PUBLIC-KEY CRYPTOGRAPHY
AND MESSAGE AUTHENTICATION

3.1 Approaches to Message Authentication

Authentication Using Conventional Encryption
Message Authentication without Message Encryption

3.2 Secure Hash Functions

Hash Function Requirements
Security of Hash Functions
Simple Hash Functions

The SHA Secure Hash Function

3.3 Message Authentication Codes

HMAC
MAC:s Based on Block Ciphers

3.4 Public-Key Cryptography Principles

Public-Key Encryption Structure
Applications for Public-Key Cryptosystems
Requirements for Public-Key Cryptography

3.5 Public-Key Cryptography Algorithms

The RSA Public-Key Encryption Algorithm
Diffie-Hellman Key Exchange
Other Public-Key Cryptography Algorithms

3.6 Digital Signatures
3.7 Recommended Reading and Web Sites

3.8 Key Terms, Review Questions, and Problems

61

62 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Every Egyptian received two names, which were known respectively as the true
name and the good name, or the great name and the little name; and while the
good or little name was made public, the true or great name appears to have been
carefully concealed.

—The Golden Bough, Sir James George Frazer

To guard against the baneful influence exerted by strangers is therefore an ele-
mentary dictate of savage prudence. Hence before strangers are allowed to enter a
district, or at least before they are permitted to mingle freely with the inhabitants,
certain ceremonies are often performed by the natives of the country for the pur-
pose of disarming the strangers of their magical powers, or of disinfecting, so to
speak, the tainted atmosphere by which they are supposed to be surrounded.

—The Golden Bough, Sir James George Frazer

In addition to message confidentiality, message authentication is an important
network security function. This chapter examines three aspects of message
authentication. First, we look at the use of message authentication codes and hash
functions to provide message authentication. Then we look at public-key encryp-
tion principles and two specific public-key algorithms. These algorithms are useful
in the exchange of conventional encryption keys. Then we look at the use of
public-key encryption to produce digital signatures, which provides an enhanced
form of message authentication.

APPROACHES TO MESSAGE AUTHENTICATION

Encryption protects against passive attack (eavesdropping). A different requirement
is to protect against active attack (falsification of data and transactions). Protection
against such attacks is known as message authentication.

A message, file, document, or other collection of data is said to be authentic
when it is genuine and comes from its alleged source. Message authentication is a
procedure that allows communicating parties to verify that received messages are
authentic.! The two important aspects are to verify that the contents of the message
have not been altered and that the source is authentic. We may also wish to verify a
message’s timeliness (it has not been artificially delayed and replayed) and
sequence relative to other messages flowing between two parties. All of these
concerns come under the category of data integrity as described in Chapter 1.

Authentication Using Conventional Encryption

It would seem possible to perform authentication simply by the use of symmetric
encryption. If we assume that only the sender and receiver share a key (which is as
it should be), then only the genuine sender would be able to encrypt a message

IFor simplicity, for the remainder of this chapter, we refer to message authentication. By this we mean
both authentication of transmitted messages and of stored data (data authentication).

3.1 / APPROACHES TO MESSAGE AUTHENTICATION 63

successfully for the other participant, provided the receiver can recognize a valid
message. Furthermore, if the message includes an error-detection code and a
sequence number, the receiver is assured that no alterations have been made and
that sequencing is proper. If the message also includes a timestamp, the receiver is
assured that the message has not been delayed beyond that normally expected for
network transit.

In fact, symmetric encryption alone is not a suitable tool for data authentica-
tion. To give one simple example, in the ECB mode of encryption, if an attacker
reorders the blocks of ciphertext, then each block will still decrypt successfully.
However, the reordering may alter the meaning of the overall data sequence.
Although sequence numbers may be used at some level (e.g., each IP packet), it is
typically not the case that a separate sequence number will be associated with each
b-bit block of plaintext. Thus, block reordering is a threat.

Message Authentication without Message Encryption

In this section, we examine several approaches to message authentication that do
not rely on encryption. In all of these approaches, an authentication tag is generated
and appended to each message for transmission. The message itself is not encrypted
and can be read at the destination independent of the authentication function at the
destination.

Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. As was mentioned, message encryption by
itself does not provide a secure form of authentication. However, it is possible to
combine authentication and confidentiality in a single algorithm by encrypting a
message plus its authentication tag. Typically, however, message authentication is
provided as a separate function from message encryption. [DAVI89] suggests three
situations in which message authentication without confidentiality is preferable:

1. There are a number of applications in which the same message is broadcast to
a number of destinations. Two examples are notification to users that the net-
work is now unavailable and an alarm signal in a control center. It is cheaper
and more reliable to have only one destination responsible for monitoring
authenticity. Thus, the message must be broadcast in plaintext with an associ-
ated message authentication tag. The responsible system performs authenti-
cation. If a violation occurs, the other destination systems are alerted by a
general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and
cannot afford the time to decrypt all incoming messages. Authentication is car-
ried out on a selective basis with messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The
computer program can be executed without having to decrypt it every time,
which would be wasteful of processor resources. However, if a message
authentication tag were attached to the program, it could be checked when-
ever assurance is required of the integrity of the program.

Thus, there is a place for both authentication and encryption in meeting security
requirements.

64 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

MEssAGE AUTHENTICATION CopE One authentication technique involves the use of a
secret key to generate a small block of data, known as a message authentication code
(MAC), that is appended to the message. This technique assumes that two
communicating parties, say A and B, share a common secret key K45 When A has a
message to send to B, it calculates the message authentication code as a function of the
message and the key: MAC,, = F(K 45, M). The message plus code are transmitted to
the intended recipient. The recipient performs the same calculation on the received
message, using the same secret key, to generate a new message authentication code.
The received code is compared to the calculated code (Figure 3.1). If we assume that
only the receiver and the sender know the identity of the secret key, and if the
received code matches the calculated code, then the following statements apply:

1. The receiver is assured that the message has not been altered. If an attacker
alters the message but does not alter the code, then the receiver’s calculation
of the code will differ from the received code. Because the attacker is assumed
not to know the secret key, the attacker cannot alter the code to correspond to
the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because no one
else knows the secret key, no one else could prepare a message with a proper code.

3. If the message includes a sequence number (such as is used with HDLC and
TCP), then the receiver can be assured of the proper sequence, because an
attacker cannot successfully alter the sequence number.

Message
K
- . MAC
> Transmit algorithm
—_—
Y
Y
] k — > Compare
Y
MAC
algorithm MAC
K

Figure 3.1 Message Authentication Using a Message Authentication Code (MAC)

3.1 / APPROACHES TO MESSAGE AUTHENTICATION 65

A number of algorithms could be used to generate the code. The NIST specifi-
cation, FIPS PUB 113, recommends the use of DES. DES is used to generate an
encrypted version of the message, and the last number of bits of ciphertext are used
as the code. A 16- or 32-bit code is typical.

The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. Because
of the mathematical properties of the authentication function, it is less vulnerable to
being broken than encryption.

ONE-Way Hasa FuncTioN An alternative to the message authentication code is
the one-way hash function. As with the message authentication code, a hash
function accepts a variable-size message M as input and produces a fixed-size
message digest H(M) as output. Unlike the MAC, a hash function does not take a
secret key as input. To authenticate a message, the message digest is sent with the
message in such a way that the message digest is authentic.

Figure 3.2 illustrates three ways in which the message can be authenticated.
The message digest can be encrypted using conventional encryption (part a); if it is
assumed that only the sender and receiver share the encryption key, then authentic-
ity is assured. The message digest can be encrypted using public-key encryption
(part b); this is explained in Section 3.5. The public-key approach has two advan-
tages: (1) It provides a digital signature as well as message authentication. (2) It does
not require the distribution of keys to communicating parties.

These two approaches also have an advantage over approaches that encrypt
the entire message in that less computation is required. Nevertheless, there has been
interest in developing a technique that avoids encryption altogether. Several reasons
for this interest are pointed out in [TSUD92]:

* Encryption software is quite slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

* Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

* Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

* An encryption algorithm may be protected by a patent.

Figure 3.2c shows a technique that uses a hash function but no encryption for
message authentication. This technique assumes that two communicating parties,
say A and B, share a common secret value S45. When A has a message to send to B,
it calculates the hash function over the concatenation of the secret value and the
message: MD,; = H(S45|M).? It then sends [M||MD,,] to B. Because B possesses
S, it can recompute H(S 4 5|M) and verify MD,,. Because the secret value itself is

2 || denotes concatenation.

