Aprendizagem Profunda

1 - Introduction

Ludwig Krippahl

Introduction

Summary

- Course structure and assessment
- Al and the origin of Artificial Neural Networks
- Machine Learning
- The power of nonlinear transformations
- What deep learning offers

Introduction

Course Overview

Objectives

- Foundations of deep neural networks
- Activations, optimizers, training, implementation
- Different architectures and their applications
- Dense, convolution, recurrent, generative models
- Training and regularization of deep networks
- Supervised, unsupervised, reinforcement
 - Practical experience
- Tensorflow and Keras

Note: class plan is provisional

Instructors and assessment

- Ludwig Krippahl (ludi@fct.unl.pt)
- Lectures, P1
- Cláudia Soares (cam.soares@fct.unl.pt)
- P2
- Assessment:
- 2 written tests: theoretical component, 50%
- 2 assignments: lab component, 50%
- Must have at least 9.5 on each component to pass.
- Tutorials start on March 24

Main Bibliography

- Course site: http://ap.ssdi.di.fct.unl.pt
- Goodfellow et. al., Deep Learning, MIT Press, 2016
- Skansi, Sandro: Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence, Springer, 2018
- Géron, Aurélien: Hands-on machine learning with Scikit-Learn and TensorFlow, O'Reilly Media, Inc, 2017
- Singh, Pramod and Manure, Avinash: Learn TensorFlow 2.0,
 Springer 2020

Software

- Python 3.x + Tensorflow 2; Google Colaboratory
- Easiest installation:
- Anaconda: www.anaconda.com

Introduction

Artificial Intelligence

The beginning of Al

- 1956: Dartmouth Summer Research Project on Artificial Intelligence
- John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon
- "proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it"
- Initially, most successful approach of AI was to process rules
- Expert systems, logic programming, ...
- Rule-based expert systems
- Rules provided by humans
- Computer does inference to reach conclusions

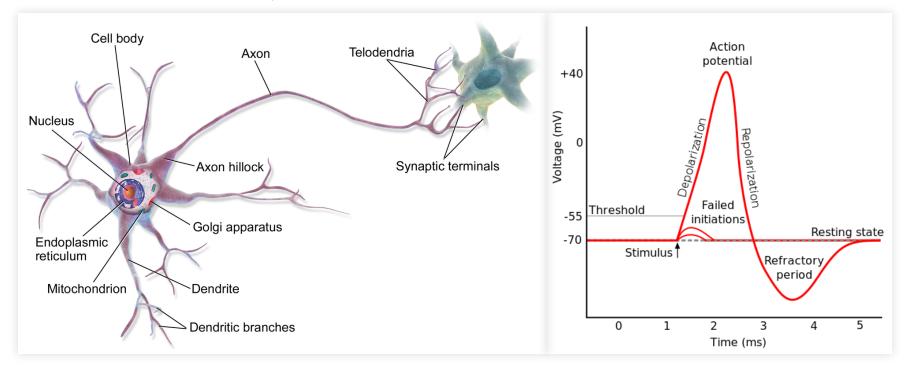
The beginning of Al

- Rule-based expert systems
- Rules provided by humans
- Computer does inference to reach conclusions
- E.g. MYCIN, 1975 (Shortliffe, A model of inexact reasoning in medicine)

```
If:
(1) the stain of the organism is gram positive, and
(2) the morphology of the organism is coccus, and
(3) the growth conformation of the organism is chains
Then:
there is suggestive evidence (0.7) that the identity of
the organism is streptococcus
```


The beginning of Neural Networks

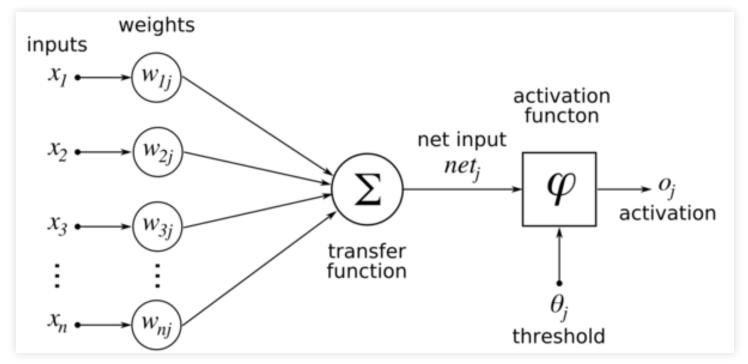
- The modelling of neurons predates modern AI
- 1943: McCulloch & Pitts, model of neuron



