Aprendizagem Profunda

22 - Bias and Fairness

Ludwig Krippahl

Summary

- Bias and its ethical problems.
- Sources of bias
- Sampling, population, assumptions
- Mitigating undesirable biases

Bias

Inductive Bias

- In machine learning, inductive bias is the set of assumptions that constrain hipotheses and allow generalization
- All learning systems need bias for generalization, including ourselves.

Bias

In general, bias is any correlation found in data. Is what we learn

Bias

In general, bias is any correlation found in data. Is what we learn

Bias

- In general, bias is any correlation found in data. Is what we learn
- Stereotypes, assumptions, prototypes
- But bias is not always desirable
- E.g. NIST review of face recognition products
- False match for American Indian women 68 times higher for American Indian women than for white men
- Also 47 times higher for American Indian men and 10 times higher for black women
- Good bias: regularities that we can learn
- Bad bias: correlations that lead to unfair results

Fairness

Fairness

Intuituion

- A system is fair if its results do not depend on certain features
- E.g. sex, race, religious beliefs, political ideology, sexual orientation.
- We can ommit such features from structured data
- But with unstructured data this is harder
- And also if it works equally well on all groups
- E.g. Classify photos to identify CEO of important companies
- We get 95% accuracy in our test set.
- But only about 5% of the CEO of large companies are women.
- The classifier may be discarding all women as negative examples
- (and have 0% accuracy on women CEO)

Fairness

Intuituion

- A system is fair if its results do not depend on certain features
- And also if it works equally well on all groups
- Class imbalance can be a problem:



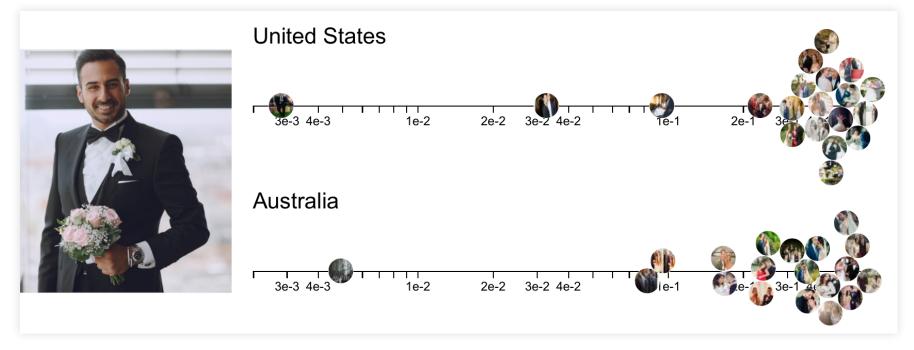
Intuituion

- A system is fair if its results do not depend on certain features
- And also if it works equally well on all groups
- This is important if we are developing models that impact people

Bias can have several sources

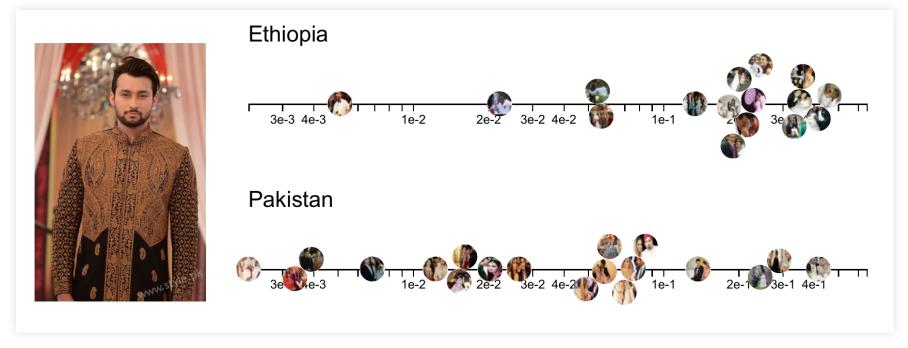
In data:

• Inadequate sampling. E.g. ImageNet biased for western countries



Shankar et al, No Classification without Representation, 2017

- In data:
- Inadequate sampling. E.g. ImageNet biased for western countries



Shankar et al, No Classification without Representation, 2017

- In data:
- Inadequate sampling
- The universe is biased
- Gender imbalances in professions like nursing, construction, engineering or sociology

- In data:
- Inadequate sampling
- The universe is biased
- Due to feature selection:
- Nearly all violent criminals are men
- We will not use sex as a feature for prediction (protected characteristic)
- But height and weight are strongly correlated with sex

- In data:
- Inadequate sampling
- The universe is biased
- Due to feature selection
- Aggregation effects
- Haemoglobin A1c is an indicator for high blood glucose levels and diabetes
- However, levels differ between ethnic groups, so using an average value will not work in some groups

Mitigating undesirable bias

Mitigating Bias

Sampling Bias

If the problem is sampling, the best solution is better sampling

• Pilot Parliaments Benchmark



Shankar et al, No classification without representation, 2017

Bias in population (or cannot get better data)

