
Aprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem Profunda

15 - Recurrent Networks15 - Recurrent Networks15 - Recurrent Networks15 - Recurrent Networks15 - Recurrent Networks15 - Recurrent Networks15 - Recurrent Networks15 - Recurrent Networks15 - Recurrent Networks

Ludwig Krippahl

1

Recurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent Networks

Summary
■ Recurrent neural networks
• Unfolding

■ Backpropagation through time
■ Long term dependencies
■ Structured RNNs
• Gated recurrent units (GRU)
• Long short term memory (LSTM)

■ Brief introduction:
• RNN are being replaced by CNN and Transformers in many applications

2

Recurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent Networks

Recurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networksRecurrent neural networks

3

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Recurrent Neural Network
■ In a recurrent network outputs are fed into the network with a delay
■ Two important concepts:
• Stacking nonlinear transformations (the usual in deep networks)
• Parameter sharing (like we saw in CNN)

■ Motivation:
• Recurrent networks use the same parameters through a sequence
• But the state can be a function of the history of the inputs

■ Especially suited for problems with sequential data

4

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Unfolding the network
■ Let us consider the following recursion:

■ We can unfold it over 2 steps with:
= f(U ,)st st−1

= f(U , f(U , f(U , V ,)))st xt−2

s
t-2

s
t-1

s
t

s
t+1

s
t+2

s
t

U U U U

U

5

RNNRNNRNNRNNRNNRNNRNNRNNRNN

■ To deal with sequential data, we feed inputs in sequence

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U U U U

U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

■ The state keeps a historical record of the inputs
■ The shared parameters make it easier to recognize patterns that do

not depend on position

6

RNNRNNRNNRNNRNNRNNRNNRNNRNN

■ To deal with sequential data, we feed inputs in sequence

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U U U U

U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

■ This makes RNN good for text, audio, time series (weather,
markets, etc)

■ Can deal with input sequences of variable length
• But not in the same batch during training in Keras

7

RNNRNNRNNRNNRNNRNNRNNRNNRNN

■ Multiple outputs:

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U U U U

U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

8

RNNRNNRNNRNNRNNRNNRNNRNNRNN

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U U U U

U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

L
t-2

L
t-1

L
t

L
t+1

L
t+2

L
t

y
t-2

y
t-1

y
t

y
t+1

y
t+2

y
t

9

RNNRNNRNNRNNRNNRNNRNNRNNRNN

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U

U U U U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

L
t-2

L
t-1

L
t

L
t+1

L
t+2

L
t

y
t-2

y
t-1

y
t

y
t+1

y
t+2

y
t

10

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Teacher Forcing
■ If the state depends on the output of the previous iteration we can

train with the ground truth instead of the predicted values
■ This not only improves training but makes it easy to parallelize if

state only depends on st yt−1

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U

U U U U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

L
t-2

L
t-1

L
t

L
t+1

L
t+2

L
t

y
t-2

y
t-1

y
t

y
t+1

y
t+2

y
t

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U
U U U U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

L
t-2

L
t-1

L
t

L
t+1

L
t+2

L
t

y
t-2

y
t-1

y
t

y
t+1

y
t+2

y
t

11

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Teacher Forcing
■ Even if we cannot parallelize training (if the state depends on

hidden layers) using instead of is the best approach since
it is the ML solution.

• But during inference we use , since is only available for training.

yt−1 ot−1

ot−1 yt−1

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U
U U U U

Z Z Z Z

Z

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

L
t-2

L
t-1

L
t

L
t+1

L
t+2

L
t

y
t-2

y
t-1

y
t

y
t+1

y
t+2

y
t

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U
U U U U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

L
t-2

L
t-1

L
t

L
t+1

L
t+2

L
t

y
t-2

y
t-1

y
t

y
t+1

y
t+2

y
t

Z Z Z Z

Z

12

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Teacher Forcing
■ During training:

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U
U U U U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

L
t-2

L
t-1

L
t

L
t+1

L
t+2

L
t

y
t-2

y
t-1

y
t

y
t+1

y
t+2

y
t

Z Z Z Z

Z

13

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Teacher Forcing
■ After training, for prediction (inference):