BruceBlaus, Chris 73: CC-BY, source Wikipedia

The beginning of Neural Networks

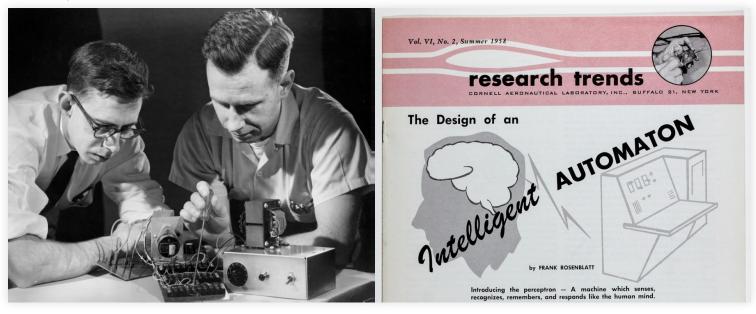
- The modelling of neurons predates modern AI
- 1943: McCulloch & Pitts, model of neuron



Chrislb, CC-BY, source Wikipedia

The perceptron, the first learning machine

■ 1958: Rosenblatt, perceptron could learn to distinguish examples «the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.» New York Times, 1958



Wightman and Rosenblatt. Source: Cornell Chronicle

Perceptron

Linear combination of the inputs and a threshold function:

$$y=\sum_{j=1}^d w_j x_j+w_0 \quad s(y)=egin{cases} 1, & y>0 \ 0, & y\leq 0 \end{cases}$$

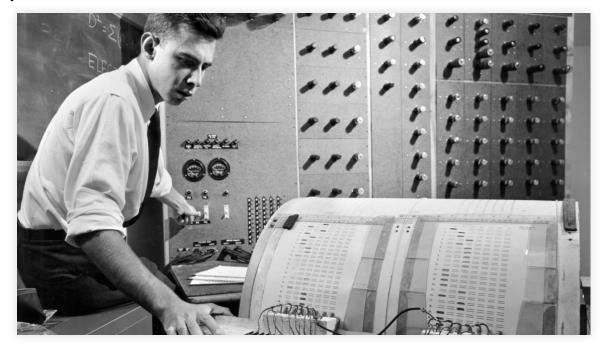
Training rule for the perceptron:

$$w_i = w_i + \Delta w_i \qquad \Delta w_i = \eta(t-o)x_i$$

- Adjust weights slightly to correct misclassified examples.
- Greater adjustment to those with larger inputs.

Perceptron

- First implemented on an IBM 704, 1958
- Learned to distinguish between cards punched on the right and punched on the left after 50 examples



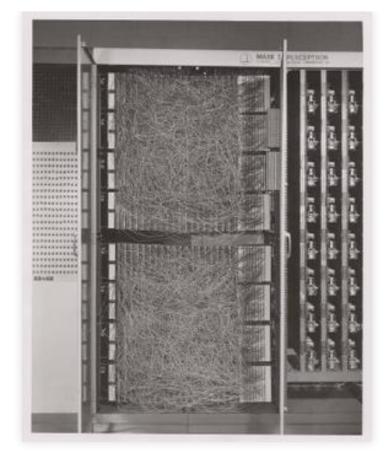
Rosenblatt and IBM 704. Source: Cornell Chronicle

