
© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 1

Public-Key Cryptography
(Asymmetric Cryptography)

DI-FCT-UNL
Segurança de Redes e Sistemas de Computadores
Network and Computer Systems Security

Mestrado Integrado em Engenharia Informática
MSc Course: Informatics Engineering
2020-2021, 1st Sem.

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 2

In last lecture
• Foundations and details for the use of Symmetric

Cryptographic Methods and Algorithms
– Security concerns, applicability, padding and modes of

operation
– Important issues

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 3

Symmetric Cryptography: Issues (1)
• Shared Keys and/or Related Shared Secrecy Parameters

– If a shared key is disclosed communications will be compromised
(NDA of keys between principals involved).
• Particularly delicate aspect of group-shared keys or long-

term key reuse in multiple contexts (the same for secret
association parameters or passwords, for ex.)

• Dangers of key-exposure in large-scale sharing context

• No base assumptions for peer-authentication and non-
repudiation principles
– Does not protect sender from receiver forging a message &

claiming is sent by sender (or vice versa)
• Ex., No Peer-Authentication arguments when using Message

Authentication Codes (CMACs and also HMACs)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 4

Symmetric Cryptography: Issues (2)
• Limitations for Perfect Secrecy Guarantees

– PFS (Perfect Forward Secrecy) or PBS (Perfect Backward
Secrecy) conditions

• Danger of compromising permanent (or long-term) shared
keys (sometimes refereed as Master Keys)
– Long-term keys (as Master Keys) protecting short-term keys

(ex., Session Keys)
• Key Distribution/Rekeying Processes (for short-term or

session keys distributed under the protection of master
keys as long duration shared keys)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 5

Symmetric Cryptography: Issues (3)
– Other issues: quality of key generation
• Secure key maintenance control and non-disclosure conditions

under the responsibility of KDCs (KEY DISTRIBUTION
CENTERS) acting as central trusted parties

– No control by principals (trustees)
– No “Verifiable Contributive Key-Generation and Establishment

Processes”
– Furthermore, KDCs can be central points of failure or central

targets for attacks

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 6

In this lecture …
• Asymmetric Cryptography

– Also known as Public-Key Cryptography

• Outline:
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA
– ECC

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 7

Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA
– ECC

- - - - - - - - - - - - - -

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 8

Public-Key Cryptography
• Probably most significant advance in 3000 years of

history of cryptography …
– https://en.wikipedia.org/wiki/RSA_(cryptosystem)
– https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
– https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

• J.Ellis, M. Williamson, Clifford Cocks (British Intelligence/GCHQ
first in 1973, declassif. In 1997)

• Whitfield Diffie & Martin Hellman, Stanford University (1976)
• Ron Rivest, Adi Shamir, Leonard Adleman (1978) (RSA)
• Neal Koblitz (1985) and Victor Miller (1985) (ECC)
• Emergent Public-Key Crrypto: Homomorphic and Quantum Crypto

https://en.wikipedia.org/wiki/RSA_(cryptosystem
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 9

Some Public-Key Cryptography Pioneers

Ron Rivest,
Adi Shamir and
Leonard Adleman

Taher A. Elgamal

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 10

Some Public-Key Cryptography Pioneers

Neal Koblitz

Whitfield Diffie and Martin Helman (Touring Award 2015)

Victor Miller

Diffie-Hellman

Elliptic-Curves
Cryptography

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 11

Homomorphic Cryptography

Craig Gentry

Fully
Homomorphic
Cryptography

Partial
Homomorphic
Cryptography

Pascal Paillier
Shafi Goldwasser and
Silvio Micalli

Josh Benaloh

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 12

Some Quantum Crypto Pioneers

Stephen Wiesner Gilles Brassard Charles Bennet David Deutsh

Quantum Cryptography

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 13

Public-Key Cryptography
• Foundations:

– Number theory concepts and functions (D-H, RSA, DSA,
ElGamal), Factorization and Prime Number Properties, Modular
Arithmetic

– Algebraic structures of elliptic curves over finite fields (ECC)

Note: Asymmetric Crypto computations more complex (slow) than
symmetric encryption and hash processing

– See, ex (benchmarks):

$ openssl speed rsa dsa ecdsa ecdh des-ede3 blowfish aes sha1 sha256

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 14

Comparative Performance of crypto methods

RSA Encryption >>>>>> SHA256 > SHA1 : ~106 – 107

RSA Sig Verif. > Sig : ~10
RSA >>>> >> 3DES > DES > BF > AES : ~106 - 107

3DES > DES > SHA256 > BF > SHA1 > AES

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 15

Comparative Performance of crypto methods

RSA Sig >> ECDSA Sig : ~101 to 103
RSA Sig Verif. < > ECDSA Sig
but ECC keysizes < RSA keysizes for sama level of security (afawk)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 16

Comparative Performance of crypto methods

Signed DH >> DH >> ECDH
ECDH comparable woth ECDSA (Sig and Sig Verif)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 17

Hybrid Constructions
– For practical purposes (security vs. usability vs. performance)

we use hybrid constructions

Ex. of Typical Constructions for Secure Communication:

{Ks, … Km, …}Kpub || {M}KS || Digital Sig (M) || MACKm (C)

{Ks, … Km, …}Kpub || {M || MACKM (M) }KS || Digital Sig (M)

C

Etc…
Constructions can optimize for specific uses the tradeoff:
<Security vs. Usability vs. Performance>

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 18

Ex., Can you understand TLS Ciphersuitres ?
• Can you understand the TLS standardized Ciphersuites

as the Hybridization of Different Cryptographic
Methods ?

