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Summary
■ Algebra (revisions)
■ The computational graph and AutoDiff
■ Training with Stochastic Gradient Descent
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AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Basic concepts:
■ Scalar : A number
■ Vector : An ordered array of numbers
■ Matrix : A 2D array of numbers
■ Tensor : A relation between sets of algebraic objects
• (numbers, vectors, etc)
• For our purposes: an N-dimensional array of numbers

■ We will be using tensors in our models (hence Tensorflow)
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Tensor operations
■ Adition and subtraction:
• In algebra, we can add or subtract tensors with the same dimensions
• The operation is done element by element
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Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 
 

 columns same as  rows
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■ Neuron: linear combination of inputs with non-linear activation
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Tensor operations
■ Tensorflow also allows broadcasting like numpy
• Element-wise operations aligned by the last dimensions
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Tensor operations
■ Tensorflow also allows broadcasting like numpy
• Element-wise operations aligned by the last dimensions

■ tf.matmul() also works on 3D tensors, in batch
• Can be used to compute the product of a batch of 2D matrices
• Example (from Tensorflow matmul documentation):

In : a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3]) 
In : b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2]) 
In : c = tf.matmul(a, b) # or a * b 
Out: <tf.Tensor: id=676487, shape=(2, 2, 2), dtype=int32, numpy= 
array([[[ 94, 100], 
        [229, 244]], 
 
       [[508, 532], 
        [697, 730]]], dtype=int32)>
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Why is this important?
■ Our models will be based on this type of operations
■ Example batches will be tensors (2D or more)
■ Network layers can be matrices of weights (several neurons)
■ Loss functions will operate and aggregate on activations and data
In practice mostly hidden
■ When we use the keras API we don't need to worry about this
■ But it's important to understand how things work
■ And necessary to work with basic Tensorflow operations
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■ Classify these data with two weights, sigmoid activation
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Computing activation
■ Input is a matrix with data, two columns for the features, N rows

■ To compute  use matrix multiplication∑
j=1

2

wjxj
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Basic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic Example

Computing activation
■ Input is a matrix with data, two columns for the features, N rows

■ To compute  use matrix multiplication

■ For each example with 2 features we get one weighted sum
■ Then apply sigmoid function, one activation value per example
■ Thus, we get activations for a batch of examples

∑
j=1

2

wjxj
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Backpropagation
■ For weight  on hidden layer , propagate error backwards
• Gradient of error w.r.t. weight of output neuron:

■ Chain derivatives through the network:

■ Backpropagation is a special case of 
Reverse mode Automatic Differentiation
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Computing derivatives
■ Symbolic differentiation:
• Compute the expression for the derivatives given the function.
• Difficult, especially with flow control (if, for)

■ Numerical differentiation:
• Use finite steps to compute deltas and approximate derivatives.
• Computationally inefficient and prone to convergence problems.

■ Automatic differentiation:
• Apply the chain rule to basic operations that compose complex functions

• product, sum, sine, cosine, etc

• Applicable in general provided we know the derivative of each basic operation
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Automatic differentiation in tensorflow
■ Reverse-mode automatic differentiation
■ Forward pass keeping intermediate results of operations
■ Backwards pass using the derivatives of operations in the

computation graph
• Graph with operations as nodes and tensors as edges

Tutorial, simpler example
■ Forward-mode automatic differentiation
■ Uses dual numbers to keep track of function and derivative values
■ But the idea is the same:
• Use the analytical derivatives of elementary operations to compute the derivative of

the composition
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■ Automatic differentiation example:

(cosx) = − sinxargmin
x

d cosx

dx
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■ Automatic differentiation example:

(cosx) = − sinxargmin
x

d cosx

dx
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■ Automatic differentiation example:
( cosx + sinx)argmin

x
x2

■ Tensorflow operators include gradient information
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Stochastic Gradient Descent
■ Going back to our simple model:
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Stochastic Gradient Descent
■ Since we can compute the derivatives, we can "slide" down the loss

function

 

0:00 / 0:49 0:00 0:45
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Stochastic Gradient Descent
■ Gradient Descent  because of sliding down the gradient
■ Stochastic  because we are presenting a random minibatch of

examples at a time

 