Perceptron

But then was actually built as a machine

Camera with 20x20 pixels, for image recognition

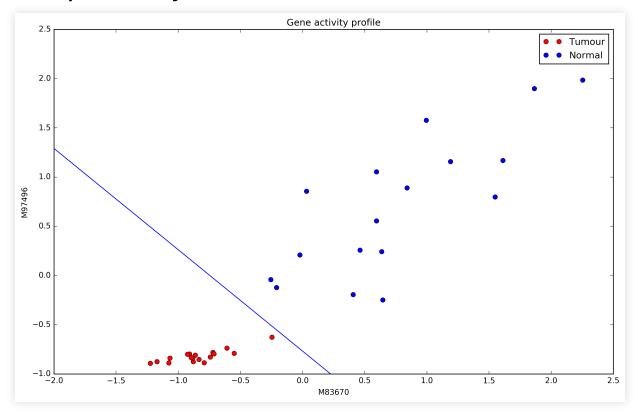
Electric motors to adjust potentiometers for the weights of the inputs



Mark I Perceptron (Wikipedia)

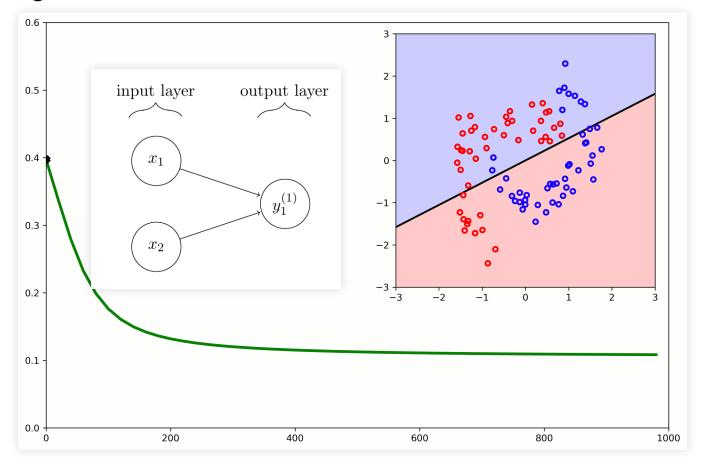
Perceptron

- Seemed a promising start
- But the perceptron is just a linear model



Perceptron

■ It's a single neuron, so a linear classifier:



Perceptron is similar to Logistic Regression

Let $g(\vec{x}, \widetilde{w})$ be a function of the probability of \vec{x} in class 1

$$g(ec{x}, \widetilde{w}) = P(C_1 | ec{x})$$

We want to separate classes on:

$$P(C_1|ec{x}) = P(C_0|ec{x}) = 1 - P(C_1|ec{x})$$

This is solved by minimizing using this function:

$$g(ec{x}, \widetilde{w}) = rac{1}{1 + e^{-(ec{w}^T ec{x} + w_0)}}$$

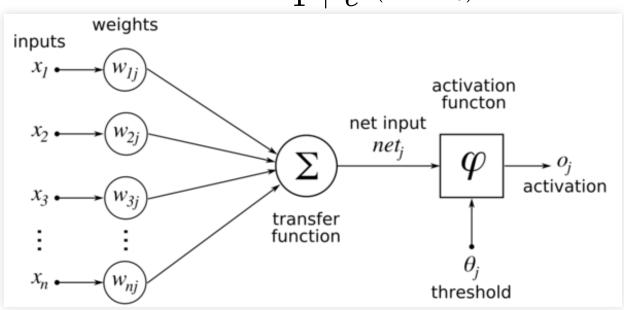
And minimizing error measured as the logistic loss:

$$E(\widetilde{w}) = -rac{1}{N} \sum_{n=1}^{N} \left[t_n \ln g_n + (1-t_n) \ln (1-g_n)
ight]$$

Logistic Regression

We can represent logistic regression in this way:

$$g(ec{x}, \widetilde{w}) = rac{1}{1 + e^{-(ec{w}^T ec{x} + w_0)}}$$



This is an artificial neuron with sigmoid activation

Neural Networks

- A very promising early start with neuron and perceptron:
- 1943: McCulloch & Pitts, model of neuron
- 1958: Rosenblatt, perceptron and learning algorithm
- But these turned out to be equivalent to generalized linear models
- And in 1969 Perceptrons (Minsky, Papert): need fully connected networks

1960-1980s: "Al Winter", in particular ANN

- Logic systems ruled AI in this period (e.g. Prolog)
- 1970s: The equivalent of backpropagation appeared in other contexts
- 1986: Rumelhart, Hinton, Williams, backpropagation can be used for multi-layer networks

Introduction

Machine Learning

What is machine learning?