• Ex., Labels for Ciphersuites for JSSE in Java:

– https://docs.oracle.com/javase/8/docs/technotes/guides/secu
rity/StandardNames.html#ciphersuites

• Ex., Labels for Ciphersuites in OPENSSL

– https://www.openssl.org/docs/man1.0.2/man1/ciphers.html

https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html%23ciphersuites

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 19

Use of Asymmetric Cryptography

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 20

Use of Public-Key Cryptography
Public-key/Asymmetric cryptography involves:

Two keys (or a key-pair):
– a public-key, known by anybody: can be used to encrypt

messages, and verify signatures
– a private-key, known only to the recipient: used to decrypt

messages, and sign (create) digital signatures

What we encrypt with one key, we can decrypt with the other
key of the pair

Same function (same computation) for encryption and for
decryption

(*) Note the difference w/ Symmetric Encryption: use the same
(shared) key for Encryption and Decryption with different
Encryption and Decryption computations

*

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 21

Encryption using a Public-Key System
For confidentiality principles:
Encryption with the destination Public key

Bob Alice

C ={ P }KpubA

P ={ C }KprivA

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 22

Authentication using Public-Key System
For authentication principles:
Encryption with the sender Private Key

C ={ P }KprivB
P ={ C }KpubB

Bob Alice

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 23

Public-Key Cryptography Assumptions
• In asymmetric methods:

– Those who encrypt messages or verify signatures
cannot decrypt messages or create signatures

– Considering the key pair, what is encrypted with one
key pair, is decrypted by the other key of that pair
(for well-known algorithms)

– Encryption and Decryption functions implemented by
the same computation

For ex: in RSA (Integer Modular Arithmetic)

C = PKpub mod N for Encryption
P = CKpriv mod N for Decryption

Exactly the same computation with different operators

Keypair:
[Kpriv, Kpub]

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 24

Confidentiality + Authentication
Alice Bob

Here we have:
{ { M }KprivAlive }KpubBob

Can we do better for practical use ? How ?
{M}KprivA || {M}KpubBob is wrong !!! Why ?

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 25

Design Principle for Digital Signatures
(for Peer-Authentication)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 26

Base Scheme for Authentication
• Principle of construction of Digital Signatures

Schemes: Sender

H ()

Hm = H(Mp)

{Hm}KprivE

M

SigKpriv(M)

Send Signed
(Peer
Authenticated)
Message

Padding
Method

Padding
(Processing)

Hash
Function

Asymmetric
Algorithm
And Digit.
Signature
Construction

Private Key
(Sender)

M || SigKpriv(M)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 27

Verification (recognition) of Digital Signatures
• Principle of Verification of Digital Signatures

Schemes: Receiver Verification

H ()

Hm = H(Mp)

{Hm}KpubE

M || Sig(M)

Padding
Method

Padding
(Processing)

Hash
Function

Asymmetric
Algorithm
And Digit.
Signature
Construction

Piublic Key
(Sender)

M Sig(M)

=
?

YES

NO

Signature
Verified

Signature
Invalidated

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 28

Design Principle for Confidentiality

Public Key Envelopes w/ Symmetric
“Session” Keys
+
Encryption with Symmetric Encryption

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 29

Use for Confidentiality
Alice: send M to Bob with confidentiality
• Generates a Session Key Ks for Symmetric Crypto Algorithm
• Decide the required security associations (ex., IVs and other

considered security association parameters SAPs)
Alice send to Bob:

{Ks, <SAPs>}KpubDest || {M}Ks

Much better ! Why ?
Think on
“Security vs.
Performance” vs.
Flexibility

Public Key Envelope

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 30

Confidentiality + Integrity + Message Authenticity

Alice: send M to Bob with confidentiality
• Generates a Session Key Ks for Symmetric Crypto Algorithm
• Decide all required security associations (ex., IVs and other

considered security association parameters SAPs)
• Decide on the use of Hash Functions or MAC construction
• Generates a MAC key
Alice send to Bob:

{Ks, <SAPs>}KpubDest || {M || H(M) }Ks

Or

{Ks, Km, <SAPs>}KpubDest || {M }Ks || MACKm(M)

{Ks, Km, <SAPs>}KpubDest || {M }Ks || MACKm({M}Ks)

Confidentiliaty + Integrity

Confidentiliaty + Integrity + Message Authentication

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 31

Use of public-key cryptography in general
• Confidentiality and Authentication

– Verification by each principal, based on correct and
trusted associations < principal ID, PublicKey >

– Or (principal ID, Public Key) certified associations

• Key exchange
– Two sides can cooperate to exchange a session key (or

security association parameters): hybrid use of asymmetric
and symmetric cryptography

• Ex., Keys (or other secrecy parameters) generated by
Senders and distributed to Receivers in confidential
envelopes protected by the destination Public Key:

– Some Other Assym. Crypto Methods are specifically
targeted for Key-Exchange: ex., DH - Diffie Hellman, or
GDH)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 32

Ex. Hybrid use with different Crypto. Methods
• Example (in PGP - Preety Good Privacy)

Confidentiality + Authentication
Public-Key Method + Symmetric Encryption + Cryptographic hash

Note in this case:
Compression always before encryption !
Compression always after signature !

Why ?

