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Summary
■ Bias and its ethical problems.
■ Sources of bias
• Sampling, population, assumptions

■ Mitigating undesirable biases
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Inductive Bias
■ In machine learning, inductive bias is the set of assumptions that

constrain hipotheses and allow generalization
■ All learning systems need bias for generalization, including

ourselves.
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Bias
■ In general, bias is any correlation found in data. Is what we learn
• Stereotypes, assumptions, prototypes

■ But bias is not always desirable
■ E.g. NIST review of face recognition products
• False match for American Indian women 68 times higher for American Indian

women than for white men

• Also 47 times higher for American Indian men and 10 times higher for black women

■ Good bias: regularities that we can learn
■ Bad bias: correlations that lead to unfair results
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Intuituion
■ A system is fair if its results do not depend on certain features
• E.g. sex, race, religious beliefs, political ideology, sexual orientation.
• We can ommit such features from structured data
• But with unstructured data this is harder

■ And also if it works equally well on all groups
• E.g. Classify photos to identify CEO of important companies

• We get 95% accuracy in our test set.
• But only about 5% of the CEO of large companies are women.
• The classifier may be discarding all women as negative examples
• (and have 0% accuracy on women CEO)
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Intuituion
■ A system is fair if its results do not depend on certain features
■ And also if it works equally well on all groups
■ Class imbalance can be a problem:
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Intuituion
■ A system is fair if its results do not depend on certain features
■ And also if it works equally well on all groups 

 
■ This is important if we are developing models that impact people
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Bias can have several sources
■ In data:
• Inadequate sampling. E.g. ImageNet biased for western countries

Shankar et al, No Classification without Representation, 2017
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Bias can have several sources
■ In data:
• Inadequate sampling

• The universe is biased

• Gender imbalances in professions like nursing, construction, engineering or
sociology
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Bias can have several sources
■ In data:
• Inadequate sampling
• The universe is biased

■ Due to feature selection:
• Nearly all violent criminals are men

• We will not use sex as a feature for prediction (protected characteristic)

• But height and weight are strongly correlated with sex
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Bias can have several sources
■ In data:
• Inadequate sampling
• The universe is biased

■ Due to feature selection
■ Aggregation effects
• Haemoglobin A1c is an indicator for high blood glucose levels and diabetes

• However, levels differ between ethnic groups, so using an average value will not
work in some groups
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Sampling Bias
■ If the problem is sampling, the best solution is better sampling
• Pilot Parliaments Benchmark

Shankar et al, No classification without representation, 2017
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Bias in population (or cannot get better data)
■ Resample the data we have
■ Representation Bias Removal (REPAIR)
■ We have a DNN classifier
• All layers up to last extract features
• The last layer is a linear classifier with softmax output
• We can retrain this last classifier with cross-entropy loss:
• For the dataset  and parameteres :  

 
D θ

L(D, θ) = E (− log P(Y ∣ X)) = − log P(y ∣ x)
1

|D|
∑

(x,y)∈D
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Representation Bias Removal (REPAIR)
■ Bias is the reduction in uncertainty, normalized

■ If loss is low bias is high (that is what we larn)
■ Goal: adjust sampling probability to make classification harder

B(D, θ) = 1 − H(Y ) = − log
L(D, θ)

H(Y )

1

|D|
∑

(x,y)∈D

py

L( , θ) = − log P( ∣ )D′ 1

∑
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i=1 wi

∑
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wi yi xi

B( , θ) = 1 − H( ) = − logD′ L( , θ)D′
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Representation Bias Removal (REPAIR)
■ Bias is the reduction in uncertainty, normalized

■ If loss is low bias is high (that is what we larn)
■ Goal: adjust sampling probability to make classification harder
■ Minimize  with respect to 
■ Minimize  with respect to 
■ (This is done with adversarial training)
■ Intuition: eliminate imbalances that facilitate classification

B(D, θ) = 1 − H(Y ) = − log
L(D, θ)

H(Y )

1

|D|
∑

(x,y)∈D

py

L( , θ)D′ θ

B( , θ)D′ W
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Debiasing Variational Autoencoder
■ Use a variational autoencoder to learn a latent representation

Amini et al, Uncovering and mitigating algorithmic bias through learned latent structure, 2019

■ Minimize weighted cross-entropy, KL divergence and reconstruction
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■ Sampling probability is inverse of density in manifold region

Amini et al, Uncovering and mitigating algorithmic bias through learned latent structure, 2019
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Bias is good
■ Biases are fundamental for learning. They are what we learn
• Correlations between features and values to predict

But bias is bad
■ Whenever these correlations arise from mistakes (e.g. sampling

errors)
■ Or lead to unfairness:
• Results that depend on characteristics that should not be used
• Or systems that perform poorly for some groups
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Best practices
■ Consider appliction and impact of models
■ Beware of discrimination based on protected characteristics
• And correlation with other attributes

■ Be critical of the data used for training
■ Evaluate performance on different groups
■ If in doubt, mitigate by actively reducing biases
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Summary
■ Bias: fundamentally an ethical problem
■ Sources of bias
• Sampling, population, assumptions

■ Mitigating undesirable biases