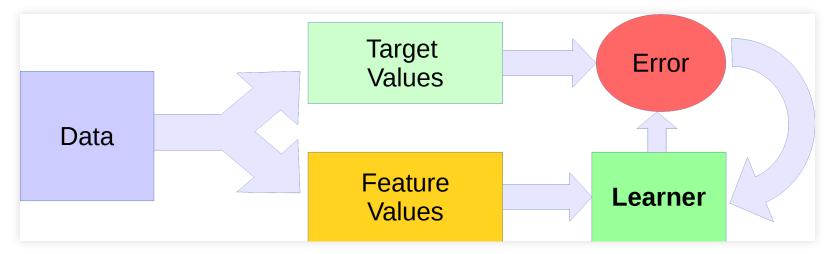
- "Field of study that gives computers the ability to learn without being explicitly programmed" (Samuel, 1959)
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E" (Mitchell, 1997)

Machine Learning problem

- A task that the system must perform.
- A measure of its performance
- The data used to improve its performance
- Examples:
- Spam filtering
- Image classification
- Medical diagnosis
- Speech recognition
- Autonomous driving
- Clustering, feature representation, ...

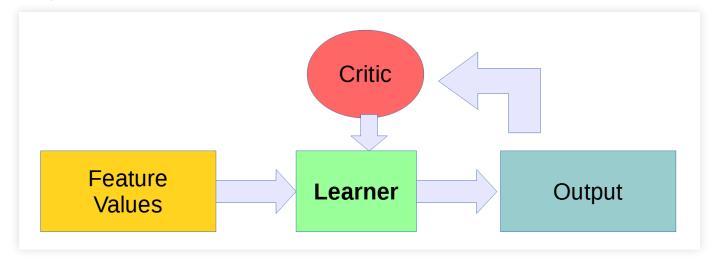
- Unsupervised learning
- No need for labels in data; model structure
- Clustering is a common example, but we will see applications in deep learning

- Unsupervised learning
- Supervised learning
- Uses labelled data and aims at predicting classes or values
- Continuous values: Regression
- Discrete classes: Classification



- Unsupervised learning
- Supervised learning
- Semi-supervised learning
- Mixes labeled and unlabeled data
- Can be useful to increase size of data set

- Unsupervised learning
- Supervised learning
- Semi-supervised learning
- Reinforcement learning
- Optimize output without immediate feedback for each instance



Can solve different kinds of problems

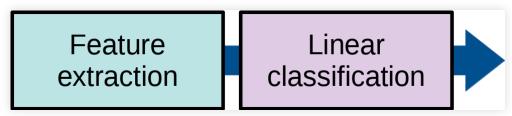
- Extracting new features and finding relations
- Unsupervised learning
- Approximating a target
- Supervised learning
- Optimizing policy
- Reinforcement learning

Traditional approach:

Use very different models, optimizations, etc.

The rise of machine learning

- Statistical methods for regression and classification predate AI
- Least squares linear regression used since 1800s
- Legendre (1805) and Gauss (1809), for predicting planetary movement
- Probit regression (Bliss, 1934; Fisher 1935)
- Like logistic regression but uses inverse of cumulative normal
 - Logistic regression (Wilson & Worcester, 1943; Berkson, 1944)