0:00 / 0:49 0:00 0:45
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Stochastic Gradient Descent
■ Gradient Descent  because of sliding down the gradient
■ Stochastic  because we are presenting a random minibatch of

examples at a time
Algorithm:
■ Estimate the gradient of  given  examples:

■ Update  with a learning rate 

L (f (x, θ) , y) m

= ( L(f ( , θ) , ))ĝ t ∇θ

1

m
∑
i=1

m

x(i) y(i)

θ ϵ
= − ϵθt+1 θt ĝ t
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SGD can be improved with momentum
■ If we are rolling down the

surface we could pick up
speed

0:00 / 0:49

■ Use gradients as an "acceleration", with

 

= α − ( L(f ( , θ) , ))vt+1 vt ∇θ

1

m
∑
i=1

m

x(i) y(i)

= + ϵθt+1 θt vt+1
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SGD can be improved with momentum
■ SGD ■ SGD + 0.9 momentum

 

0:00 / 0:49 0:00 / 0:49
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Nesterov momentum
■ Compute gradients where we will be after the momentum step:

 

■ This works great for optimizing convex functions (Nesterov, 1983)
■ But with stochastic gradient descent it's not as effective
• (due to random sampling)

= α − ( L(f ( , θ + α ) , ))vt+1 vt ∇θ

1

m
∑
i=1

m

x(i) vt y(i)

= + ϵθt+1 θt vt+1

"Unfortunately, in the stochastic gradient case, Nesterov momentum does not improve
the rate of convergence."

Goodfellow et al. 2016
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Nesterov momentum
■ SGD + 0.9 momentum ■ SGD + 0.9 Nesterov m.

 

0:00 / 0:49 0:00 / 0:49
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Minibatch size
■ Averaging over a set of examples gives a (slightly) better estimate

of the gradient, improving convergence
• (Note that the true gradient is for the mean loss over all points)

■ The main advantage of batches is in using multicore hardware
(GPU, for example)

• This is also the reason for power of 2 minibatch sizes (8, 16, 32, ...)

■ Smaller minibatches improve generalization because of the random
error

• The best for this is a minibatch of 1, but this takes much longer to train

■ In practice, minibatch size will probably be limited by RAM.
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■ Minibatch of 10 ■ Minibatch of 1

 

0:00 / 0:49 0:00 / 0:49

■ Note: the actual time is much longer for minibatch of 1
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Improving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the model
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Our simple (pseudo) neuron lacks a bias

y = + bias∑
j=1

2

wjxj
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Better ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter Models

Our simple (pseudo) neuron lacks a bias
■ This means that it is stuck a (0,0)

■ No bias input ■ With bias input

 

0:00 / 0:45 0:00 / 0:45
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And one neuron cannot properly separate these set
■ We need a better model:
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Better ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter Models

With two hidden layers it works better

0:00 / 0:20
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Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details
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Initialization
■ Weights: random values close to zero (Gaussian or uniform p.d)
• Need to break symmetry between neurons (but bias can start the same)

• Some activations (e.g. sigmoid) saturate rapidly away from zero

■ (There are other, more sophisticated, methods)
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Convergence
■ Since weight initialization and order of examples is random, expect

different runs to converge at different epochs
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Convergence
■ Standardize the inputs: 

• It is best to avoid different features weighing differentely

• It is also best to avoid very large or tiny values due to numerical problems

• Shifting the mean of the inputs to 0 and scaling the different dimensions also
improves the loss function "landscape"

=xnew
x−μ(X)

σ(X)
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Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details

Training schedules
■ Epoch: one full pass through the training data
■ Mini-batch: one batch with part of the training data
Generally needs many epochs to train
■ (the greater the data set, the fewer the epochs, other things being

equal)
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Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details

Shuffle the data in each epoch
■ Otherwise some patterns will repeat

0:00 / 0:45
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Take care with the learning rate
■ Too small and training takes too long
■ But if it is too large convergence is poor at the end

0:00 / 0:45
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ Matrix algebra
■ Automatic Differentiation
■ Layers and nonlinear transformations
■ Training multilayer feedforward neural networks
• MLP is a special case, fully connected

Further reading:
■ Goodfellow, chapters 2 (algebra), 4 (calculus) and 8 (optimization)