66 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

~— Source A ——M8M8M8MM > ~— Destination B ——>

Message
\
Message
Message

Compare

(a) Using conventional encryption

Message

Message
Message

Compare

(b) Using public-key encryption

9]
%]

Message
Message
Message

> Compare

(c) Using secret value

Figure 3.2 Message Authentication Using a One-Way Hash Function

not sent, it is not possible for an attacker to modify an intercepted message. As long
as the secret value remains secret, it is also not possible for an attacker to generate a
false message.

A variation on the third technique, called HMAC, is the one adopted for IP
security (described in Chapter 8);it also has been specified for SNMPv3 (Chapter 12).

3.2 / SECURE HASH FUNCTIONS 67

3.2 SECURE HASH FUNCTIONS

The one-way hash function, or secure hash function, is important not only in mes-
sage authentication but in digital signatures. In this section, we begin with a discus-
sion of requirements for a secure hash function. Then we look at the most important
hash function, SHA.

Hash Function Requirements

The purpose of a hash function is to produce a “fingerprint” of a file, message, or
other block of data. To be useful for message authentication, a hash function H must
have the following properties:

1. H can be applied to a block of data of any size.
2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

4. For any given code £, it is computationally infeasible to find x such that H(x) = A.
A hash function with this property is referred to as one-way or preimage
resistant.’

5. For any given block x, it is computationally infeasible to find y # x with H(y) =
H(x). A hash function with this property is referred to as second preimage resis-
tant. This is sometimes referred to as weak collision resistant.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).
A hash function with this property is referred to as collision resistant. This is
sometimes referred to as strong collision resistant.

The first three properties are requirements for the practical application of a
hash function to message authentication. The fourth property, preimage resistant, is
the “one-way” property: It is easy to generate a code given a message, but virtually
impossible to generate a message given a code. This property is important if the
authentication technique involves the use of a secret value (Figure 3.2c). The secret
value itself is not sent; however, if the hash function is not one way, an attacker can
easily discover the secret value: If the attacker can observe or intercept a transmis-
sion, the attacker obtains the message M and the hash code C = H(S,5|M). The
attacker then inverts the hash function to obtain S, z|M = H (C). Because the
attacker now has both M and S 45| M, it is a trivial matter to recover Sy p.

The second preimage resistant property guarantees that it is impossible to find an
alternative message with the same hash value as a given message. This prevents forgery
when an encrypted hash code is used (Figures 3.2a and b). If this property were not
true, an attacker would be capable of the following sequence: First, observe or intercept
a message plus its encrypted hash code; second, generate an unencrypted hash code
from the message; third, generate an alternate message with the same hash code.

3For f(x) = y, x is said to be a preimage of y. Unless f is one-to-one, there may be multiple preimage
values for a given y.

68 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

A hash function that satisfies the first five properties in the preceding list is
referred to as a weak hash function. If the sixth property is also satisfied, then it is
referred to as a strong hash function. The sixth property, collision resistant, protects
against a sophisticated class of attack known as the birthday attack. Details of this
attack are beyond the scope of this book. The attack reduces the strength of an
m-bit hash function from 2" to 2”2, See [STAL11] for details.

In addition to providing authentication, a message digest also provides data
integrity. It performs the same function as a frame check sequence: If any bits in the
message are accidentally altered in transit, the message digest will be in error.

Security of Hash Functions

As with symmetric encryption, there are two approaches to attacking a secure hash
function: cryptanalysis and brute-force attack. As with symmetric encryption algorithms,
cryptanalysis of a hash function involves exploiting logical weaknesses in the algorithm.

The strength of a hash function against brute-force attacks depends solely on
the length of the hash code produced by the algorithm. For a hash code of length n,
the level of effort required is proportional to the following:

Preimage resistant 2"
Second preimage resistant 2"
Collision resistant 2n2

If collision resistance is required (and this is desirable for a general-purpose
secure hash code), then the value 2"/? determines the strength of the hash code
against brute-force attacks. Van Oorschot and Wiener [VANQOY4] presented a
design for a $10 million collision search machine for MD5, which has a 128-bit hash
length, that could find a collision in 24 days. Thus, a 128-bit code may be viewed as
inadequate. The next step up, if a hash code is treated as a sequence of 32 bits, is a
160-bit hash length. With a hash length of 160 bits, the same search machine would
require over four thousand years to find a collision. With today’s technology, the
time would be much shorter, so that 160 bits now appears suspect.

Simple Hash Functions

All hash functions operate using the following general principles. The input (mes-
sage, file, etc.) is viewed as a sequence of n-bit blocks. The input is processed one
block at a time in an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of
every block. This can be expressed as

Ci=bi@bp®...Dbin
where
C; = ith bit of the hash code,1<i<n
m = number of n-bit blocks in the input
b;; = ith bit in jth block
@ = XOR operation

3.2 / SECURE HASH FUNCTIONS 69

bit 1 bit 2 o o o bit n
Block 1 by by by
Block 2 b]z b22 bn2
o [] ° [)
[] [] [] [)
[] ° [] °
Block m blm b2m bnm
Hash code C G, C,

Figure 3.3 Simple Hash Function Using Bitwise XOR

Figure 3.3 illustrates this operation; it produces a simple parity for each bit
position and is known as a longitudinal redundancy check. It is reasonably effective
for random data as a data integrity check. Each n-bit hash value is equally likely.
Thus, the probability that a data error will result in an unchanged hash value is 27".
With more predictably formatted data, the function is less effective. For example, in
most normal text files, the high-order bit of each octet is always zero. So if a 128-bit
hash value is used, instead of an effectiveness of 27128, the hash function on this type
of data has an effectiveness of 27112,

A simple way to improve matters is to perform a 1-bit circular shift, or rotation,
on the hash value after each block is processed. The procedure can be summarized as

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data:
a. Rotate the current hash value to the left by one bit.
b. XOR the block into the hash value.

This has the effect of “randomizing” the input more completely and overcoming any
regularities that appear in the input.

Although the second procedure provides a good measure of data integrity, it
is virtually useless for data security when an encrypted hash code is used with a
plaintext message, as in Figures 3.2a and b. Given a message, it is an easy matter to
produce a new message that yields that hash code: Simply prepare the desired alter-
nate message and then append an n-bit block that forces the combined new message
plus block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the
hash code is encrypted, you may still feel that such a simple function could be useful
when the message as well as the hash code are encrypted. But one must be careful. A
technique originally proposed by the National Bureau of Standards used the simple
XOR applied to 64-bit blocks of the message and then an encryption of the entire
message using the cipher block chaining (CBC) mode. We can define the scheme as
follows: Given a message consisting of a sequence of 64-bit blocks X1, X5, ..., Xn,
define the hash code C as the block-by-block XOR or all blocks and append the hash
code as the final block:

C=XNn1=X1DXND. .. DXN

70 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Next, encrypt the entire message plus hash code using CBC mode to produce the
encrypted message Yy, Y5, . . ., Yni1. [JUENSS] points out several ways in which
the ciphertext of this message can be manipulated in such a way that it is not
detectable by the hash code. For example, by the definition of CBC (Figure 2.10),
we have

X1 =1V DK, Y,
Xi=Yi 1 @D, Y))
Xni1 = YN @D D(K, Yivi1)
But Xy is the hash code:

XN =X1DXoD ... D XN
=[lVODK, YN D[Y1 ®DK, Y2)]D. .. D[Yn-1D DK, Yy)]

Because the terms in the preceding equation can be XORed in any order, it follows
that the hash code would not change if the ciphertext blocks were permuted.

