DI-FCT-UNL Segurança de Redes e Sistemas de Computadores Network and Computer Systems Security

Mestrado Integrado em Engenharia Informática MSc Course: Informatics Engineering 1° Sem., 2020/2021

X509 Authentication

 X509 Certificates and PKI (Public Key) Infrastructure)

Outline

- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues

Outline

- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues

X509 Authentication

- Based on Algorithms and Constructions for Digital Signatures of Identity Claims (Asymmetric or Public-Key Cryptography) and Trusted X509 Certificates and Certification Chains)
- Supported in Authentication Protocols involving:
 - Authentication claimants of digital identities:
 - SIGNERS if Authentication Proofs
 - Authentication Validation
 - Authenticators, using verification of signed identity authentication proofs
 - Typical use of digital signatures: standardized constructions (as studied before)

X509 Authentication: Signers as authenticated identity claimants

Signer (as the authentication of claimant of digital identity claim)

- Digital identity as unique identifier (UID)
- Control of the keypair generation process
- Must keep Private Key (related to exhibited X509 certificates) w/ required security assumptions
- Need that correspondent public-key must be known by the verifier (as the Authenticator peer): certified in X509 certificates
 - Certificates can be publicly exhibited: in a protocol, signers can send their public-key certificates
 - Certificates are issued by Trusted Certification Authorities

X509 Authentication: Identity Authenticators (as verifiers)

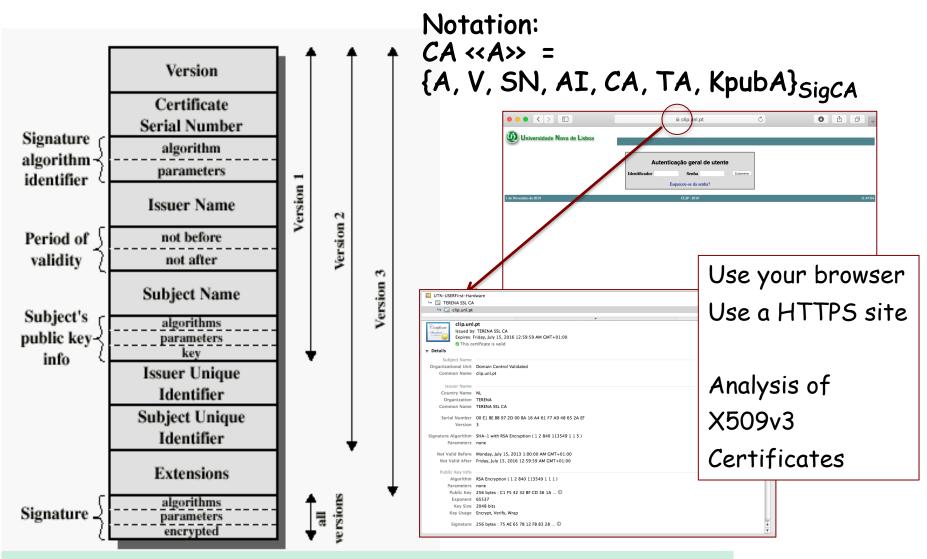
Authenticator (as the verifier of the claimed identity signatures):

- Need to know/obtain public key of the claimant UID in a trusted way, to verify the signed authentication claim
 - Can obtain from X509 public-key certificates
- For X509 Authentication, trust assumptions are based on obtaining and managing X509 certificates (as trusted public key certificates)
 - Role provided by Trusted Certification Authorities as issuers of X509 certificates
 - Also trusted by the verifiers

Outline

- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues

X.509 Standardization


X509: a standard framework, part of the ITU-T X500 standardization effort, initially targeted for:

- Provision of authentication services by X500 directory service
- Standard representation of keys and public key certificates (formats and their attributes and data representation types), as well as recommended cryptography (algorithms and parameters)
 - · Currently: X509v3 Certificates and X509v3 EV (Extended Validation) Certificates
 - Canonical Encoding Standardization
- Framework to address PKI systems (Public Key Infrastructures)
 - Processes, entity roles, interfaces)
 - Life cycle management of certificates: generation, enrollment, certification requests, certificate issuing, validation, revocation

Standardization: 1988, 1993 (v1), 1995 (v2), 2000 (v3), ...

IETF RFC 2459 (Jan 1999) RFC 8399 (May/2018)

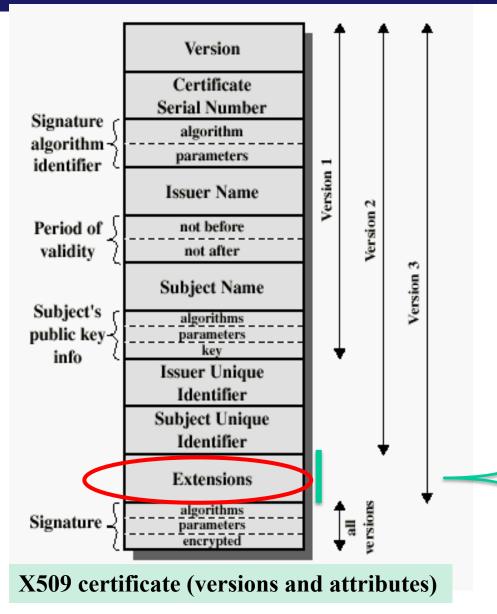
X.509 v3 Certificate: Structure, Attributes, Extensions, Classifiers

X509 certificate (Extended attributes: improved in different versions)

X.509 Certificates

Each certificate contains:

- The public key of a distinguished subject name (principal, user)
 - Subject name, Subject's public key information fields
- Other attributes with additional information as a list of other (field, value) pairs
 - Issuer UID, serial number, version, validity information, relevant information of cipher-suites used, verification control information, several extensions and fingerprints
- Signed with the private key of a CA.
 - · Digital signature covering all the other fields
 - Hash of fields, signed with the CA private key


Discussion: see the different fields, policies and extended attributes in current X509v3 Certificates

Outline

- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues

X.509 Certificate and CRL Formats

A set of one or more Extension Fields:

- Key Usage
- Constraints
- Extended Key Usage
- Subject Key Identifier
- · Authority Key Identifier
- Subject Alt. Names
- Certificate Policies
- CRL Dist. Endppoints
- ESCT List
- Certificate Authority Information ACcess

