Aprendizagem Profunda

5 - Activations and Loss Functions

Ludwig Krippahl

Introduction

Summary

- Why go deep?
- The vanishing gradients problem
- ReLU to the rescue
- Different activations: when and how
- Loss functions

Activation and Loss

Why go deep?

Universal approximation theorem

Wikipedia, https://en.wikipedia.org/wiki/Universal_approximation_theorem

- Given ϕ nonconstant, bounded and continuous
- ullet Given $I_m=[0,1]^m$, $\epsilon>0$ and any function f continuous in I_m
- There are N constants v_i , b_i and $\overrightarrow{w_i}$ such that:

$$F(ec{x}) = \sum_{i=1}^N v_i \phi(ec{w_i}^T ec{x} + b_i) \qquad |F(ec{x}) - f(ec{x})| < \epsilon$$

- lacksquare for all $ec x\in I_m$
- Proven in 1989 for sigmoid activation by George Cybenko,
- In other words, all we need is one hidden layer

Universal approximation theorem

- One layer can approximate any function within a bounded region
- However, more oscilations by stacking layers
- Activation (and loss) can oscilate more with fewer neurons in a deep network
- Oscillations are related to Vapnik-Chervonenkis dimension
- (largest set that can be shattered)

Vapnik-Chervonenkis dimension

- Hypothesis class $\mathcal H$ shatters set $\mathcal S$ if, for any labelling S, there is a $h\in\mathcal H$ consistent with S (classifies without errors)
- Example: linear classifier in 2D shatters 3 points

- VC dimension measures classification "power"
- Deep networks are more powerful for the same number of neurons

"No free lunch" theorem:

«... for any two learning algorithms A and B, [...] there are just as many situations (appropriately weighted) in which algorithm A is superior to algorithm B as vice versa.»

David Wolpert, Neural Computation 8, 1341-1390 (1996, MIT)

- Demonstrated for test error (generalization), assuming any possible distribution of data
- In real life, data is not distributed in any possible way
- Best algorithm depends on the problem

How to choose: some pros and cons of deep learning

- Linear models with nonlinear feature transformations (wide):
- Better at memorization of feature interactions and more interpretable
- Generalization requires more feature engineering effort.
- Example:
- "Customers who purchased that also purchased ..."
- Works if we have data on exactly the same purchases
- Hard to generalize for "similar" purchases without engineering features (e.g. type of movie, ...)

How to choose: some pros and cons of deep learningDeep learning models:

- Better at generalizing by learning relevant features, even with little engineering
- But "black box", difficult to understand which features they use

Image credits: teenybiscuit, Twitter.

Wide vs Deep

Deep models

Pros:

- More shattering power with fewer parameters
- Learn feature extraction
- Good for complex problems and for generalizing
- Cons:
- More powerful models require more data to avoid overfitting
- Learned features may be harder to interpret

Activation and Loss

Vanishing gradients

Backpropagation in Activation and Loss

Output neuron n of layer k receives input from m from layer i through weight j

$$\Delta w^j_{mkn} \hspace{0.1 in} = \hspace{0.1 in} -\eta rac{\delta E^j_{kn}}{\delta s^j_{kn}} rac{\delta s^j_{kn}}{\delta net^j_{kn}} rac{\delta net^j_{kn}}{\delta w_{mkn}} \hspace{0.1 in} = \hspace{0.1 in} \eta (t^j - s^j_{kn}) s^j_{kn} (1 - s^j_{kn}) s^j_{im} = \eta \delta_{kn} s^j_{im}$$

For a weight m on hidden layer i, we must propagate the output error backwards from all neurons ahead

$$\Delta w^{j}_{min} = -\eta \left(\sum_{p} rac{\delta E^{j}_{kp}}{\delta s^{j}_{kp}} rac{\delta s^{j}_{kp}}{\delta net^{j}_{kp}} rac{\delta net^{j}_{kp}}{\delta s^{j}_{in}}
ight) rac{\delta s^{j}_{in}}{\delta net^{j}_{in}} rac{\delta net^{j}_{in}}{\delta w_{min}}$$

- If δs is small (vanishing gradient) backpropagation becomes ineffective as we increase depth
- This happens with logistic activation (or similar, such as TanH)

Single hidden layer, sigmoid, works fine here

Single hidden layer, sigmoid, doesn't work here with 8 neurons

Increasing depth does not seem to help

Increasing depth does not seem to help

- Increasing depth does not seem to help
- Sigmoid activation saturates and gradients vanish with large coefs.