The SHA Secure Hash Function

In recent years, the most widely used hash function has been the Secure Hash
Algorithm (SHA). Indeed, because virtually every other widely used hash function
had been found to have substantial cryptanalytic weaknesses, SHA was more or less
the last remaining standardized hash algorithm by 2005. SHA was developed by the
National Institute of Standards and Technology (NIST) and published as a federal
information processing standard (FIPS 180) in 1993. When weaknesses were discov-
ered in SHA (now known as SHA-0), a revised version was issued as FIPS 180-1 in
1995 and is referred to as SHA-1. The actual standards document is entitled “Secure
Hash Standard.” SHA is based on the hash function MD4, and its design closely
models MD4. SHA-1 is also specified in RFC 3174, which essentially duplicates the
material in FIPS 180-1 but adds a C code implementation.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised
version of the standard, FIPS 180-2, that defined three new versions of SHA with
hash value lengths of 256,384, and 512 bits known as SHA-256, SHA-384, and SHA-
512, respectively. Collectively, these hash algorithms are known as SHA-2. These
new versions have the same underlying structure and use the same types of modular
arithmetic and logical binary operations as SHA-1. A revised document was issued
as FIP PUB 180-3 in 2008, which added a 224-bit version (Table 3.1). SHA-2 is also
specified in RFC 4634, which essentially duplicates the material in FIPS 180-3 but
adds a C code implementation.

In 2005, NIST announced the intention to phase out approval of SHA-1 and
move to a reliance on SHA-2 by 2010. Shortly thereafter, a research team described
an attack in which two separate messages could be found that deliver the same
SHA-1 hash using 2% operations, far fewer than the 2% operations previously
thought needed to find a collision with an SHA-1 hash [WANGOS5]. This result
should hasten the transition to SHA-2.

In this section, we provide a description of SHA-512. The other versions are
quite similar.

3.2 / SECURE HASH FUNCTIONS 71

Table 3.1 Comparison of SHA Parameters

SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512

Message Digest Size 160 224 256 384 512
Message Size <264 <264 <264 <2128 <2128
Block Size 512 512 512 1024 1024
Word Size 32 32 32 64 64
Number of Steps 80 64 64 80 80
Security 80 112 128 192 256
Notes: 1. All sizes are measured in bits.

2. Security refers to the fact that a birthday attack on a message digest of size n produces a
collision with a workfactor of approximately 22,

The algorithm takes as input a message with a maximum length of less than
2128 bits and produces as output a 512-bit message digest. The input is processed in
1024-bit blocks. Figure 3.4 depicts the overall processing of a message to produce a
digest. The processing consists of the following steps.

Step 1

Step 2

Step 3

Append padding bits: The message is padded so that its length is congruent
to 896 modulo 1024 [length = 896 (mod 1024)]. Padding is always added,
even if the message is already of the desired length. Thus, the number of
padding bits is in the range of 1 to 1024. The padding consists of a single 1 bit
followed by the necessary number of O bits.

Append length: A block of 128 bits is appended to the message. This block is
treated as an unsigned 128-bit integer (most significant byte first) and contains
the length of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer
multiple of 1024 bits in length. In Figure 3.4, the expanded message is repre-
sented as the sequence of 1024-bit blocks My, M5, . . ., My, so that the total
length of the expanded message is N x 1024 bits.

Initialize hash buffer: A 512-bit buffer is used to hold intermediate and final
results of the hash function. The buffer can be represented as eight 64-bit reg-
isters (a, b, c,d, e, f, g, h). These registers are initialized to the following 64-bit
integers (hexadecimal values):

a = 6A09E667F3BCC908
b = BB67AE8584CAA73B
¢ = 3C6EF372FE94F82B
d = AS4FF53A5F1D36F1

e =510E527FADE682D1
f=9B05688C2B3E6CLF
g = 1F83D9ABFB41BD6B
h = 5BEOCD19137E2179
These values are stored in big-endian format, which is the most significant
byte of a word in the low-address (leftmost) byte position. These words were

obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the first eight prime numbers.

72 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

N % 1024 bits

128 bits
L bits -~
Message 1000000..0 | L
I I I

l— 1024 bits ——l<«— 1024 bits ——>! l—— 1024 bits ——!

[X X} MN

M
> F —
[N N]
> —p

2
+
2

HN

=Ty [- =

512 bits

512 bits 512 bits hash code

+ = word-by-word addition mod 2%

Figure 3.4

Step 4

Step S

Message Digest Generation Using SHA-512

Process message in 1024-bit (128-word) blocks: The heart of the algorithm is a
module that consists of 80 rounds; this module is labeled F in Figure 3.4. The
logic is illustrated in Figure 3.5.

Each round takes as input the 512-bit buffer value abcdefgh and
updates the contents of the buffer. At input to the first round, the buffer has
the value of the intermediate hash value, H; ;. Each round ¢ makes use of a
64-bit value W, derived from the current 1024-bit block being processed
(M;). Each round also makes use of an additive constant K,, where 0 =<¢=79
indicates one of the 80 rounds. These words represent the first 64 bits of the
fractional parts of the cube roots of the first 80 prime numbers. The con-
stants provide a “randomized” set of 64-bit patterns, which should eliminate
any regularities in the input data.

The output of the 80th round is added to the input to the first round
(H;-1) to produce H,. The addition is done independently for each of the eight
words in the buffer with each of the corresponding words in H;_q, using addi-
tion modulo 2.

Output: After all N 1024-bit blocks have been processed, the output from
the Nth stage is the 512-bit message digest.

3.3 / MESSAGE AUTHENTICATION CODES 73

M; H;_,
Message 64
schedule) | »1 | 4l . f it
vOF Sy 4y Sy ly By Y
W{) (KO
> L Round 0

FI v rddd
of b} el @) e} 1) 5} 1y

—»[Round ¢

v Ty
P
]4_

Round 79

K,

Figure 3.5 SHA-512 Processing of a Single 1024-Bit Block

The SHA-512 algorithm has the property that every bit of the hash code is a
function of every bit of the input. The complex repetition of the basic function
F produces results that are well mixed; that is, it is unlikely that two messages chosen
at random, even if they exhibit similar regularities, will have the same hash code.
Unless there is some hidden weakness in SHA-512, which has not so far been pub-
lished, the difficulty of coming up with two messages having the same message
digest is on the order of 22°° operations, while the difficulty of finding a message
with a given digest is on the order of 2°'? operations.

3.3 MESSAGE AUTHENTICATION CODES

HMAC

In recent years, there has been increased interest in developing a MAC derived
from a cryptographic hash code, such as SHA-1. The motivations for this interest are

e Cryptographic hash functions generally execute faster in software than con-
ventional encryption algorithms such as DES.

e Library code for cryptographic hash functions is widely available.

74 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

A hash function such as SHA-1 was not designed for use as a MAC and
cannot be used directly for that purpose because it does not rely on a secret key.
There have been a number of proposals for the incorporation of a secret key into
an existing hash algorithm. The approach that has received the most support is
HMAC [BELL96a, BELL96b]. HMAC has been issued as RFC 2104, has been
chosen as the mandatory-to-implement MAC for IP Security, and is used in other
Internet protocols, such as Transport Layer Security (TLS) and Secure Electronic
Transaction (SET).

HMAC Desicy Opjectives RFC 2104 lists the following design objectives for
HMAC.

* To use, without modifications, available hash functions. In particular, hash
functions that perform well in software, and for which code is freely and
widely available

* To allow for easy replaceability of the embedded hash function in case faster
or more secure hash functions are found or required

e To preserve the original performance of the hash function without incurring a
significant degradation

* To use and handle keys in a simple way

* To have a well-understood cryptographic analysis of the strength of the
authentication mechanism based on reasonable assumptions on the embedded
hash function

The first two objectives are important to the acceptability of HMAC. HMAC
treats the hash function as a “black box.” This has two benefits. First, an existing
implementation of a hash function can be used as a module in implementing
HMAC. In this way, the bulk of the HMAC code is prepackaged and ready to use
without modification. Second, if it is ever desired to replace a given hash function in
an HMAC implementation, all that is required is to remove the existing hash func-
tion module and drop in the new module. This could be done if a faster hash func-
tion were desired. More important, if the security of the embedded hash function
were compromised, the security of HMAC could be retained simply by replacing
the embedded hash function with a more secure one.

The last design objective in the preceding list is, in fact, the main advantage of
HMAC over other proposed hash-based schemes. HMAC can be proven secure
provided that the embedded hash function has some reasonable cryptographic
strengths. We return to this point later in this section, but first we examine the
structure of HMAC.