X509v3 Validation

Other validation issues of certificates for specific validation requirements

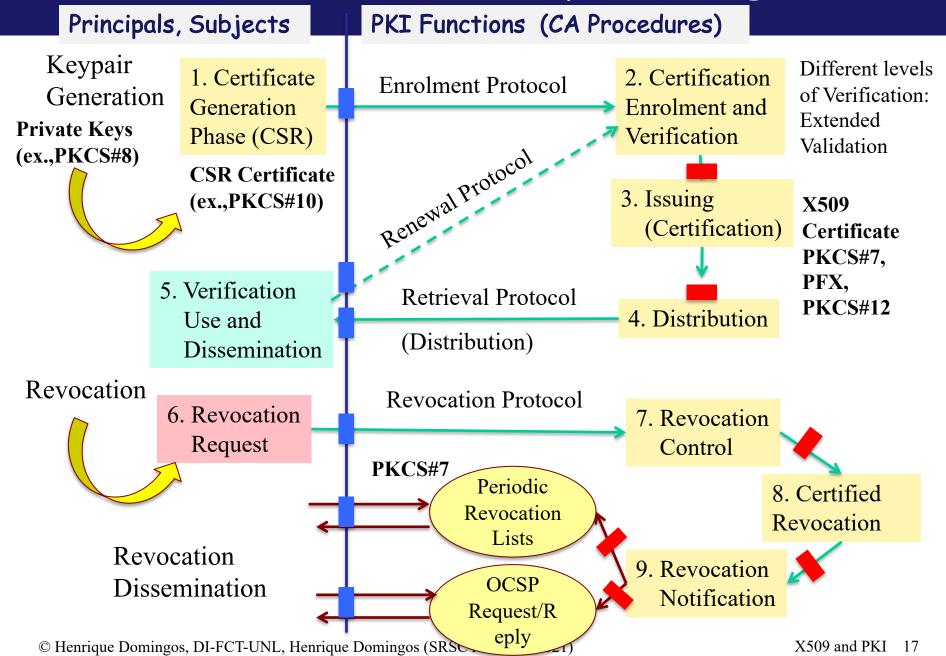
- Subject Name (fields and attributes)
 - Not only abstract UIDs, URIs, URLs, eMail addresses, ...
 - Extended with X500 distinguished name attributes and classification categories as well as alternative names
- Issuer name
 - Issuer/CA Distinguished names with X500 attributes
- Certif. policies, policy mappings and key policies
 - Allowing for specific validation to a given policy
 - Setting constraints for limitation/contention of the damage from faulty or malicious Cas

X509v3

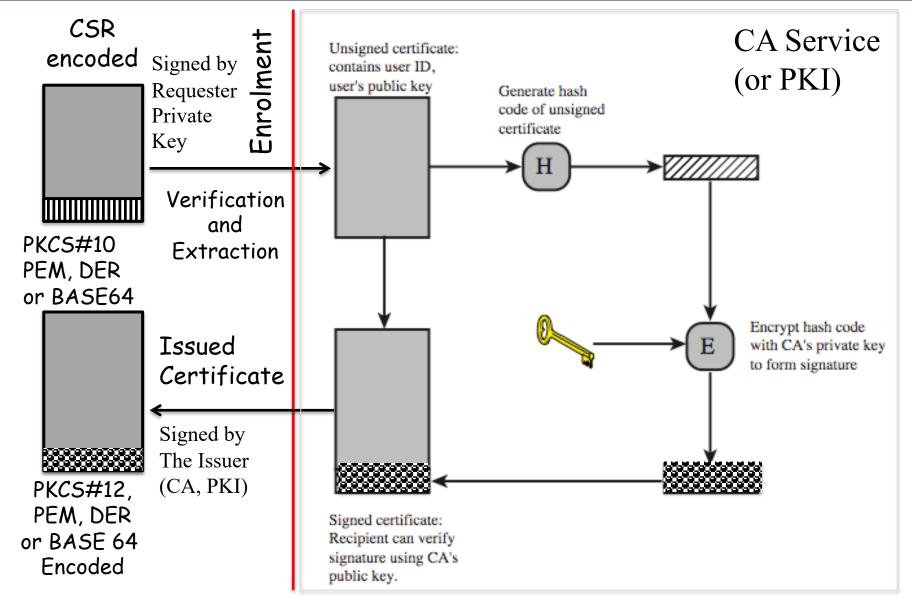
Other validation issues of certificates for specific validation requirements

- Inclusion of KeyIDs for Subject and Authority, as Key Selectors
- Information on CRL distribution points or for OnLine Status verification points (OCSP) from CA issuers
- Gradual adoption of OID standardization
- Fingerprints with Dual Secure Hashing Functions for Integrity:
 - Current use of SHA-256 and SHA-1

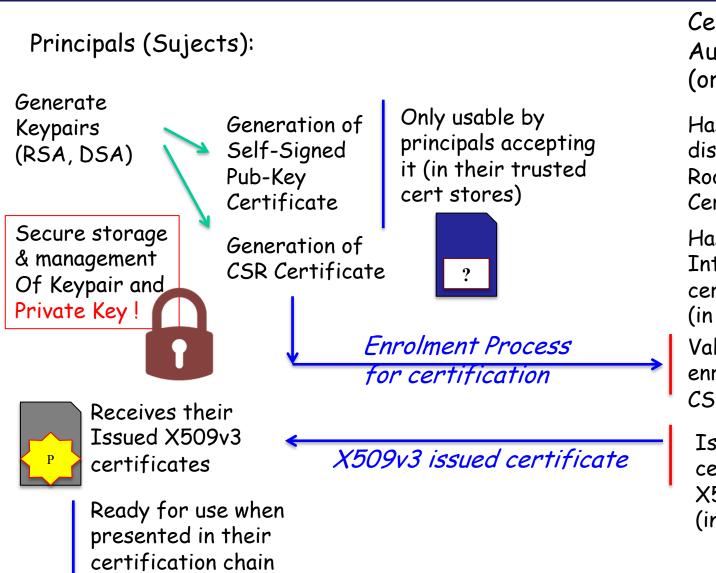
Extended validation (EV) Certificates


- Introduced by the CA/Browser forum
 - http://www.cabforum.org/, http://en.wikipedia.org/wiki/Extended_Validation_Certificate
 - CAs + Relying Party Application Software Suppliers
- Objective: inclusion of standardized procedures for verifying and expressing awareness of the certificate holder and validity (initially motivated by SSL - TLS certificates)
- Additional layer of protection: promotion of good practice, guidelines, accurate verification processes for issuing X509v3 SSL certificates
 - Verifying the legal, physical and operational existence of the entity
 - Verifying that the identity of the entity matches official records
 - Verifying that the entity has exclusive right to use the domain specified in the EV Certificate
 - Verifying that the entity has properly authorized the issuance of the EV Certificate