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 33

Security Properties in Asymmetric
Cryptography

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 34

Properties of Public-Key Cryptography (1)

1. Computationally feasible (easy) for a principal to
generate a key pair

BOB: public key: KpubB; private key: KprivB
ALICE: public key: KpubA; private key: KprivA

2. Easy for sender (A) to generate ciphertext using
the public-key of the receiver (B)

3. Easy for the receiver (B) to decrypt ciphertext
using the correct private key

C = {M}KpubB

M = {C}KprivB = { {M}KpubB }KprivB

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 35

Properties of Public-Key Cryptography (2)

4. Computationally infeasible to determine private
key (Kpriv) knowing the related public key (Kpub)

5. Computationally infeasible to recover message
M, knowing Kpub and ciphertext C

6. Either of the two keys can be used for
encryption, with the other used for decryption
(depending on the algorithms and purpose):

M = { {M}Kpub }Kpriv = { {M}Kpriv }Kpub

*

*) In practice, some Asymmetric Algorithms used for
different purposes

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 36

What means “easy” or “unfeasible” ?

• Easy, Feasible: something computationally solved
(bound) in polynomial time, as a function of the
input length
– Input: n bits => function proportional to na, with

pre-known a = fixed constant
– Ex., RSA, DH. DSA: Modular exponentiations with

Functions of class P (Prime Numbers and Properties
of Functions w/ Prime Numbers)

• Unfeasible: if the effort to compute grows faster
(much high complexity) than polynomial time
– Ex., RSA, DH, DSA: Prime Factorization of Big

Numbers (Big Integers) + Computation of Discrete
Logarithm Problem with very large exponents

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 37

<= Polynomial
Time

Ex: Modular
Exponentiation w/
Known Input Parameters,
even using big integers

>>>>> than
Polynomial
Time

Ex: Solve the discrete
Logarithm Problem given a
a very big number

Computational Cost
“Easy” (feasible) vs. “Unfeasible”

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 38

Use of Padding Processing for
Asymmetric Cryptography

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 39

Encryption/Decryption using Public Key Algorithms
• See more (hands-on) in Labs (Use of Public Key

Algorithms for Secure Encryption Decryption
constructions in Java JCE)

Key pair: <Kpub, Kpriv>
C = { M }Kpub
P = { C }Kpriv

• Use of Standardized Padding Methods (ex., RSA-
PKCS#1, RSA-PSS, RSA-OAEP, RFC 5756) for secure
use in encryption/decryption and for Digital Signatures

Key pair: <Kpub, Kpriv>
C = { Padding || M }Kpub
P = { C }Kpriv

With no
Padidng

With
Padidng

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 40

Ex., Padding for RSA: PKCS#1
• Form of structured, randomized values, added to plaintext

M (on the left) before encryption assuring that:
– The M value (as an integer) does not fall into the range

of insecure plaintexts
– M, once padded, will encrypt to one of a larger number of

different possible ciphertext numbers !

PKCS#1 (RSA Security inc., Recommendation/Standard):
• But (up to version 1.5) is not recommended today as a way to

add high enough level of security, should be replaced
wherever possible

• PKCS#1 – also incorporates processing schemes for
additional security in RSA-based digital signatures (to see
later)
– Called PKCS#1 PSS (Probabilistic Signature Scheme)
– … Some other available PSSs based schemes w/ patents

expired in the period 2009 and 2019

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 41

Example: RSA-OAEP
• Optimal Asymmetric Encryption Padding
• Published at Eurocrypt 2000 (Coron et al.,) Crypto 1998

(Bleichenbacher et al)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 42

Digital Signatures
• See more (hands-on) in Labs (Use of Public Key

Algorithms for Encryption Decryption in Java
JCE)

Use of Standardized Padding Methods for secure
Digital Signatures

Key pair: <Kpub, Kpriv>

Sig(M) = { H (Padding || M) }Kpriv

Ex: RSA-PKCS#1, RSA-PSS

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 43

RSA PKCS#1 (v1.5)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 44

RSA PSS (aka PKCS#1 v2, RFC 5756)
Signature

See, ex:
https://de.wikipedia.org/wiki/Probabilistic
_Signature_Scheme

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 45

RSA PSS (aka PKCS#1 v2, RFC 5756)

Signature
Verification

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 46

Practical use in Summary
(See Padding Exercises in next LABs)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 47

Practical use in summary (Alice > Bob):

E() D()

For Encryption (Confidentiality, Secure Envelopes):

KpubBOB

P

Alg & Padding
Method KprivBOB

Alg & Padding
Method

PConfidential Content

We must use Secure and Standardized Constructions
(provided in available crypto libraries or crypto-provider
implementations)
=> TRUSTED COMPUTING BASES !

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 48

Practical use in summary (Alice > Bob):

Sig () V ()

For Authenticity
(Signed Content w/ Sender Peer-Authenticity Guarantees):

KprivALICE

P

Sig.
Constructions
w/ Sec Hashing
and Padding
Parameteriz. KpubALICE

PSigned Content

Must use secure and classified patterns (standards) for
Digital Signatures and Verifications, involving the combination of
Asymmetric Crypto Alg., Secure Hash Functions and
Secure Padding Processing

Sig.
Constructions
w/ Sec Hashing
and Padding
Parameteriz.

