
Aprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem Profunda

9 - CNN architectures9 - CNN architectures9 - CNN architectures9 - CNN architectures9 - CNN architectures9 - CNN architectures9 - CNN architectures9 - CNN architectures9 - CNN architectures

Ludwig Krippahl

1

CNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architectures

Summary
■ CNN architectures for image classification
• AlexNet, VGG16, ResNet, Inception modules

■ CNN architectures for image segmentation
• FCN, U-Net

2

CNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architectures

Image ClassificationImage ClassificationImage ClassificationImage ClassificationImage ClassificationImage ClassificationImage ClassificationImage ClassificationImage Classification

3

AlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNet

■ 60 million trainable parameters
• (2 graphics cards)

■ 11x11, 96 kernels (2x48)
■ 5x5, 256 kernels (2x128)
■ Then 3x3, dense layers for classification

Krizhevsky, Sutskever and Hinton. Imagenet classification with deep convolutional neural networks.

4

AlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNet

■ Convolution layers extract features (patterns)
• Convolution and pooling makes features less dependent on

■ Dense layers for classification, from the extracted features

5

AlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNetAlexNet

■ One problem:
• Large convolution kernels require many weights
• E.g. 11x11 kernel, 121 weights per input channel

6

VGG16VGG16VGG16VGG16VGG16VGG16VGG16VGG16VGG16

■ Red: pooling
■ Gray: convolution (stacked)
■ Blue: dense
■ Green: softmax

Simonyan and Zisserman, Very deep convolutional networks for large-scale image recognition.

7

VGG16VGG16VGG16VGG16VGG16VGG16VGG16VGG16VGG16

■ Stacking convolutions

8

VGG16VGG16VGG16VGG16VGG16VGG16VGG16VGG16VGG16

■ Stacking convolutions
■ 5x5 kernel: 25 parameters per channel
• 3x3 + 3x3 kernels: 9 + 9 = 18 parameters

■ 11x11 kernel: 121 parameters per channel
• five 3x3 kernels; 9 x 5 = 45 parameters per channel

9

ResNetResNetResNetResNetResNetResNetResNetResNetResNet

■ Deep networks are more powerful
■ But they are harder to train
■ ResNet makes training easier with residual blocks
• Layer learns difference (residual) between input and output

He, Zhang, Ren and Sun, Deep residual learning for image recognition.

10

ResNetResNetResNetResNetResNetResNetResNetResNetResNet

■ Residual blocks copy the input to the output
• Even at the beginning, some useful information passes through

■ In addition, ResNet uses 1x1 kernels
• These output linear combinations of the input channels (plus nonlinear activation)

• Can be used to change the number of filters

11

InceptionInceptionInceptionInceptionInceptionInceptionInceptionInceptionInception

GoogLeNet
Szegedy et al, Going deeper with convolutions.

■ Motivation:
• Larger networks are more powerful
• But only some combinations of connections seem to be necessary
• Evidence: dropout works
• Sparseness is hard to implement

• Operations with dense matrices are more efficient

■ Can we approximate this?
• Design blocks that can work at different scales
• But without too many parameters

12

InceptionInceptionInceptionInceptionInceptionInceptionInceptionInceptionInception

■ GoogLeNet uses Inception modules (version 1)
• All stride 1, same sized feature map, but adjusting number of filters
• 1x1 kernels: linear combination plus nonlinear activation

Szegedy et al, Going deeper with convolutions.

13

InceptionInceptionInceptionInceptionInceptionInceptionInceptionInceptionInception

■ GoogLeNet uses Inception modules (version 1)
• Stacked with pooling (stride 2) to reduce map size

■ Intermediate classifiers contribute to the loss function
• Did not work as expected, but seem to provide regularization

Szegedy et al, Going deeper with convolutions.

14

InceptionInceptionInceptionInceptionInceptionInceptionInceptionInceptionInception

■ Inception modules (version 2)
• Replace NxN convolutions with stack of 1xN + Nx1
• Uses N = 7 (7x7=49, 7+7=14)

Szegedy et al, Rethinking the inception architecture for computer vision

15

CNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architectures

Image SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage Segmentation

16

Image SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage Segmentation

Image Segmentation
■ Classify each pixel, output dimensions proportional to input and

spatially meaningful

Long, Shelhamer, Darrell, Fully convolutional networks for semantic segmentation.

17

Image SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage SegmentationImage Segmentation

■ Two types:
• Semantic segmentation: distinguish types of object
• Instance segmentation: distinguish elements

Image from Ross Girshick, Deep Learning for Instance-level Object Understanding

■ (we'll cover semantic segmentation)

18

Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)

■ Motivation:
• Classification networks build set of features using convolutions

• Then feed these features into dense layers

• But dense layers are equivalent to convolution with kernel spanning full input

• We can "convolutionalize" classification networks this way

Long, Shelhamer, Darrell, Fully convolutional networks for semantic segmentation.

19

Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)

■ This gives a set of rough maps
• For different patches, due to pooling

Long, Shelhamer, Darrell, Fully convolutional networks for semantic segmentation.

20

Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)

■ We can upsample with transposed or fractional stride convolution

Long, Shelhamer, Darrell, Fully convolutional networks for semantic segmentation.

21

Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)

■ Transposed and fractional stride convolution
• These convolutions result in output larger than input

22

Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)Fully Convolutional Network (FCN)

■ FCN combines upsampling from different layers

■ But it is still one step for upsampling
■ And transposed and fractional stride convolution are not ideal
• (We'll see more on this later, but they cause artefacts due to overlap)

23

U-NetU-NetU-NetU-NetU-NetU-NetU-NetU-NetU-Net

■ U-Net has a more symmetric profile
• (Like an autoencoder; more on these next week)

24

U-NetU-NetU-NetU-NetU-NetU-NetU-NetU-NetU-Net

■ Skip connections to carry feature maps from the contracting part to
the expanding part

25

U-NetU-NetU-NetU-NetU-NetU-NetU-NetU-NetU-Net

■ Does not use transposed or fractional stride convolutions
• Instead, upsampling (nearest neighbour or interpolation) followed by 2x2

convolution

• This results in fewer parameters and avoids artefacts

■ Loss function:
• Pixel-wise softmax cross entropy with greater weight for border pixels.

26

CNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architectures

SummarySummarySummarySummarySummarySummarySummarySummarySummary

27

CNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architecturesCNN architectures

Summary
■ Many different architectures
• This was just a sample

■ Basic ideas:
• For classification, convolutions followed by dense layers
• For segmentation, fully convolutional
• Deeper networks and wider kernels are more powerful

• More transformations and wider patterns
• But too many parameters make it harder to train

■ Tricks:
• Residuals and skip connections
• Decomposing convolutions

Further reading: papers

