|
Up
|
|
|
|
|
00_lecture_notes.pdf
|
|
|
|
|
01_introduction.pdf
|
|
|
|
|
02_deep_learning.pdf
|
|
|
|
|
03_training_neural_networks.pdf
|
|
|
|
|
04_intro_to_tensorflow.pdf
|
|
|
|
|
05_activations_and_loss_functions.pdf
|
|
|
|
|
06_tensorflow_and_tensorboard.pdf
|
|
|
|
|
07_optimizing_networks.pdf
|
|
|
|
|
08_convolutional_networks.pdf
|
|
|
|
|
09_cnn_architectures.pdf
|
|
|
|
|
10_keras_functional.pdf
|
|
|
|
|
11_autoencoders.pdf
|
|
|
|
|
12_representation_learning.pdf
|
|
|
|
|
13_generating_images.pdf
|
|
|
|
|
14_visualizing_cnn.pdf
|
|
|
|
|
15_recurrent_networks.pdf
|
|
|
|
|
16_implementing-rnn.pdf
|
|
|
|
|
17_probabilistic_models.pdf
|
|
|
|
|
18_transformers.pdf
|
|
|
|
|
19_reinforcement_learning.pdf
|
|
|
|
|
20_deep_reinforcement_learning.pdf
|
|
|
|
|
21_interpreting_deep_models.pdf
|
|
|
|
|
22_bias_and_fairness.pdf
|
|
|
|
|
23_open_problems.pdf
|
|
|
|