HMAC Arcoritam Figure 3.6 illustrates the overall operation of HMAC. The
following terms are defined:
H = embedded hash function (e.g., SHA-1)

M = message input to HMAC (including the padding specified in the embed-
ded hash function)

Y;=ithblock of M,0<i< (L — 1)
L = number of blocks in M

3.3 / MESSAGE AUTHENTICATION CODES 75

Kt ipad
L
b bits b bits b bits
Si YO Yl [] [] [] YL_I

n bits

IV —— | Hash

K+ Opad Vn bits
L J CJH(S; 1 M)
F b bits pad to b bits
L7 L7
So

n bits

Y
[1HMAC(K, M)
Figure 3.6 HMAC Structure

b = number of bits in a block
n = length of hash code produced by embedded hash function

K = secret key; if key length is greater than b, the key is input to the hash
function to produce an n-bit key; recommended length is > n

K" = K padded with zeros on the left so that the result is b bits in length
ipad = 00110110 (36 in hexadecimal) repeated b/8 times
opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as
HMAC(K, M) = H[(K" ® opad) | H[(K" @ ipad) | M]]
In words, HMAC is defined as follows:

1. Append zeros to the left end of K to create a b-bit string K™ (e.g., if K is of
length 160 bits and b = 512, then K will be appended with 44 zero bytes).

2. XOR (bitwise exclusive-OR) K with ipad to produce the b-bit block S;.

76 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Append M to S;

Apply H to the stream generated in step 3.

XOR K™ with opad to produce the b-bit block S,,.
Append the hash result from step 4 to S,.

A A ol

Apply H to the stream generated in step 6 and output the result.

Note that the XOR with ipad results in flipping one-half of the bits of K.
Similarly, the XOR with opad results in flipping one-half of the bits of K, but a dif-
ferent set of bits. In effect, by passing S; and S, through the hash algorithm, we have
pseudorandomly generated two keys from K.

HMAC should execute in approximately the same time as the embedded hash
function for long messages. HMAC adds three executions of the basic hash function
(for S;, S,, and the block produced from the inner hash).

MACs Based on Block Ciphers
In this section, we look at several MACs based on the use of a block cipher.

CIPHER-BASED MESSAGE AUTHENTICATION CODE (CMAC) The Cipher-based
Message Authentication Code (CMAC) mode of operation is for use with AES and
triple DES. It is specified in NIST Special Publication 800-38B.

First, let us consider the operation of CMAC when the message is an integer
multiple » of the cipher block length b. For AES, b = 128, and for triple DES, b = 64.
The message is divided into n blocks (M1, M, . . ., M,)). The algorithm makes use of
a k-bit encryption key K and an n-bit key, K;. For AES, the key size k is 128,192, or
256 bits; for triple DES, the key size is 112 or 168 bits. CMAC is calculated as follows

(Figure 3.7).
Cy = E(K, M)
G =EK, [M;® C1])
G =E(K,[M3® ()
[]
[]
[]
Cr=E(K,[My ® Cp1 @ Ki])
T = MSBrn(Cy)
where
T = message authentication code, also referred to as the tag
Tlen = bit length of T’

MSBy(X) = the s leftmost bits of the bit string X

If the message is not an integer multiple of the cipher block length, then the
final block is padded to the right (least significant bits) with a 1 and as many Os as
necessary so that the final block is also of length . The CMAC operation then
proceeds as before, except that a different n-bit key K; is used instead of Kj.

3.3 / MESSAGE AUTHENTICATION CODES 77

M, M, e o o M,
b
> r : ______________ "ia‘_ K,

A | y

k |
K—%>| Encrypt K —>{ Encrypt : K —>| Encrypt

|
| I L J

/

MSB(Tlen) |—> T
(a) Message length is integer multiple of block size
M, M, e ° e M, | 10..0
>(pm———————————— ->i -~ &,
|
wr |
|
K—>| Encrypt K —>{ Encrypt : K —>{ Encrypt

|
| I | |

/

MSB(Tlen) ——> T

(b) Message length is not integer multiple of block size

Figure 3.7 Cipher-Based Message Authentication Code (CMAC)

To generate the two n-bit keys, the block cipher is applied to the block that
consists entirely of 0 bits. The first subkey is derived from the resulting ciphertext by
a left shift of one bit and, conditionally, by XORing a constant that depends on the
block size. The second subkey is derived in the same manner from the first subkey.

COUNTER wITH CIPHER BLOCK CHAINING-MESSAGE AUTHENTICATION CODE The
CCM mode of operation, defined in NIST SP 800-38C, is referred to as an
authenticated encryption mode. Authenticated encryption is a term used to describe
encryption systems that simultaneously protect confidentiality and authenticity
(integrity) of communications. Many applications and protocols require both forms
of security, but until recently the two services have been designed separately.

The key algorithmic ingredients of CCM are the AES encryption algorithm
(Section 2.2), the CTR mode of operation (Section 2.5), and the CMAC authentica-
tion algorithm. A single key K is used for both encryption and MAC algorithms. The
input to the CCM encryption process consists of three elements.

1. Data that will be both authenticated and encrypted. This is the plaintext
message P of data block.

2. Associated data A that will be authenticated but not encrypted. An example is a
protocol header that must be transmitted in the clear for proper protocol opera-
tion but which needs to be authenticated.

78 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

I Nonce I I Plaintext I IAss. Data I
~— o~ —
A
Vel N
[B | B | B |
~— o~ —

Tag
(a) Authentication
I Plaintext I Ctr,
Y
K —> Encrypt
\4
Ctry, Ctry, ..., Ctr,, —> v
4 CTR
MSB(Tlen)
Y
[—
\ 4 \ 4
— —~~ g
Ciphertext
(b) Encryption

Figure 3.8 Counter with Cipher Block Chaining-Message Authentication Code (CCM)

3. A nonce N that is assigned to the payload and the associated data. This is a
unique value that is different for every instance during the lifetime of a proto-
col association and is intended to prevent replay attacks and certain other
types of attacks.

Figure 3.8 illustrates the operation of CCM. For authentication, the input
includes the nonce, the associated data, and the plaintext. This input is formatted as
a sequence of blocks B through B,. The first block contains the nonce plus some
formatting bits that indicate the lengths of the N, A, and P elements. This is followed

3.4 / PUBLIC-KEY CRYPTOGRAPHY PRINCIPLES 79

by zero or more blocks that contain A, followed by zero of more blocks that contain
P. The resulting sequence of blocks serves as input to the CMAC algorithm, which
produces a MAC value with length 7Tlen, which is less than or equal to the block
length (Figure 3.8a).

For encryption, a sequence of counters is generated that must be independent
of the nonce. The authentication tag is encrypted in CTR mode using the single
counter Ctr(. The Tlen most significant bits of the output are XORed with the tag to
produce an encrypted tag. The remaining counters are used for the CTR mode
encryption of the plaintext (Figure 2.12). The encrypted plaintext is concatenated
with the encrypted tag to form the ciphertext output (Figure 3.8b).

PUBLIC-KEY CRYPTOGRAPHY PRINCIPLES

Of equal importance to conventional encryption is public-key encryption, which
finds use in message authentication and key distribution. This section looks first at
the basic concept of public-key encryption and takes a preliminary look at key dis-
tribution issues. Section 3.5 examines the two most important public-key algorithms:
RSA and Diffie-Hellman. Section 3.6 introduces digital signatures.

Public-Key Encryption Structure

Public-key encryption, first publicly proposed by Diffie and Hellman in 1976
[DIFF76],is the first truly revolutionary advance in encryption in literally thousands
of years. Public-key algorithms are based on mathematical functions rather than on
simple operations on bit patterns, such as are used in symmetric encryption algo-
rithms. More important, public-key cryptography is asymmetric, involving the use of
two separate keys—in contrast to the symmetric conventional encryption, which
uses only one key. The use of two keys has profound consequences in the areas of
confidentiality, key distribution, and authentication.

Before proceeding, we should first mention several common misconceptions
concerning public-key encryption. One is that public-key encryption is more secure
from cryptanalysis than conventional encryption. In fact, the security of any
encryption scheme depends on (1) the length of the key and (2) the computational
work involved in breaking a cipher. There is nothing in principle about either con-
ventional or public-key encryption that makes one superior to another from the
point of view of resisting cryptanalysis. A second misconception is that public-key
encryption is a general-purpose technique that has made conventional encryption
obsolete. On the contrary, because of the computational overhead of current
public-key encryption schemes, there seems no foreseeable likelihood that conven-
tional encryption will be abandoned. Finally, there is a feeling that key distribution
is trivial when using public-key encryption, compared to the rather cumbersome
handshaking involved with key distribution centers for conventional encryption.
In fact, some form of protocol is needed, often involving a central agent, and the
procedures involved are no simpler or any more efficient than those required for
conventional encryption.

