Aprendizagem Profunda

3 - Training Neural Networks

Ludwig Krippahl

Training Neural Networks

Summary

- Algebra (revisions)
- The computational graph and AutoDiff
- Training with Stochastic Gradient Descent

Training Neural Networks

Algebra

Basic concepts:

- Scalar: A number
- Vector : An ordered array of numbers
- Matrix : A 2D array of numbers
- Tensor : A relation between sets of algebraic objects
- (numbers, vectors, etc)
- For our purposes: an N-dimensional array of numbers
- We will be using tensors in our models (hence Tensorflow)

Tensor operations

- Adition and subtraction:
- In algebra, we can add or subtract tensors with the same dimensions
- The operation is done element by element

Tensor operations

- Matrix multiplication (2D)
- Follows algebra rules:

 $\mathbf{C} = \mathbf{A}\mathbf{B}$

Tensor operations

- Matrix multiplication (2D)
- Follows algebra rules:

 $\mathbf{C} = \mathbf{A}\mathbf{B}$

Tensor operations

- Matrix multiplication (2D)
- Follows algebra rules:

 $\mathbf{C} = \mathbf{A}\mathbf{B}$

Tensor operations

- Matrix multiplication (2D)
- Follows algebra rules:

 $\mathbf{C}=\mathbf{A}\mathbf{B}$

Tensor operations

- Matrix multiplication (2D)
- Follows algebra rules:

 $\mathbf{C} = \mathbf{A}\mathbf{B}$

Tensor operations

- Matrix multiplication (2D)
- Follows algebra rules:

 $\mathbf{C}=\mathbf{A}\mathbf{B}$

Tensor operations

- Matrix multiplication (2D)
- Follows algebra rules:

 $\mathbf{C} = \mathbf{A}\mathbf{B}$

Tensor operations

- Matrix multiplication (2D)
- Follows algebra rules:

 $\mathbf{C}=\mathbf{A}\mathbf{B}$

Tensor operations

- Matrix multiplication (2D)
- Follows algebra rules:

 $\mathbf{C}=\mathbf{A}\mathbf{B}$

Neuron: linear combination of inputs with non-linear activation

Tensor operations

Tensorflow also allows broadcasting like numpy

• Element-wise operations aligned by the last dimensions

$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{cccc} b_{11} & b_{12} & \dots & b_{1q} \end{array}\right)$	$\begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots + \dots & a_{1q} + b_{1q} \end{pmatrix}$
a_{21} a_{22} a_{2q}		$a_{21} + b_{11}$ $a_{22} + b_{12}$ + $a_{2q} + b_{1q}$
· · · ·		$\vdots + b_{11}$ $\vdots + b_{12}$ $\cdots + \dots$ $\vdots + b_{1q}$
$\begin{bmatrix} a_{p1} & a_{p2} & \dots & a_{pq} \end{bmatrix}$		$a_{p1} + b_{11}$ $a_{p2} + b_{12}$ + $a_{pq} + b_{1q}$

Tensor operations

- Tensorflow also allows broadcasting like numpy
- Element-wise operations aligned by the last dimensions
- tf.matmul() also works on 3D tensors, in batch
- Can be used to compute the product of a batch of 2D matrices
- Example (from Tensorflow matmul documentation):

```
In : a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
In : b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
In : c = tf.matmul(a, b) # or a * b
Out: <tf.Tensor: id=676487, shape=(2, 2, 2), dtype=int32, numpy=
array([[ 94, 100],
        [229, 244]],
        [[508, 532],
        [697, 730]]], dtype=int32)>
```


Why is this important?

- Our models will be based on this type of operations
- Example batches will be tensors (2D or more)
- Network layers can be matrices of weights (several neurons)
- Loss functions will operate and aggregate on activations and data

In practice mostly hidden

- When we use the keras API we don't need to worry about this
- But it's important to understand how things work
- And necessary to work with basic Tensorflow operations

Training Neural Networks

Basic Example

Basic Example

Classify these data with two weights, sigmoid activation

Computing activation

Input is a matrix with data, two columns for the features, N rows

$\begin{pmatrix} x_{11} & x_{12} \end{pmatrix}$	$\begin{pmatrix} w_1 \end{pmatrix}$	$\begin{pmatrix} x_{11} \end{pmatrix}$	*	w_1	+	<i>x</i> ₁₂	*	w_2
x_{21} x_{22}	$\left(\begin{array}{c} w_2 \end{array}\right)$	<i>x</i> ₂₁	*	w_1	+	<i>x</i> ₂₂	*	w_2
x_{31} x_{32}		<i>x</i> ₃₁	*	w_1	+	<i>x</i> ₃₂	*	w_2
: :		:	*	w_1	+	:	*	w_2
x_{n1} x_{n2}		x_{n1}	*	w_1	+	<i>x</i> _{<i>n</i>2}	*	w_2

Computing activation

Input is a matrix with data, two columns for the features, N rows

- To compute $\sum\limits_{j=1}^2 w_j x_j$ use matrix multiplication
- For each example with 2 features we get one weighted sum
- Then apply sigmoid function, one activation value per example
- Thus, we get activations for a batch of examples

Training Neural Networks

Training (Backpropagation)

Backpropagation

For weight m on hidden layer i, propagate error backwards

• Gradient of error w.r.t. weight of output neuron:

$$rac{\delta E^{j}_{kn}}{\delta s^{j}_{kn}} rac{\delta s^{j}_{kn}}{\delta net^{j}_{kn}} rac{\delta net^{j}_{kn}}{\delta w_{mkn}}$$

Chain derivatives through the network:

$$\Delta w^j_{min} ~=~ -\eta \left(\sum_p rac{\delta E^j_{kp}}{\delta s^j_{kp}} rac{\delta s^j_{kp}}{\delta net^j_{kp}} rac{\delta net^j_{kp}}{\delta s^j_{in}}
ight) rac{\delta s^j_{in}}{\delta net^j_{in}} rac{\delta net^j_{in}}{\delta w_{min}}$$

$$= \eta(\sum\limits_p \delta_{kp} w_{mkp}) s^j_{in} (1-s^j_{in}) x^j_i = \eta \delta_{in} x^j_i$$

Backpropagation is a special case of Reverse mode Automatic Differentiation

Computing derivatives

- Symbolic differentiation:
- Compute the expression for the derivatives given the function.
- Difficult, especially with flow control (if, for)

$$\Delta w^j_i = -\eta rac{\delta E^j}{\delta w_i} = \eta (t^j - s^j) s^j (1-s^j) x^j_i$$

- Numerical differentiation:
- Use finite steps to compute deltas and approximate derivatives.
- Computationally inefficient and prone to convergence problems.
- Automatic differentiation:
- Apply the chain rule to basic operations that compose complex functions
- product, sum, sine, cosine, etc
- Applicable in general provided we know the derivative of each basic operation

Automatic differentiation in tensorflow

- Reverse-mode automatic differentiation
- Forward pass keeping intermediate results of operations
- Backwards pass using the derivatives of operations in the computation graph
- Graph with operations as nodes and tensors as edges

Tutorial, simpler example

- Forward-mode automatic differentiation
- Uses dual numbers to keep track of function and derivative values
- But the idea is the same:
- Use the analytical derivatives of elementary operations to compute the derivative of the composition

Automatic differentiation example:

Automatic differentiation example:

Automatic differentiation example:

Tensorflow operators include gradient information

Stochastic Gradient Descent

Going back to our simple model:

Stochastic Gradient Descent

Since we can compute the derivatives, we can "slide" down the loss function

Stochastic Gradient Descent

- Gradient Descent because of sliding down the gradient
- Stochastic because we are presenting a random minibatch of examples at a time

Stochastic Gradient Descent

- Gradient Descent because of sliding down the gradient
- Stochastic because we are presenting a random minibatch of examples at a time

Algorithm:

Estimate the gradient of $L\left(f\left(x,\theta\right),y
ight)$ given m examples:

$${\hat g}_t =
abla_ heta \left(rac{1}{m} \sum_{i=1}^m L\left(f\left(x^{(i)}, heta
ight), y^{(i)}
ight)
ight)$$

• Update θ with a learning rate ϵ

$$heta_{t+1} = heta_t - \epsilon {\hat g}_t$$

SGD can be improved with momentum

If we are rolling down the surface we could pick up speed

Use gradients as an "acceleration", with

$$v_{t+1} = lpha v_t -
abla_ heta \left(rac{1}{m} \sum_{i=1}^m L\left(f\left(x^{(i)}, heta
ight), y^{(i)}
ight)
ight)$$

$$heta_{t+1} = heta_t + \epsilon v_{t+1}$$

SGD can be improved with momentum

SGD

■ SGD + 0.9 momentum

Nesterov momentum

Compute gradients where we will be after the momentum step:

$$v_{t+1} = lpha v_t -
abla_ heta \left(rac{1}{m} \sum_{i=1}^m L\left(f\left(x^{(i)}, heta + lpha v_t
ight), y^{(i)}
ight)
ight)$$

$$heta_{t+1} = heta_t + \epsilon v_{t+1}$$

This works great for optimizing convex functions (Nesterov, 1983)

- But with stochastic gradient descent it's not as effective
- (due to random sampling)

"Unfortunately, in the stochastic gradient case, Nesterov momentum does not improve the rate of convergence."

Goodfellow et al. 2016

Nesterov momentum

SGD + 0.9 momentum

■ SGD + 0.9 Nesterov m.

Minibatch size

- Averaging over a set of examples gives a (slightly) better estimate of the gradient, improving convergence
- (Note that the true gradient is for the mean loss over all points)
- The main advantage of batches is in using multicore hardware (GPU, for example)
- This is also the reason for power of 2 minibatch sizes (8, 16, 32, ...)
- Smaller minibatches improve generalization because of the random error
- The best for this is a minibatch of 1, but this takes much longer to train
- In practice, minibatch size will probably be limited by RAM.

Note: the actual time is much longer for minibatch of 1

Training Neural Networks

Improving the model

Better Models

Our simple (pseudo) neuron lacks a bias

Better Models

Our simple (pseudo) neuron lacks a bias

• This means that it is stuck a (0,0)

No bias input

And one neuron cannot properly separate these set

We need a better model:

Better Models

With two hidden layers it works better

Training Neural Networks

Other Details

Initialization

- Weights: random values close to zero (Gaussian or uniform p.d)
- Need to break symmetry between neurons (but bias can start the same)
- Some activations (e.g. sigmoid) saturate rapidly away from zero

(There are other, more sophisticated, methods)

Convergence

Since weight initialization and order of examples is random, expect different runs to converge at different epochs

Convergence

- Standardize the inputs: $x_{new} = rac{x-\mu(X)}{\sigma(X)}$
- It is best to avoid different features weighing differentely
- It is also best to avoid very large or tiny values due to numerical problems
- Shifting the mean of the inputs to 0 and scaling the different dimensions also improves the loss function "landscape"

Training schedules

- Epoch: one full pass through the training data
- Mini-batch: one batch with part of the training data

Generally needs many epochs to train

(the greater the data set, the fewer the epochs, other things being equal)

Shuffle the data in each epoch

Otherwise some patterns will repeat

Take care with the learning rate

- Too small and training takes too long
- But if it is too large convergence is poor at the end

Training Neural Networks

Summary

Training Neural Networks

Summary

- Matrix algebra
- Automatic Differentiation
- Layers and nonlinear transformations
- Training multilayer feedforward neural networks
- MLP is a special case, fully connected

Further reading:

Goodfellow, chapters 2 (algebra), 4 (calculus) and 8 (optimization)