Outline


- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues

Remember the X509 Life Cycle Management


CSR Validation, extraction and signing (Issuing of Certificates)

Obtaining a User's Certificate

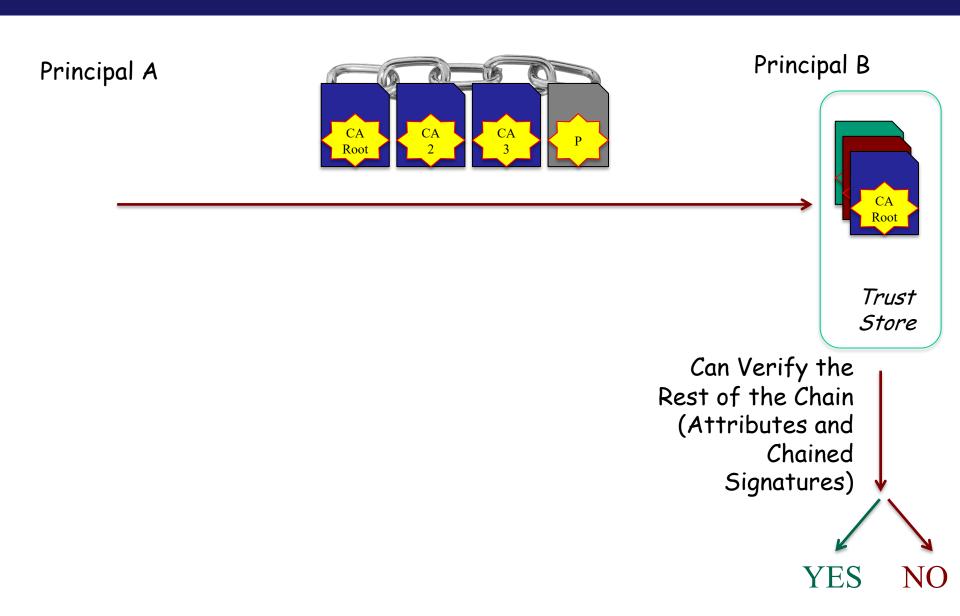
- Certificates: issued by CAs (Functions on PKIs)
 - Any user with access to the public key of the CA can recover and validate the certified user public key
 - Users can exchange certificates and certification chains for verification
 - Can use direct or reverse chains for verification
 - Certificates are public and unforgeable (signed by the issuer CA).
 - Possible to send/distribute/disseminate them in protocols or placed in public directories or repositories
 - Note: having a certificate is not a proof of authentication
 - Need a digital signature, exhibiting the public key certificate to validate the signature

Typical life cycle management

Certification
Authority
(or PKI solution)

Has a "well-known" disseminated Root Public key Certificate

Validation of enrolment and CSR Certificates


Issues generated certified (signed) X509v3 certificates (in a certain chain)

Certification Chains

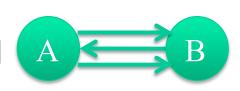
Outline

- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues

Summary of Base Authentication Procedures

One-way authentication and Key dist.

 $A[\{\text{ta, ra, IdB}\}K\text{ab, }Sig_{KprivA}\text{ (signData), }\{K\text{ab}\}_{KpubB}\text{]}$


Two-way (mutual) authentication and Key dist.

A [$\{$ ta, ra, IdB $\}$ Kab, Sig $_{KprivA}$ (signData), $\{$ Kab $\}$ $_{KpubB}$] A [$\{$ tb, rb, IdA $\}$ Kba, Sig $_{KprivB}$ (signData), $\{$ Kba $\}$ KpubA]

Three-way (Mutual) authentication and Key Dist.

A[$\{$ ta, ra, IdB $\}$ Kab, Sig $_{KprivA}$ (signData), $\{$ Kab $\}$ KpubB] B[$\{$ tb, rb, IdA $\}$ Kba, Sig $_{KprivB}$ (signData), $\{$ Kba $\}$ KpubA] A $\{$ rb $\}$

One-Way Authentication

- 1st message (A->B) used to establish:
 - The authenticated identity of A and that message is from A
 - That the message was intended for B
 - Integrity & originality of message
- Message must include timestamp, nonce, B's identity and is signed by A
- May include additional info for B
 - Eg., session key, for implicit key-establishment (session key-envelope)
 - Allows the concatenation of additional confidential content or messaging

Two-Way Authentication

- 2 messages (A->B, B->A) establishes in addition:
 - The identity of B and that reply is from B
 - That reply is intended for A
 - Integrity & originality of reply
- Reply includes original nonce from A, also timestamp and a nonce from B
- May include additional info for A
 - May establish "half-duplex" session symmetric keys
 - May establish "full-duplex" session symmetric keys (generated from pre-master keys or exchanged seed-material)

Three-Way Authentication

- 3 messages (A->B, B->A, A->B), adding a final round to mutual authentication
 - Enables above authentication without no need of synchronized clocks
- Has reply from A back to B containing signed copy of nonce iterated from B
 - Means that timestamps need not be checked or relied upon, preserving anyway message-freshness and ordering (protocol termination) control

Authentication Procedures Example of concretizations

Autenticação one-way model:

Ex., One-Way TLS Authentication, S/MIME or PGP Message Authentication

Autenticação two-way (mutual)

Ex., Two-Way TLS Authentication, SET Protocol

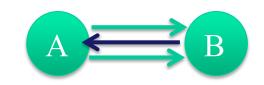
Autenticação three-way (mutual)

Ex., Two-Way TLS Authentication and Key-Session Generation and Agreement

Practical protocols

Two forms of management of chain trust

Certificates pre-cached (and managed orthogonally) in trusted certificate stores Ex., JAVA, keystores


> Advantages ? Drawbacks ?

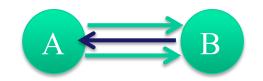
"On the Fly" validation of trust chains

- Only need "root" certificate pre-cached in trusted stores
- Send certification chains in the authentication handshake
- > Advantages ? Drawbacks ?

Base Authentication variants (Variant 1)

One-way authentication and Key dist.