The rise of machine learning

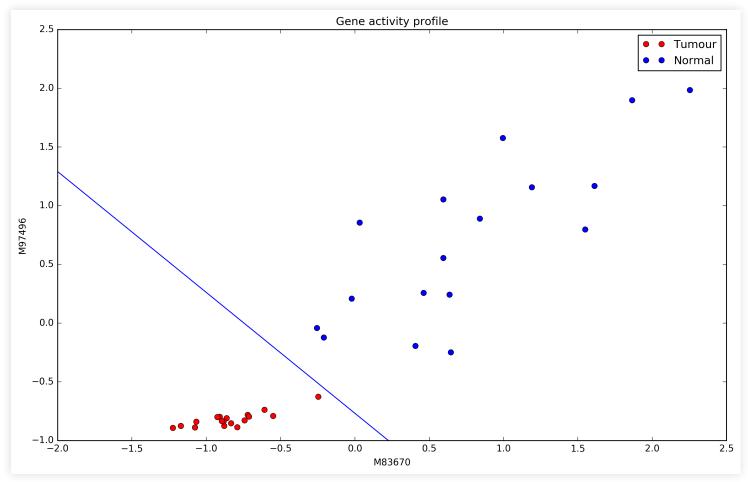
- In the 1990s, AI shifted from knowledge-driven to data-driven with new ML algorithms
- E.g. 1992 Vapnik et. al. publish the kernel trick for SVM

- 1995: SVM (Cortes & Vapnik), Random Forest (Ho)
- 1997: Multi-layered and convolution networks for check processing USA (leCun)
- 1998: MNIST database (LeCun). Benchmarks, libraries and competitions

Introduction

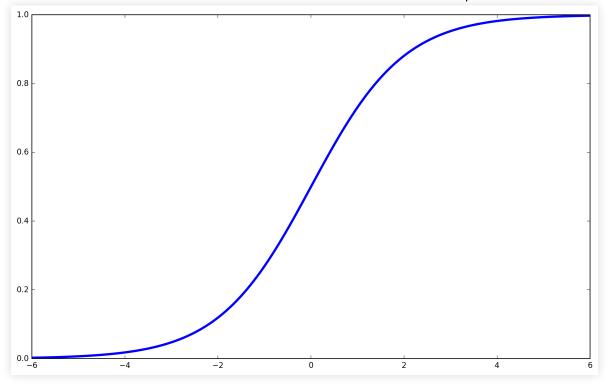
The power of nonlinearity

Linear classification



Linear classification, e.g. Logistic Regression

$$g(ec{x}, \widetilde{w}) = P(C_1 | ec{x}) \qquad g(ec{x}, \widetilde{w}) = rac{1}{1 + e^{-(ec{w}^T ec{x} + w_0)}}$$



Linear classification, e.g. Logistic Regression

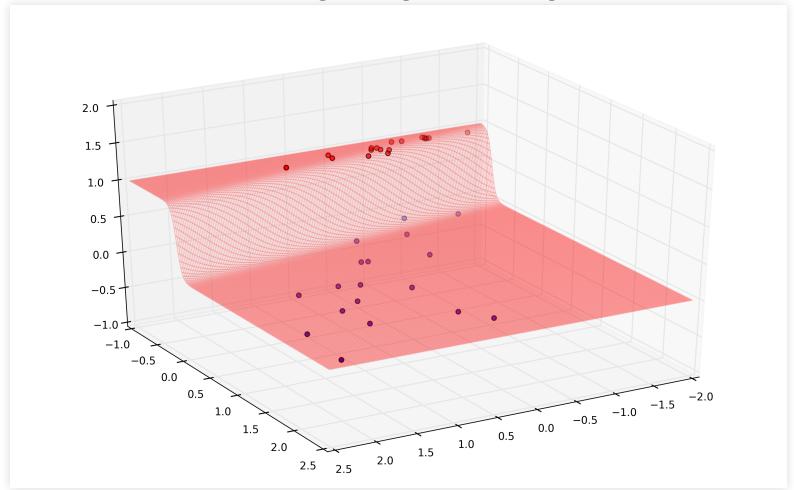
Feature extraction Linear classification $g(ec{x}, \widetilde{w}) = P(C_1 | ec{x})$ $g(ec{x}, \widetilde{w}) = rac{1}{1 + e^{-(ec{w}^T ec{x} + w_0)}}$

Find \widetilde{w} by minimizing logistic loss:

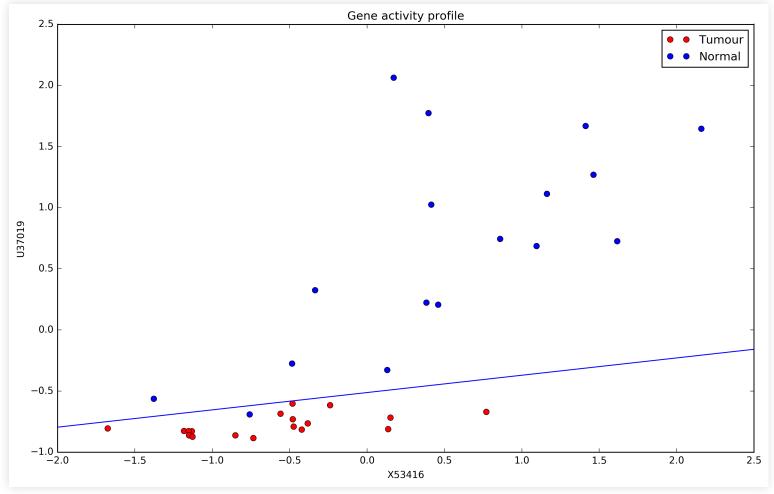
$$E(\widetilde{w}) = -rac{1}{N}\sum_{n=1}^N \left[t_n \ln g_n + (1-t_n) \ln (1-g_n)
ight]$$

