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Summary
■ Recurrent neural networks
• Unfolding

■ Backpropagation through time
■ Long term dependencies
■ Structured RNNs
• Gated recurrent units (GRU)
• Long short term memory (LSTM)

■ Brief introduction:
• RNN are being replaced by CNN and Transformers in many applications



2

Recurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent Networks

Recurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networks



3

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Recurrent Neural Network
■ In a recurrent network outputs are fed into the network with a delay
■ Two important concepts:
• Stacking nonlinear transformations (the usual in deep networks)
• Parameter sharing (like we saw in CNN)

■ Motivation:
• Recurrent networks use the same parameters through a sequence
• But the state can be a function of the history of the inputs

■ Especially suited for problems with sequential data
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Unfolding the network
■ Let us consider the following recursion:

■ We can unfold it over 2 steps with:
= f(U , )st st−1

= f(U , f(U , f(U , V , )))st xt−2
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■ To deal with sequential data, we feed inputs in sequence
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■ The state keeps a historical record of the inputs
■ The shared parameters make it easier to recognize patterns that do

not depend on position
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■ To deal with sequential data, we feed inputs in sequence
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■ This makes RNN good for text, audio, time series (weather,
markets, etc)

■ Can deal with input sequences of variable length
• But not in the same batch during training in Keras
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■ Multiple outputs:
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Teacher Forcing
■ If the state depends on the output of the previous iteration we can

train with the ground truth instead of the predicted values
■ This not only improves training but makes it easy to parallelize if

state  only depends on st yt−1
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Teacher Forcing
■ Even if we cannot parallelize training (if the state depends on

hidden layers) using  instead of  is the best approach since
it is the ML solution.

• But during inference we use , since  is only available for training.
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Teacher Forcing
■ During training:
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Teacher Forcing
■ After training, for prediction (inference):
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■ RNN can be bidirectional (e.g. processing text)
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■ With Keras: Bidirectional layer



15

RNNRNNRNNRNNRNNRNNRNNRNNRNN

■ RNN are not only for sequential data
■ E.g Image captioning:

The black cat is walking on grass The white cat is walking on road
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■ Image captioning:
• Conceptually, generate words giving image as context
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■ In practice:
• This is not easy to do because of having to join fixed and time dependent inputs

• A better way is to condition the starting state of the RNN using the fixed data

Karpathy, Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Description, 2014
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Encoder-Decoder RNN
■ One RNN can map from a sequence to a fixed-length vector
• E.g. the final output
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Encoder-Decoder RNN
■ Another RNN can map from a fixed-length vector to a sequence
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Encoder-Decoder RNN
■ One RNN can map from a sequence to a fixed-length vector
■ Another RNN can map from a fixed-length vector to a sequence
■ This allows mapping from one sequence to a different sequence
• Speech to text, translation, dialog, etc

Recurrent Autoencoders
■ This can be applied to obtain as output the same as the input
■ Unsupervised learning of fixed-length representations of sequences
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Backpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through Time
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Training a RNN
■ To train a RNN we need to backpropagate the error computing the

gradients
■ But we need to do this over the multiple time steps:
• The state of the network is changing
• Different inputs
• Shared weights

■ This requires backpropagation through time (BPTT)
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BPTT, conceptually
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■ If we unfold the network this is just normal backpropagation with
• Aside from the shared weight matrices U, V and W
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BPTT, in practice
■ The tf.while_loop
• By default Keras uses a symbolic loop to activate and backpropagate gradients

• Slower, but needs less memory

■ Option unroll = True
• Unfolds the network into a feed-forward graph
• Faster but better for short sequences (otherwise lots of memory)
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Truncated BPTT
■ If our sequence has length of  we would process  time steps

forward and then backpropagate for  time steps
■ This takes longer, increases risk of vanishing or exploding gradients

and just updates the same weights many times
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Truncated BPTT
■ If our sequence has length of  we would process  time steps

forward and then backpropagate for  time steps
■ This takes longer, increases risk of vanishing or exploding gradients

and just updates the same weights many times
■ It is more efficient to truncate this process:
• Forward pass with  steps, the length of the relevant sequence
• Backpropagate for  steps

■ With Keras we can do this by:
• Splitting the sequences to length 

• Use stateful=True to keep state between batches, and reset_states()

• (Hack: keep the right order within batches, as the state resets after a batch)
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■ RNN compose the same function many times
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■ This makes it unstable
• Feed-forward networks can compensate using different parameters in different

layers

• With RNN it is easy to explode or vanish gradients and values

■ Dependencies get exponentially weaker as time interval increases
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Some solutions
■ Reservoir methods:
• Hidden states are computed by a recurrent network with non-trainable weights

• Weights are initialized at random in ranges that optimize stability

• Only the weights from the hidden state to the output are trained

■ Skip connections
• "Jump" through time intervals

■ Leaky units
• Keep linear self-connections, retaining part of previous activations

■ Removing Connections
• Keep connections over larger time intervals, remove length one connections

■ Gated units
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Gated recurrent unit
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31

Gated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRU

■ Update gate: how much to pass from previous to future state
= σ ( + + )zt Wzxt Uzht−1 bz
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■ Reset gate: how much to "forget" from previous state
= σ ( + + )rt Wrxt Urht−1 br
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■ Candidate output: current memory
= tanh(W + ⊙ U + )ĥt xt rt ht−1 bh
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■ State and output: what comes out of the unit
= ⊙ + (1 − ) ⊙ht zt ht̂ zt ht−1
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■ Controls how much "memory" is preserved
■ Avoids vanishing gradients using linear transformations
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Long Short Term Memory cell

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1
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■ Like GRU, cell state has only linear transformations
= ⊙ + ⊙ct it ct̂ ft ct−1
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■ Forget gate: how much to "forget" from previous state
= σ ( + + )ft Wf xt Uf ht−1 bf
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■ Input gate: how much of the input to store in current state
= σ ( + + )it Wixt Uiht−1 bi
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■ Candidate state: intermediate step for updating state
= tanh( + + )ĉ t Wcxt Ucht−1 bc
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■ Cell state: linear memory
= ⊙ + ⊙ct ft ct−1 it ct̂
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■ Output gate: how much of the cell state will output
= σ ( + + )ot Woxt Uoht−1 bo
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■ Output:
= ⊙ tanh( )ht ot ct
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Gated units:
■ Use gates (sigmoid) to "cut" flows
■ Linearly transformed "memory" to avoid vanishing gradients
■ GRU:
• Output/hidden state, linearly transformed
• Reset and update gate

■ LSTM:
• Forget, input and output gates
• Cell state, linearly transformed
• Output, from cell state, input and previous output
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ Unfolding BPTT
■ Different architectures and applications
• Mapping from and to sequences

■ Problem of learning long term dependencies
■ Gated RNN:
• GRU and LSTM

Further reading
■ Goodfellow et.al, Deep learning, Chapter 10




