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Summary
■ CNN architectures for image classification
• AlexNet, VGG16, ResNet, Inception modules

■ CNN architectures for image segmentation
• FCN, U-Net
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Image ClassificationImage ClassificationImage ClassificationImage ClassificationImage ClassificationImage ClassificationImage ClassificationImage ClassificationImage Classification
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AlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNet

■ 60 million trainable parameters
• (2 graphics cards)

■ 11x11, 96 kernels (2x48)
■ 5x5, 256 kernels (2x128)
■ Then 3x3, dense layers for classification

Krizhevsky, Sutskever and Hinton. Imagenet classification with deep convolutional neural networks.
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■ Convolution layers extract features (patterns)
• Convolution and pooling makes features less dependent on

■ Dense layers for classification, from the extracted features
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■ One problem:
• Large convolution kernels require many weights
• E.g. 11x11 kernel, 121 weights per input channel
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VGG16VGG16VGG16VGG16VGG16VGG16VGG16VGG16VGG16

■ Red: pooling
■ Gray: convolution (stacked)
■ Blue: dense
■ Green: softmax

Simonyan and Zisserman, Very deep convolutional networks for large-scale image recognition.
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■ Stacking convolutions
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■ Stacking convolutions
■ 5x5 kernel: 25 parameters per channel
• 3x3 + 3x3 kernels: 9 + 9 = 18 parameters

■ 11x11 kernel: 121 parameters per channel
• five 3x3 kernels; 9 x 5 = 45 parameters per channel
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ResNetResNetResNetResNetResNetResNetResNetResNetResNet

■ Deep networks are more powerful
■ But they are harder to train
■ ResNet makes training easier with residual blocks
• Layer learns difference (residual) between input and output

He, Zhang, Ren and Sun, Deep residual learning for image recognition.
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ResNetResNetResNetResNetResNetResNetResNetResNetResNet

■ Residual blocks copy the input to the output
• Even at the beginning, some useful information passes through

■ In addition, ResNet uses 1x1 kernels
• These output linear combinations of the input channels (plus nonlinear activation)

• Can be used to change the number of filters
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InceptionInceptionInceptionInceptionInceptionInceptionInceptionInceptionInception

GoogLeNet
Szegedy et al, Going deeper with convolutions.

■ Motivation:
• Larger networks are more powerful
• But only some combinations of connections seem to be necessary
• Evidence: dropout works
• Sparseness is hard to implement

• Operations with dense matrices are more efficient

■ Can we approximate this?
• Design blocks that can work at different scales
• But without too many parameters



12

InceptionInceptionInceptionInceptionInceptionInceptionInceptionInceptionInception

■ GoogLeNet uses Inception modules (version 1)
• All stride 1, same sized feature map, but adjusting number of filters
• 1x1 kernels: linear combination plus nonlinear activation

Szegedy et al, Going deeper with convolutions.
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■ GoogLeNet uses Inception modules (version 1)
• Stacked with pooling (stride 2) to reduce map size

■ Intermediate classifiers contribute to the loss function
• Did not work as expected, but seem to provide regularization

Szegedy et al, Going deeper with convolutions.
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■ Inception modules (version 2)
• Replace NxN convolutions with stack of 1xN + Nx1
• Uses N = 7 (7x7=49, 7+7=14)

                  
Szegedy et al, Rethinking the inception architecture for computer vision
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Image SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage Segmentation
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Image Segmentation
■ Classify each pixel, output dimensions proportional to input and

spatially meaningful

Long, Shelhamer, Darrell, Fully convolutional networks for semantic segmentation.
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■ Two types:
• Semantic segmentation: distinguish types of object
• Instance segmentation: distinguish elements

Image from Ross Girshick, Deep Learning for Instance-level Object Understanding

■ (we'll cover semantic segmentation)
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■ Motivation:
• Classification networks build set of features using convolutions

• Then feed these features into dense layers

• But dense layers are equivalent to convolution with kernel spanning full input

• We can "convolutionalize" classification networks this way

Long, Shelhamer, Darrell, Fully convolutional networks for semantic segmentation.
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■ This gives a set of rough maps
• For different patches, due to pooling

Long, Shelhamer, Darrell, Fully convolutional networks for semantic segmentation.
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■ We can upsample with transposed or fractional stride convolution

Long, Shelhamer, Darrell, Fully convolutional networks for semantic segmentation.
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■ Transposed and fractional stride convolution
• These convolutions result in output larger than input
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■ FCN combines upsampling from different layers

■ But it is still one step for upsampling
■ And transposed and fractional stride convolution are not ideal
• (We'll see more on this later, but they cause artefacts due to overlap)
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U-NetU-NetU-NetU-NetU-NetU-NetU-NetU-NetU-Net

■ U-Net has a more symmetric profile
• (Like an autoencoder; more on these next week)
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U-NetU-NetU-NetU-NetU-NetU-NetU-NetU-NetU-Net

■ Skip connections to carry feature maps from the contracting part to
the expanding part
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U-NetU-NetU-NetU-NetU-NetU-NetU-NetU-NetU-Net

■ Does not use transposed or fractional stride convolutions
• Instead, upsampling (nearest neighbour or interpolation) followed by 2x2

convolution

• This results in fewer parameters and avoids artefacts

■ Loss function:
• Pixel-wise softmax cross entropy with greater weight for border pixels.
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ Many different architectures
• This was just a sample

■ Basic ideas:
• For classification, convolutions followed by dense layers
• For segmentation, fully convolutional
• Deeper networks and wider kernels are more powerful

• More transformations and wider patterns
• But too many parameters make it harder to train

■ Tricks:
• Residuals and skip connections
• Decomposing convolutions

Further reading: papers