- This works fine for linearly separable sets
- but not so well otherwise

Linear classification, e.g. Logistic Regression

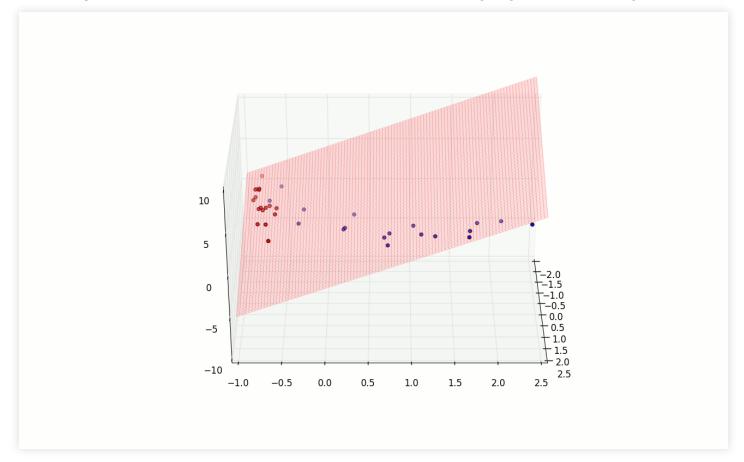


Linear classification, e.g. Logistic Regression



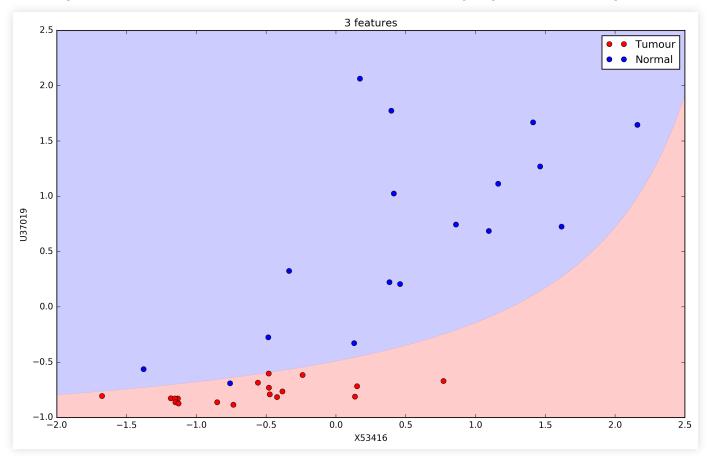
Nonlinear expansion of attributes

lacktriangle We can expand the attributes non-linearly $(x_1 imes x_2)$



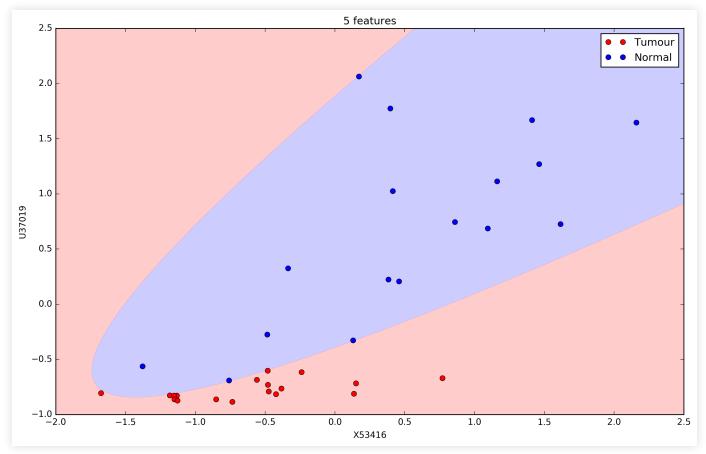
Nonlinear expansion of attributes

lacktriangle We can expand the attributes non-linearly $(x_1 imes x_2)$



Nonlinear expansion of attributes

■ We can expand further $(x_1, x_2, x_1x_2, x_1^2, x_2^2)$



Nonlinear expansion of attributes

lacksquare We can expand further $(x_1,x_2,x_1x_2,x_1^2,x_2^2,x_1^3,x_2^3)$



Nonlinear expansion of attributes

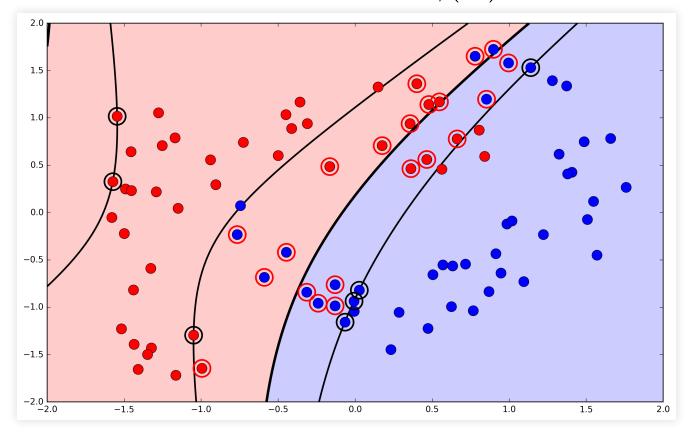
- With logistic regression this is not practical
- We have to do it by hand
- Support Vector Machines do this automatically

$$rg \max_{ec{lpha}} \sum_{n=1}^N lpha_n - rac{1}{2} \sum_{n=1}^N \sum_{m=1}^N lpha_n lpha_m y_n y_m K(ec{x}_n, ec{x}_m)$$

■ Where $K(\vec{x}_n, \vec{x}_m)$ is the kernel function for some non-linear expansion ϕ of our original data

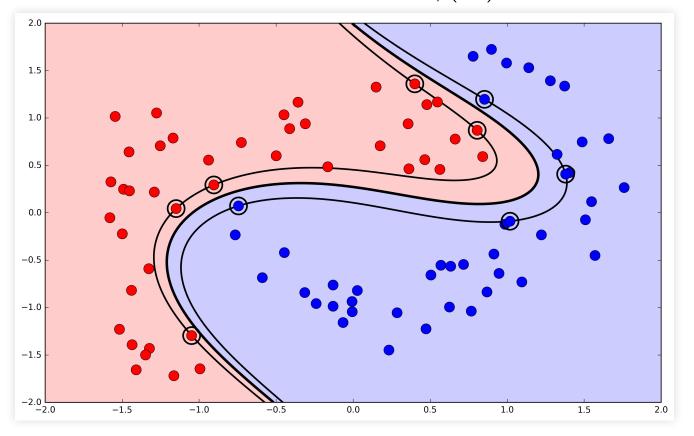
Nonlinear expansion of attributes

lacksquare Example, using a polynomial kernel: $K_{\phi(ec{x}^n)} = (ec{x}^T ec{z} + 1)^2$



Nonlinear expansion of attributes

lacksquare Example, using a polynomial kernel: $K_{\phi(ec{x}^n)} = (ec{x}^T ec{z} + 1)^3$



Deep Learning

No free lunch

No free lunch

No-free-lunch theorems (Wolpert and MacReady, 1997)

"[I]f an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems."