A: I am A


B: Authentication challenge **Cb** for the claimer

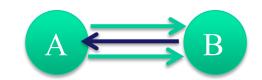
 $A[\{ta, ra, Cbr, IdB\}Kab, Sig_{KprivA}(signData), \{Kab\}_{KpubB}]$

Two-way (mutual) authentication and Key dist.

Base Authentication variants (Ex., Variants 1)

One-way authentication and Key dist.

A: I am A, <my ciphersuite proposal>


B: Challenge **Cb**, <my ciphersuite choice>

A [{ta, ra, Cbr, IdB}Kab, Sig_{KprivA}(signData), {Kab}KpubB]

Two-way (mutual) authentication and Key dist.

Base Authentication Variants (Ex., Variants 2)

One-way authentication and Key dist.

A: I am A, <my ciphersuite proposal>, CERT_A


B: Challenge Cb, <my ciphersuite choice>, CERT_R

A[{ta, ra, Cbr, IdB}Kab, Sig_{KprivA}(signData), {Kab}KpubB]

Two-way (mutual) authentication and Key dist.

Base Authentication Procedures (Ex., Variants 3)

One-way authentication and Key dist.

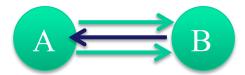
A: I am A, <my ciphersuite proposal>, <Certification Chain> B[Cb Challenge, <my ciphersuite choice>, <Certification Chain>] $A[\{ta, ra, \textbf{Cbr}, IdB\}Kab, Sig_{KprivA}(signData), \{Kab\}KpubB]$

Two-way (mutual) authentication and Key dist.

Base Authentication Procedures (Ex., Variants 4)

One-way authentication and Key dist.

A: I am A, <my ciphersuite proposal>, <Certification Chain>


B: Cb Challenge, <my ciphersuite choice>, Sig_{KprivB}(signData), <Cert Chain>

 $A[\{ta, ra, Cbr, IdB\}Kab, Sig_{KprivA}(signData), \{Kab\}_{KpubB}]$

Two-way (mutual) authentication and Key dist.

Base Authentication Procedures (Ex., Variants 5)

One-way authentication and Key dist.

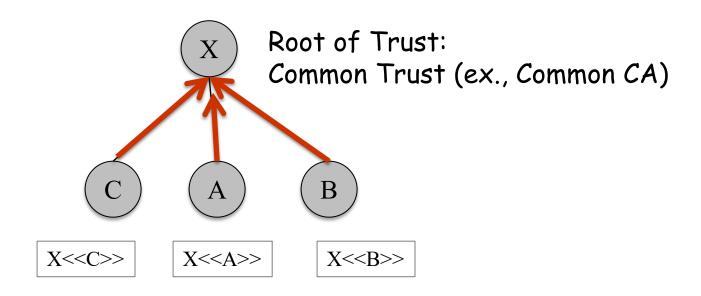
A: I am A, <my ciphersuite proposal>, <Certification Chain>

B: Cb, <my ciphersuite choice>, Sig_{KprivB}(DHpubB, SignData), <Cert Chain>

 $A[\{ta, ra, Cbr, IdB\}Ks, Sig_{KprivA}(DHpubA, signData)]$

Two-way (mutual) authentication and Key dist.

Outline


- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues

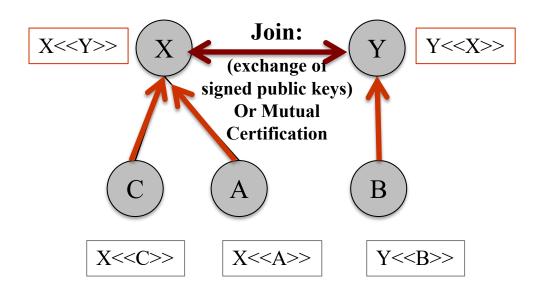
Trust and Validation Chains

Common trust based validation

- When all users subscribe to the same Root Of Trust X
- Ex., Model for a small community of users (non-scalable, centralized-root trust)
- Any user A transmits directly the certificate to any other (B, C)

What if we have more than one RooT (or CA)

No common trust verification conditions


- Model for a large community of users (scalable model)
- Users need to have Public Keys of all the CAs?
- It may be more practical to consider that
 - There will be several Roots of Trust (CAs),
 - But each of which securely provides its public key to some fraction of the users
 - Then we can use cross-certification links in a certification hierarchy

Notation for a Public Key Certificate:

 $CA \leftrightarrow A \Rightarrow = \{A, V, SN, AI, CA, TA, KpubA\}_{SigCA}$ Y<<X>> means: Certificate of entity X issued by Y

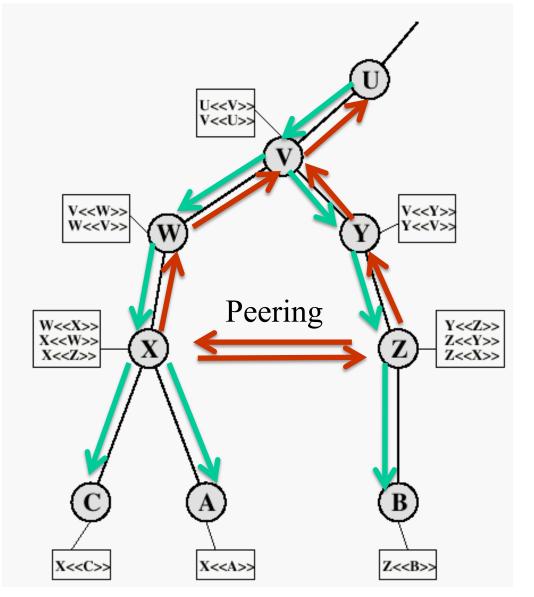
Verification of certificates => imply that the verifiers previously obtained, in a trusted way, the CA public key

