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Summary
■ Why go deep?
■ The vanishing gradients problem
■ ReLU to the rescue
■ Different activations: when and how
■ Loss functions
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Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?Why go deep?
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Universal approximation theorem
 

Wikipedia, https://en.wikipedia.org/wiki/Universal_approximation_theorem

■ Given  nonconstant, bounded and continuous
■ Given ,  and any function  continuous in 

■ There are  constants ,  and  such that:

■ for all 
■ Proven in 1989 for sigmoid activation by George Cybenko,
■ In other words, all we need is one hidden layer

ϕ

= [0, 1Im ]m ϵ > 0 f Im

N vi bi wi
→

F( ) = ϕ( + ) |F( ) − f( )| < ϵx⃗  ∑
i=1

N

vi wi
→T

x⃗  bi x⃗  x⃗ 

∈x⃗  Im
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Universal approximation theorem
■ One layer can approximate any function within a bounded region
■ However, more oscilations by stacking layers
• Activation (and loss) can oscilate more with fewer neurons in a deep network

■ Oscillations are related to Vapnik-Chervonenkis dimension
• (largest set that can be shattered)
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Vapnik-Chervonenkis dimension
■ Hypothesis class  shatters set  if, for any labelling , there is a 

 consistent with  (classifies without errors)
• Example: linear classifier in 2D shatters 3 points

H S S
h ∈ H S

■ VC dimension measures classification "power"
■ Deep networks are more powerful for the same number of neurons
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"No free lunch" theorem:
«... for any two learning algorithms A and B, [...] there
are just as many situations (appropriately weighted) in
which algorithm A is superior to algorithm B as vice
versa.»

David Wolpert, Neural Computation 8, 1341-1390 (1996, MIT)

■ Demonstrated for test error (generalization), assuming any possible
distribution of data

■ In real life, data is not distributed in any possible way
■ Best algorithm depends on the problem
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How to choose: some pros and cons of deep learning
■ Linear models with nonlinear feature transformations (wide):
• Better at memorization of feature interactions and more interpretable
• Generalization requires more feature engineering effort.

■ Example:
• "Customers who purchased that also purchased ..."

• Works if we have data on exactly the same purchases

• Hard to generalize for "similar" purchases without engineering features (e.g. type of
movie, ...)
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How to choose: some pros and cons of deep learning
■ Deep learning models:
• Better at generalizing by learning relevant features, even with little engineering

• But "black box", difficult to understand which features they use

Image credits: teenybiscuit, Twitter.
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Deep models
■ Pros:
• More shattering power with fewer parameters
• Learn feature extraction
• Good for complex problems and for generalizing

■ Cons:
• More powerful models require more data to avoid overfitting
• Learned features may be harder to interpret
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Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients
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Backpropagation in Activation and Loss
■ Output neuron  of layer  receives input from  from layer 

through weight 

■ For a weight  on hidden layer , we must propagate the output
error backwards from all neurons ahead

■ If  is small (vanishing gradient) backpropagation becomes
ineffective as we increase depth

■ This happens with logistic activation (or similar, such as TanH)
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■ Single hidden layer, sigmoid, works fine here



13
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■ Single hidden layer, sigmoid, doesn't work here with 8 neurons
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■ Increasing depth does not seem to help
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■ Increasing depth does not seem to help
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Vanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradientsVanishing gradients

■ Increasing depth does not seem to help
■ Sigmoid activation saturates and gradients vanish with large coefs.
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Rectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear UnitRectified Linear Unit
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Rectified Linear Unit (ReLU)
■ Sigmoid activation units

saturate
=yi

1

1 + e−xi
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Rectified Linear Unit (ReLU)
■ The same happens with

hyperbolic tangent
=yi

−ex e−x

+ex e−x
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Rectified Linear Unit (ReLU)
■ Rectified linear units do

not have this problem
= {yi

xi

0

> 0xi

≤ 0xi
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■ Sigmoid activation, 3 layers
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

■ ReLU activation, 3 layers
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

■ ReLU activation, 4 layers
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Rectified Linear Unit (ReLU)
■ Advantages of ReLU activation:
• Fast to compute
• Does not saturate for positive values, and gradient is always 1

■ Disadvantage:
• ReLU units can "die" if training makes their weights very negative

• The unit will output 0 and the gradient will become 0, so it will not "revive"

■ There are variants that try to fix this problem
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(Some) ReLU variants
■ Simple ReLU can die if

coefficients are negative
= {yi

xi

0

> 0xi

≤ 0xi
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ReLU variant: Leaky ReLU
■ Leaky ReLU gradient is

never 0
= {yi

xi
xi
ai

x > 0

≤ 0xi
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ReLUReLUReLUReLUReLUReLUReLUReLUReLU

ReLU variant: Leaky ReLU
■ Note: in Tensorflow = {yi

xi

aixi

x > 0

≤ 0xi
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ReLU variant: Parametric ReLU
■ Same as leaky, but  is

also learned
ai = {yi

xi
xi
ai

x > 0

≤ 0xi
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ReLU variant: Randomized Leaky ReLU
■ Similar, but 