Activation and Loss

Rectified Linear Unit

Rectified Linear Unit (ReLU)

 Sigmoid activation units saturate

Rectified Linear Unit (ReLU)

The same happens with hyperbolic tangent

$$y_i=rac{e^x-e^{-x}}{e^x+e^{-x}}$$

Rectified Linear Unit (ReLU)

Rectified linear units do not have this problem

Sigmoid activation, 3 layers

ReLU activation, 3 layers

ReLU activation, 4 layers

Rectified Linear Unit (ReLU)

- Advantages of ReLU activation:
- Fast to compute
- Does not saturate for positive values, and gradient is always 1
- Disadvantage:
- ReLU units can "die" if training makes their weights very negative
- The unit will output 0 and the gradient will become 0, so it will not "revive"
- There are variants that try to fix this problem

(Some) ReLU variants

Simple ReLU can die if coefficients are negative

ReLU variant: Leaky ReLU

Leaky ReLU gradient is never 0

ReLU variant: Leaky ReLU $y_i = egin{cases} x_i & x > 0 \ a_i x_i & x_i \leq 0 \end{cases}$ Note: in Tensorflow 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2 -6 0 2 -4 4

6

ReLU variant: Parametric ReLU

Same as leaky, but a_i is also learned

ReLU variant: Randomized Leaky ReLU

Similar, but $a_i \sim U(l, u)$ $y_i = \begin{cases} x_i & x > 0 \\ a_i x_i & x_i \le 0 \end{cases}$ (average of l, u in test)

Comparing ReLU variants

Empirical Evaluation of Rectified Activations in Convolution Network (Xu et. al. 2015)

- Compared on 2 data sets
- CIFAR-10: 60000 32x32 color images in 10 classes of 6000 each
- CIFAR-100: 60000 32x32 color images in 100 classes of 600 each

Activation	Training Error	Test Error	Activation	Training Error	Test Error
ReLU	0.00318	0.1245	ReLU	0.1356	0.429
Leaky ReLU, $a = 100$	0.0031	0.1266	Leaky ReLU, $a = 100$	0.11552	0.4205
Leaky ReLU, $a = 5.5$	0.00362	0.1120	Leaky ReLU, $a = 5.5$	0.08536	0.4042
PReLU	0.00178	0.1179	PReLU	0.0633	0.4163
RReLU $(y_{ji} = x_{ji}/\frac{l+u}{2})$	0.00550	0.1119	RReLU $(y_{ji} = x_{ji}/\frac{l+u}{2})$	0.1141	0.4025
Table 3. Error rate of CIFA	R-10 Network in	Network with	Table 4. Error rate of CIFA	R-100 Network in	Network with
different activation function			different activation function		

Concatenated ReLU combine two ReLU for x and -x

Shang et. al., Understanding and Improving CNN via CReLUs, 2016

Exponential Linear Unit

Exponential in negative part

Clevert et. al. Fast and Accurate Deep Network Learning by ELUs, 2015

Activation and Loss

Activations: which, when, why?

Hidden layer activations

- Hidden layers perform nonlinear transformations
- Without nonlinear activation functions, all layers would just amount to a single linear transformation
 - Activation functions should be fast to compute
 - Activation functions should avoid vanishing gradients
- This is why ReLU (esp. leaky variants) are the recommended choice for hidden layers
- Except for specific applications.
- E.g. LSTM, Long short-term memory recurrent networks

Choosing activations

Output layer activations

- Output layers are a different case.
- Choice depends on what we want the model to do
- For regression, output should generally be linear
- We do not want bounded values and there is little need for nonlinearity in the last layer
- For binary classification, sigmoid is a good choice
- The output value $\left[0,1\right]$ is useful as a representation of the probability of $C_1,$ like in logistic regression
- Sigmoid is also good for multilabel classification
- One example may fit with several labels at the same time
- Use one sigmoid output per label

Output layer activations

- For multiclass classification, use softmax:
- Note: multiclass means each example fits only one of several classes

$$\sigma: \mathbb{R}^K o [0,1]^K \qquad \sigma(ec{x})_j = rac{e^{x_j}}{\displaystyle\sum\limits_{k=1}^K e^{x_k}}$$

Softmax returns a vector where $\sigma_j \in [0,1]$ and $\sum\limits_{k=1}^K \sigma_k = 1$

- This can fit a probability of example belonging to each class C_j
- Softmax is a generalization of the logistic function
- It combines the activations of several neurons

Activation and Loss

Loss and likelihood

Basic concepts

We have a set of labelled data

$$ig\{(ec{x}^1,y^1),\ldots,(ec{x}^n,y^n)ig\}$$

- We want to approximate some function $F(X): X \to Y$ by fitting our parameters
- Given some training set, what are the best parameter values?