Solution for no Common Trust: Peering

- A obtains X<<Y>>> from a directory
- A obtains Y<> from a directory (or directly from B)
- A uses the chain Y <>, X<<Y>>> B can use the chain: X<<A>> Y<<X>>

or reverse chain X<<A>> X<<Y>

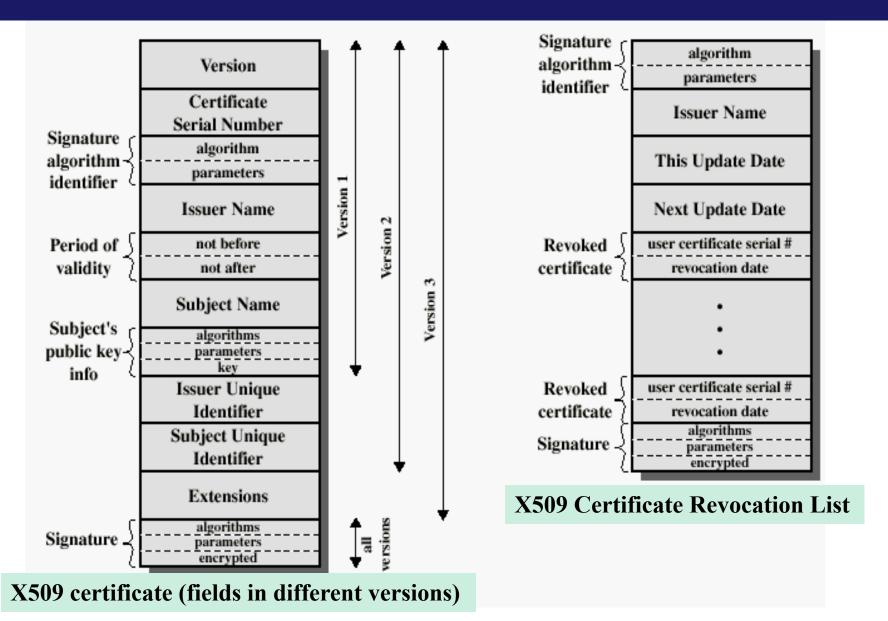
Possible generalization for long paths (when joins are at higher levels)


X.509 CA Hierarchy and Chains

Forward certificates

Reverse certificates

See a X509v3 Direct Certification Chain in a TLS (HTTPS) connection


- In general the more common is to have Root CA Public Key certificates in local trusted stores
 - the authentication processing supported with a direct certification chain validation
- Ex., see the CA's Root Certificates in your Java installation
 - Find cacerts in your /...../jre/lib/security hierarchy
- See the certification chain in a TLS (HTTPS) connection:
 - Can use your Browser
 - Or can use openssl
 - openssl s client -connect www.feistyduck.com:443

Outline

- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues

X509 Certificates and CRLs

Revocation of Certificates: Why, When, How

Reasons for revocation:

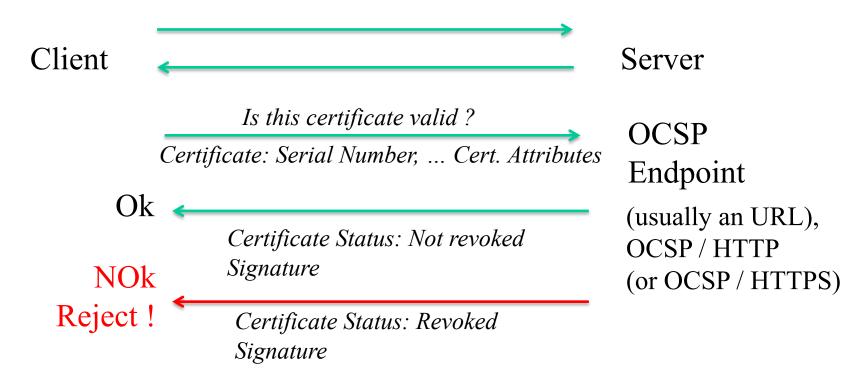
- User's private key is assumed to be compromised.
- User is no longer certified by this CA.
- CA's certificate is assumed to be compromised.
- · CA's private keys compromised

Certificates should not be validated

- After the expiration
 - Requires the issuing of a new certificate just before the expiration of the old one
 - The new certificate can be issued by a different CA
- If the end use is not according with the content (specific attributes, policies, extensions)
- If it is in a "current" certification revocation list (CRL) issued by the CA that issued the certificate
- If not validated by synchronous "on line" verification process
 - Via OCSP Protocol

Management of CRLs

- Maintained by each CA (or CRL issuers' end-points)
- Usually provided in DER or PEM Formats
 - A list of revoked (not expired) certificates issued by that CA, including
 - Fnd-user certificates
 - Possible reverse certificates
- CRLs must be managed by final users (user responsibility)
 - Checked from a directory, every time a certificate is received
 - CRL endpoints (in issued X509 certificates)
- Checked from a local cache, periodically updated (ex., Incremental, Time-Controlled, Serial Number Controlled)
 - Black Lists: CRLs
 - Full-Lists vs. Incremental Lists
 - Time-controlled vs. Version-Controlled
 - Also possible: White Lists as White CRLs


See a CRL, as usually issued by CAs

- Download the current CRL from the CRL endpoint of a given (issued) certificate
- Inspect the CRL (example w/ keytool and openssl):

```
keytool -printcrl -file <obtainedcrl>
or
openss | crl -inform DER -text -noout -in <obtainedcrl>
        To see the CRL in ASN.1 Syntax format specification
```

Revocation control w/ the OCSP Protocol

- OCSP On Line Certificate Status Protocol
 - Client/Server Request/Reply Protocol
 - OCSP Endpoints provided by CAs
 - OCSP Endpoint Attribute in issued X509 Certificates

OCSP (example with openssl)

- Given a certificate (ex.): certificte.pem as a chained certificate
- Verify the OCSP endpoint attribute (typically a given URL)
- Verification of all certificates in the chain
- Use of openssl:

Issuer in the chain

opensslocsp-issuer certificate.pem-cert sslcert.pem-url http://OCSP-URL -text -CAfile CAchainfile.pem

Result ..