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 49

Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA
– ECC

- - - - - - - - - - - - - -

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 50

Public Key Algorithms
Different algorithms …

Pay attention:
Asymmetric Algorithms are used for their specific purposes
(and purposes are combined for different secure protocols and
services), ex:

Encryption/
Decryption

Digital
Signatures

Key (or Secrets)
Exchange

RSA, ElGamal
ECC-Curves
Paillier, Cramer-Shoup
Knapsack, …

DSA,
ECDSA
…

DH,
ECDH
…

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 51

RSA: Rivest, Shamir & Adleman, MIT, 1977
• Best known & widely used and implemented public-key scheme

– Used as a block cipher or digital signatures
– Digital signatures combining secure hash functions and

standardized computations: ex., PKCS#N standards
– Hybrid use with symmetric crypto: digitally signed and

confidential symmetric key-envelopes, combined with
symmetric encryption

• Based on exponentiation in a finite (Galois) field over integers
modulo a prime
– Feasible to compute Y=XK mod N (knowing K, X and N)
– Impossible (computationally) to compute X from Y, N and K
– nb. exponentiation takes O((log n)3) operations (feasible)

• Uses large integers (eg. 1024, 2048, 4096 bits)
• Security due to cost of factoring large numbers

– nb. factorization takes O(e log n log log n) operations (hard)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 52

RSA and Math involved
• Number theory, Math involved:

– Prime numbers, factorization
– Relatively primes and its properties:

• Ex., GCD

– Fermat theorem
– Euler theorem and Euler Totient Function ø(n)
– Primality testing

• Ex.,Miller-Rabin algorithm and prime distribution or estimation

– CRT (Chinese Reminder Theorem)
– Modular arithmetic and properties
– Primitive roots of integers and primes
– Discrete logarithms (inverse of exponentiation)

• Find i, such that b = ai (mod p), or i = dloga b (mod p)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 53

DH, El Gammal, DSS (or DSA)
• Diffie-Hellman

– Exchange a secret key securely (secret key
establishment) or key-agreement

– Unfeasible solution of discrete logarithms (computational
time and complexity)

• El Gammal
– Block Cipher
– Unfeasible solution of discrete logarithms (computational

time and complexity)
• Digital Signature Standard (DSS) or DSA

– Initially Make use of the SHA-1 (recent standardization
can use other Hash funcitons (SHA-2 and SHA-3)

– For digital signatures (only), not for encryption or key
echange

– Also implementable with different asymmetric algorithms

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 54

Elliptic Curve Cryptography
• Elliptic-Curve Cryptography (ECC)

– Good for smaller bit size
– Low confidence level yet, compared with RSA

• A Recent (in going) Story of Weak vs. Strong Curves
– Complexity, Reputation growing

• Majority of public-key crypto (RSA, D-H) use either integer or
polynomial arithmetic with very large numbers/polynomials

• Imposes a significant load in storing and processing keys and
messages

• ECC appears as an alternative for offering same security with
smaller bit sizes

• Newer, but not as well (crypt)analyzed // Ongoing Research
• Standardization problem: different ECC curves and

characteristics

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 55

Comparable Key Sizes for Equivalent Security

Symmetric scheme
(key size in bits)

ECC-based scheme
(size of n in bits)

RSA, DSA
(modulus size in bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

Computational effort for cryptanalysis

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 56

Other Public-Key Algorithms …

Other public-key algorithms:
• Knapsack, Pohlig-Hellman, Rabin, McEliece, LUC, Finite

Automaton, Paillier, etc.

Public-Key signature algorithms:
• DSA variants, GOST, Discrete Logarithm Variants,
• Ong-Schnorr-Shamir, ESIGN, etc.

See also:
Bruce Schneier, Applied Cryptography, Wiley, 2006

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 57

See more (hands-on) in LABs (Java, JCE)
Practical Use

• RSA Enc/Dec w/ Padding (PKCS#1 and OAEP)
• PKCS#1, PSS Padded Digital Signatures w/ RSA
• ElGamal Enc/Dec w/ Padding
• Use od DSA and ECDSA (Elliptic Curve) Digital Signatures
• Construction of Secure and Authenticated Envelopes

– Public Key Envelopes for Distribution of Symmetric Keys
and Security Association Parameters

– Key-Wrapping (Protection) Techniques
– Protection of Private Keys wrapped w/ Symmetric

Encryption Keys

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 58

Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA
– ECC

- - - - - - - - - - - - - -

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 59

The RSA Algorithm – Key Generation

1. Select p,q p and q both prime (secrets)
2. Calculate n = p x q
3. Calculate
4. Select integer e
5. Calculate d
6. Public Key Kpub = {e,n}
7. Private key Kpriv = {d,n}

)1)(1()(--=F qpn
)(1;1)),(gcd(neen F<<=F

)(mod1 ned F= -

Key pair generation (summary and simple example)

1) Ex., 7, 17 2) n = 7 x 17 = 119 3) ø(n) = 6 x 16 = 96
4) e = 5, gcd(96, 5) = 1, com 1 < 5 < 96
5) 5xd = 1 x mod 96, com d< 96 d=77

5 x 77 = 385 , notar que 4x96+1 =385

Kpub = (5, 119)

Kpriv = (77, 119)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 60

The RSA Algorithm: Encryption/Decryption

• Plaintext: M<n
• Ciphertext: C = Me (mod n)

• Ciphertext: C
• Plaintext: M = Cd (mod n)

Encryption: C = {P}Kpub

Decryption: P = {C}Kpriv

Kpub = (5, 119) Kpriv = (77, 119)

Ex., M = 19 C= 66 M= 19

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 61

Another RSA Example - Key Setup

1. Select primes: p=17 & q=11 (secrets)
2. Compute n = pq =17x11=187
3. Compute ø(n)=(p–1)(q-1)=16x10=160
4. Select e: gcd(e,160)=1; choose e=7
5. Determine d: de=1 mod 160

and d < 160 Value is d=23 since
23x7=161= 10x160+1

1. Publish public key Kpub={7,187}
2. Keep secret private key Kpriv={23,187}

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 62

Another RSA Example - Encrypt/Decrypt
• given message M = 88 (nb. 88<187)
• encryption:

C = 887 mod 187 = 11

• decryption:
M = 1123 mod 187 = 88

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 63

More about RSA
• See W. Stallings, Network Security

Essentials
– Chap. 3 – Public Key Cryptography and Message

Authentication
• See, Sections 3.4 to 3.6

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 64

Security vs Practical Use (ex. RSA)
Security considerations
• Math Attacks:

– Evolving Methods for Optimization in Factoring
the product of two big primes and relatively
primes

SP 800-131A EU Regulations for Security
(Transitions: Recommendation for Transitioning
of Cryptographic Algorithms and Key Lenghts,
2015): Use of 2048 bit keys for RSA

EU Agency for Network and Information Security
: Algorithms, Key Size and Parameters Report),
Nov 2014): use of 3072 bit keys for RSA

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 65

Security vs Practical Use (ex. RSA)
Security considerations
• Timing Attacks

– Inference of Key Sizes from running time of
decryption

– Can be masked if needed, introducing random
processing-delay

• Chosen Ciphertext Attacks (or Oracle Attacks)
– Selection of Data Blocks to be processed by the

Private Key for the purpose of cryptanalysis
– These attacks must be avoided using Strong Padding

Schemes
– Also relevant to avoid the “low exponentiation

problems”: large blocks and large keys

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 66

Other sources to learn about RSA
• Summary of Math behind (see also additional slides in this

presentation)
• Other sources: wikipedia article:

https://en.wikipedia.org/wiki/RSA_(cryptosystem), is ok
• Math background and practical issues
• Relevance of Padding and attacks against plain RSA

(without padding):
– Low encryption exponents e
– Small values for plaintext values M (M < N1/e)

• Causes: that me is strictly smaller than modulus N
– Problems of sharing similar exponents, using the CRT (The

Coopersmith Attack)
– Exploiting the deterministic nature of encryption (non

semantically security)
– Exploiting the multiplication homomorphism of the RSA

encryption

https://en.wikipedia.org/wiki/RSA_(cryptosystem

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 67

Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA
– ECC

- - - - - - - - - - - - - -

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 68

Diffie-Hellman Key Exchange
• First public-key type scheme:

– Diffie & Hellman in 1976 along with the exposition of public
key concepts

• Note: now know that Williamson (UK CESG) secretly proposed
the concept in 1970

• Practical method for public exchange of a secret key k
between two principals: A and B
– Never exposing k: key generated independently by A and B

• Key-Agreement without key exposition
– No pre-shared secrets between A and B
– PFS and PBS warranties
– Can be extended to groups of proncipals (A,B,C.D, …. etc)

• Used in many security standard protocols and today in
several commercial products

New Directions in Cryptography, IEEE TRANSACTIONS ON INFORMATION THEORY,
Vol IT 22, N. 6. Nov 1976, https://ee.stanford.edu/~hellman/publications/24.pdf

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 69

Diffie-Hellman Key Exchange
• It is a public-key scheme for use as a key (or secret)

distribution scheme
– Cannot be used to exchange an arbitrary message (not an

encryption method)
– Rather it can establish a common key, known only to the two

participants
– The common established key can be used as a shared and

contributive secret key for the generation of key session

• Value of key depends on (and only on) the participants
(and their private and public DH parameters)
– D-H Private and Public Numbers + Initial (non-secret) setup

parameters

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 70

Diffie-Hellman Security and Math Behind

• Based on exponentiation in a finite (Galois) field
(modulo a prime or a polynomial)

Easy to compute ! (computationally feasible)

• Security relies on the difficulty of computing
discrete logarithms (similar to factoring)

Hard to compute (computationally unfeasible)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 71

Diffie-Hellman: foundations (1)
• Global parameters:

– q: a large prime integer
– a: a primitive root mod q

• In modular arithmetic, a primitive root mod q is any
number a that:
– Any number b (integer) relatively prime to q is congruent

to a power ai mod q i.e., bq ai mod q

– a is called the generator of a multiplicative group of
integers modulo q

– a
i
mod q, where 0 <= i <= (q-1) generates all the

integers between 1 and q-1,in some permutation order
– For any integer b < q there is a unique exponent integer i

such that b = a
i
mod q

– Such i is called the index or
the discrete logarithm of b
for the base a (mod q)

i = dlog a,q(b)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 72

Diffie-Hellman: foundations (2)
• Considering i the discrete logarithm for which:
ai mod q = b, taking a and q (as known parameters)

– It is simple to calculate b, knowing i
– It is very hard to calculate i only knowing b, a and p

– This implies the computation of the discrete logarithm: no
efficient solution (computational impossibility)

• Hard, above polynomial complexity
• Linear to a, computational complexity equivalent to a^I

From modular arithmetic properties for a, p and any value i=R :
a
R
mod q = a

R1.R2
mod q

=(a
R1
mod q) (a

R2
mod q)

= (a
R1

mod q)
R2

mod q

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 73

Diffie-Hellman Setup and Agreement
• If A and B share the global parameters a and q,

being a a primitive root modulo q
• A and B generate their (private, public) pairs:

– selects a random private secret number: x<q
– Principal A computes: yA = a

XA mod q and makes public yA
as a public number. The principal does the same

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 74

Diffie-Hellman Key Exchange
• Shared session key for users A & B is KAB:

KAB = a
xA.xB mod q

= yA
xB mod q (which B can compute)

= yB
xA mod q (which A can compute)

• KAB is used as session key in secret-key sharing
encryption scheme between Alice and Bob

• If Alice and Bob subsequently communicate, they
will have the same key as before, unless they choose
new public-numbers for new D-H agreement
– Successive D-H agreements for rekeying of KAB
– PFS and PBS conditions warranted

• Note) It is possible to make generalized D-H
agreements, extended to a group of N

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 75

Diffie-Hellman Example
• Users Alice & Bob who wish to swap keys:
• Ex., agree on prime q=353 and a=3