80 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Bobs's
public key
ring

Ted ?

Mike Alice
PU, | Alice's public PR, | Alice's private
key key
Y
e Transmitted = e
== | X d 5 ciphertext D[PR,, V]| ==
_ | —— > @ —_—
— A Y = E[PU,, X] 1 =
Plaintext Plaintext
input Encryption algorithm Decryption algorithm output
(e.g., RSA)
— _J — _J
N N
Bob (a) Encryption with public key Alice

Alice's
public key

? Joy Ted
Mike Bob
PR, | Bob's private PU; | Bob's public
key key
Y Y
Transmitted
X L ciphertext
—_— > @
A Y = E[PR;, X] |
input Encryption algorithm Decryption algorithm output
(e.g., RSA)
— _J — _J
~ ~
Bob (b) Encryption with private key Alice

Figure 3.9 Public-Key Cryptography

A public-key encryption scheme has six ingredients (Figure 3.9a).
¢ Plaintext: This is the readable message or data that is fed into the algorithm
as input.

* Encryption algorithm: The encryption algorithm performs various transforma-
tions on the plaintext.

3.4 / PUBLIC-KEY CRYPTOGRAPHY PRINCIPLES 81

* Public and private key: This is a pair of keys that have been selected so that
if one is used for encryption, the other is used for decryption. The exact trans-
formations performed by the encryption algorithm depend on the public or
private key that is provided as input.

e Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

* Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

As the names suggest, the public key of the pair is made public for others to
use, while the private key is known only to its owner. A general-purpose public-key
cryptographic algorithm relies on one key for encryption and a different but related
key for decryption.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

2. Each user places one of the two keys in a public register or other accessible file.
This is the public key. The companion key is kept private. As Figure 3.9a suggests,
each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a private message to Alice, Bob encrypts the message using
Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s pri-
vate key.

With this approach, all participants have access to public keys, and private
keys are generated locally by each participant and therefore need never be distrib-
uted. As long as a user protects his or her private key, incoming communication is
secure. At any time, a user can change the private key and publish the companion
public key to replace the old public key.

The key used in conventional encryption is typically referred to as a secret key.
The two keys used for public-key encryption are referred to as the public key and the
private key. Invariably, the private key is kept secret, but it is referred to as a private
key rather than a secret key to avoid confusion with conventional encryption.

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is
otherwise likely to lead to confusion. Public-key systems are characterized by the
use of a cryptographic type of algorithm with two keys, one held private and one
available publicly. Depending on the application, the sender uses either the sender’s
private key, the receiver’s public key, or both to perform some type of cryptographic
function. In broad terms, we can classify the use of public-key cryptosystems into
three categories:

* Encryption/decryption: The sender encrypts a message with the recipient’s
public key.

82 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Table 3.2 Applications for Public-Key Cryptosystems

Algorithm Encryption/Decryption Digital Signature Key Exchange
RSA Yes Yes Yes
Diffie-Hellman No No Yes
DSS No Yes No
Elliptic curve Yes Yes Yes

* Digital signature: The sender “signs” a message with its private key. Signing is

achieved by a cryptographic algorithm applied to the message or to a small
block of data that is a function of the message.

* Key exchange: Two sides cooperate to exchange a session key. Several different

approaches are possible, involving the private key(s) of one or both parties.

Some algorithms are suitable for all three applications, whereas others can be

used only for one or two of these applications. Table 3.2 indicates the applications
supported by the algorithms discussed in this chapter: RSA and Diffie Hellman.
This table also includes the Digital Signature Standard (DSS) and elliptic-curve
cryptography, also mentioned later in this chapter.

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figure 3.9 depends on a cryptographic algorithm
based on two related keys. Diffie and Hellman postulated this system without
demonstrating that such algorithms exist. However, they did lay out the conditions
that such algorithms must fulfill [DIFF76]:

1.

It is computationally easy for a party B to generate a pair (public key PU,,
private key PR}).

It is computationally easy for a sender A, knowing the public key and the mes-
sage to be encrypted, M, to generate the corresponding ciphertext:

C = E(PU,, M)

It is computationally easy for the receiver B to decrypt the resulting ciphertext
using the private key to recover the original message:

M = D(PRb’ C) = D[PRb’ E(PUb’ M)]

It is computationally infeasible for an opponent, knowing the public key, PUp, to
determine the private key, PR},

It is computationally infeasible for an opponent, knowing the public key, PUyp,
and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all

public-key applications.

6.

Either of the two related keys can be used for encryption, with the other used
for decryption.

M = D[PU,, E(PRy, M)] = D[PR,,, E(PU,, M)]

3.5 / PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS 83

3.5 PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS

The two most widely used public-key algorithms are RSA and Diffie-Hellman. We
look at both of these in this section and then briefly introduce two other algorithms.*

The RSA Public-Key Encryption Algorithm

One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi
Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA
scheme has since that time reigned supreme as the most widely accepted and imple-
mented approach to public-key encryption. RSA is a block cipher in which the
plaintext and ciphertext are integers between 0 and n — 1 for some n.

Encryption and decryption are of the following form period for some plaintext
block M and ciphertext block C:

C=M°modn
M = C?mod n = (M) mod n = M* mod n

Both sender and receiver must know the values of n and e, and only the
receiver knows the value of d. This is a public-key encryption algorithm with a pub-
lic key of KU = {e, n} and a private key of KR = {d, n}. For this algorithm to be sat-
isfactory for public-key encryption, the following requirements must be met.

1. Itis possible to find values of e, d, n such that M mod n = M for all M < n.
2. Ttis relatively easy to calculate M¢ and C¢ for all values of M < n.
3. Itis infeasible to determine d given e and n.

The first two requirements are easily met. The third requirement can be met
for large values of e and n.

Figure 3.10 summarizes the RSA algorithm. Begin by selecting two prime
numbers p and g and calculating their product n, which is the modulus for encryp-
tion and decryption. Next, we need the quantity ¢(n), referred to as the Euler
totient of n, which is the number of positive integers less than n and relatively prime
to n. Then select an integer e that is relatively prime to ¢(n) [i.e., the greatest com-
mon divisor of e and ¢(n) is 1]. Finally, calculate d as the multiplicative inverse of e,
modulo ¢(n). It can be shown that d and e have the desired properties.

Suppose that user A has published its public key and that user B wishes to
send the message M to A. Then B calculates C = M¢ (mod n) and transmits C. On
receipt of this ciphertext, user A decrypts by calculating M = C? (mod n).

An example, from [SING99], is shown in Figure 3.11. For this example, the
keys were generated as follows:

1. Select two prime numbers,p = 17 and g = 11.
2. Calculate n = pg = 17 x11 = 187.

“This section uses some elementary concepts from number theory. For a review, see Appendix A.

84 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Figure 3.10 The RSA Algorithm

3. Calculate ¢(n) = (p — 1)(g — 1) = 16 x 10 = 160.

4. Select e such that e is relatively prime to ¢(n) = 160 and less than ¢(n); we choose
e=1.

5. Determine d such that de mod 160 = 1 and d < 160. The correct value is d = 23,
because 23 x 7 = 161 = (1 x 160) + 1.

The resulting keys are public key PU = {7, 187} and private key PR = {23,
187}. The example shows the use of these keys for a plaintext input of M = 88. For

Encryption Decryption

plaintext
88

plaintext
88

PU =17,187 PR = 23,187
Figure 3.11 Example of RSA Algorithm

3.5 / PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS 85

encryption, we need to calculate C = 887 mod 187. Exploiting the properties of
modular arithmetic, we can do this as follows:

887 mod 187 = [(88* mod 187) x (887> mod 187) x (88' mod 187)] mod 187
88! mod 187 = 88

88% mod 187 = 7744 mod 187 = 77

88* mod 187 = 59,969,536 mod 187 = 132

887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 11%° mod 187:

112 mod 187 = [(11' mod 187) x (11% mod 187) x (11* mod 187) x
(118 mod 187) x (11® mod 187)] mod 187

11' mod 187 = 11

11> mod 187 = 121

11* mod 187 = 14,641 mod 187 = 55

118 mod 187 = 214,358,881 mod 187 = 33

11%> mod 187 = (11 x 121 x 55 x 33 x 33) mod 187
= 79,720,245 mod 187 = 88

There are two possible approaches to defeating the RSA algorithm. The first is
the brute-force approach: Try all possible private keys. Thus, the larger the number
of bits in e and d, the more secure the algorithm. However, because the calculations
involved (both in key generation and in encryption/decryption) are complex, the
larger the size of the key, the slower the system will run.