Simple example, linear regression

 $y= heta_1x_1+ heta_2x_2\!+\!\ldots\!+\! heta_{n+1}$

• We have a set of (x,y) examples and want to fit the best line: $y = heta_1 x + heta_2$

What to optimize?

What to optimize?

• Assume y is a function of x plus some error:

$$y = F(x) + \epsilon$$

- We want to approximate F(x) with some $g(x, \theta)$
- Assuming $\epsilon \sim N(0,\sigma^2)$ and $g(x, heta) \sim F(x)$, then: $p(y|x) \sim \mathcal{N}(g(x, heta),\sigma^2)$

Given
$$\mathcal{X} = \{x^t, y^t\}_{t=1}^N$$
 and knowing that $p(x, y) = p(y|x)p(x)$
 $p(X, Y) = \prod_{t=1}^n p(x^t, y^t) = \prod_{t=1}^n p(y^t|x^t) \times \prod_{t=1}^n p(x^t)$

What to optimize?

• The probability of (X, Y) given $g(x, \theta)$ is the likelihood of θ : $l(\theta|\mathcal{X}) = \prod_{t=1}^{n} p(\vec{x}^t, y^t) = \prod_{t=1}^{n} p(y^t|x^t) \times \prod_{t=1}^{n} p(x^t)$

Likelihood

- The examples (\vec{x}, y) are randomly sampled from all possible values
- But θ is not a random variable
- Find the θ for which the data is most probable
- In other words, find the $\boldsymbol{\theta}$ of maximum likelihood

Maximum likelihood for linear regression

$$l(heta|\mathcal{X}) = \prod_{t=1}^n p(x^t,y^t) = \prod_{t=1}^n p(y^t|x^t) imes \prod_{t=1}^n p(x^t)$$

First, take the logarithm (same maximum)

$$L(heta|\mathcal{X}) = log\left(\prod_{t=1}^n p(y^t|x^t) imes \prod_{t=1}^n p(x^t)
ight)$$

• We ignore p(X), since it's independent of heta

$$L(heta|\mathcal{X}) \propto log\left(\prod_{t=1}^n p(y^t|x^t)
ight)$$

Replace the expression for the normal:

$$\mathcal{L}(heta|\mathcal{X}) \propto log \prod_{t=1}^n rac{1}{\sigma \sqrt{2\pi}} e^{-[y^t - g(x^t| heta)]^2/2\sigma^2}$$

Maximum likelihood for linear regression

$$\mathcal{L}(heta|\mathcal{X}) \propto log \prod_{t=1}^n rac{1}{\sigma \sqrt{2\pi}} e^{-[y^t - g(x^t| heta)]^2/2\sigma^2}$$

Simplify:

$$egin{split} \mathcal{L}(heta|\mathcal{X}) \propto log \prod_{t=1}^n e^{-[y^t-g(x^t| heta)]^2} \ \mathcal{L}(heta|\mathcal{X}) \propto -\sum_{t=1}^n [y^t-g(x^t| heta)]^2 \end{split}$$

Maximum likelihood for linear regression

$$\mathcal{L}(heta|\mathcal{X}) \propto -\sum_{t=1}^n [y^t - g(x^t| heta)]^2$$

Max(likelihood) = Min(squared error)

• The θ that maximizes likelihood is the same that minimizes squared error:

$$E(heta|\mathcal{X}) = \sum_{t=1}^n [y^t - g(x^t| heta)]^2$$

• Note: the squared error is often written like this for convenience:

$$E(heta|\mathcal{X}) = rac{1}{2}\sum_{t=1}^n [y^t - g(x^t| heta)]^2$$

Having the Loss function, we do gradient descent

Having the Loss function, we do gradient descent

Having the Loss function, we do gradient descent

Activation and Loss

Maximum Likelihood

- In general, suppose we have a set $\mathbb{X} = \{x^1, \ldots, x^m\}$ drawn randomly from the population with some probability distribution.
- We also have a family of probability distributions $p_{model}(x;\theta)$ which tell us the probability of x as a function of θ
- The maximum likelihood estimator for heta (i.e. the "best" heta) is:

$$heta_{ML} = rg\max_{ heta} p_{model}(x; heta) = rg\max_{ heta} \; \prod_{i=1}^m p_{model}(x^i; heta)$$

m

These products may lead to underflow, so best use logarithms:

$$rg\max_{ heta} \, \prod_{i=1}^m p_{model}(x^i; heta) = rg\max_{ heta} \, \sum_{i=1}^m \log \, p_{model}(x^i; heta)$$