(average of  in test)
∼ U(l,u)ai

l,u
= {yi

xi

aixi

x > 0

≤ 0xi
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Comparing ReLU variants
 

Empirical Evaluation of Rectified Activations in Convolution Network (Xu et. al. 2015)

■ Compared on 2 data sets
• CIFAR-10: 60000 32x32 color images in 10 classes of 6000 each
• CIFAR-100: 60000 32x32 color images in 100 classes of 600 each



31

CReLUCReLUCReLUCReLUCReLUCReLUCReLUCReLUCReLU

■ Concatenated ReLU combine two ReLU for  and x −x

= { = {yi
xi

0

> 0xi

≤ 0xi
zi

0

−xi

> 0xi

≤ 0xi

Shang et. al., Understanding and Improving CNN via CReLUs, 2016
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ELUELUELUELUELUELUELUELUELU

Exponential Linear Unit
■ Exponential in negative

part
= {yi

xi

a( − 1)exi
> 0xi

≤ 0xi

Clevert et. al. Fast and Accurate Deep Network Learning by ELUs, 2015
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Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?Activations: which, when, why?
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Hidden layer activations
■ Hidden layers perform nonlinear transformations
• Without nonlinear activation functions, all layers would just amount to a single linear

transformation

■ Activation functions should be fast to compute
■ Activation functions should avoid vanishing gradients
■ This is why ReLU (esp. leaky variants) are the recommended

choice for hidden layers
• Except for specific applications.

• E.g. LSTM, Long short-term memory recurrent networks
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Output layer activations
■ Output layers are a different case.
• Choice depends on what we want the model to do

■ For regression, output should generally be linear
• We do not want bounded values and there is little need for nonlinearity in the last

layer

■ For binary classification, sigmoid is a good choice
• The output value  is useful as a representation of the probability of , like in

logistic regression

■ Sigmoid is also good for multilabel classification
• One example may fit with several labels at the same time
• Use one sigmoid output per label

[0, 1] C1
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Choosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activationsChoosing activations

Output layer activations
■ For multiclass classification, use softmax:
• Note: multiclass means each example fits only one of several classes

■ Softmax returns a vector where  and 

■ This can fit a probability of example belonging to each class 

■ Softmax is a generalization of the logistic function
• It combines the activations of several neurons

σ : → [0, 1 σ( =R
K ]K x⃗ )j

exj

∑
k=1

K

exk

∈ [0, 1]σj = 1∑
k=1

K

σk

Cj
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Loss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihoodLoss and likelihood
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Basic concepts
■ We have a set of labelled data

■ We want to approximate some function  by fitting
our parameters

■ Given some training set, what are the best parameter values?

{( , ), . . . , ( , )}x⃗ 1 y1 x⃗ n yn

F(X) : X → Y

Simple example, linear regression
y = + +. . . +θ1x1 θ2x2 θn+1

■ We have a set of  examples and want to fit the best line:(x, y)
y = x +θ1 θ2
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What to optimize?
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LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

What to optimize?
■ Assume  is a function of  plus some error:

■ We want to approximate  with some 

■ Assuming  and , then:

■ Given  and knowing that 

y x
y = F(x) + ϵ

F(x) g(x, θ)

ϵ ∼ N(0, )σ2 g(x, θ) ∼ F(x)
p(y|x) ∼ N (g(x, θ), )σ2

X = { ,xt yt}Nt=1 p(x, y) = p(y|x)p(x)

p(X,Y ) = p( , ) = p( | ) × p( )∏
t=1

n

xt yt ∏
t=1

n

yt xt ∏
t=1

n

xt
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What to optimize?
■ The probability of  given  is the likelihood  of :(X,Y ) g(x, θ) θ

l(θ|X) = p( , ) = p( | ) × p( )∏
t=1

n

x⃗ t yt ∏
t=1

n

yt xt ∏
t=1

n

xt

Likelihood
■ The examples  are randomly sampled from all possible

values
■ But  is not a random variable
■ Find the  for which the data is most probable
• In other words, find the  of maximum likelihood

( , y)x⃗ 

θ

θ

θ
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Maximum likelihood for linear regression
l(θ|X) = p( , ) = p( | ) × p( )∏

t=1

n

xt yt ∏
t=1

n

yt xt ∏
t=1

n

xt

■ First, take the logarithm (same maximum)

■ We ignore , since it's independent of 

■ Replace the expression for the normal:

L(θ|X) = log( p( | ) × p( ))∏
t=1

n

yt xt ∏
t=1

n

xt

p(X) θ

L(θ|X) ∝ log( p( | ))∏
t=1

n

yt xt

L(θ|X) ∝ log∏
t=1

n 1

σ 2π
−−√

e−[ −g( |θ) /2yt xt ]2 σ2



43

LikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihoodLikelihood

Maximum likelihood for linear regression
L(θ|X) ∝ log∏

t=1

n 1

σ 2π
−−√

e−[ −g( |θ) /2yt xt ]2 σ2

■ Simplify:

L(θ|X) ∝ log∏
t=1

n

e−[ −g( |θ)yt xt ]2

L(θ|X) ∝ − [ − g( |θ)∑
t=1

n

yt xt ]2
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Maximum likelihood for linear regression
L(θ|X) ∝ − [ − g( |θ)∑

t=1

n

yt xt ]2

■ Max(likelihood) = Min(squared error)
• The  that maximizes likelihood is the same that minimizes squared error:

• Note: the squared error is often written like this for convenience:

θ

E(θ|X) = [ − g( |θ)∑
t=1

n

yt xt ]2

E(θ|X) = [ − g( |θ)
1

2
∑
t=1

n

yt xt ]2
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■ Having the Loss function, we do gradient descent
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■ Having the Loss function, we do gradient descent
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■ Having the Loss function, we do gradient descent
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Maximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum LikelihoodMaximum Likelihood
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Finding a loss function by ML
■ In general, suppose we have a set  drawn

randomly from the population with some probability distribution.
■ We also have a family of probability distributions 

which tell us the probability of  as a function of 
■ The maximum likelihood estimator for  (i.e. the "best" ) is:

X = { , . . . , }x1 xm

(x; θ)pmodel

x θ

θ θ

= (x; θ) = ( ; θ)θML arg max
θ

pmodel arg max
θ

∏
i=1

m

pmodel x
i
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Finding a loss function by ML
■ These products may lead to underflow, so best use logarithms:

 

■ We can also rescale by  and obtain expectation of the log-
probabilities given the empirical distribution of examples in our data:

 

■ Given that our samples are drawn with , this is
maximized when  is as close as possible to 

( ; θ) = log ( ; θ)arg max
θ

∏
i=1

m

pmodel x
i arg max

θ

∑
i=1

m

pmodel x
i

m

log (x; θ)arg max
θ

Ex∼p̂data
pmodel

x ∼ p̂data
(x; θ)pmodel x ∼ p̂data
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Finding a loss function by ML
■ The Kullback–Leibler divergence between two distributions is the

expectation of the log-probability differences between them
• KL divergence between the data and the model is:  

 

■ Since  does not depend on , minimizing the KL divergence is:

■ I.e. Maximizing likelihood is minimizing the divergence between the
data distribution and what our model predicts

( || ) = [log − log ]DKL p̂data pmodel Ex∼p̂data
p̂data pmodel

p̂data θ
− log (x; θ) = log (x; θ)arg min

θ

Ex∼p̂data
pmodel arg max

θ

Ex∼p̂data
pmodel
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Finding a loss function by ML
− log (x; θ) = log (x; θ)arg min

θ

Ex∼p̂data
pmodel arg max

θ

Ex∼p̂data
pmodel

■ Minimizing KL divergence corresponds to minimizing cross-entropy
between distributions

■ In general, that is what we minimize: a cross-entropy loss function
■ Also, in supervised learning the models usually give conditional

probabilities of the target value given the features

= P(Y |X; θ) = log P( | ; θ)θML arg max
θ

arg max
θ

∑
i=1

m

yi x⃗ i
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Finding a loss function by ML
= P(Y |X; θ) = log P( | ; θ)θML arg max

θ

arg max
θ

∑
i=1

m

yi x⃗ i

■ For linear regression, we assumed 
■ In this case, our loss function (cross-entropy) is the squared error

p(y|x) ∼ N (g(x, θ), )σ2

E(θ|X) = [ − g( |θ)∑
t=1

n

yt xt ]2
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Finding a loss function by ML
■ For a sigmoid predicting probability in binary classification
• Given  and 

■ Minimizng the cross-entropy between model and data distributions
in this case corresponds to the logistic loss:

g( , θ) = P( = 1| )x⃗  tn x⃗  ∈ {0, 1}tn

L(θ|X) = [ (1 − ] l(θ|X) = [ ln + (1 − ) ln(1 − )]∏
n=1

N

gtnn gn)1−tn ∑
n=1

N

tn gn tn gn

E( ) = − [ ln + (1 − ) ln(1 − )]w̃
1

N
∑
n=1

N

tn gn tn gn

=gn
1

1 + e−( + )w⃗ T xn
→

w0
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Finding a loss function by ML
= P(Y |X; θ) = log P( | ; θ)θML arg max

θ

arg max
θ

∑
i=1

m

yi x⃗ i

■ We want to maximize likelihood
■ This means minimizing cross entropy between model and data
■ Loss function depends on the model output:
• Regression: linear output, mean squared error

• Binary classification: class probability, sigmoid output, logistic loss

• (Also for multilabel classification, with probability for each label)

• N-ary classification, use softmax and the softmax cross entropy:

− log∑
c=1

C

yc
eac

∑C
k=1 e

ak
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ Wide vs deep
■ The vanishing gradients problem
■ And how ReLUs (and similar) solve it
■ Activations for hidden and output layers
■ Loss functions
Further reading:
■ Goodfellow et.al, Deep learning, Chapters 5 and 6
■ Tensorflow, activation functions:
• https://www.tensorflow.org/api_guides/python/nn#Activation_Functions