WARNING: no nonce in response

Response verify OK sslcert.pem: good

This Update: Mar 13 17:13:19 2012 GMT Next Update: Mar 20 17:13:19 2012 GMT WARNING: no nonce in response

Response verify OK sslcert.pem: revoked

This Update: Mar 16 16:18:11 2012 GMT Next Update: Jun 11 00:52:47 2012 GMT

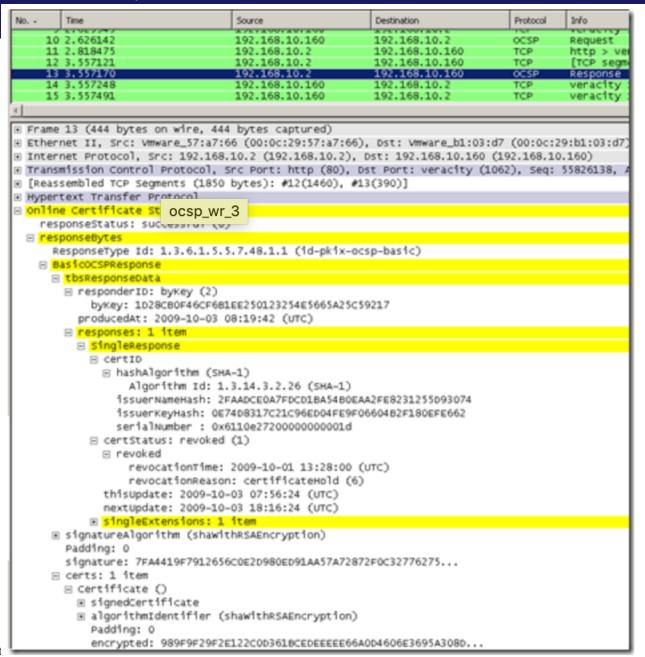
Reason: keyCompromise

Revocation Time: Mar 16 16:16:56 2012 GMT

OCSP - Online Certificate Status Protocol

- A Request/Response Protocol, usually supported in HTTP
 - OCSP Request (with the wireshark tool)

No	Time	Source	Destination	Protocol	Info
	1 0.000000	192.168.10.160	192.168.10.2	TCP	sacred >
	2 0.000137	192.168.10.2	192.168.10.160	TCP	http > s
	3 0.000165	192.168.10.160	192.168.10.2	TCP	sacred >
	4 0.000379	192.168.10.160	192.168.10.2	OCSP	Request
	5 0.202151	192.168.10.2	192.168.10.160	TCP	http > s
	6 0.285244 7 0.285278	192.168.10.2 192.168.10.2	192.168.10.160 192.168.10.160	TCP OCSP	[TCP sec
	8 0.285308	192.168.10.2	192.168.10.2	TCP	Response sacred
_	0 14 707701	100 160 10 160	102 160 10 2	TCD	comment of
€					
⊕ Fram	e 4 (625 bytes on wir	e, 625 bytes captured)			
⊕ Ethe	rnet II, Src: Vmware_	b1:03:d7 (00:0c:29:b1:03:d	d7), Dst: Vmware_57:a7:	66 (00:0c:	29:57:a7:6
	-	92.168.10.160 (192.168.10.			
		ocol, Src Port: sacred (11			
	rtext Transfer Protoc	-		,,	,
	ne Certificate Status				
	sRequest	110000			
	requestList: 1 item				
	⊟ Request				
	□ reqCert	a 3			
	⊟ hashAlgorithm (-			
	_	1.3.14.3.2.26 (SHA-1)			
		2FAADCE0A7FDCD1BA54B0EAA2			
		0E74D8317C21C96ED04FE9F066	504B2F180EFE662		
	serialNumber :	0x6110e27200000000001d			
⊟	requestExtensions: 1	item			
	Extension				
	Id: 1.3.6.1.5.5.7	.48.1.4 (id-pkix-ocsp-resp	oonse)		
	□ AcceptableRespons		-		
	AcceptableRespo	nses item: 1.3.6.1.5.5.7.4	48.1.1 (id-pkix-ocsp-ba	asic)	
Ique Do	nningos, Di i Ci Oite, iici	nique Donningos (DICOC 164. 2020	114041		unu 1 1:


OCSP - Online Certificate Status Protocol

- OCSP Response (with the wireshark tool)

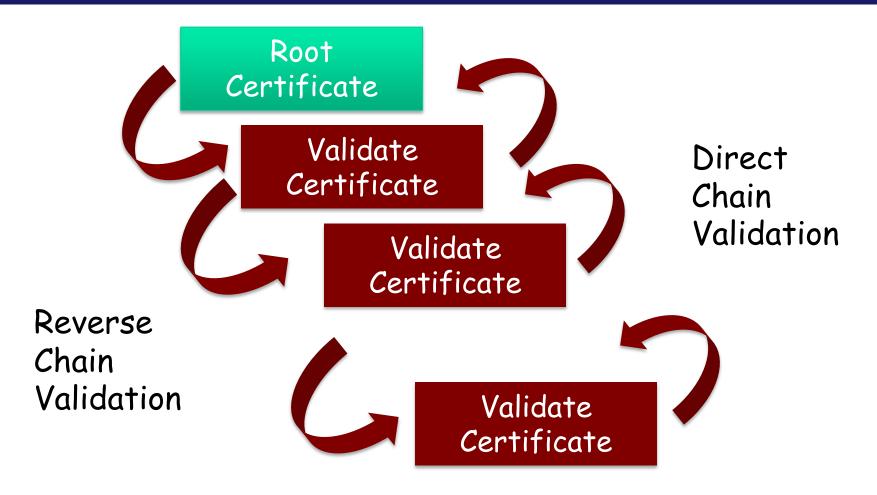
No	Time	Source	Destination	Protocol	Info					
1	0.000000	192.168.10.160	192.168.10.2	TCP	sacred >					
_	0.000137	192.168.10.2	192.168.10.160	TCP	http > sa					
	0.000165	192.168.10.160	192.168.10.2	TCP	sacred >					
	0.000379	192.168.10.160	192.168.10.2	OCSP	Request					
_	0.202151	192.168.10.2	192.168.10.160	TCP	http > sa					
	0.285244	192.168.10.2	192.168.10.160	TCP	[TCP segn					
	0.285278	192.168.10.2	192.168.10.160	OCSP	Response					
	0.285308	192.168.10.160	192.168.10.2	TCP	sacred >					
∢	77 777	111 127 11 121	111 157 111	TEN						
⊕ Frame	⊕ Frame 7 (367 bytes on wire, 367 bytes captured)									
■ Ethernet II, Src: Vmware_57:a7:66 (00:0c:29:57:a7:66), Dst: Vmware_b1:03:d7 (00:0c:29:b1:03:d7)										
Internet Protocol, Src: 192.168.10.2 (192.168.10.2), Dst: 192.168.10.160 (192.168.10.160)										
Transmission Control Protocol, Src Port: http (80), Dst Port: sacred (1118), Seq: 2186065053,										
Hypertext Transfer Protocol										
□ Online Certificate Status Protocol										
responseStatus: successful (0)										
□ responseBytes										
ResponseType Id: 1.3.6.1.5.5.7.48.1.1 (id-pkix-ocsp-basic)										
BasicoCSPResponse										
± tbsResponseData										
+	∃ signatureAlgorithm (shawithRSAEncryption)									
	Padding: 0									
signature: 0E5230CC19E6370E39F1F3FA90A797E100D1DC7B5201F82B										
•										
	certs: 1 item									

