
Aprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem Profunda

5 - Activations and Loss Functions5 - Activations and Loss Functions5 - Activations and Loss Functions5 - Activations and Loss Functions5 - Activations and Loss Functions5 - Activations and Loss Functions5 - Activations and Loss Functions5 - Activations and Loss Functions5 - Activations and Loss Functions

Ludwig Krippahl

1

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

Summary
■ Why go deep?
■ The vanishing gradients problem
■ ReLU to the rescue
■ Different activations: when and how
■ Loss functions

2

Activation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and Loss

Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?

3

Wide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs Deep

Universal approximation theorem

Wikipedia, https://en.wikipedia.org/wiki/Universal_approximation_theorem

■ Given nonconstant, bounded and continuous
■ Given , and any function continuous in

■ There are constants , and such that:

■ for all
■ Proven in 1989 for sigmoid activation by George Cybenko,
■ In other words, all we need is one hidden layer

ϕ

= [0, 1Im]m ϵ > 0 f Im

N vi bi wi
→

F() = ϕ(+) |F() − f()| < ϵx⃗ ∑
i=1

N

vi wi
→T

x⃗ bi x⃗ x⃗

∈x⃗ Im

4

Wide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs Deep

Universal approximation theorem
■ One layer can approximate any function within a bounded region
■ However, more oscilations by stacking layers
• Activation (and loss) can oscilate more with fewer neurons in a deep network

■ Oscillations are related to Vapnik-Chervonenkis dimension
• (largest set that can be shattered)

5

Wide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs Deep

Vapnik-Chervonenkis dimension
■ Hypothesis class shatters set if, for any labelling , there is a

 consistent with (classifies without errors)
• Example: linear classifier in 2D shatters 3 points

H S S
h ∈ H S

■ VC dimension measures classification "power"
■ Deep networks are more powerful for the same number of neurons

6

Wide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs Deep

"No free lunch" theorem:
«... for any two learning algorithms A and B, [...] there
are just as many situations (appropriately weighted) in
which algorithm A is superior to algorithm B as vice
versa.»

David Wolpert, Neural Computation 8, 1341-1390 (1996, MIT)

■ Demonstrated for test error (generalization), assuming any possible
distribution of data

■ In real life, data is not distributed in any possible way
■ Best algorithm depends on the problem

7

Wide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs Deep

How to choose: some pros and cons of deep learning
■ Linear models with nonlinear feature transformations (wide):
• Better at memorization of feature interactions and more interpretable
• Generalization requires more feature engineering effort.

■ Example:
• "Customers who purchased that also purchased ..."

• Works if we have data on exactly the same purchases

• Hard to generalize for "similar" purchases without engineering features (e.g. type of
movie, ...)

8

Wide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs Deep

How to choose: some pros and cons of deep learning
■ Deep learning models:
• Better at generalizing by learning relevant features, even with little engineering

• But "black box", difficult to understand which features they use

Image credits: teenybiscuit, Twitter.

9

Wide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs DeepWide vs Deep

Deep models
■ Pros:
• More shattering power with fewer parameters
• Learn feature extraction
• Good for complex problems and for generalizing

■ Cons:
• More powerful models require more data to avoid overfitting
• Learned features may be harder to interpret

10

Activation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and Loss

Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

11

Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

Backpropagation in Activation and Loss
■ Output neuron of layer receives input from from layer

through weight

■ For a weight on hidden layer , we must propagate the output
error backwards from all neurons ahead

■ If is small (vanishing gradient) backpropagation becomes
ineffective as we increase depth

■ This happens with logistic activation (or similar, such as TanH)

n k m i
j

Δw
j
mkn = −η

δE
j

kn

δs
j

kn

δs
j

kn

δnet
j

kn

δnet
j

kn

δwmkn
= η(−) (1 −) = ηtj s

j
kn s

j
kn s

j
kn s

j
im δkns

j
im

m i

Δ = −η()w
j
min ∑

p

δE
j
kp

δs
j
kp

δs
j
kp

δnet
j
kp

δnet
j
kp

δs
j
in

δs
j
in

δnet
j
in

δnet
j
in

δwmin

δs

12

Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Single hidden layer, sigmoid, works fine here

13

Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Single hidden layer, sigmoid, doesn't work here with 8 neurons

14

Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Increasing depth does not seem to help

15

Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Increasing depth does not seem to help

16

Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Increasing depth does not seem to help
■ Sigmoid activation saturates and gradients vanish with large coefs.

