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Summary
■ Optimizers
■ Learning rate
■ Initializing weights
■ Overfitting and model selection
• Bias/Variance tradeoff

■ Regularization methods in ANN



2

OptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimization

OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers



3

OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function
■ We want to minimize the loss function (e.g. cross-entropy for ML) to

obtain  from some data
■ Numerical optimization is outside the scope of this course
• But it's useful to have some knowledge of the optimizers

θ
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Minimizing the loss function
■ So far we saw tf.optimizers.SGD
• Basic gradient descent algorithm, single learning rate.

• Stochastic gradient descent: use gradient computed at each example, selected at
random

• Mini-batch gradient descent: updates after computing the total gradient from a
batch of randomly selected examples.

• Can include momentum (and you should use momentum, in general)

■ This is just an alias for the tf.keras.optimizers.SGD class
• We'll be using Keras explicitely from now on
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Minimizing the loss function:
■ Different parameters may best be changed at different rates
•  tf.keras.optimizers.Adagrad

• Keeps sum of past (squared) gradients for all parameters

• Divides learning rate of each parameter by this sum

• Parameters with small gradients will have larger learning rates, and vice-versa

• Since Adagrad sums previous gradients, learning rates will shrink

• (good for convex problems)
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Minimizing the loss function:
■ Some parameters may be left with too large or too small gradients
•  tf.keras.optimizers.RMSProp

• Keeps moving root of the mean of the squared gradients (RMS)

• Divides gradient by this moving RMS

• Updates will tend to be similar for all parameters.

• Since it uses a moving average, learning rates don't shrink

• Good for non-convex problems, and often used in recurrent neural networks

• Most famous unpublished optimizer
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Minimizing the loss function
■  tf.keras.optimizers.Adam
• Adaptive Moment Estimation (Adam)

• Momentum and different learning rates using an exponentially decaying average
over the previous gradients

• Fast to learn but may have convergence problems

How to choose?
■ There is no solid theoretical foundation for this
■ So you must choose empirically
• Which is just a fancy way of saying try and see what works...
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Choosing the best learning rate
■ Optimizers can have other parameters, but all have a learning rate
■ Too high a learning rate can lead to convergence problems
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■ However, if learning rate is too small training can take too long
■ Try to make it as high as you can while still converging to low error
• (you can experiment with a subset of your training set, even if overfitting)
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Selecting the initial values
■ Bias: these can start at 0
• (or use some heuristic)

■ Weights: must break symmetry, cannot all have same value
■ But if they add up to large values it may cause problems
• LeCun normal initializer:

• Normalized initialization (glorot_uniform in Keras):

■ See: https://keras.io/initializers/
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Normalizing (standardizing) activations
■ Compute running averages and standard deviations during training
• And standardize the inputs to each layer

■ Just like we do for the inputs to the network, do for hidden layers
too

• Makes learning easier by preventing extreme values

• Eliminates shifts in mean and variance during training

• Reduces the need for each layer to adapt to the changes in the previous one

■ This can be done easily in Keras
• The mean, standard deviation and rescaling can all be part of backpropation

• AutoDiff takes care of the derivatives

• So we can add batch normalization as an additional layer
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The goal of (supervised) learning is prediction
■ And we want to predict outside of what we know
Overfitting
■ The problem of adjusting too much to training data
• and losing generalization

■ Two ways of solving this:
• Select the right model: model selection
• Adjust training: regularization
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How to check for overfitting
■ We need to evaluate performance outside the training set
• Test set: we need to keep this for final evaluation of error rate

■ We can use a validation set
■ Or we can use cross-validation
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How to check for overfitting
■ Cross-Validation:
• Split training set into K folds, average validations training on the k-1
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How to check for overfitting
■ Cross-Validation:
• Split training set into K folds, average validations training on the k-1
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How to check for overfitting
■ Option 1: train, validation for preventing overfitting, test
• Good when we have lots of data (which is generally the case for DL)

■ Option 2: Cross-validation on training set, test
• Good when data is scarcer
• Better estimate of true error
• More computationally demanding

■ Cross-validation is widely used outside deep learning
■ With deep learning training and validation is more common
• Deep networks take some time to train
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Estimating the true error
■ True error: the expected error over all possible data
• We cannot measure this, since we would need all possible data

■ Must be estimated with a test set, outside the training set
■ This cannot be the validation set if the validation set was used to

optimize hyperparameters
• We choose the combination with the smallest validation error, this makes the

estimate biased.