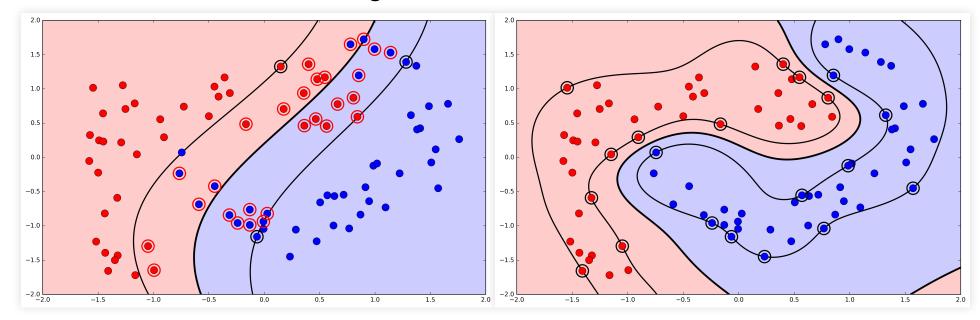
Important for two reasons:

- No single model can be best at all tasks:
- We need to create different models optimized for different tasks
 - Overfitting
- The hypothesis chosen may be so adjusted to the training data it does not generalize

Overfitting

Nonlinearity is important for capturing patterns in data

But can lead to loss of generalization



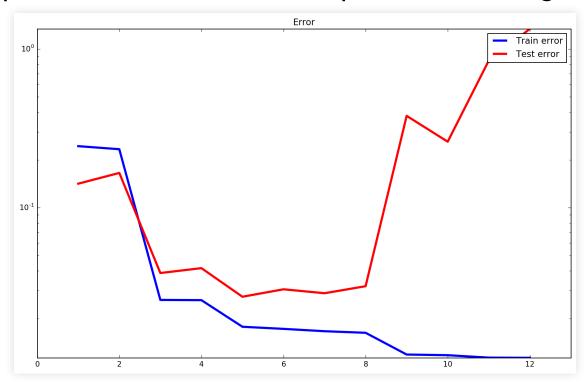
"With great power comes great overfitting"

Benjamin Parker (attributed)

Overfitting

Occurs when model adjusts to noise

- Some details are informative about patterns in the population
- Some are particular to the data sample and do not generalize



Overfitting

Occurs when model adjusts to noise

- Measuring overfitting:
- Evaluate outside the training set
- Validation set: used for selecting best model, hyperparameters, ...
- Test set: used to obtain unbiased estimate of the true error
 - Preventing overfitting:
- Adjust training (regularization)
- Select adequate model
- Use more data (allows more powerful models)

Machine Learning

What do we want to use machine learning?

- Nonlinear transformations to power our models
- Different models for different problems
- And a good way to adjust the model to the problem
- The right features
- Feature selection and extraction is important
 - Preventing overfitting
- Model selection and regularization
 - Ability to use large amounts of data
- Incremental learning

Machine Learning

What do we have in "classic" machine learning?

- Many algorithms do nonlinear transformations
- Many different models
- Great diversity, with different algorithms
- The right features
- Feature extraction usually done by the user
- Preventing overfitting
- Method depends on the algorithm
 - Ability to use large amounts of data
- Some do, some don't

Machine Learning

Deep learning helps solve these problems

- Nonlinear transformations, stacked
- Many different models
- but all built from artificial neurons
- The right features
- can be done automatically determined by the model during training
 - Preventing overfitting
- Many ways to regularize
- Ability to use large amounts of data
- Yes!

Introduction

Summary

Introduction

Summary

- Overview of the course
- Al and Machine learning
- Nonlinear transformations and Overfitting
- The promise of deep learning

Further reading:

- Skansi, Introduction to Deep Learning, Chapter 1
- Goodfellow et al, Deep Learning, Chapters 1 and 5