- Resample the data we have
- Representation Bias Removal (REPAIR)
- We have a DNN classifier
- All layers up to last extract features
- The last layer is a linear classifier with softmax output
- We can retrain this last classifier with cross-entropy loss:
- For the dataset D and parameteres θ :

$$L(D, heta) = \mathbb{E}\left(-\log P(Y \mid X)
ight) = -rac{1}{|D|}\sum_{(x,y) \in D} \log P(y \mid x)$$

Representation Bias Removal (REPAIR)

Bias is the reduction in uncertainty, normalized

$$B(D, heta) = 1 - rac{L(D, heta)}{H(Y)} \qquad H(Y) = -rac{1}{|D|}\sum_{(x,y)\in D}\log p_y$$

If loss is low bias is high (that is what we larn)

Goal: adjust sampling probability to make classification harder

$$L(D', heta) = -rac{1}{\sum_{i=1}^{|D|} w_i} \sum_{i=1}^{|D|} w_i \log P(y_i \mid x_i)
onumber \ B(D', heta) = 1 - rac{L(D', heta)}{H(Y')} \qquad H(Y') = -rac{1}{\sum_{i=1}^{|D|} w_i} \sum_{i=1}^{|D|} w_i \log rac{\sum_{i:y_i = y} w_i}{\sum_i w_i}$$

Representation Bias Removal (REPAIR)

Bias is the reduction in uncertainty, normalized

$$B(D, heta) = 1 - rac{L(D, heta)}{H(Y)} \qquad H(Y) = -rac{1}{|D|}\sum_{(x,y)\in D}\log p_y$$

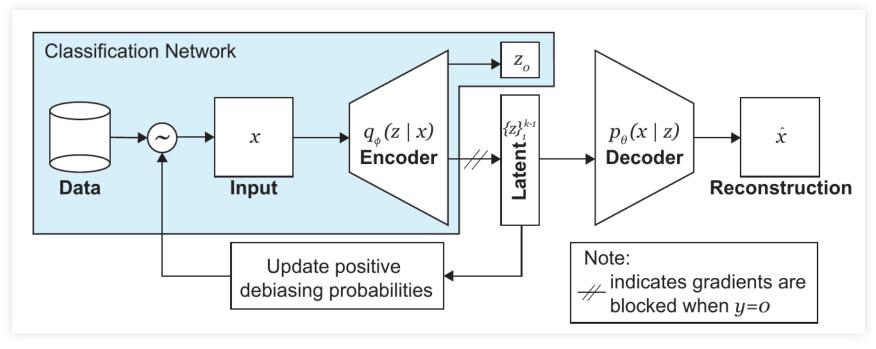
If loss is low bias is high (that is what we larn)

- Goal: adjust sampling probability to make classification harder
- Minimize $L(D', \theta)$ with respect to θ
- Minimize $B(D', \theta)$ with respect to W
- (This is done with adversarial training)
- Intuition: eliminate imbalances that facilitate classification

Mitigating Bias

Debiasing Variational Autoencoder

Use a variational autoencoder to learn a latent representation

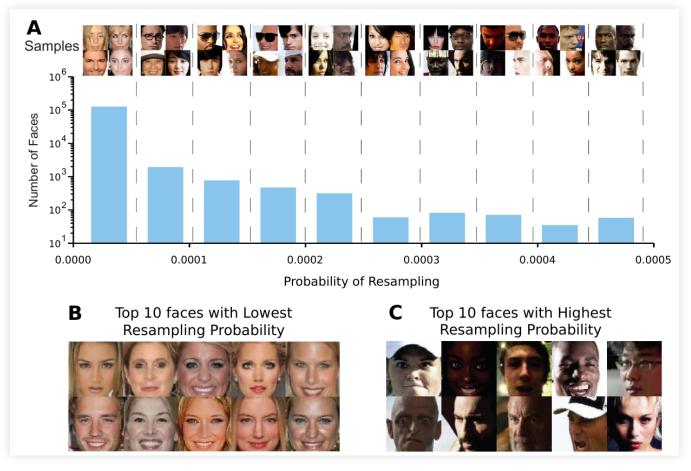


Amini et al, Uncovering and mitigating algorithmic bias through learned latent structure, 2019

Minimize weighted cross-entropy, KL divergence and reconstruction

Mitigating Bias

Sampling probability is inverse of density in manifold region



Amini et al, Uncovering and mitigating algorithmic bias through learned latent structure, 2019

Conclusion

Bias is good

- Biases are fundamental for learning. They are what we learn
- Correlations between features and values to predict

But bias is bad

- Whenever these correlations arise from mistakes (e.g. sampling errors)
- Or lead to unfairness:
- Results that depend on characteristics that should not be used
- Or systems that perform poorly for some groups

Best practices

- Consider application and impact of models
- Beware of discrimination based on protected characteristics
- And correlation with other attributes
- Be critical of the data used for training
- Evaluate performance on different groups
- If in doubt, mitigate by actively reducing biases

Summary

- Bias: fundamentally an ethical problem
- Sources of bias
- Sampling, population, assumptions
- Mitigating undesirable biases