OCSP - Online Certificate Status Protocol

- OCSP Response

Outline

- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- · PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues


Validation can be complex, in a long tail

- Validation of different attributes
 - Subject Name Attributes:
 - Names, DNS names
 - Issuer Name Attributes
 - O, OU, Cname, ... Validity
- Validation of critical fields and attributes
 - Keysizes, Key usage, ...
 - Extensions: critical attributes and other possible required attributes
 - key usage policy
 - Verification of selected extensions
 - Timestamping
 - CRL endpoints => Look to the more recent issued CRL
 - OCSP endpoints => Possibly validate on the OCSP endpoint

 - Integrity Fingerprints
- Basic constraints
 - Certificate authority
- Validation of signatures

Validate a Certificate

Chain Validation can be more complex yet in a more long tail (direct and/or reverse)

Programming support: ex., JAVA PKI API http://docs.oracle.com/javase/8/docs/technotes/guides/security/cert path/CertPathProgGuide.html

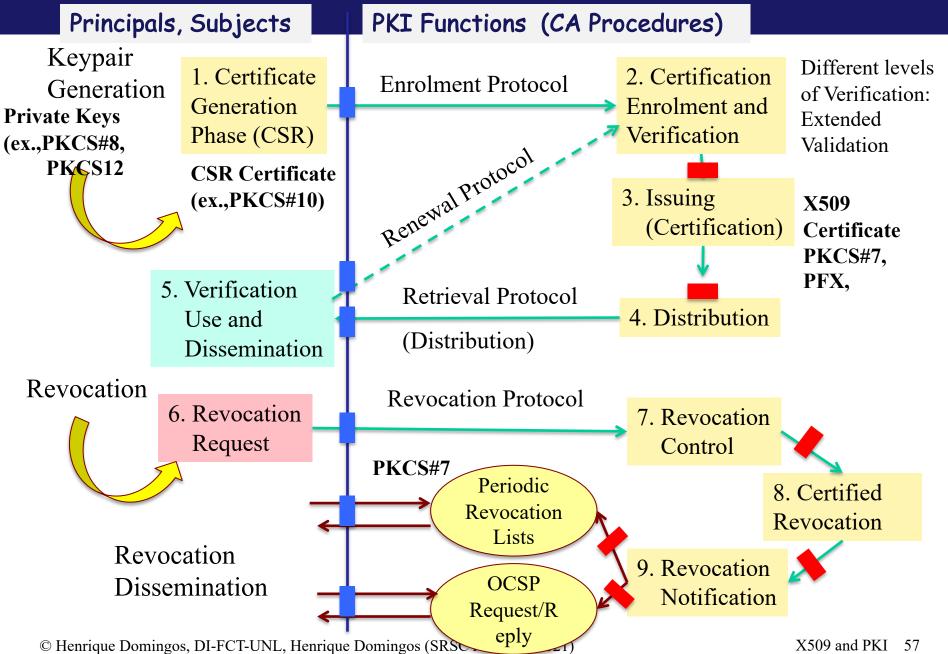
Complexity management issues (and usually flaws)

- Architectural weaknesses
- Errors and issues involving certificate authorities and/or management of PKIs
 - Ex., Verification problems in enrolment processes
- Implementation issues
- · Cryptographic weaknesses

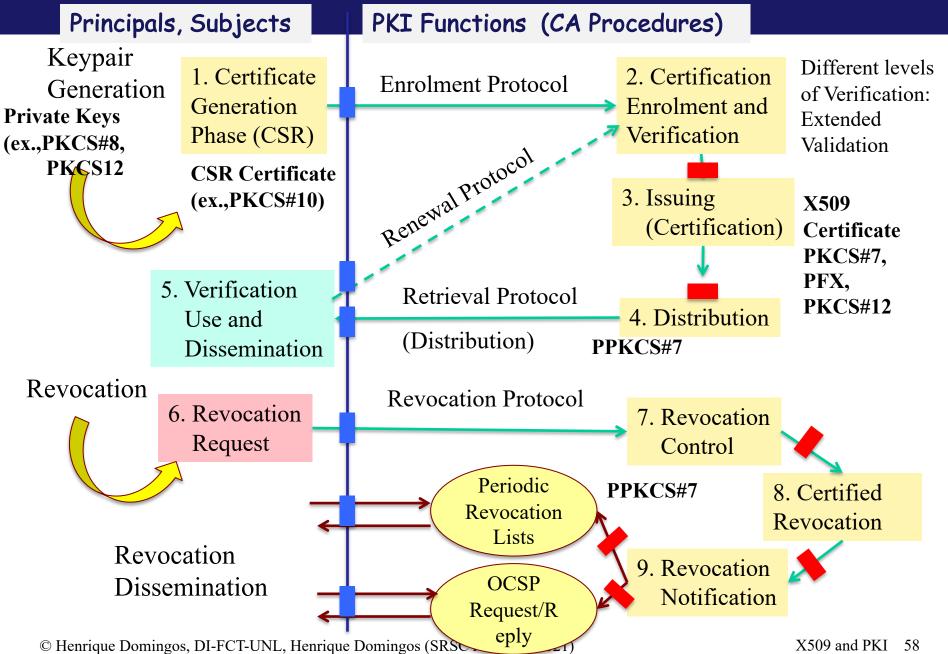
SW Certificates/Certification/Validation weaknesses

- Incorrect verification
- Incomplete verification or limited chain levels
- Implementation Bugs