We can also rescale by m and obtain expectation of the logprobabilities given the empirical distribution of examples in our data:

$$rg\max_{ heta} \mathbb{E}_{x \sim \hat{p}_{data}} \log \, p_{model}(x; heta)$$

Given that our samples are drawn with $x\sim \hat{p}_{data}$, this is maximized when $p_{model}(x;\theta)$ is as close as possible to $x\sim \hat{p}_{data}$

- The Kullback–Leibler divergence between two distributions is the expectation of the log-probability differences between them
- KL divergence between the data and the model is:

$$D_{KL}({\hat{p}}_{data}||p_{model}) = \mathbb{E}_{x \sim {\hat{p}}_{data}} \left[\log {\hat{p}}_{data} - \log p_{model}
ight]$$

- Since \hat{p}_{data} does not depend on θ , minimizing the KL divergence is: $\arg\min_{\theta} \mathbb{E}_{x \sim \hat{p}_{data}} - \log p_{model}(x; \theta) = \arg\max_{\theta} \mathbb{E}_{x \sim \hat{p}_{data}} \log p_{model}(x; \theta)$
- I.e. Maximizing likelihood is minimizing the divergence between the data distribution and what our model predicts

 $rgmin_{ heta} \mathbb{E}_{x \sim \hat{p}_{data}} - \log p_{model}(x; heta) = rgmax_{ heta} \mathbb{E}_{x \sim \hat{p}_{data}} \log p_{model}(x; heta)$

Minimizing KL divergence corresponds to minimizing cross-entropy between distributions

- In general, that is what we minimize: a cross-entropy loss function
- Also, in supervised learning the models usually give conditional probabilities of the target value given the features

$$heta_{ML} = rg\max_{ heta} P(Y|X; heta) = rg\max_{ heta} \; \sum_{i=1}^m \log \; P(y^i|ec{x}^i; heta)$$

$$heta_{ML} = rg\max_{ heta} P(Y|X; heta) = rg\max_{ heta} \; \sum_{i=1}^m \log \; P(y^i|ec{x}^i; heta)$$

m

For linear regression, we assumed $p(y|x) \sim \mathcal{N}(g(x, heta),\sigma^2)$

In this case, our loss function (cross-entropy) is the squared error

 \mathbf{n}

$$E(heta|\mathcal{X}) = \sum_{t=1}^n [y^t - g(x^t| heta)]^2$$

For a sigmoid predicting probability in binary classification

• Given
$$g(ec x, heta)=P(t_n=1|ec x)$$
 and $t_n\in\{0,1\}$
 $\mathcal{L}(heta|X)=\prod_{n=1}^N\left[g_n^{t_n}(1-g_n)^{1-t_n}
ight] \quad l(heta|X)=\sum_{n=1}^N\left[t_n\ln g_n+(1-t_n)\ln(1-g_n)
ight]$

Minimizing the cross-entropy between model and data distributions in this case corresponds to the logistic loss:

$$egin{split} E(\widetilde{w}) &= -rac{1}{N}\sum_{n=1}^{N}\left[t_n\ln g_n + (1-t_n)\ln(1-g_n)
ight] \ g_n &= rac{1}{1+e^{-(ec{w}^Tec{x}_n^++w_0)}} \end{split}$$

$$heta_{ML} = rg\max_{ heta} P(Y|X; heta) = rg\max_{ heta} \; \sum_{i=1}^m \log \; P(y^i|ec{x}^i; heta)$$

m

- We want to maximize likelihood
- This means minimizing cross entropy between model and data
- Loss function depends on the model output:
- Regression: linear output, mean squared error
- Binary classification: class probability, sigmoid output, logistic loss
- (Also for multilabel classification, with probability for each label)
- N-ary classification, use softmax and the softmax cross entropy:

$$-\sum_{c=1}^{C} y_c \log rac{e^{a_c}}{\sum_{k=1}^{C} e^{a_k}}$$

Activation and Loss

Summary

Activation and Loss

Summary

- Wide vs deep
- The vanishing gradients problem
- And how ReLUs (and similar) solve it
- Activations for hidden and output layers
- Loss functions

Further reading:

- Goodfellow et.al, Deep learning, Chapters 5 and 6
- Tensorflow, activation functions:
- https://www.tensorflow.org/api_guides/python/nn#Activation_Functions