■ Solution: reserve a test set for final estimate of true error
• This set should not be used for any choice or optimization
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Model Selection
■ If the model adapts too much to the data, the training error may be

low but the true error high
• Example: Auto MPG problem, 100-50-10-1 network.
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Model Selection
■ One way of solving this problem is to use a simpler model

(assuming it can fit the data)
• Example: Auto MPG problem, 30-10-1 network.
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Model Selection
■ If the model is too simple, then error may become high
• (Underfitting)
• Example: Auto MPG problem, 3-2-1 network.
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■ Suppose we could train our model on many data sets
• For each hypothesis, predict target value for one example

■ We can decompose the error in two components:
Bias
■ Deviation of the average estimate from the target value
Variance
■ Dispersion of predictions around their average
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■ Bias: deviation of the average estimate from the target value

bia = bias =sn ( ( ) − )ȳ xn tn
2 1

N
∑
n=1

N

( ( ) − )ȳ xn tn
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■ Variance: dispersion of predictions around their average

va = var =rn
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Bias-variance tradeoff
■ Reducing  increases bias variance
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High Bias
■ Model cannot adjust the data (underfitting)
■ Variance is low, true error is close to training error
■ But error is high because the model is too "stiff"
■ Need another model, or some combination of models
• e.g. boosting

■ This is not a problem with deep learning
High Variance
■ Model adjusts too much to irrelevant details (overfitting)
■ Training error is low but true error is high
■ This is common in DL but may be fixed with regularization
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Regularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANN
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Regularization:
■ Changes to how the model is trained to reduce overfitting
■ Reduces variance (may increase bias, but still pay off)
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Penalizing parameter size
■ To reduce variance, we can force parameters to remain small by

adding a penalty to the objective (cost) function:

■ Where  is the weight of the regularization
• Note: in ANN, generally only the input weights at each neuron are penalized and

not the bias weights.

■ The norm function  usually takes these forms:

• L  Regularization (ridge regression): penalize 
• L  Regularization: penalize 

(θ; X, y) = J(θ; X, y) + αΩ(θ)J
~

α

Ω(θ)
2 ||θ||2

1 | |∑
i θi
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L  Regularization is weight decay2

■ If we penalize , the gradient becomes:

■ This means the update rule for the weight becomes

■ We decrease the magnitude of  to  per update
■ This causes weights that do not contribute to reducing the cost

function to shrink

w2

∇ (θ; X, y) = ∇J(θ; X, y) + 2αwJ
~

w ← w − ϵ2αw − ϵ∇J(θ; X, y)

w (1 − ϵ2α)
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L  Regularization1

■ If we penalize , the gradient becomes:

■ This penalizes parameters by a constant value, leading to a sparse
solution

• Some weights will have an optimal value of 0

|w|
∇ (θ; X, y) = ∇J(θ; X, y) + α sign(w)J

~

L  vs L  Regularization1 2

■ L  minimizes number of non-zero weights

■ L  minimizes overall weight magnitude

1

2
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Dataset augmentation
■ More data is generally better, although not always readily available
■ But sometimes we cam make more data
■ E.g. Image classification:
• Translate images. Rotate or flip, if appropriate (not for character recognition)

Wang et al, 2019, "A survey of face data augmentation".
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Dataset augmentation by noise injection
■ Noise injection is an (implicit) form of dataset augmentation
• Add (carefully) noise to inputs, or even to some hidden layers

■ Noise can also be applied to the weights
■ Or even the output
• There may be errors in labelling

• Or for label smoothing: use  and  instead of 0 and 1 for target

• This prevents pushing softmax or sigmoid to infinity

ϵ/(k − 1) 1 − ϵ
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Early stopping
■ Use validation to stop at best point
• Constraints weights to be closer to starting distribution
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Bagging and dropout
■ Bagging, or model averaging, consists in training a set of models

and then using the average response (or majority vote)
• This generally improves performance, as it reduces variance without affecting bias,

and ANN can have high variance

• However, it can be costly to train and use many deep models.
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Dropout
■ "Turns off" random input and hidden neurons in each minibatch
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Dropout
■ Dropout does model averaging implicitely
■ Turning off neurons at random trains an ensemble of many different

networks
■ After training, weights are scaled by the probability of being "on"
• (same expected activation value)

Inverted dropout
■ Instead of adjusting weights after training, increase activation of

neurons left on during training
• Automatically "scales" activations
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Adversarial Training
■ ANN can make strange mistakes with the "right" inputs

Goodfellow, Bengio, Courville, Deep Learning 2016
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Adversarial Training
■ ANN can make strange mistakes with the "right" inputs
■ But this can be prevented by using these adversarially perturbed

examples during training
• Forces the network to be locally constant in the neighbourhood of the training data
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Many parameters to select
■ Regularization, network shape and size, optimizers, etc
Several strategies:
■ Manual Optimization
■ Grid search
■ Random Search
■ Bayesian search
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Summary
■ Optimizing training
• Optimizers, initialization, learning rate, batch normalization

■ Optimizing the predictions
• Model selection
• Bias and Variance
• Regularization
• Penalizing weights, Augmenting data
• Noise, Early stop, dropout, Adversarial training

Further reading:
■ Goodfellow et.al, Deep learning, Chaps 7 and 11, Sects 8.4; 8.7.1