X509v3, Chains, CRL and OCSP in practice

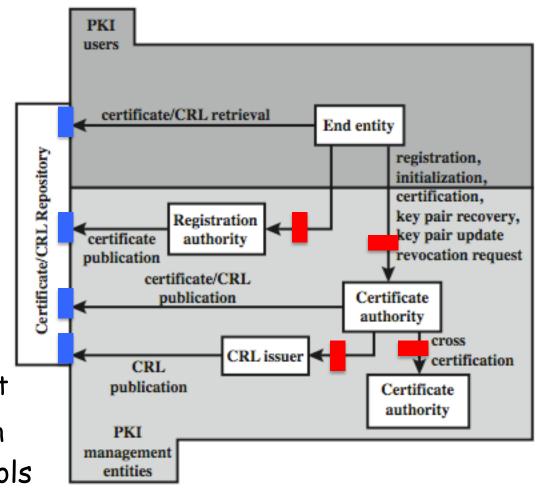

- See in labs the exerices and demos (Lab 7)
 - Use of openssl or keytool (java) tools
 - Generation of Certificates in the Java programming environment
 - Kava Keystores to manage private vs. public keys
 - Generation of public key certificates exported from keystores of keypairs
 - Trusted Certificate Stores: keystores containing imported certificates
 - Use of tools for the verification of certificates
 - · CRLs
 - Use of OCSP protocol handlers
 - Management of standard formats for certificates
 - Manipulation of certificates in Java programs

Outline


- X509 Authentication
 - X509 Authentication and Key Management Issues
- X509 Certificates
 - X509 and X509 v3 Certificates
 - X509 v3 Extensions
 - Life-Cycle Management of X509 Certificates
 - Authentication procedures
 - Forward and reverse certification chains
 - Revocation
 - The possible long tail of certification chains
- PKI Public Key Infrastructure
 - PKI Standardization and PKIX Management
- Complementary: Key Management Issues

Remember the X509 Life Cycle Management

Remember the X509 Life Cycle Management


PKI - Public Key Infrastructure

- A Standard Framework Model
 - a set of: HW, SW, People, Rules, Procedures, Policies and Protocols, needed to create, manage, store, distribute and revoke digital certificates
- Objective: enable secure, convenient and efficient acquisition of public keys, promoting strict and well-known specifications
- Coordination by the IETF X509 (PKIX) WG
- Standardized base for compatibility purposes on the above issues in building PKI Platforms
 - Solutions that can also be used by CAs (Certification Authorities) and Ras (Registration Authorities or CA Registrars)

PKIX Architectural model and framework

Key Elements

- Management Functions (APIs):
 - Registration
 - Initialization
 - Certification
 - Key-Recovering
 - Key-Update
 - Revocation Request
 - Cross Certification
- Management Protocols

PKIX Management Functions

Registration

- Enrollments from users to CAs (directly or through RAs)
- Offline and Online procedures for mutual authentication

Initialization

- Initialization and installation of trusted CA certificates

Certification

- Registration of CSRs (PKCS#10) to obtain CA issued Certificates in standard formats (ex., PKCS#12, PKCS#7)

Key Pair Recovery

Restoring encryption/decryption keys

Key Pair Update

- Regular updates and issuing of new certificates

Revocation request

- Regular updates and issuing of new certificates

Cross certification

- Exchanged signed CA public keys, between CAs

Usually, Interoperability Using PEM and DER representations

Scale and more extensible trust model

- Different entities involved, acting with different roles in a distributed way: CAs, RAs, CRL Issuers, CRs
 - Difference between:
 - CA: Certification authorities (Cert. ISSUING)
 - Different level CAs: aggregated in a direct certification chain
 - » Root CA, Level 2 CA, Level 3 CA, etc
 - » Model practically used in "well-known CA companies" or "CA delegation companies"
 - R: Registration authorities (REGISTRATION, ENROLLMENT DELEGATION)
 - CRL Issuers: (Issuers of CRLs)
 - CRs or Certification Repositories (DISTRIBUTION, for on demand REQUEST-REPLY

PKIX Management Protocols

 Standard protocols between PKIX entities supporting PKIX management functions

Ex:

- OCSP: X509 Internet Public Key Infrastructure Online certification status protocol (OCSP) RFC 6960
 - Update for previous RFC 5912, Obsoletes: RFCs 2560, 6277
- CMP Certificate Management Protocol: RFC 4210 (2015)
- CMC Certificate Management Messages over CMS:
 - RFC 5272 > updated by recent RFC 6402 proposal
- CMS Cryptographic Message Syntax: RFC 5652 (obs. 3852)

See the standardization process from the X509 PKIX IETF WG, ... http://datatracker.ietf.org/wg/pkix/

Formats

Certificates has been encoded and/or digitally signed in different formats (defined in RFC 5280 - PKIX).

See also, for ex: https://en.wikipedia.org/wiki/X.509

Encodings:

- PKCS#10 CSR: Certificate Signed Request format
- PKCS#7 format: Certificates and CRLs Certificate Revocation Lists dissemination

Certificates and interoperable formats:

DER (binary encoding)

PEM (base64 encoding)

More on Formats

- Encoding Conventions vs. file extensions:
- .pem (Privacy-enhanced Electronic Mail) Base64 encoded DER certificate, enclosed between "-----BEGIN CERTIFICATE-----" and "-----END CERTIFICATE----"
- .cer, .crt, .der usually in binary <u>DER form, but Base64-encoded</u> certificates are common too (see .pem above)
- .p7b, .p7c PKCS#7 SignedData structure without data, just certificate(s) or CRL(s)
- .p12 PKCS#12, may contain certificate(s) (public) and private keys (password protected)
- .pfx PFX, predecessor of PKCS#12

Conversions / Management of Formats

Conversions available in some existent tools See: openssl and keytool:-)))

Example w/ openssl:

- openssl x509 -outform der -in certificate.pem -out certificate.der
- openssl crl2pkcs7 -nocrl -certfile certificate.cer -out certificate.p7b certfile CACert.cer
- openssl pkcs12 -export -out certificate.pfx -inkey privateKey.key -in certificate.crt -certfile CACert.crt
- openssl x509 -inform der -in certificate.cer -out certificate.pem
- openssl pkcs7 -print_certs -in certificate.p7b -out certificate.cer
- openssl pkcs7 -print_certs -in certificate.p7b -out certificate.cer
- openssl pkcs12 -export -in certificate.cer -inkey privateKey.key -out certificate.pfx -certfile CACert.cer
- openssl pkcs12 -in certificate.pfx -out certificate.cer -nodes

Conversions / Management of Formats

Management of CRLs in Java and with Java keytool

- Download and verification
- Can use keytool, KeyStoreExplorer or openssl tools
- Programatically (ex., JAVA, CRL Class, X509CRL SubClass)

https://docs.oracle.com/javase/7/docs/api/java/security/cert/CRL.html

Suggested Readings

Suggested Readings:

W. Stallings, Network Security Essentials - Applications and Standards, Chap 4., sections 4.5 - X509 and 4.6 - PKI

Other references on slides