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U
U U U U

Z Z Z Z

Z

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

14

RNNRNNRNNRNNRNNRNNRNNRNNRNN

■ RNN can be bidirectional (e.g. processing text)

f
t-3

b
t-3

x
t-3

o
t-3

f
t-2

b
t-2

x
t-2

o
t-2

f
t-1

b
t-1

x
t-1

o
t-1

f
t

b
t

x
t

o
t

f
t+1

b
t+1

x
t+1

o
t+1

f
t+2

b
t+2

x
t+2

o
t+2

f
t+3

b
t+3

x
t+3

o
t+3

■ With Keras: Bidirectional layer

15

RNNRNNRNNRNNRNNRNNRNNRNNRNN

■ RNN are not only for sequential data
■ E.g Image captioning:

The black cat is walking on grass The white cat is walking on road

16

RNNRNNRNNRNNRNNRNNRNNRNNRNN

■ Image captioning:
• Conceptually, generate words giving image as context

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U
U U U U

x x x x xx
V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW
Z Z Z Z

Z

17

RNNRNNRNNRNNRNNRNNRNNRNNRNN

■ In practice:
• This is not easy to do because of having to join fixed and time dependent inputs

• A better way is to condition the starting state of the RNN using the fixed data

Karpathy, Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Description, 2014

18

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Encoder-Decoder RNN
■ One RNN can map from a sequence to a fixed-length vector
• E.g. the final output

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U
U U U U

Z Z Z Z

Z

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

19

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Encoder-Decoder RNN
■ Another RNN can map from a fixed-length vector to a sequence

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U
U U U U

x x x x xx
V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW
Z Z Z Z

Z

20

RNNRNNRNNRNNRNNRNNRNNRNNRNN

Encoder-Decoder RNN
■ One RNN can map from a sequence to a fixed-length vector
■ Another RNN can map from a fixed-length vector to a sequence
■ This allows mapping from one sequence to a different sequence
• Speech to text, translation, dialog, etc

Recurrent Autoencoders
■ This can be applied to obtain as output the same as the input
■ Unsupervised learning of fixed-length representations of sequences

21

Recurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent Networks

Backpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through TimeBackpropagation Through Time

22

BPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTT

Training a RNN
■ To train a RNN we need to backpropagate the error computing the

gradients
■ But we need to do this over the multiple time steps:
• The state of the network is changing
• Different inputs
• Shared weights

■ This requires backpropagation through time (BPTT)

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U U U U

U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

23

BPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTT

BPTT, conceptually

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U U U U

U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

o
t-2

o
t-1

o
t

o
t+1

o
t+2

o
t

W W W W WW

L
t-2

L
t-1

L
t

L
t+1

L
t+2

L
t

y
t-2

y
t-1

y
t

y
t+1

y
t+2

y
t

■ If we unfold the network this is just normal backpropagation with
• Aside from the shared weight matrices U, V and W

24

BPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTT

BPTT, in practice
■ The tf.while_loop
• By default Keras uses a symbolic loop to activate and backpropagate gradients

• Slower, but needs less memory

■ Option unroll = True
• Unfolds the network into a feed-forward graph
• Faster but better for short sequences (otherwise lots of memory)

25

BPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTT

Truncated BPTT
■ If our sequence has length of we would process time steps

forward and then backpropagate for time steps
■ This takes longer, increases risk of vanishing or exploding gradients

and just updates the same weights many times

k k
k

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U U U U

U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

26

BPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTTBPTT

Truncated BPTT
■ If our sequence has length of we would process time steps

forward and then backpropagate for time steps
■ This takes longer, increases risk of vanishing or exploding gradients

and just updates the same weights many times
■ It is more efficient to truncate this process:
• Forward pass with steps, the length of the relevant sequence
• Backpropagate for steps

■ With Keras we can do this by:
• Splitting the sequences to length

• Use stateful=True to keep state between batches, and reset_states()

• (Hack: keep the right order within batches, as the state resets after a batch)

k k
k

k1

<k2 k1

k2

27

Recurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent Networks

Long-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependencies

28

Long-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependencies

■ RNN compose the same function many times

h
t-2

h
t-1

h
t

h
t+1

h
t+2

h
t

U U U U

U

x
t-2

x
t-1

x
t

x
t+1

x
t+2

x
t

V V V V VV

■ This makes it unstable
• Feed-forward networks can compensate using different parameters in different

layers

• With RNN it is easy to explode or vanish gradients and values

■ Dependencies get exponentially weaker as time interval increases

29

Long-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependenciesLong-Term dependencies

Some solutions
■ Reservoir methods:
• Hidden states are computed by a recurrent network with non-trainable weights

• Weights are initialized at random in ranges that optimize stability

• Only the weights from the hidden state to the output are trained

■ Skip connections
• "Jump" through time intervals

■ Leaky units
• Keep linear self-connections, retaining part of previous activations

