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Summary
■ Motivation
■ Problems with black box models.
■ Explanations and methods:
• Local Interpretable Model-agnostic Explanations (LIME)
• Layer-wise Relevance Propagation (LRP)
• Testing with Concept Activation Vectors (TCAV)
• Mapping concepts to ontologies
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Motivation for Explainable AI
■ Problem 1: organize vacation photos
• Use DNN to classify photos with and without faces
• How does the network do it? Who cares...?
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Motivation for Explainable AI
■ Problem 1: organize vacation photos
• Use DNN to classify photos with and without faces
• How does the network do it? Who cares...?

■ Problem 2: surgeon uses a DNN to recommend procedure
• Network processes radiological images and recommends extraction of left kidney

• Why? Without an explanation the surgeon cannot use this recommendation
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Sometimes black box is not good enough
■ Debugging or improving the system
■ Trust that the system is working correctly
■ Social acceptance of systems impacting our lives
■ Ensure that a decision was reached correctly (and fairly)
■ Auditing the system if something goes wrong
■ For regulation, such as safety standards.
■ For greater impact (e.g. automated recommendation)
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Identifying problems

Lapuschkin et al, Unmasking clever hans predictors, 2019

■ The classifier was using the copyright tag to classify horses
■ If added to a car image, it would be classified as a horse
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Trust and Accountability
■ Without explanations it is easy to trust tools but not decisions
• AI is not only something we use but also something that decides for us

■ Transparency is required for accountability and oversight.
• Regulation, for example
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Scientific Applications
■ Deep learning has been very successful in scientific applications

Protein folding with AlphaFold2. Image from Callaway, 'It will change everything’,2020

■ But it would be great to understand how...
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Legal requirements
■ EU's General Data Protection Regulation includes the right to an

explanation
■ Article 22:

" The data subject shall have the right not to be subject to a decision based solely on
automated processing"

■ The person deciding will need to understand the system's
recommendation
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What is an explanation?
■ Broad sense:
• A narrative that links different events and entities in an intelligible way
• Describes causal relations, consequences and the system explained.

■ For our purpose, in practice, usefulness depends on target
audience.

• The best explanation for the surgeon is not the best for the patient

• The developers of deep networks want explanations to help debug and optimize
models

• The end user needs reasons to trust the output of the network.

■ Choose interpretation methods for the target audience and purpose
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Local Interpretable Model-agnostic Explanations
■ Some simple models are easy to interpret. E.g. linear models

Lapuschkin et al, Unmasking clever hans predictors, 2019
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Local Interpretable Model-agnostic Explanations
■ Linear models are generally not powerful enough
■ But can provide local approximations

Ribeiro et al, Why should I trust you?,2016
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Local Interpretable Model-agnostic Explanations
■ Linear models are easy to interpret
• Both messages correctly classified as atheist, but with different features

Ribeiro et al, Why should I trust you?,2016
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Local Interpretable Model-agnostic Explanations
■ LIME does not provide a global explanation
• It provides a local explanation for a particular example

■ It is model-agnostic because it does not care about how the model
works

• It approximates the results with a linear classifier minimizing: 
 

• Where  is a linear model using any combination of features

•   measures the loss between explainer and model to be explained 
•   is a measure of the complexity of model

ξ(x) = L(f, g, ) + Ω(g)argmin
g∈G

πx

g

L f

Ω(g)
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Layer-wise Relevance Propagation
■ Assign to each input a relevance measure for a particular output
■ Takes into account the architecture and parameters of the trained

model
■ The relevance of the output neuron for a class is its activation
■ Then propagate for neurons in preceding layers:

=Rj ∑
k

ajwjk

∑i aiwik

Rk



18

LRPLRPLRPLRPLRPLRPLRPLRPLRP

Layer-wise Relevance Propagation

Image from Explainable AI demos at https://lrpserver.hhi.fraunhofer.de
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Testing with Concept Activation Vectors
■ Measure sensitivity of classifications to selected concepts

Kim et al, Interpretability beyond feature attribution, 2017

■ a) Examples of a concept (striped) and random examples
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Testing with Concept Activation Vectors

Kim et al, Interpretability beyond feature attribution, 2017

■ b) set of labelled examples of some class from the training data,
such as zebras.
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Testing with Concept Activation Vectors

Kim et al, Interpretability beyond feature attribution, 2017

■ c) The trained classifier, includes the zebra class.
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Testing with Concept Activation Vectors

Kim et al, Interpretability beyond feature attribution, 2017

■ d) Vector normal to the linear decision surface at layer  (CAV)l
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Testing with Concept Activation Vectors

Kim et al, Interpretability beyond feature attribution, 2017

■ e) Sensitivity of  to this concept, class and example is:l

(x) =SC,k,l lim
ϵ→0

( (x) + ϵ ) − ( (x))hl,k fl vl
C

hl,k fl

ϵ
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Testing with Concept Activation Vectors

Google AI
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Mapping concepts to ontologies
■ (Work by Manuel Ribeiro, MIEI, 2020)
■ Ontology:
• Formal specification of concepts and their logical relations.

• A STOP sign is an octagon, has a red background and STOP in white

• A warning sign is a triangle with a red border

■ Goal: given a trained deep neural network, map activations to
concepts

• Using examples illustrating different concepts in the ontology
• And auxiliary models, such as simple neural networks, for mapping
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Mapping concepts to ontologies
■ Advantage:
• After mapping we can use automated reasoning to generate justifications

• E.g. the network identified the concepts of red and octagon, which justifies
concluding it is a STOP sign
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Mapping concepts to ontologies
■ This also gives us insight into the manifold of the network

representations
• Relevant concepts are easier to map as network learns to represent them
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Transparency is desirable but...
■ Interpretations that claim to make the model transparent create

some risks
■ Conflict of interests:
• My request for credit at the bank is denied

• I ask for an explanation

• The bank can use any of several interpretation methods to justify the decision

■ The result may be a way to disguise unfair decisions
■ In practice transparency must be a property of the whole process,

not just applied to the model.
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Summary
■ Motivation:
• Transparency, trust, understanding

■ Problems with black box models
• Debugging, auditing and regulation, responsibility

■ Methods (examples):
• Local Interpretable Model-agnostic Explanations (LIME)
• Layer-wise Relevance Propagation (LRP)
• Testing with Concept Activation Vectors (TCAV)
• Mapping concepts to ontologies