Most discussions of the cryptanalysis of RSA have focused on the task of fac-
toring n into its two prime factors. For a large n with large prime factors, factoring is
a hard problem, but not as hard as it used to be. A striking illustration of this
occurred in 1977; the three inventors of RSA challenged Scientific American readers
to decode a cipher they printed in Martin Gardner’s “Mathematical Games” column
[GARD77]. They offered a $100 reward for the return of a plaintext sentence, an
event they predicted might not occur for some 40 quadrillion years. In April of 1994,
a group working over the Internet and using over 1600 computers claimed the prize
after only eight months of work [LEUT94]. This challenge used a public-key size
(length of n) of 129 decimal digits (approximately 428 bits). This result does not
invalidate the use of RSA; it simply means that larger key sizes must be used.
Currently, a 1024-bit key size (about 300 decimal digits) is considered strong enough
for virtually all applications.

Diffie-Hellman Key Exchange

The first published public-key algorithm appeared in the seminal paper by Diffie
and Hellman that defined public-key cryptography [DIFF76] and is generally
referred to as the Diffie-Hellman key exchange. A number of commercial products
employ this key exchange technique.

86 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

The purpose of the algorithm is to enable two users to exchange a secret key
securely that then can be used for subsequent encryption of messages. The algo-
rithm itself is limited to the exchange of the keys.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of
computing discrete logarithms. Briefly, we can define the discrete logarithm in the
following way. First, we define a primitive root of a prime number p as one whose
powers generate all the integers from 1 to p — 1. That is,if a is a primitive root of the
prime number p, then the numbers

amod p,a’modp, . . .,ap ' mod p

are distinct and consist of the integers from 1 through p — 1 in some permutation.
For any integer b less than p and a primitive root a of prime number p, one can
find a unique exponent i such that

b=dmodp 0=i=(p—1)

The exponent i is referred to as the discrete logarithm, or index, of b for the base a,
mod p. We denote this value as dloga,p(b).5

THE ArcoriTHm With this background, we can define the Diffie-Hellman key
exchange, which is summarized in Figure 3.12. For this scheme, there are two publicly
known numbers: a prime number g and an integer « that is a primitive root of q.
Suppose the users A and B wish to exchange a key. User A selects a random integer
X4 < q and computes Y, = o modgq. Similarly, user B independently selects a
random integer Xz < g and computes Yz = a**mod q.Each side keeps the X value
private and makes the Y value available publicly to the other side. User A computes
the key as K = (Y5)* modq and user B computes the key as K = (Y,4)** modg.
These two calculations produce identical results:

K = (Yg)*" modgq
= («** mod ¢)* mod g
= (a**)* modgq
= o*#¥1 modgq
= (a«*)*» mod g
= (o mod ¢)** modgq
= (Y,)*»modq
The result is that the two sides have exchanged a secret value. Furthermore,
because X4 and Xp are private, an adversary only has the following ingredients to
work with: g, «, Y4, and Yp. Thus, the adversary is forced to take a discrete loga-

rithm to determine the key. For example, to determine the private key of user B, an
adversary must compute

XB = dloga,q(YB)

SMany texts refer to the discrete logarithm as the index. There is no generally agreed notation for this
concept, much less an agreed name.

3.5 / PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS 87

Global Public Elements

q prime number

@ a < g and o a primitive root of ¢
User A Key Generation

Select private X, X, <gq

Calculate public Y, Y, = o®amod ¢

User B Key Generation

Select private Xp Xp<gq

Calculate public Yp Yy = &®Bmod ¢

Generation of Secret Key by User A

K = (Yz)*amod ¢

Generation of Secret Key by User B

K = (Y,)*8mod ¢

Figure 3.12 The Diffie-Hellman Key Exchange Algorithm

The adversary can then calculate the key K in the same manner as user B does.

The security of the Diffie-Hellman key exchange lies in the fact that, while it is
relatively easy to calculate exponentials modulo a prime, it is very difficult to calcu-
late discrete logarithms. For large primes, the latter task is considered infeasible.

Here is an example. Key exchange is based on the use of the prime number
q = 353 and a primitive root of 353, in this case o = 3. A and B select secret keys
X4 =97 and Xp = 233, respectively. Each computes its public key:

A computes Y, = 3% mod 353 = 40.

B computes Yz = 3?3 mod 353 = 248.
After they exchange public keys, each can compute the common secret key:

A computes K = (Y5)** mod 353 = 248”7 mod 353 = 160.
B computes K = (Y,4)*» mod 353 = 40?3 mod 353 = 160.

We assume an attacker would have available the following information:

q=353; a=3; Y,=40; Yp=248

88 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

User A User B

Generate
random X, < ¢;

Calculate Y Generate
Y, = o™ modg \ random X < ¢;

Calculate
Yy = a®B mod g¢;

Yp
Calculate
Calculate K = (Y,)*8 mod ¢

K = (Yp)*4 mod ¢

Figure 3.13 Diffie-Hellman Key Exchange

In this simple example, it would be possible to determine the secret key 160 by brute
force. In particular, an attacker E can determine the common key by discovering a
solution to the equation 3% mod 353 = 40 or the equation 3° mod 353 = 248. The
brute-force approach is to calculate powers of 3 modulo 353, stopping when the
result equals either 40 or 248. The desired answer is reached with the exponent
value of 97, which provides 3°” mod 353 = 40.

With larger numbers, the problem becomes impractical.

Key ExcHANGE Pro1ocoLs Figure 3.13 shows a simple protocol that makes use of
the Diffie-Hellman calculation. Suppose that user A wishes to set up a connection
with user B and use a secret key to encrypt messages on that connection. User A can
generate a one-time private key X4, calculate Y4, and send that to user B. User B
responds by generating a private value Xp, calculating Yz, and sending Yz to user A.
Both users can now calculate the key. The necessary public values ¢ and « would
need to be known ahead of time. Alternatively, user A could pick values for g and o
and include those in the first message.

As an example of another use of the Diffie-Hellman algorithm, suppose that a
group of users (e.g., all users on a LAN) each generate a long-lasting private value
X4 and calculate a public value Y 4. These public values, together with global public
values for g and ¢, are stored in some central directory. At any time, user B can
access user A’s public value, calculate a secret key, and use that to send an encrypted
message to user A. If the central directory is trusted, then this form of communica-
tion provides both confidentiality and a degree of authentication. Because only A
and B can determine the key, no other user can read the message (confidentiality).
Recipient A knows that only user B could have created a message using this key
(authentication). However, the technique does not protect against replay attacks.

MAN-IN-THE-MIDDLE ATTACK The protocol depicted in Figure 3.13 is insecure
against a man-in-the-middle attack. Suppose Alice and Bob wish to exchange keys,
and Darth is the adversary. The attack proceeds as follows:

1. Darth prepares for the attack by generating two random private keys Xp; and
Xpo, and then computing the corresponding public keys Y1 and Yp,.

3.5 / PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS 89

2. Alice transmits Y4 to Bob.

3. Darth intercepts Y4 and transmits Yp; to Bob. Darth also calculates
K2 = (Y,)*»” modg.

4. Bob receives Yp; and calculates K1 = (Yp;)** modg.
5. Bob transmits Y to Alice.

6. Darth intercepts Yp and transmits Yp, to Alice. Darth calculates
K1 = (Y)*»'modg.
7. Alice receives Yy, and calculates K2 = (Yp,)* modgq.

At this point, Bob and Alice think that they share a secret key. Instead Bob
and Darth share secret key K1, and Alice and Darth share secret key K2. All future
communication between Bob and Alice is compromised in the following way:

1. Alice sends an encrypted message M: E(K2, M).
2. Darth intercepts the encrypted message and decrypts it to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message. In the first
case, Darth simply wants to eavesdrop on the communication without altering
it. In the second case, Darth wants to modify the message going to Bob.

