeDataset SizeDataset SizeDataset SizeDataset SizeDataset SizeDataset SizeDataset Size



11

Dataset SizeDataset SizeDataset SizeDataset SizeDataset SizeDataset SizeDataset SizeDataset SizeDataset Size

Lots of data
■ DNN need large datasets. Or do they? (We don't...)
■ Few-shot and one-shot learning
• DNN trained on large data sets, generally with metric learning

• Learn to separate different examples and put close together similar ones

• Can then be applied to different datasets, even with different classes

■ Data augmentation, whenever possible
■ Regularization: DNN can easily overfit but dropout and weight

penalties can help mitigate
• The network can function as an ensemble

■ The loss function:
• Cosine loss function seems to improve generalization with small data sets



12

Open ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen Problems

The neuro-symbolic gapThe neuro-symbolic gapThe neuro-symbolic gapThe neuro-symbolic gapThe neuro-symbolic gapThe neuro-symbolic gapThe neuro-symbolic gapThe neuro-symbolic gapThe neuro-symbolic gap



13

Neuro-symbolic gapNeuro-symbolic gapNeuro-symbolic gapNeuro-symbolic gapNeuro-symbolic gapNeuro-symbolic gapNeuro-symbolic gapNeuro-symbolic gapNeuro-symbolic gap

■ Neural networks are simultaneously very basic algorithms
• Composition of products, sums and little else

■ But very complex, like our brains
• Composition of many many basic operations

■ Our brains connect sub-symbolic representations with symbolic
reasoning

• We can describe and explain

• We can use symbolic representations to guide parts of our network

• For example: learn to pick out pictures of boats; then pick only yellow ones

■ Can we do this with ANN?
• Mapping from network activations to concepts, apparently yes

• But the other way around? Can we talk to the networks in symbols?



14

Open ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen Problems

SummarySummarySummarySummarySummarySummarySummarySummarySummary



15

Open ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen ProblemsOpen Problems

Summary
■ Automating network design
■ Validating and Verifying
■ Learning with fewer data
■ Use symbolic information to guide networks
Next week:
■ No lecture, just questions and revisions