• Select random secret numbers:
– A chooses xA=97, B chooses xB=233

• Compute respective the public numbers:
– yA=397

mod 353 = 40 (Alice)
– yB=3233

mod 353 = 248 (Bob)
• Compute shared session key as:

– KAB= yB
xA mod 353 = 24897

= 160 (Alice)
– KAB= yA

xB mod 353 = 40233
= 160 (Bob)

• PFS and PBS, without knowing the private numbers
(never exposed) and without any previous shared
secret or long-time duration secrets

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 76

Diffie-Hellman Key Echange (example)

Xa=97 < 353

Xb=233 < 353

YA=
397mod 353=40

YB= 3233mod 353=248

= 40

= 248
yB

xA mod 353
= 24897mod 353
= 160
Kab = 160

yA
xB mod 353

= 40233mod 353
= 160
Kba = 160

q = 353, a=3 q = 353, a=3Shared Values
q = 353, a=3

Mallory

Alice Bob

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 77

M={C}’KC={M}K

So Far so good !

YA

YB

KA = YB^XA mod q KB = YA^XB mod q
KA = KB = K

M
IM

But what if there is a MiM Attack?

Secure Channel

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 78

M={C}KC={M}K

D-H with a MIM Attack

XD1
YD1=a^XD1 mod q

YA
YD1

XD2
YD2=a^XD2 mod q

YD2
YBM

IM

KA=YD2^XA mod q KB=YD1^XB mod qKA=YA^XD2 mod q

C={M}KA
M={C}KA

C={M}KB
C={M}KB

KB=YB^XD1 mod q

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 79

The DH Authentication Problem

• Users could create random private/public D-H keys
each time they communicate

• Users could create a known private/public D-H key and
publish in a directory, then consulted and used to
securely communicate with them
– Ephemeral D-H Agreement (EDH)

– Fixed D-H Agreement (FDH)

• Both of these are vulnerable to a possible Meet-in-the-
Middle (MIM) Attack
– Why ?

• Anonymous D-H agreement (ADH)
• Authentication of the exchanged values is needed

– So, you will need Authenticated D-H agreements
– How ?

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 80

Possible solution: Authenticated Key-Agreement

• Combination of D-H with another Public-Method
allowing Digital Signatures covering the public D-H
numbers exchanged by the principals involved

• Principle (in the DH-agreement):

Alice sends to Bob SignKprivA(Ya)
Bob recognizes the signature and believes that Ya is an
authentic DH public number generated by Alice

Bob sends to Alice SignKprivB(Ya)
Alice recognizes the signature and believes that Yb is an
authentic DH public number generated by Bob

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 81

Authenticated Key-Exchange using Digital Signatures

• We can use a public-key (asymmetric) method to support
digital signatures to authenticate public Diffie-Hellman
public numbers
– Exampled: RSA Signatures, DSA Signatures, ECC-DSA

Signatures etc…

• After the authenticated D-H exchange, the session key
must be established independently by the principals
involved
– No problem with seed materials passing in the channel (public

D-H numbers are public !!!)
– Contributive key generation (or contributive rekeying), with

PFC and BFS guarantees
• Perfect security with key generation control and key (or

rekeying) independence

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 82

Multiparty DH Agreements
• DH Agreement is easily extensible for key-

establishment protocols for multi-party
environments

• Why ?

• Group-Diffie Hellman Schemes
– We will see this in action later, in a demo implementation

in practical classes (See Practical Labs)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 83

Security of D-H

• The choice of G (cyclic group generator)
and the generated element g
– The order of G must be large enough !

Particularly in the case that the same group
used for large amounts of traffic

– G should have a large prime factor
• Prevents optimized forms of solving the discrete

logarithm problem (ex., Pohlig-Hellman Algorithm)
– Key point is the generation of private numbers

with no secure random generators
– Avoidance of using repeated DH numbers:

trade-off between security, performance and
usability

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 84

Security of D-H

State-of art (The best Discrete Logarithm Algorithms,
ex., Number Field Sieve): Complexity => computational
impossibility
• Today: DH numbers of 2048, …. 3072 bits !
• Recommendation: signatures w/ ECDH, using a group generator

for P at least w/ 2048 bits

• Generation process for <public, private> DH numbers
can be hard (harder for big modulus and big prime
number generation/verification)
– In practice, cam use pre-generated parameters ! (Pre-

selected parameters in standard protocols)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 85

Diffie-Hellman Agreements:
Practical verifications

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 86

Example: DH using openssl (1)
Need Global Parameters (G, Prime)

openssl genpkey -genparam -algorithm DH -out dhp.pem

Remember, these PUBLIC Global Parameters (no problem
to be known by anybody), that Alice and Bob will be
shared for the DH Agreement

Now Alice and Bob will generate theitr own pairs
<private, public>
Alice:
openssl genpkey -paramfile dhp.pem -out dhkey2.pem

Bob:
openssl pkey -in dhkey2.pem -text -noout

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 87

Example: DH using openssl (2)
Now will extract the public numbers

Alice:
openssl pkey -in dhkey1.pem -pubout -out dhpub1.pem

Public Nr from Alice:
openssl pkey -pubin -in dhpub1.pem -text

Bob
openssl pkey -in dhkey2.pem -pubout -out dhpub2.pem

Public Nr from Alice:
openssl pkey -pubin -in dhpub2.pem -text

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 88

Example: DH Agreement
• Given the public numbers echanged ... Can compute

the shared key:

Alice:
openssl pkeyutl -derive -inkey dhkey1.pem -peerkey dhpub2.pem
-out secret1.bin

Bob:
openssl pkeyutl -derive -inkey dhkey2.pem -peerkey dhpub1.pem
-out secret1.bin

See the both independent computations:
cmp secret1.bin secret2.bin (or diff)

See what is inside with od (octal dump)
or xxd (hexadecimal dump)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 89

Example: DH using openssl (Size Impact)
Generation of public parameters today
(In this case we generate a prime w/ different bit sizes)

openssl dhparam -out dhparams.pem 256 Tens of ms
openssl dhparam -out dhparams.pem 512 hund. ms to some sec.
openssl dhparam -out dhparams.pem 1024 Tens of sec.
openssl dhparam -out dhparams.pem 2048 Some-Tens of Minutes
openssl dhparam -out dhparams.pem 4096 L (((
….