The key exchange protocol is vulnerable to such an attack because it does not
authenticate the participants. This vulnerability can be overcome with the use of
digital signatures and public-key certificates; these topics are explored later in this
chapter and in Chapter 4.

Other Public-Key Cryptography Algorithms

Two other public-key algorithms have found commercial acceptance: DSS and
elliptic-curve cryptography.

DicrrAar SIGNATURE STANDARD The National Institute of Standards and Technology
(NIST) has published Federal Information Processing Standard FIPS PUB 186,
known as the Digital Signature Standard (DSS). The DSS makes use of the SHA-1
and presents a new digital signature technique, the Digital Signature Algorithm
(DSA). The DSS was originally proposed in 1991 and revised in 1993 in response to
public feedback concerning the security of the scheme. There was a further minor
revision in 1996. The DSS uses an algorithm that is designed to provide only the
digital signature function. Unlike RSA, it cannot be used for encryption or key
exchange.

ErripTic-CURVE CrRyPTOGRAPHY The vast majority of the products and standards
that use public-key cryptography for encryption and digital signatures use RSA.The
bit length for secure RSA use has increased over recent years, and this has put a
heavier processing load on applications using RSA. This burden has ramifications,
especially for electronic commerce sites that conduct large numbers of secure
transactions. Recently, a competing system has begun to challenge RSA: elliptic
curve cryptography (ECC). Already, ECC is showing up in standardization efforts,
including the IEEE P1363 Standard for Public-Key Cryptography.

The principal attraction of ECC compared to RSA is that it appears to offer
equal security for a far smaller bit size, thereby reducing processing overhead. On

90 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Thus, the confidence level in ECC
is not yet as high as that in RSA.

ECC is fundamentally more difficult to explain than either RSA or Diffie-
Hellman, and a full mathematical description is beyond the scope of this book. The
technique is based on the use of a mathematical construct known as the elliptic curve.

3.6 DIGITAL SIGNATURES

Public-key encryption can be used in another way, as illustrated in Figure 3.9b.
Suppose that Bob wants to send a message to Alice, and although it is not impor-
tant that the message be kept secret, he wants Alice to be certain that the message
is indeed from him. In this case, Bob uses his own private key to encrypt the mes-
sage. When Alice receives the ciphertext, she finds that she can decrypt it with
Bob’s public key, thus proving that the message must have been encrypted by Bob.
No one else has Bob’s private key, and therefore no one else could have created a
ciphertext that could be decrypted with Bob’s public key. Therefore, the entire
encrypted message serves as a digital signature. In addition, it is impossible to
alter the message without access to Bob’s private key, so the message is authenti-
cated both in terms of source and in terms of data integrity.

In the preceding scheme, the entire message is encrypted. Although validating
both author and contents, this requires a great deal of storage. Each document must
be kept in plaintext to be used for practical purposes. A copy also must be stored in
ciphertext so that the origin and contents can be verified in case of a dispute.
A more efficient way of achieving the same results is to encrypt a small block of bits
that is a function of the document. Such a block, called an authenticator, must have
the property that it is infeasible to change the document without changing the
authenticator. If the authenticator is encrypted with the sender’s private key, it
serves as a signature that verifies origin, content, and sequencing. A secure hash
code such as SHA-1 can serve this function. Figure 3.2b illustrates this scenario.

It is important to emphasize that the encryption process just described does
not provide confidentiality. That is, the message being sent is safe from alteration
but not safe from eavesdropping. This is obvious in the case of a signature based on
a portion of the message, because the rest of the message is transmitted in the clear.
Even in the case of complete encryption, there is no protection of confidentiality
because any observer can decrypt the message by using the sender’s public key.

3.7 RECOMMENDED READING AND WEB SITES

Solid treatments of hash functions and message authentication codes are found in [STINO6]
and {(MENE97].

The recommended treatments of encryption provided in Chapter 2 cover public-key as
well as conventional encryption. [DIFF88] describes in detail the several attempts to devise secure
two-key cryptoalgorithms and the gradual evolution of a variety of protocols based on them.

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 91

DIFF88 Diffie, W. “The First Ten Years of Public-Key Cryptography.” Procedings of the
IEEE, May 1988.

MENEY97 Menezes, A.; Oorschot, P;and Vanstone, S. Handbook of Applied Cryptography.
Boca Raton, FL: CRC Press, 1997.

STINO6 Stinson, D. Cryptography: Theory and Practicee Boca Raton, FL:
Chapman&Hall/ CRC Press, 2006.

Recommended Web Sites:

e NIST Secure Hashing Page: SHA FIPS and related documents.

* RSA Laboratories: Extensive collection of technical material on RSA and other topics

in cryptography.
* Digital Signatures: NIST page with information on NIST-approved digital signature
options.
3.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS
Key Terms
authenticated encryption MD5 public-key encryption
D‘1f‘f1e-IL'Iellman key exchange | message authentication RIPEMD-160
digital signature message authentication code RSA
Digital Signature Standard (MAC) secret key
.(D.SS) message digest secure hash function
elliptic-curve cryptography one-way hash function SHA-1
(ECC) private key strong collision resistance
HMAC public key weak collision resistance
key exchange public-key certificate

Review Questions

3.1 List three approaches to message authentication.

3.2 What is a message authentication code?

3.3 Briefly describe the three schemes illustrated in Figure 3.2.

3.4 What properties must a hash function have to be useful for message authentication?
3.5 In the context of a hash function, what is a compression function?

3.6 What are the principal ingredients of a public-key cryptosystem?

3.7 List and briefly define three uses of a public-key cryptosystem.

92 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

3.8 What is the difference between a private key and a secret key?
3.9 What is a digital signature?
Problems
3.1 Consider a 32-bit hash function defined as the concatenation of two 16-bit functions:
XOR and RXOR, which are defined in Section 3.2 as “two simple hash functions.”
a. Will this checksum detect all errors caused by an odd number of error bits?
Explain.

b. Will this checksum detect all errors caused by an even number of error bits? If
not, characterize the error patterns that will cause the checksum to fail.

c. Comment on the effectiveness of this function for use as a hash function for
authentication.

3.2 Suppose H(m) is a collision-resistant hash function that maps a message of arbitrary
bit length into an #n-bit hash value. Is it true that, for all messages x, x' with x # x', we
have H(x) # H(x")? Explain your answer.

3.3 State the value of the padding field in SHA-512 if the length of the message is
a. 1919 bits
b. 1920 bits
c. 1921 bits

3.4 State the value of the length field in SHA-512 if the length of the message is
a. 1919 bits
b. 1920 bits
c. 1921 bits

3.5 a. Consider the following hash function. Messages are in the form of a sequence of

t
decimal numbers, M = (a;, ay, . . ., a;). The hash value £ is calculated as <Eai>mod n,
i=1
for some predefined value n. Does this hash function satisfy any of the requirements
for a hash function listed in Section 3.2?7 Explain your answer.
t
b. Repeat part (a) for the hash function & = (> (ai)2>mod n.
i=1

c. Calculate the hash function of part (b) for M = (189, 632,900, 722,349) and n = 989.

3.6 This problem introduces a hash function similar in spirit to SHA that operates on let-

ters instead of binary data. It is called the toy tetragraph hash (tth).® Given a message
consisting of a sequence of letters, tth produces a hash value consisting of four letters.
First, tth divides the message into blocks of 16 letters, ignoring spaces, punctuation, and
capitalization. If the message length is not divisible by 16, it is padded out with nulls.
A four-number running total is maintained that starts out with the value (0,0, 0,0); this
is input to the compression function for processing the first block. The compression
function consists of two rounds. Round 1: Get the next block of text and arrange it as a
row-wise 4 x 4 block of text and covert it to numbers (A = 0,B = 1, etc.). For example,
for the block ABCDEFGHIJKLMNOP, we have

1 2 3
5 6 7
8 9 10 | 11
12 | 13 | 14 | 15

Zl~|o| >
Z|—=|m| ™

o (- | DO

ol |Q|NO

I thank William K. Mason of the magazine staff of The Cryptogram for providing this example.

