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Features are very important
■ Example: long division using Arabic or Roman numerals
■ In machine learning, the right representation makes all the

difference
■ Deep learning can be seen as stacked feature extractors, until the

final classification
• The top layer could even be replaced by anothe type of model, in theory

Representation learning
■ Supervised learning with limited data can lead to overfitting
■ But learning the best representation can be done with unlabelled

data
• Unspervised and semi-supervised learning can help find the right features
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"Meta-priors": what makes a good representation?
Representation Learning; Bengio, Courville, Vincent, 2013

■ Manifolds:
• Actual data is distributed in a subspace of all possible feature value combinations

■ Disentanglement:
• Data is generated by combination of independent factors (e.g. shape, color, lighting,

...)

■ Hierarchical organization of explanatory factors:
• Concepts that explain reality can be composed of more elementar concepts (e.g.

edges, shapes, patterns)

■ Semi-supervised learning:
• Unlabelled data is more numerous and can be used to learn structure



4

MotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivation

"Meta-priors": what makes a good representation?
Representation Learning; Bengio, Courville, Vincent, 2013

■ Shared factors:
• Important features for one problem may also be important for other problems (e.g.

image recognition)

■ Sparsity:
• Each example may contain only some of the relevant factors (ears, tail, legs, wings,

feet)

■ Smoothness:
• The function we are learning outputs similar  for similar y x



5

MotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivation

"Meta-priors": what makes a good representation?
Representation Learning; Bengio, Courville, Vincent, 2013

■ If we can capture these regularities, we can extract useful features
from our data

■ These features can be reused in different problems, even with
different data

■ Supervised: the features are learned by the hidden layers to
minimize the loss function

■ Unsupervised: the same way, but with autoencoders, learning the
distribution P(X)
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Greedy layer-wise unsupervised pretraining
■ Greedy: optimizes each part independently
■ Layer-wise: pretraining is done one layer at a time
• E.g. train autoencoder, discard decoder, use encoding as input for next layer

(another autoencoder)

■ Unsupervised: each layer is trained without supervision (e.g.
autoencoder)

■ Pretraining: the goal is to initialize the network
• It is followed by fine-tuning with backpropagation
• Or by training of a classifier "on top" of the pretrained layers
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Why should this work?
■ Initialization has regularizing effect
• Initially thought as a way to find different local minima, but this does not seem to be

the case (ANN do not generally stop at minima)

• It may be that pretraining allows the network to reach a different region of the
parameter space

■ Learning the distribution of inputs helps find the right features
• E.g. unsupervised learning on images identifies salient features (wheels, eyes)

• These are useful for supervised learning
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When does it work?
■ Poor initial representations
• E.g. word embedding from one-hot vectors

• One-hot vectors are all equidistant, which is bad for learning

• Unsupervised pretraining helps find representations that are more useful

■ Example: Human actions dataset
• 5000 dimensions, sparse (around 2% nonzero)

• Trained denoising autoencoder with  on all data (training, validation, test)

• PCA on the hidden layer

L1
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■ Poor initial representations

PCA for human actions (5000 sparse binary features) Mesnil et. al, Unsupervised and Transfer Learning JMLR 2011
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When does it work?
■ Poor initial representations
• E.g. word embedding from one-hot vectors

• One-hot vectors are all equidistant, which is bad for learning

• Unsupervised pretraining helps find representations that are more useful

■ Regularization, for few labelled examples
• If labelled data is scarce, there is greater need for regularization and unsupervised

pretraining can use unlabelled data for this

■ Example: Training trajectories with and without pretraining
• Concatenate vector of outputs for all test set at different iterations

• (50 nertworks with and without pretraining)
• Project into 2D (tSNE and ISOMAP)
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■ Regularizing effect
• Erhan et. al. 2010: output vectors for all data, reduce dimensionality, plot

t-Distributed Stochastic Neighbor Embedding and ISOMAP
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Unsupervised pretraining is historically important
■ It was the first practical method for training deep networks
• But has been largely abandoned today because of ReLU and dropout, which allows

efficient supervised training and regularization of the whole network

• For very small datasets, other methods outperform neural networks

• e.g. Bayesian methods

■ Another disadvantage: having two training stages makes it harder to
adjust Hyperparameters

■ However, still used in some applications, such as natural language
processing

• Unsupervised pretraining with billions of examples to learn good word
representations
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Two different tasks with shared relevant factors
■ Shared lower level features:
• E.g. distinguish between cats and dogs, or between horses and donkeys

• The low level features are mostly the same, only the higher level classification
layers need to change

■ Shared higher level representations:
• E.g. speech recognition

• The high level generation of sentences is the same for different speakers

• However, the low level feature extraction may need to be tailored to each speaker
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Same underlying function but different domains
■ We want to model the same mapping from input to output, but are

using different sets of examples
■ E.g. sentiment analysis
• Model was trained on customer reviews for movies and songs

• Now we need to do the same for electronics

• There should be only one mapping from words to happy or unhappy, but we are
training on different sets with different words

• This is one example where unsupervised training (DAE) can help
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Similar to Transfer learning or domain adaptation
■ But occurs when the change is gradual over time
■ This can be because the actual mapping has changed
• E.g. changes in the economy change the factors predicting credit risk or purchases

■ Or because the data distribution is changing
• E.g. as the brand becomes more popular, customer base changes from specialized

to general
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Use previous experience in new conditions
■ The common thread is that we can use what was learned before to

help learn now
■ Extreme examples: one-shot learning and zero-shot learning
■ One-shot learning: use only one labelled example to learn new

dataset
• The rest was learned on other data

■ Zero-shot learning: no labelled examples of new classes are
necessary

• Everything was learned on other classes or unsupervised
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■ Zero-shot learning, example:
• Unsupervised learning of word manifold, supervised mapping of known images

• A new image is mapped to word manifold

Socher et. al. Zero-Shot Learning Through Cross-Modal Transfer (2013)
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Take advantage of previously trained models
■ E.g. Image recognition networks available in Keras:
• https://keras.rstudio.com/articles/applications.html

Break down model and problems into simpler parts
■ Train one or a few layers at a time, using previously trained as

inputs
■ Train simpler model in part of the task or set and then add more

complexity
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■ Compare autoencoder with PCA
■ Use the UCI banknote dataset
■ Try different architectures
• e.g. 16, 8, 2, 8, 16 (4)

■ Activations and optimizers
• ReLU, leaky ReLU, Adam, SGD, etc

from tensorflow.keras.layers import LeakyReLU 
... 
layer = Dense(16)(layer) 
layer = Activation(LeakyReLU())(layer)

■ Check learning rates and overfitting
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■ Compare autoencoder with PCA
■ Use the UCI banknote dataset
■ After training, get encoded features and compare with PCA

from sklearn.decomposition import PCA 
... 
encoder = Model(inputs = inputs, outputs = model.get_layer('encoded').output) 
encoded = encoder.predict(Xs) 
 
pca = PCA(n_components=2) 
pca_result = pca.fit_transform(Xs)
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■ Compare autoencoder with PCA
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ Improve learning from poor representations
• Find the best features

■ Regularization or feature extraction with unlabelled data
■ Historically important in deep learning
• No longer required but still useful

■ Transfer learning (often supervised)
Further reading
■ Goodfellow et.al, Deep learning, Chapter 15 (and 8.7.4)
■ Bengio et. al. Representation Learning: A Review and New

Perspectives, 2013