What is the lesson leaned here ?

(*) MAC Book Pro (Late 2013) Intel Core i7, 2,3GHz
Openssl running on Mac OS Mojave 10.4

(*)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 90

In Labs
• We will see also how to program w/ DH primitives

(Java /JCE) in Lab:
– Two Way DH Agreement
– How to generalize to 3, 4 … N particioants

• Will see also ECDH Agreements

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 91

Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA
– ECC

- - - - - - - - - - - - - -

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 92

DSA
DSA, (Aug/1991) : Digital Signature Standard promoted by
NIST under the designation: DSS – Digital Signature Standard
(Standard FIPS 186-3, June 2009, 186-4 rev 2013)

(A variant of Schnorr and El Gammal Crypto. but specifcally targetd
for digital signatures only : similar to El Gammal Signatures

Ref:
https://en.wikipedia.org/wiki/Digital_Signature_
Algorithm

https://csrc.nist.gov/publications/detail/fips/186
/4/final

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://csrc.nist.gov/publications/detail/fips/186/4/final

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 93

DSA Parameterizations

H() : Secure hash function
• SHA 1, SHA 2 promoted in the standardization of

DSS signature constructions

Two prime numbers: p (L bits) and q (N bits):
p-1 must be multiple of q

Must choose g, such that gq = 1 . mod p

So we have these shared parameters: p, q and g

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 94

DSA Security Conditions
Decisions on the key length L and N. This is the primary
measure of the criptographic strength of the used key

The original DSS constrained L to be a multiple of 64,
between 512 and 1,024 (inclusive).

NIST 800-57 recommendation for lengths of 2,048 (or
3,072) for keys with security lifetimes extending beyond
2010 (or 2030), using correspondingly longer N

FIPS 186-3 specifies L and N length pairs of (1,024, 160),
(2,048, 224), (2,048, 256), and (3,072, 256).
N must be less than or equal to the output length of the
hash H.

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 95

DSA Keys

Key pair (Kpriv, Kpub)

• Kpriv, chosen as a secret random, in such a
way that 1 < Kpriv < q

• Kpub, chosen as: Kpub = gKpriv mod p

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 96

DSA Signature Construction

1. Generate a random per-message value k,
with 1 < k < q

2. Compute r = (gk mod p) mod q
if r=0, regenerate the random k

3. Compute s = k-1 (H(M) + xr) mod 1
if s = 0, regenerate the random k

4. If s !=0 => the Sig(M) = (r, s)

… So we need initial parameters: p, q and g

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 97

DSA Parameters involved

Alice Bob

Validation

M || (r, s)

Initial
Shared Parameters: p, q, g

KpubAlice

DSA Signature
Construction

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 98

DSA Signature Verification

Received M, (r,s) … and knowing p, k, g and KpubAlice

1. We must reject a signature

if 0 < r < q or 0 < s < q

2. Compute w = s-1 mod q

3. Compute u1 = H(M) . w mod q

4. Compute u2 = r . w mod q

5. Compute v = (gu1 gu2 mod p) mod q

6. If v = r signature is valid ! Otherwise not valid !

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 99

DSA Practical Observations
• DSA Signature Verification tend to be slowly

compared with RSA, Signatures tend to be faster

• Sizes of signatures are shorter (and may have
variable sizes)
– Can see this effect in LABs
– In RSA, the signature size is proportional to the key

sizes and related modulo N (See the RSA algorithm)
– In DSA, depending on the parameters, can appear usually

with 40 bytes but the standard representation (ASN.1)
expands the signature to 44 – 48 bytes, plus 3 byres for
bitstrng encoding. So you can expect: 47 to 51 bytes

• In general, the DSA “keypair” generation process
is faster than RSA (keys w/ same size)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 100

Ex: openssl benchmark (Sign vs. Verif)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 101

Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA
– ECC

- - - - - - - - - - - - - -

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 102

ECC: Elliptic Curve Cryptography
• Not one … But many Elliptic Curves !
• Different Curves => Different levels of security

and => Different computation complexity

• Elliptic Curve (EC) systems as applied to
cryptography: first proposed in 1985
independently by Neal Koblitz and Victor Miller.

• The discrete logarithm problem on elliptic curve
groups is believed to be more difficult than the
corresponding problem in (the multiplicative group
of nonzero elements of) the underlying finite
field.

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 103

Definition of Elliptic curves

• An elliptic curve over a field K is a nonsingular cubic
curve in two variables, f(x,y) =0 with a rational point
(which may be a point at infinity).

• The field K is usually taken to be the complex
numbers, reals, rationals, algebraic extensions of
rationals, p-adic numbers, or a finite field.
– ABELIAN Groups

• Elliptic curves groups for cryptography are examined
with the underlying fields of Fp (where p>3 is a prime)
and F2

m (a binary representation with 2m elements).