3.7

3.8

3.9

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 93

Then, add each column mod 26 and add the result to the running total, mod 26. In this
example, the running total is (24, 2, 6, 10). Round 2: Using the matrix from round 1,
rotate the first row left by 1, second row left by 2, third row left by 3, and reverse the
order of the fourth row. In our example:

11 8 9 10
15| 14| 13| 12

Tl Q|w
Sl—=|= O

Z|—=|m| O

2R »>

Now, add each column mod 26 and add the result to the running total. The new run-
ning total is (5,7,9, 11). This running total is now the input into the first round of the
compression function for the next block of text. After the final block is processed,
convert the final running total to letters. For example, if the message is ABCDE
FGHIJKLMNOP, then the hash is FHJL.

a. Draw figures comparable to Figures 3.4 and 3.5 to depict the overall tth logic and
the compression function logic.

b. Calculate the hash function for the 48-letter message “I leave twenty million dollars
to my friendly cousin Bill.”

c. To demonstrate the weakness of tth, find a 48-letter block that produces the same
hash as that just derived. Hint: Use lots of A’s.

It is possible to use a hash function to construct a block cipher with a structure similar
to DES. Because a hash function is one way and a block cipher must be reversible (to
decrypt), how is it possible?

Now consider the opposite problem: Use an encryption algorithm to construct a one-
way hash function. Consider using RSA with a known key. Then process a message con-
sisting of a sequence of blocks as follows: Encrypt the first block, XOR the result with
the second block and encrypt again, and so on. Show that this scheme is not secure by
solving the following problem. Given a two-block message B1, B2, and its hash, we have

RSAH(BI, B2) = RSA(RSA(B1) @ B2)

Given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(B1, B2).
Thus, the hash function does not satisfy weak collision resistance.

One of the most widely used MACs, referred to as the Data Authentication Algorithm,
is based on DES. The algorithm is both a FIPS publication (FIPS PUB 113) and
an ANSI standard (X9.17). The algorithm can be defined as using the cipher block
chaining (CBC) mode of operation of DES with an initialization vector of zero
(Figure 2.10). The data (e.g., message, record, file, or program) to be authenticated is
grouped into contiguous 64-bit blocks: Py, P, . . . , Py. If necessary, the final block is
padded on the right with Os to form a full 64-bit block. The MAC consists of either the
entire ciphertext block Cy or the leftmost M bits of the block with 16 = M = 64. Show
that the same result can be produced using the cipher feedback mode.

In this problem, we will compare the security services that are provided by digital sig-
natures (DS) and message authentication codes (MAC). We assume that Oscar is able
to observe all messages send from Alice to Bob and vice versa. Oscar has no knowl-
edge of any keys but the public one in case of DS. State whether and how (i) DS and
(i) MAC protect against each attack. The value auth (x) is computed with a DS or a
MAC algorithm, respectively.

a. (Message integrity) Alice sends a message x = “Transfer $1000 to Mark”
in the clear and also sends auth (x) to Bob. Oscar intercepts the message and
replaces “Mark” with “Oscar”. Will Bob detect this?

94 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

3.11

3.12

b. (Replay) Alice sends a message x = “Transfer $1000 to Oscar” in the
clear and also sends auth (x) to Bob. Oscar observes the message and signature
and sends them 100 times to Bob. Will Bob detect this?

c. (Sender Authentication with cheating third party) Oscar claims that he sent some
message x with a valid auth (x) to Bob, but Alice claims the same. Can Bob clear
the question in either case?

d. (Authentication with Bob cheating) Bob claims that he received a message x
with a valid signature auth (x) from Alice (e.g., “Transfer $1000 from Alice to
Bob”) but Alice claims she has never sent it. Can Alice clear this question in
either case?

Figure 3.14 shows an alternative means of implementing HMAC.

a. Describe the operation of this implementation.
b. What potential benefit does this implementation have over that shown in Figure 3.6?

In this problem, we demonstrate that for CMAC, a variant that XORs the second key
after applying the final encryption doesn’t work. Let us consider this for the case of
the message being an integer multiple of the block size. Then the variant can be
expressed as VMAC(K, M) = CBC(K, M) @ K;.Now suppose an adversary is able to
ask for the MACs of three messages: the message 0 = 0", where n is the cipher block
size; the message 1 = 1”; and the message 1 0. As a result of these three queries, the

1
Precomputed ! Computed per message
1
1
K* jpad !
'
1
-~
! bbits bbits b bits
| < — > —>
S; IR Y e e | Y,
b bitsl i +
1
I 0
v > @ E nbits Hash
1
: n bits
+ 1
K™ opad i [H(S; 1| M)
1
1
-~ H Pad to b bits
'
1 Y
1
So !
1
b bitsl :
1 Y
1 n bits
v —{}—— ~(1)
H n bits
1
! [THMAC(K, M)

Figure 3.14 Efficient Implementation of HMAC

3.13

3.14

3.15

3.16

3.17

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 95

adversary gets 7o = CBC(K, 0) @ Ky; T1 = CBC(K,1) ® K; and T, = CBC(K,
[CBC(K, 1)]) @ K;. Show that the adversary can compute the correct MAC for the
(unqueried) message 0| (Ty @ T1).

Prior to the discovery of any specific public-key schemes, such as RSA, an existence
proof was developed whose purpose was to demonstrate that public-key encryption is
possible in theory. Consider the functions f(x1) = z1; f2(x2, y2) = z2; f3(x3, y3) = z3,
where all values are integers with 1 < x;, y;, z; < N. Function f; can be represented by a
vector M1 of length N in which the kth entry is the value of f;(k). Similarly, f, and f3
can be represented by N x N matrices M2 and M3. The intent is to represent the
encryption/decryption process by table lookups for tables with very large values of N.
Such tables would be impractically huge but in principle could be constructed. The
scheme works as follows: construct M1 with a random permutation of all integers
between 1 and N; that is, each integer appears exactly once in M1. Construct M2 so
that each row contains a random permutation of the first N integers. Finally, fill in M3
to satisfy the condition:

f3(fr(f1(k), p),k)=p forallk,pwithl=k,p=N
In words,

1. M1 takes an input k and produces an output x.
2. M2 takes inputs x and p giving output z.
3. M3 takes inputs z and k and produces p.

The three tables, once constructed, are made public.
a. Itshould be clear that it is possible to construct M3 to satisfy the preceding condition.
As an example, fill in M3 for the following simple case:

502(13]4]|1
412151113
M2=(1|3|2|4]|5| M3=
311(4(2(5
2(5(13]4]|1

Convention: The ith element of M1 corresponds to k = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3
corresponds to z = i; the jth column of M3 corresponds to k = .

b. Describe the use of this set of tables to perform encryption and decryption
between two users.

c. Argue that this is a secure scheme.

Perform encryption and decryption using the RSA algorithm (Figure 3.10) for the
following:

a p=3;qg=1l,e=T,M=5
b. p=5qg=11,e=3M=9
c. p=T,q=1l,e=17;M =38
d. p=11;9g=13,e=11;M =7
e. p=17,q=3l,e=TM =2

Hint: Decryption is not as hard as you think; use some finesse.

In a public-key system using RSA, you intercept the ciphertext C = 10 sent to a user
whose public key is e = 5,n = 35. What is the plaintext M?

In an RSA system, the public key of a given user is e = 31, n = 3599. What is the pri-
vate key of this user?

Suppose we have a set of blocks encoded with the RSA algorithm and we don’t have the

private key. Assume n = pg, e is the public key. Suppose also someone tells us they know
one of the plaintext blocks has a common factor with n. Does this help us in any way?

96 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

3.18
3.19

3.20

3.21

Show how RSA can be represented by matrices M1, M2, and M3 of Problem 3.4.
Consider the following scheme.

1. Pick an odd number, E.
2. Pick two prime numbers, P and Q,where (P — 1)(Q — 1) — 1 is evenly divisible by E.
3. Multiply P and Q to get N.
P-1 -1(E-1)+1
4. Calculate D = ()Q E)() .
Is this scheme equivalent to RSA? Show why or why not.

Suppose Bob uses the RSA cryptosystem with a very large modulus # for which the
factorization cannot be found in a reasonable amount of time. Suppose Alice sends a
message to Bob by representing each alphabetic character as an integer between
0Oand25 (A — 0,...,Z — 25),and then encrypting each number separately using
RSA with large e and large n. Is this method secure? If not, describe the most efficient
attack against this encryption method.

Consider a Diffie-Hellman scheme with a common prime ¢ = 11 and a primitive root
oa=2.

a. Ifuser A has public key Y4 = 9, what is A’s private key X4?
b. If user B has public key Yz = 3, what is the shared secret key K?

