
Aprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem Profunda

7 - Optimizing Networks7 - Optimizing Networks7 - Optimizing Networks7 - Optimizing Networks7 - Optimizing Networks7 - Optimizing Networks7 - Optimizing Networks7 - Optimizing Networks7 - Optimizing Networks

Ludwig Krippahl

1

OptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimization

Summary
■ Optimizers
■ Learning rate
■ Initializing weights
■ Overfitting and model selection
• Bias/Variance tradeoff

■ Regularization methods in ANN

2

OptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimization

OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

3

OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function
■ We want to minimize the loss function (e.g. cross-entropy for ML) to

obtain from some data
■ Numerical optimization is outside the scope of this course
• But it's useful to have some knowledge of the optimizers

θ

4

OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function
■ So far we saw tf.optimizers.SGD
• Basic gradient descent algorithm, single learning rate.

• Stochastic gradient descent: use gradient computed at each example, selected at
random

• Mini-batch gradient descent: updates after computing the total gradient from a
batch of randomly selected examples.

• Can include momentum (and you should use momentum, in general)

■ This is just an alias for the tf.keras.optimizers.SGD class
• We'll be using Keras explicitely from now on

5

OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function:
■ Different parameters may best be changed at different rates
• tf.keras.optimizers.Adagrad

• Keeps sum of past (squared) gradients for all parameters

• Divides learning rate of each parameter by this sum

• Parameters with small gradients will have larger learning rates, and vice-versa

• Since Adagrad sums previous gradients, learning rates will shrink

• (good for convex problems)

6

OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function:
■ Some parameters may be left with too large or too small gradients
• tf.keras.optimizers.RMSProp

• Keeps moving root of the mean of the squared gradients (RMS)

• Divides gradient by this moving RMS

• Updates will tend to be similar for all parameters.

• Since it uses a moving average, learning rates don't shrink

• Good for non-convex problems, and often used in recurrent neural networks

• Most famous unpublished optimizer

7

OptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizersOptimizers

Minimizing the loss function
■ tf.keras.optimizers.Adam
• Adaptive Moment Estimation (Adam)

• Momentum and different learning rates using an exponentially decaying average
over the previous gradients

• Fast to learn but may have convergence problems

How to choose?
■ There is no solid theoretical foundation for this
■ So you must choose empirically
• Which is just a fancy way of saying try and see what works...

8

Learning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning Rate

Choosing the best learning rate
■ Optimizers can have other parameters, but all have a learning rate
■ Too high a learning rate can lead to convergence problems

9

Learning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning RateLearning Rate

■ However, if learning rate is too small training can take too long
■ Try to make it as high as you can while still converging to low error
• (you can experiment with a subset of your training set, even if overfitting)

10

Weight InitializationWeight InitializationWeight InitializationWeight InitializationWeight InitializationWeight InitializationWeight InitializationWeight InitializationWeight Initialization

Selecting the initial values
■ Bias: these can start at 0
• (or use some heuristic)

■ Weights: must break symmetry, cannot all have same value
■ But if they add up to large values it may cause problems
• LeCun normal initializer:

• Normalized initialization (glorot_uniform in Keras):

■ See: https://keras.io/initializers/

∼ N (0,)Wi,j
1

fanin

− −−−−

√

∼ U (− ,)Wi,j
6

fa + fanin nout

− −−−−−−−−−−−−

√
6

fa + fanin nout

− −−−−−−−−−−−−

√

11

Batch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch NormalizationBatch Normalization

Normalizing (standardizing) activations
■ Compute running averages and standard deviations during training
• And standardize the inputs to each layer

■ Just like we do for the inputs to the network, do for hidden layers
too

• Makes learning easier by preventing extreme values

• Eliminates shifts in mean and variance during training

• Reduces the need for each layer to adapt to the changes in the previous one

■ This can be done easily in Keras
• The mean, standard deviation and rescaling can all be part of backpropation

• AutoDiff takes care of the derivatives

• So we can add batch normalization as an additional layer

12

OptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimization

Overfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and Validation

13

Overfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and Validation

The goal of (supervised) learning is prediction
■ And we want to predict outside of what we know
Overfitting
■ The problem of adjusting too much to training data
• and losing generalization

■ Two ways of solving this:
• Select the right model: model selection
• Adjust training: regularization

14

Overfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and Validation

How to check for overfitting
■ We need to evaluate performance outside the training set
• Test set: we need to keep this for final evaluation of error rate

■ We can use a validation set
■ Or we can use cross-validation

15

Overfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and Validation

How to check for overfitting
■ Cross-Validation:
• Split training set into K folds, average validations training on the k-1

16

Overfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and Validation

How to check for overfitting
■ Cross-Validation:
• Split training set into K folds, average validations training on the k-1

17

Overfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and Validation

How to check for overfitting
■ Option 1: train, validation for preventing overfitting, test
• Good when we have lots of data (which is generally the case for DL)

■ Option 2: Cross-validation on training set, test
• Good when data is scarcer
• Better estimate of true error
• More computationally demanding

■ Cross-validation is widely used outside deep learning
■ With deep learning training and validation is more common
• Deep networks take some time to train

18

Overfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and ValidationOverfitting and Validation

Estimating the true error
■ True error: the expected error over all possible data
• We cannot measure this, since we would need all possible data

■ Must be estimated with a test set, outside the training set
■ This cannot be the validation set if the validation set was used to

optimize hyperparameters
• We choose the combination with the smallest validation error, this makes the

estimate biased.

■ Solution: reserve a test set for final estimate of true error
• This set should not be used for any choice or optimization

19

OverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfitting

Model Selection
■ If the model adapts too much to the data, the training error may be

low but the true error high
• Example: Auto MPG problem, 100-50-10-1 network.

20

OverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfitting

Model Selection
■ One way of solving this problem is to use a simpler model

(assuming it can fit the data)
• Example: Auto MPG problem, 30-10-1 network.

21

OverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfittingOverfitting

Model Selection
■ If the model is too simple, then error may become high
• (Underfitting)
• Example: Auto MPG problem, 3-2-1 network.

22

Practical IssuesPractical IssuesPractical IssuesPractical IssuesPractical IssuesPractical IssuesPractical IssuesPractical IssuesPractical Issues

Bias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and Variance

23

Bias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and Variance

■ Suppose we could train our model on many data sets
• For each hypothesis, predict target value for one example

■ We can decompose the error in two components:
Bias
■ Deviation of the average estimate from the target value
Variance
■ Dispersion of predictions around their average

24

Bias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and Variance

■ Bias: deviation of the average estimate from the target value

bia = bias =sn (() −)ȳ xn tn
2 1

N
∑
n=1

N

(() −)ȳ xn tn
2

25

Bias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and Variance

■ Bias: deviation of the average estimate from the target value

bia = bias =sn (() −)ȳ xn tn
2 1

N
∑
n=1

N

(() −)ȳ xn tn
2

26

Bias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and Variance

■ Variance: dispersion of predictions around their average

va = var =rn

1

M
∑
m=1

M

(() − ())ȳ xn ym xn
2 1

NM
∑
n=1

N

∑
m=1

M

(() − ())ȳ xn ym xn
2

27

Bias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and Variance

■ Variance: dispersion of predictions around their average

va = var =rn

1

M
∑
m=1

M

(() − ())ȳ xn ym xn
2 1

NM
∑
n=1

N

∑
m=1

M

(() − ())ȳ xn ym xn
2

28

Bias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and Variance

Bias-variance tradeoff
■ Reducing increases bias variance

29

Bias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and VarianceBias and Variance

High Bias
■ Model cannot adjust the data (underfitting)
■ Variance is low, true error is close to training error
■ But error is high because the model is too "stiff"
■ Need another model, or some combination of models
• e.g. boosting

■ This is not a problem with deep learning
High Variance
■ Model adjusts too much to irrelevant details (overfitting)
■ Training error is low but true error is high
■ This is common in DL but may be fixed with regularization

30

Practical IssuesPractical IssuesPractical IssuesPractical IssuesPractical IssuesPractical IssuesPractical IssuesPractical IssuesPractical Issues

Regularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANNRegularization in ANN

31

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Regularization:
■ Changes to how the model is trained to reduce overfitting
■ Reduces variance (may increase bias, but still pay off)

32

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Penalizing parameter size
■ To reduce variance, we can force parameters to remain small by

adding a penalty to the objective (cost) function:

■ Where is the weight of the regularization
• Note: in ANN, generally only the input weights at each neuron are penalized and

not the bias weights.

■ The norm function usually takes these forms:

• L Regularization (ridge regression): penalize
• L Regularization: penalize

(θ; X, y) = J(θ; X, y) + αΩ(θ)J
~

α

Ω(θ)
2 ||θ||2

1 | |∑
i θi

33

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

L Regularization is weight decay2

■ If we penalize , the gradient becomes:

■ This means the update rule for the weight becomes

■ We decrease the magnitude of to per update
■ This causes weights that do not contribute to reducing the cost

function to shrink

w2

∇ (θ; X, y) = ∇J(θ; X, y) + 2αwJ
~

w ← w − ϵ2αw − ϵ∇J(θ; X, y)

w (1 − ϵ2α)

34

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

L Regularization1

■ If we penalize , the gradient becomes:

■ This penalizes parameters by a constant value, leading to a sparse
solution

• Some weights will have an optimal value of 0

|w|
∇ (θ; X, y) = ∇J(θ; X, y) + α sign(w)J

~

L vs L Regularization1 2

■ L minimizes number of non-zero weights

■ L minimizes overall weight magnitude

1

2

35

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Dataset augmentation
■ More data is generally better, although not always readily available
■ But sometimes we cam make more data
■ E.g. Image classification:
• Translate images. Rotate or flip, if appropriate (not for character recognition)

Wang et al, 2019, "A survey of face data augmentation".

36

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Dataset augmentation by noise injection
■ Noise injection is an (implicit) form of dataset augmentation
• Add (carefully) noise to inputs, or even to some hidden layers

■ Noise can also be applied to the weights
■ Or even the output
• There may be errors in labelling

• Or for label smoothing: use and instead of 0 and 1 for target

• This prevents pushing softmax or sigmoid to infinity

ϵ/(k − 1) 1 − ϵ

37

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Early stopping
■ Use validation to stop at best point
• Constraints weights to be closer to starting distribution

38

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Bagging and dropout
■ Bagging, or model averaging, consists in training a set of models

and then using the average response (or majority vote)
• This generally improves performance, as it reduces variance without affecting bias,

and ANN can have high variance

• However, it can be costly to train and use many deep models.

39

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Dropout
■ "Turns off" random input and hidden neurons in each minibatch

40

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Dropout
■ Dropout does model averaging implicitely
■ Turning off neurons at random trains an ensemble of many different

networks
■ After training, weights are scaled by the probability of being "on"
• (same expected activation value)

Inverted dropout
■ Instead of adjusting weights after training, increase activation of

neurons left on during training
• Automatically "scales" activations

41

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Adversarial Training
■ ANN can make strange mistakes with the "right" inputs

Goodfellow, Bengio, Courville, Deep Learning 2016

42

RegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularizationRegularization

Adversarial Training
■ ANN can make strange mistakes with the "right" inputs
■ But this can be prevented by using these adversarially perturbed

examples during training
• Forces the network to be locally constant in the neighbourhood of the training data

43

Selecting HyperparametersSelecting HyperparametersSelecting HyperparametersSelecting HyperparametersSelecting HyperparametersSelecting HyperparametersSelecting HyperparametersSelecting HyperparametersSelecting Hyperparameters

Many parameters to select
■ Regularization, network shape and size, optimizers, etc
Several strategies:
■ Manual Optimization
■ Grid search
■ Random Search
■ Bayesian search

44

OptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimization

SummarySummarySummarySummarySummarySummarySummarySummarySummary

45

OptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimizationOptimization

Summary
■ Optimizing training
• Optimizers, initialization, learning rate, batch normalization

■ Optimizing the predictions
• Model selection
• Bias and Variance
• Regularization
• Penalizing weights, Augmenting data
• Noise, Early stop, dropout, Adversarial training

Further reading:
■ Goodfellow et.al, Deep learning, Chaps 7 and 11, Sects 8.4; 8.7.1