17

Activation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and Loss

Rectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear Unit

18

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

Rectified Linear Unit (ReLU)
■ Sigmoid activation units

saturate
=yi

1

1 + e−xi

19

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

Rectified Linear Unit (ReLU)
■ The same happens with

hyperbolic tangent
=yi

−ex e−x

+ex e−x

20

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

Rectified Linear Unit (ReLU)
■ Rectified linear units do

not have this problem
= {yi

xi

0

> 0xi

≤ 0xi

21

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

■ Sigmoid activation, 3 layers

22

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

■ ReLU activation, 3 layers

23

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

■ ReLU activation, 4 layers

24

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

Rectified Linear Unit (ReLU)
■ Advantages of ReLU activation:
• Fast to compute
• Does not saturate for positive values, and gradient is always 1

■ Disadvantage:
• ReLU units can "die" if training makes their weights very negative

• The unit will output 0 and the gradient will become 0, so it will not "revive"

■ There are variants that try to fix this problem

25

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

(Some) ReLU variants
■ Simple ReLU can die if

coefficients are negative
= {yi

xi

0

> 0xi

≤ 0xi

26

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Leaky ReLU
■ Leaky ReLU gradient is

never 0
= {yi

xi
xi
ai

x > 0

≤ 0xi

27

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Leaky ReLU
■ Note: in Tensorflow = {yi

xi

aixi

x > 0

≤ 0xi

28

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Parametric ReLU
■ Same as leaky, but is

also learned
ai = {yi

xi
xi
ai

x > 0

≤ 0xi

29

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Randomized Leaky ReLU
■ Similar, but

(average of in test)
∼ U(l,u)ai

l,u
= {yi

xi

aixi

x > 0

≤ 0xi

30

ReLUReLUReLUReLUReLUReLUReLUReLUReLU

Comparing ReLU variants

Empirical Evaluation of Rectified Activations in Convolution Network (Xu et. al. 2015)

■ Compared on 2 data sets
• CIFAR-10: 60000 32x32 color images in 10 classes of 6000 each
• CIFAR-100: 60000 32x32 color images in 100 classes of 600 each

31

CReLUCReLUCReLUCReLUCReLUCReLUCReLUCReLUCReLU

■ Concatenated ReLU combine two ReLU for and x −x

= { = {yi
xi

0

> 0xi

≤ 0xi
zi

0

−xi

> 0xi

≤ 0xi

Shang et. al., Understanding and Improving CNN via CReLUs, 2016

32

ELUELUELUELUELUELUELUELUELU

Exponential Linear Unit
■ Exponential in negative

part
= {yi

xi

a(− 1)exi
> 0xi

≤ 0xi

Clevert et. al. Fast and Accurate Deep Network Learning by ELUs, 2015

33

Activation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and Loss

Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?

34

Choosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activations

Hidden layer activations
■ Hidden layers perform nonlinear transformations
• Without nonlinear activation functions, all layers would just amount to a single linear

transformation

■ Activation functions should be fast to compute
■ Activation functions should avoid vanishing gradients
■ This is why ReLU (esp. leaky variants) are the recommended

choice for hidden layers
• Except for specific applications.

• E.g. LSTM, Long short-term memory recurrent networks

35

Choosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activations

Output layer activations
■ Output layers are a different case.
• Choice depends on what we want the model to do

■ For regression, output should generally be linear
• We do not want bounded values and there is little need for nonlinearity in the last

layer

■ For binary classification, sigmoid is a good choice
• The output value is useful as a representation of the probability of , like in

logistic regression

■ Sigmoid is also good for multilabel classification
• One example may fit with several labels at the same time
• Use one sigmoid output per label

[0, 1] C1

36

Choosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activations

Output layer activations
■ For multiclass classification, use softmax:
• Note: multiclass means each example fits only one of several classes

■ Softmax returns a vector where and

■ This can fit a probability of example belonging to each class

■ Softmax is a generalization of the logistic function
• It combines the activations of several neurons

σ : → [0, 1 σ(=R
K]K x⃗)j

exj

∑
k=1

K

exk

∈ [0, 1]σj = 1∑
k=1

K

σk

Cj

37

Activation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and Loss

Loss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihood

38

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

Basic concepts
■ We have a set of labelled data

■ We want to approximate some function by fitting
our parameters

■ Given some training set, what are the best parameter values?

{(,), . . . , (,)}x⃗ 1 y1 x⃗ n yn

F(X) : X → Y

Simple example, linear regression
y = + +. . . +θ1x1 θ2x2 θn+1

■ We have a set of examples and want to fit the best line:(x, y)
y = x +θ1 θ2

39

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

What to optimize?

40

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

What to optimize?
■ Assume is a function of plus some error:

■ We want to approximate with some

■ Assuming and , then:

■ Given and knowing that

y x
y = F(x) + ϵ

F(x) g(x, θ)

ϵ ∼ N(0,)σ2 g(x, θ) ∼ F(x)
p(y|x) ∼ N (g(x, θ),)σ2

X = { ,xt yt}Nt=1 p(x, y) = p(y|x)p(x)

p(X,Y) = p(,) = p(|) × p()∏
t=1

n

xt yt ∏
t=1

n

yt xt ∏
t=1

n

xt

41

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

What to optimize?
■ The probability of given is the likelihood of :(X,Y) g(x, θ) θ

l(θ|X) = p(,) = p(|) × p()∏
t=1

n

x⃗ t yt ∏
t=1

n

yt xt ∏
t=1

n

xt

Likelihood
■ The examples are randomly sampled from all possible

values
■ But is not a random variable
■ Find the for which the data is most probable
• In other words, find the of maximum likelihood

(, y)x⃗

θ

θ

θ

42

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

Maximum likelihood for linear regression
l(θ|X) = p(,) = p(|) × p()∏

t=1

n

xt yt ∏
t=1

n

yt xt ∏
t=1

n

xt

■ First, take the logarithm (same maximum)

■ We ignore , since it's independent of

■ Replace the expression for the normal:

L(θ|X) = log(p(|) × p())∏
t=1

n

yt xt ∏
t=1

n

xt

p(X) θ

L(θ|X) ∝ log(p(|))∏
t=1

n

yt xt

L(θ|X) ∝ log∏
t=1

n 1

σ 2π
−−√

e−[−g(|θ) /2yt xt]2 σ2

43

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

Maximum likelihood for linear regression
L(θ|X) ∝ log∏

t=1

n 1

σ 2π
−−√

e−[−g(|θ) /2yt xt]2 σ2

■ Simplify:

L(θ|X) ∝ log∏
t=1

n

e−[−g(|θ)yt xt]2

L(θ|X) ∝ − [− g(|θ)∑
t=1

n

yt xt]2

44

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

Maximum likelihood for linear regression
L(θ|X) ∝ − [− g(|θ)∑

t=1

n

yt xt]2

■ Max(likelihood) = Min(squared error)
• The that maximizes likelihood is the same that minimizes squared error:

• Note: the squared error is often written like this for convenience:

θ

E(θ|X) = [− g(|θ)∑
t=1

n

yt xt]2

E(θ|X) = [− g(|θ)
1

2
∑
t=1

n

yt xt]2

45

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

■ Having the Loss function, we do gradient descent

46

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

■ Having the Loss function, we do gradient descent

47

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

■ Having the Loss function, we do gradient descent

48

Activation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and Loss

Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

49

Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

Finding a loss function by ML
■ In general, suppose we have a set drawn

randomly from the population with some probability distribution.
■ We also have a family of probability distributions

which tell us the probability of as a function of
■ The maximum likelihood estimator for (i.e. the "best") is:

X = { , . . . , }x1 xm

(x; θ)pmodel

x θ

θ θ

= (x; θ) = (; θ)θML arg max
θ

pmodel arg max
θ

∏
i=1

m

pmodel x
i

50

Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

Finding a loss function by ML
■ These products may lead to underflow, so best use logarithms:

■ We can also rescale by and obtain expectation of the log-
probabilities given the empirical distribution of examples in our data:

■ Given that our samples are drawn with , this is
maximized when is as close as possible to

(; θ) = log (; θ)arg max
θ

∏
i=1

m

pmodel x
i arg max

θ

∑
i=1

m

pmodel x
i

m

log (x; θ)arg max
θ

Ex∼p̂data
pmodel

x ∼ p̂data
(x; θ)pmodel x ∼ p̂data

51

Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

Finding a loss function by ML
■ The Kullback–Leibler divergence between two distributions is the

expectation of the log-probability differences between them
• KL divergence between the data and the model is:

■ Since does not depend on , minimizing the KL divergence is:

■ I.e. Maximizing likelihood is minimizing the divergence between the
data distribution and what our model predicts

(||) = [log − log]DKL p̂data pmodel Ex∼p̂data
p̂data pmodel

p̂data θ
− log (x; θ) = log (x; θ)arg min

θ

Ex∼p̂data
pmodel arg max

θ

Ex∼p̂data
pmodel

52

Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

Finding a loss function by ML
− log (x; θ) = log (x; θ)arg min

θ

Ex∼p̂data
pmodel arg max

θ

Ex∼p̂data
pmodel

■ Minimizing KL divergence corresponds to minimizing cross-entropy
between distributions

■ In general, that is what we minimize: a cross-entropy loss function
■ Also, in supervised learning the models usually give conditional

probabilities of the target value given the features

= P(Y |X; θ) = log P(| ; θ)θML arg max
θ

arg max
θ

∑
i=1

m

yi x⃗ i

53

Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

Finding a loss function by ML
= P(Y |X; θ) = log P(| ; θ)θML arg max

θ

arg max
θ

∑
i=1

m

yi x⃗ i

■ For linear regression, we assumed
■ In this case, our loss function (cross-entropy) is the squared error

p(y|x) ∼ N (g(x, θ),)σ2

E(θ|X) = [− g(|θ)∑
t=1

n

yt xt]2

54

Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

Finding a loss function by ML
■ For a sigmoid predicting probability in binary classification
• Given and

■ Minimizng the cross-entropy between model and data distributions
in this case corresponds to the logistic loss:

g(, θ) = P(= 1|)x⃗ tn x⃗ ∈ {0, 1}tn

L(θ|X) = [(1 −] l(θ|X) = [ln + (1 −) ln(1 −)]∏
n=1

N

gtnn gn)1−tn ∑
n=1

N

tn gn tn gn

E() = − [ln + (1 −) ln(1 −)]w̃
1

N
∑
n=1

N

tn gn tn gn

=gn
1

1 + e−(+)w⃗ T xn
→

w0

55

Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood

Finding a loss function by ML
= P(Y |X; θ) = log P(| ; θ)θML arg max

θ

arg max
θ

∑
i=1

m

yi x⃗ i

■ We want to maximize likelihood
■ This means minimizing cross entropy between model and data
■ Loss function depends on the model output:
• Regression: linear output, mean squared error

• Binary classification: class probability, sigmoid output, logistic loss

• (Also for multilabel classification, with probability for each label)

• N-ary classification, use softmax and the softmax cross entropy:

− log∑
c=1

C

yc
eac

∑C
k=1 e

ak

56

Activation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and Loss

SummarySummarySummarySummarySummarySummarySummarySummarySummary

57

Activation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and LossActivation and Loss

Summary
■ Wide vs deep
■ The vanishing gradients problem
■ And how ReLUs (and similar) solve it
■ Activations for hidden and output layers
■ Loss functions
Further reading:
■ Goodfellow et.al, Deep learning, Chapters 5 and 6
■ Tensorflow, activation functions:
• https://www.tensorflow.org/api_guides/python/nn#Activation_Functions