■ Removing Connections
• Keep connections over larger time intervals, remove length one connections

■ Gated units

30

Gated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRU

Gated recurrent unit

h[t-1] h[t]

×

×

×

x[t]

ŷ[t]

ĥ[t]z[t]
r[t]

σ σ tanh

1-

+

Image by Jeblad, CC BY-SA 4.0

31

Gated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRU

■ Update gate: how much to pass from previous to future state
= σ (+ +)zt Wzxt Uzht−1 bz

h[t-1] h[t]

×

×

×

x[t]

ŷ[t]

ĥ[t]z[t]
r[t]

σ σ tanh

1-

+

Image by Jeblad, CC BY-SA 4.0

32

Gated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRU

■ Reset gate: how much to "forget" from previous state
= σ (+ +)rt Wrxt Urht−1 br

h[t-1] h[t]

×

×

×

x[t]

ŷ[t]

ĥ[t]z[t]
r[t]

σ σ tanh

1-

+

Image by Jeblad, CC BY-SA 4.0

33

Gated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRU

■ Candidate output: current memory
= tanh(W + ⊙ U +)ĥt xt rt ht−1 bh

h[t-1] h[t]

×

×

×

x[t]

ŷ[t]

ĥ[t]z[t]
r[t]

σ σ tanh

1-

+

Image by Jeblad, CC BY-SA 4.0

34

Gated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRU

■ State and output: what comes out of the unit
= ⊙ + (1 −) ⊙ht zt ht̂ zt ht−1

h[t-1] h[t]

×

×

×

x[t]

ŷ[t]

ĥ[t]z[t]
r[t]

σ σ tanh

1-

+

Image by Jeblad, CC BY-SA 4.0

35

Gated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRUGated units, GRU

■ Controls how much "memory" is preserved
■ Avoids vanishing gradients using linear transformations

h[t-1] h[t]

×

×

×

x[t]

ŷ[t]

ĥ[t]z[t]
r[t]

σ σ tanh

1-

+

Image by Jeblad, CC BY-SA 4.0

36

Gated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTM

Long Short Term Memory cell

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Image by Guillaume Chevalier, CC BY-SA 4.0

37

Gated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTM

■ Like GRU, cell state has only linear transformations
= ⊙ + ⊙ct it ct̂ ft ct−1

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Image by Guillaume Chevalier, CC BY-SA 4.0

38

Gated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTM

■ Forget gate: how much to "forget" from previous state
= σ (+ +)ft Wf xt Uf ht−1 bf

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Image by Guillaume Chevalier, CC BY-SA 4.0

39

Gated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTM

■ Input gate: how much of the input to store in current state
= σ (+ +)it Wixt Uiht−1 bi

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Image by Guillaume Chevalier, CC BY-SA 4.0

40

Gated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTM

■ Candidate state: intermediate step for updating state
= tanh(+ +)ĉ t Wcxt Ucht−1 bc

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Image by Guillaume Chevalier, CC BY-SA 4.0

41

Gated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTM

■ Cell state: linear memory
= ⊙ + ⊙ct ft ct−1 it ct̂

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Image by Guillaume Chevalier, CC BY-SA 4.0

42

Gated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTM

■ Output gate: how much of the cell state will output
= σ (+ +)ot Woxt Uoht−1 bo

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Image by Guillaume Chevalier, CC BY-SA 4.0

43

Gated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTMGated units, LSTM

■ Output:
= ⊙ tanh()ht ot ct

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Image by Guillaume Chevalier, CC BY-SA 4.0

44

Gated unitsGated unitsGated unitsGated unitsGated unitsGated unitsGated unitsGated unitsGated units

Gated units:
■ Use gates (sigmoid) to "cut" flows
■ Linearly transformed "memory" to avoid vanishing gradients
■ GRU:
• Output/hidden state, linearly transformed
• Reset and update gate

■ LSTM:
• Forget, input and output gates
• Cell state, linearly transformed
• Output, from cell state, input and previous output

45

Recurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent Networks

SummarySummarySummarySummarySummarySummarySummarySummarySummary

46

Recurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent NetworksRecurrent Networks

Summary
■ Unfolding BPTT
■ Different architectures and applications
• Mapping from and to sequences

■ Problem of learning long term dependencies
■ Gated RNN:
• GRU and LSTM

Further reading
■ Goodfellow et.al, Deep learning, Chapter 10