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 104

Abelian Groups

• P + Q = Q + P (commutativity)

• (P + Q) + R = P + (Q + R) (associativity)

• P + O = O + P = P (existence of an identity element)

• there exists (− P) such that − P + P = P + (− P)
= O (existence of inverses)

Given two points P,Q in E(Fp), there is a third
point, denoted by P+Q on E(Fp), and the
following relations hold for all P,Q,R in E(Fp)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 105

Elliptic Curve Picture

• Consider elliptic curve
E: y2 = x3 - x + 1

• If P1 and P2 are on E, we
can define

P3 = P1 + P2
as shown in picture

• Addition is all we need

P1
P2

P3

x

y

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 106

Addition in Affine Co-ordinates

x

y

1 1 2 2

3 3

(,), (,)
() (,)

P x y Q x y
R P Q x y
= =
= + =

y=m(x-x1)+y1

2 1

2 1

2 3
1 1
3 2 2

2
3 1 2

3 1 2 1

;

To find the intersection with E. we get
(())

,0 ...
,

()

y ym
x x

m x x y x Ax B
or x m x
So x m x x
y m x x y

-
=

-

- + = + +

= - +

= - -
Þ = - -

Let, P≠Q,

y2=x3+Ax+B

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 107

Doubling of a point

• Let, P=Q

• What happens when P2=∞?

2

2
1

1

1 1 2
3 2 2

2
3 1 3 1 3 1

2 3

3
2

, 0 (since then P +P =):
0 ...

2 , ()

dyy x A
dx

dy x Am
dx y

If y
x m x

x m x y m x x y

= +

+
Þ = =

¹ ¥

\ = - +

Þ = - = - -

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 108

Why do we need the reflection?

P2=O=∞

P1

y

P1=P1+ O=P1

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 109

What Is Elliptic Curve Cryptography (ECC)?

• Elliptic curve cryptography [ECC] is a public-key
cryptosystem just like RSA, Rabin, and El Gamal.

• Every user has a public and a private key.
– Public key is used for encryption/signature

verification.
– Private key is used for decryption/signature

generation.
• Elliptic curves are used as an extension to other

current cryptosystems.
– Elliptic Curve Diffie-Hellman Key Exchange
– Elliptic Curve Digital Signature Algorithm

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 110

Using Elliptic Curves In Cryptography

• The central part of any cryptosystem involving elliptic
curves is the elliptic group.

• All public-key cryptosystems have some underlying
mathematical operation.
– RSA has exponentiation (raising the message or

ciphertext to the public or private values)
– ECC has point multiplication (repeated addition of two

points).

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 111

Generic Procedures of ECC
• Both parties agree to some publicly-known data items

– The elliptic curve equation
• values of a and b
• prime, p

– The elliptic group computed from the elliptic curve
equation

– A base point, B, taken from the elliptic group
• Similar to the generator used in current

cryptosystems
• Each user generates their public/private key pair

– Private Key = an integer, x, selected from the
interval [1, p-1]

– Public Key = product, Q, of private key and base
point

• (Q = x*B)

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 112

Operations in ECCs
• After that we can model and implement any other

conventional operation (as in DSA, DH or RSA)
with additions and multiplicatioons and modular
constructions

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 113

Why use ECC?
• How do we analyze Cryptosystems?

– How difficult is the underlying problem that it
is based upon

• RSA – Integer Factorization
• DH – Discrete Logarithms
• ECC - Elliptic Curve Discrete Logarithm problem

– How do we measure difficulty?
• We examine the algorithms used to solve these

problems

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 114

Security of ECC

• To protect a 128 bit AES
key it would take a:
– RSA Key Size: 3072

bits
– ECC Key Size: 256 bits

• How do we strengthen
RSA?
– Increase the key

length
• Impractical?

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 115

Applications of ECC
• Many devices are small, with limited resources (store,

computational power and energy)
• Where can we apply ECC?

– Wireless communication devices
– Edge computing devices
– Smart cards, Smart tokens
– Mobile phonee, avoiding energy, stiorage anc

computatioal costs
– Web servers that need to handle many session-contexts

(very high scale-in vs high levels of concurrency)

– Any application where security is needed but lacks the
power, storage and computational power that is
necessary for our current cryptosystems

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 116

Benefits of ECC
• Same benefits of the other cryptosystems:

confidentiality, integrity, authentication
and non-repudiation but…

• Shorter key lengths
– Encryption, Decryption and Signature

Verification speed up
– Storage and bandwidth savings

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 117

Summary of ECC

• “Hard problem” analogous to discrete log
– Q=kP, where Q,P belong to a prime curve

given k,P à “easy” to compute Q
given Q,P à “hard” to find k

– known as the elliptic curve logarithm problem
• k must be large enough

• ECC security relies on elliptic curve
logarithm problem
– compared to factoring, can use much smaller key

sizes than with RSA etc
è for similar security ECC can offer

significant computational advantages

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 118

Some ECC Concerns

• Political concerns: the trustworthiness of NIST -
produced curves being questioned after
revelations that the NSA willingly inserts
backdoors into software, hardware components
and published standards were made;
– well-known respectable cryptographers have expressed

doubts about how the NIST curves were designed, and
voluntary tainting has already been proved in the past.

• Technical concerns: the difficulty to properly
implement the standard and the slowness and
design flaws which reduce security in
insufficiently precautions implementations on
random number generations

© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 119

Readings

• William Stallings, Network Security Essentials, 4rd Edition,
2011, Part One – Cryptography, Chap.3

• William Stallings, W. Cryptography and Network Security:
Principles and Practice, Chap. 9, Pearson - Prentice Hall, 7th

Ed. , 2017

• More (for complementary interests)
Bruce Schneier, Applied Cryptography, New York: Wiley,
1996, Chap.

Fore more detail:

