DI-FCT-UNL Segurança de Redes e Sistemas de Computadores *Network and Computer Systems Security*

Mestrado Integrado em Engenharia Informática MSc Course: Informatics Engineering 1st Sem., 2020/2021

Applied Cryptography Cryptographic Tools, Methods, Techniques and Algorithms

Outline

- Classic Cryptography
- Applied Cryptography
 - Typology: objectives and focus of different cryptographic methods and algorithms
 - Cryptographic constructions
 - Secure channels w/ cryptographic protection
 - Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

Outline

Classic Cryptography

- Applied Cryptography
 - Typology: objectives and focus of different cryptographic methods and algorithms
 - Cryptographic constructions
 - Secure channels w/ cryptographic protection
 - Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

Classic Cryptography

History / Origins Ancient Methods: Classical Cryptography

Classic Cryptography vs. Modern Cryptography:

Computational / Applied Cryptography

Cryptography ... from classic cryptography ... (from the greek): krypthós (*hidden*) + graph ("*graphein" root… writing*)

Classic Cryptography: secrecy of the algorithm (or the means used to encode/decode functions)

• Ancient Techniques:

- Ex., Bastions of Spartans, Secrets/Codes embedded in scriptures, ...
- Simple text substitution techniques (rotations, additive substitutions)
- Transpositions (permutations, reordering, geometric, columnar, table-relations, ...)
- Primarily: Monoalphabetic Ciphers,
- Middle age, 1500s >
 - Ex., Polyalphabetic substitutions, permutations (ex., 1553, Viginère Cipher) Algebraic description: $Ci = E_K (P_i) = (P_i + K_i) \mod 26$
 - Initial Algebraic Descriptions and Methods
- 1920s > ...
 - OTPs w/ Key-Stream Generators and Algebraic Constructions
 - Algebraic Constructions (Polyalphabetic Permutations w/ Matrix-Transf.)
- 1930s-1950 ... Rotor Machines

(Some) Classical Encryption Methods and related transformations

• Caeser Cipher

(Shift Rotation mod)

• Generalization:

 $C=E_3(P) = (P+3) \mod 26$ $P=D_3(C) = (C-3) \mod 26$ $C=E_k(P) = (P+k) \mod 26$ $C=E_k(P) = (P-k) \mod 26$

Other transformations

- Monoalphabetic Ciphers: Permutations and Transpositions
- Chinese Methods, and other Columnar Transformations
- Viginère Cipher: Polyalphabetic Ciphers: Polyalphabetic 1533
 Substitutions
- Playfair Cipher: Permutations w/ Multiple Letter Encryptions 1854
- Vernam Cipher: bir-XOR w/ Key-Stream Generation, No Statistical Relatioships between Plaintext and Keys
- Hill Cipher: Linear Algebra (Matrix-Based Multiplications) 1929
- OTPs: Unbreakble One Time Pads
- Rotor Machines: Multiple (chains) Setup-Parameterized
- Permutations and Transpositions

©rev, DI-FCT-UNL, Henrique João L. Domingos

1950s

1930s

1918

Cryptography ... Modern Cryptography

Modern Cryptography: algorithm not secret Secrecy is on the algorithm parameters (i.e., Cryptographic Keys)

Research: until the end of 1960s ... 1970s ... until now

Some examples:

- SC Lucifer 1971, Horst Feistel
- SC Feistel Structure 1973, Horst Feistel
- SC DES 1977, IBM for NBS, later NSA
- AC Diffie-Hellman 1976 Whitfield Diffie, Martin Hellman
- AC RSA 1977-1978, Ron Rivest, Adi Shamir and Len Adleman
- SH MD2(1989, Ron Rivest
- AC DSA 1991, NIST
- SC AES 2001, NIST, from Rijndael proposal 1998
- AC ECC Foundations 1885, N. Kolbitz, Victor Miller
- SHA-2 2001- ... 2013 ... NIST
- AC ECC Crypto 2004-... until now, many contributions
- SHA-3 2006-2015

from initial Keccak Construction, G. Bertoni, J. Daemen, M. Peeters, G. Assche

Classical Substitutions and Transpositions ... (CAESER Cipher and many other examples: Morse, Great, Zodiac, Pipgen, ... etc etc)

Other classic algorithms: Playfair

More sophisticated (Algebraic, Matrix Mult.) Polyalphabetic Substitutions : Hill Cipher

Ex., Hill Cipher (Sir Lester S. Hill, 1929)
A B C D E F G H I J K L M N O P Q R S T U V X W Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 28 19 20 21 22 23 24 25

Plaintext: $\begin{pmatrix} 0\\2\\10 \end{pmatrix}$ Key: $\begin{pmatrix} 0 & 24 & 1\\13 & 16 & 10\\20 & 17 & 15 \end{pmatrix}$ Encryption: $\begin{pmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 10 \end{pmatrix} = \begin{pmatrix} 67 \\ 222 \\ 210 \end{pmatrix} \equiv \begin{pmatrix} 15 \\ 14 \\ 7 \end{pmatrix} \pmod{26}$ Ciphertext: Decryption $\begin{pmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{pmatrix}^{-1} \equiv \begin{pmatrix} 8 & 5 & 10 \\ 21 & 8 & 21 \\ 21 & 12 & 8 \end{pmatrix} \pmod{26}$ $\begin{pmatrix} 8 & 5 & 10 \\ 21 & 8 & 21 \\ 21 & 12 & 8 \end{pmatrix} \begin{pmatrix} 15 \\ 14 \\ 7 \end{pmatrix} \equiv \begin{pmatrix} 260 \\ 574 \\ 520 \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 2 \\ 10 \end{pmatrix} \pmod{26} \quad \text{Plaintext:}$

©rev, DI-FCT-UNL, Henrique João L. Domingos

Applied Cryptography Slide 10

Other classic algorithms: Vernam Construction Idea: choose a keyword as long as the plaintext

J. Vernam, 1918 The base idea for symmetric stream ciphers !

The Principle of OTPs (One Time Pads)

J. Mauborgne idea: Use a random key string, so long as the message size

Random Key Stream	ed to Key Stream
Supposing we will test a certain	Time to break (brute force) ?:
number of permutations:	
10 ⁹ tests/s	$4 \times 10^{26} / 10^9 = 4 \times 10^{17} \text{ s} = 6.3 \times 10^9 \text{ years}$
 10 ¹³ tests/s	 6.3 x 10º years
Plaintext P _i	

Interesting aspects: Unbreakable Randomness Permutations of 26 Chars, (monoalphabeth): 26! = 4x10²⁶ Practical aspects: Unbreakable if ... Truly Randomness... vs. Repeatable Keys Key Distribution Establishment and Sync.

Rotor Machines Ex: Enigma Machine

<u>http://enigmaco.de/enigma/enigma.html</u> <u>https://play.google.com/store/apps/details?id=uk.co.franklinheath.enigmasim&hl=en</u> <u>https://itunes.apple.com/us/app/mininigma-enigma-simulator/id334855344?mt=8</u>

Rotor Machines Ex: Enigma Machine

A "Polyalphabetic Substitution Cipher" Machine Period = 16900 x the more longest encoded message

Summary of the combinatory:

- A Table with permutations of 26 characters = 26! Permutations
 - 26 ! = 4 x 10²⁶
- 3 Rotors: 3 x 26! Permutations (in 15576 possible combinations)
- 4 Rotors: 4 x 26! Permutations (in 456976 possible combinations)
- Plugboard with L leads
 - Combination of letter pairs: 26 ! / (26-2L) ! * L! * 2^L)
 - Ex., L= 6 => 100,391,791,500 combinations =~ 100 ×10¹²
 => 100 billions
 - Ex., L=10 => 150,738,274,937,250 = 150 × 10¹⁵
 => 150 trillions

Steganography Techniques

Steganography Techniques

- Hidden secret information, encoded in public/available information (concealing the existence of the hided information), Ex:
 - Secret (hidden) messages (text) in texts
 - Secret (hidden) messages (text) in images
 - Secret (hidden) messages (text) in sounds
 - Secret (hidden) messages (text) in movies
 - In general: secret media (any) hidden in media (any)

Outline

- Classic Cryptography
- Applied Cryptography: Computational-Cryptography
 - Typology: objectives and focus of different cryptographic methods and algorithms
 - Cryptographic constructions
 - Secure channels w/ cryptographic protection
 - Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

X.800 framework - relevant mappings attack typology vs. services vs mechanisms the role of applied cryptographic tools as specific security mechanisms

Mappings in X.800 (remember from last lecture)

	Release of message contents	Traffic analysis	Masqu	ierade	Replay	Modific of mess	cation ages	Denial of service						
Peer entity authentication				Y										
Data origin authentication				Y										
Access control			-	Y										
Confidentiality	Y													
Traffic flow confidentiality		Y										-		
Data integrity					Ŷ	Y			Release	Traffic	Masquerade	Replay	Modification	Denial
Non-repudiation				Y					of	analysis		1.7	of messages	of
Availability								Ŷ	contents	1				service
				-			Encip	herment	Y					
							Digita	al signature			Y	Y	Y	
							Acces	s control	Y	Y	Y	Y		Y
/							Data	integrity				Y	Y	
							Authe excha	entication nge	Y		Y	Y		Ŷ
							Traff	ic padding		Y				
							Routi	ng control	Y	Y				Y
				Mech	nanism		Notai	ization			Y	Y	γ	
	Ensinh	Disital	A	Data	Authenti-	Traffic	Bautin	Natari			-	_	_	
Service	ermen	signature	control	integrity	exchange	padding	control	zation						
Peer entity authenticat	ion Y	Y			Y									
Data origin authentica	tion Y	Y								,				
Access control			Y											
Confidentiality	Y						Y							
Traffic flow confidenti	ality Y					Y	Y							
Data integrity	Y	Y		Y										
Non-repudiation		Y		Y				Y						
Availability				Y	Y						Applied Cry	votogran	hv Slide 1	9

Cryptographic tools as base specific mechanisms

Service	Enciph- erment	Digital signature	Access control	Data integrity	Authenti- cation exchange	Traffic padding	Routing control	Notari- zation	
Peer entity authentication	Y	Y			Y				
Data origin authentication	Y	Y							
Access control			Y						
Confidentiality	Y						Y		
Traffic flow confidentialit	y Y					Y Y			
Data integrity	Y	Y		Y					
Non-repudiation		Y		Y				Y	
Availability				Y	Y				
SymmetricCryptoMethods	Asymm Crypto Method	etric s	Secur Funct HMA or CN	e Has tions, Cs ACs	h Au and Dis Pro	Authentication and Key Distribution Protocols			

Mechanism

Cryptographic tools vs. X.800 framework

	Release of message contents	Traffic analysis	Masqu	ıerade	Replay	Modific of mess	ation ages	Denial of service						
Peer entity authentication				Y										
Data origin authentication				Y										
Access control				Y										
Confidentiality	Y													
Traffic flow confidentiality		Y												
Data integrity					Y	Y			Release	Traffic	Masquerade	Replay	Modification	Denial
Non-repudiation				Y					of	analysis		1.	of messages	of .
Availability								Y	contents	7 5				service
							Enci	herment	Y					
							Digit	al signature			Y	Y	Y	
							Acces	s control	Ŷ	Y	Y	Y		Y
Cry	ptogra	iphy i	neth	ods,			Data	integrity				Y	Y	
Aalgorithms, models, techniques				Auth excha	entication nge	Ŷ		Y	Y		Ŷ			
	-				_	_	Traff	ic padding		Y				
							Rout	ng control	Y	Y				Y
				Mech	anism		Notarization				Y	Y	Y	
Service	Encipherment	Digital signature	Access control	Data integrity	Authenti- cation exchange	Traffic padding	Routin; control	g Notari- zation					•	1
Peer entity authenticat	ion Y	Y			Y									
Data origin authentica	tion Y	Y)						1					
Access control			Y						1					
Confidentiality	Y						Y		1					
Traffic flow confidenti	ality Y					Y	Y							
Data integrity	Y	Y		Y										
Non-repudiation		Y		Y				Y						
Availability				Y	Y]		Applied Cry	ptograp	hy Slide 2	21

Role of Cryptographic Tools: Use models, Methods, Techniques and Algorithms

Important:

Cryptography is very important for Computer Systems and Network Security ! ...

... But it is not a PANACEA... Specific Tools are Specifically Targeted for Specific Properties !

=> Ex., Must be correctly combined in cryptographic constructions, in designing secure channels

Cryptosystems: Algorithms and Methods

 Encryption: data blocks, messages Symmetric cryptosystems Stream Ciphers vs. Block ciphers Some asymmetric crypto systems (not all) 	Confidentiality
 Digital signatures: authentication of data blocks, messages Some asymmetric cryptosystems 	Peer-Authentication
 Message Authentication Codes Sometimes called "Lightweight" Signatures MACs, HMACs or CMACs 	Fast Data/Message Authentication
 Secure Integrity Checks Secure Hash Functions 	Integrity

Outline

- Classic Cryptography
- Applied Cryptography
 - Typology: objectives and focus of different cryptographic methods and algorithms
 - Cryptographic constructions
 - Secure channels w/ cryptographic protection
 - Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

 Typology of Applied Cryptographic Methods, Models and Algorithms

Cryptography for Applied Computing Sometimes mentioned as "modern" or "computational" cryptography

Classic ve. Computational cryptography: ... big difference...

- Classic Cryptography:
 - Secrecy: the ALGORITHM => as secret (not known) processing and in the SETUP, PARAMETERES OR KEYS used by the algorithm !

Computational Cryptography (modern era):

- Algorithms are known, public, revealed, published, available for study by everybody ... and processed by computers
 - the more studied and the more unsuccessful attempts to break the algorithm The safer the algorithm is !
- Secrecy: only depend on KEYS
- KEYS as used as secret parameters
 - If we use different keys for the same input ... the effect of the "same" computation will work as a "random oracle"

Initial "mind setting" ...

- From what it is required, safe cryptographic algorithms are based on the assumption that the related computation problems must computationally hard, i.e., NP-complete.
 - In the unlikely event that someone proves that P=NP, these codes will break !
- For practical use: if we compute with correct keys or related secrecy parameters (as valid parameters), cryptographic operations are executed in polynomial time ... If not, to break the algorithm requires to solve a very hard problem not solvable in polynomial (computational) time
- So the question here is also on practical computing assumptions: computational possibilities and impossibilities
 - What physics do we need ? Is it feasible ?
 - How many time we need to break ? 10¹³ years ?

Computational Applied Cryptography: Base Types

 Typology of Applied Cryptography: Families of Methods. Algorithms and Techniques

Asymmetric Model

All types can be provided in Crypto Providers and Libraries that can be used for programming with different programming languages

©rev, DI-FCT-UNL, Henrique João L. Domingos

Computational Applied Cryptography

 Conventional Cryptography: Families of Method and Algorithms and related Techniques

Applied Cryptography: Typology

 Conventional Cryptography: Families of Method and Algorithms and related Techniques

(Some) Examples ("Some Kids in Town")

 Conventional Cryptography: Families of Method and Algorithms and related Techniques

Symmetric Cryptography

Symmetric Crypto

Symmetric cyphers: Block Ciphers vs. Stream Ciphers

- Block-Oriented (or block ciphers)
 - Used (parameterized) with different block modes of operation, possible Initialization vectors and padding processing (as security association parameters)
 - Key sizes and block sizes defined (fixed) for each algorithm (you must know it ...)
 - ... Characteristics for each algorithm
- Stream-oriented (or stream ciphers)
 - Byte-stream-oriented or bit-stream-oriented operation
 - Variable key-sizes (algorithm dependent)
 - Fast to operate on stream-oriented inputs, ex., Real-Time Processing (bytes, bits)
 - Ex., real-time bit-streaming, iterative-traffic and/or lowlatency communication requirements
 - Security issue: the security and period of the keystream generation

Use of Block Ciphers

Notation:

Symmetric

Crypto Model

 $C = \{P\}_{K}$; C = E(P, K); $C = E_{k}(P)$ // P encrypted with key K

 $P = \{C\}'_{K}$; P = D(C, K); $P = D_{k}(C)$ // C decrypted with key K

SAME KEY (shared) for Encryption and Decryption But E() and D() Functions are Different (inverse)

Use of Stream Ciphers

- Use for stream-encryption, ex., bit-streaming
- Interesting: real-time bit streaming (ex., radio-frequency communication)

Symmetric

Crypto Model
Stream Ciphers (Typical Structure)

©rev, DI-FCT-UNL, Henrique João L. Domingos

Symmetric

Crypto

Symmetric Crypto

Use of Symmetric Cryptography

- Robustness (security and correctness of the symmetric encryption algorithms on their trust-execution criteria)
 - Resistance against brute-force attacks and cryptanalysis attacks
- Need security association parameters for the intended purpose
- Need of strong keys: generated w/ randomness, distributed and maintained with security guarantees
 - TRNGs, PRNGs, PRFs for Key-Generation and other parameters
 - Ex., possible use of HSMs, Smartcards, Crypto-Tokens
 - Avoidance of "possible weak keys" in the key generation process for a specific algorithm
- Need of secure key-distribution and establishment protocols and services (shared keys and related security association parameters)
- Minimization or Avoidance of key-exposure
- Fast and secure "rekeying" services with perfect future and past secrecy, with key-independence
 - Ex., Rekeying for temporary session keys, or keys used with OTP assumptions

- Robustness against brute force attacks
 - Impossibility to conduct brute-force attacks to break algorithms in useful computing time or with required computing physics
 - ⇒For current computers time complexity to break is not possible in Polynomial Time: O(n^K) for some non-negative integer k, as bigger as possible [Ex., 10¹³ anos]
- Robustness against cryptanalysis attacks (or studies), under different criteria in trying to break the key, considering the initial knowledge of the attacker (or cryptanalyst)

Cryptanalysis Criteria

Symmetric

Crypto

Туре	Previously Known
Ciphertext Only	Encryption Algorithm and Observed Ciphertext
Known Plaintext	Encryption Algorithm, Observed Cyphertext and one or more Plaintext-Ciphertext Pairs
Chosen Plaintext • Or IND-CPA / Indistinguishability under Chosen Plaintext Attack	Idem but plaintext chosen by the cryptanalyst
 Chosen Ciphertext Based Cryptanalysis Or IND-CCA-1, as well as, IND-CCA-2 	Encryption Algorithm, Observed Cyphertext, one or more Purported Chosen Ciphertext, together with correspondent Plaintext
Chosen Text	Combination of everything above

More on symmetric encryption

- Practical use: on LABs (Java JCE Programming and Tools – ex., openssl)
- Also Important practical issues:
 - Block Ciphers:
 - Implications on the proper use of PADDING
 - Implications and relevant issues and tradeoffs in choosing proper MODES for different purposes !
 - Experimental observations in relevant tradeoffs;
 - Sizes of Plaintext vs. Ciphertext
 - Security Concerns
 - Performance Concerns
 - Reliability concerns
- Next Lecture on Symmetric Crytography: details and theoretical issues when using Symmetric Crypto Algorithms for Block Ciphers, Stream Ciphers and PWD-Based Encryption

Asymmetric Cryptography

Asymmetric Crypto Model Asymmetric Cryptography Model

Need Two related keys (or a Key-Pair Generation)

- a public-key, known by anybody: can be used to encrypt messages, and verify (or recognize) digital signatures
- a private-key, maintained as private: used to decrypt messages, and sign (create) digital signatures

In general*, what we encrypt with one key, we can decrypt with the other key of the pair

*) Sometimes not supported in specific algorithms and constructions

DIFFERENT KEYS (Keypair) Same E(), D() Functions ... or E() and D() is the SAME COMPUTATION

Plaintext input

Decryption algorithm

(reverse of encryption

algorithm)

Plaintext

output

©rev, DI-FCT-UNL, Henrique João L. Domingos

Encryption algorithm

(e.g., RSA)

Examples of Asymmetric Cryptography Algorithms

- Usable for Authentication (Digital Signatures) and Confidentiality:
 - RSA, EL Gammal, ECC Families or curves)
- Usable only for Authentication (Digital Signatures' Constructions)
 - DSA, ECDSA (w/ different ECC families or curves)
- Usable only for Confidentiality
 - Crammer-Shoup, Paillier,
 - Paillier, Goldwasser-Mical, Benaloh,

OBS: Diffie Hellman is am Asymmetric-Crypto Algorithm but is not used for Authentciation nor Confidentiality. It is for Key-Exchange/Agreement Purposes

Asymmetric Crypto Confidentiality + Authentication

Uhm ... Not good (practical) idea !!! Why? Can we do better for secure use? How?

Basic Scheme for Authentication: Digital Signature Constructions

 Principle of construction of Digital Signatures Schemes: Sender (Alice: A)

©rev, DI-FCT-UNL, Henrique João L. Domingos

Base Scheme for Authentication Proof

Asymmetric Crypto

Use of Asymmetric Cryptography

- Robustness (security and correctness of asymmetric cryptography algorithms on their trust-execution criteria)
 - Resistance against brute-force attacks and cryptanalysis attacks
- Need security association parameters for use (ex., pre-processing transformation, padding scheme and the same constructions: hashing, digital signature algorithm)
- Need strong keys: keypair generation w/ randomness
- Trust distribution of public keys: association between public keys and the correct principals - Certification of Public Keys
 - Possible use of HSMs, Smartcards, Crypto-Tokens
- Need of secure public key-distribution and establishment protocols and services under certification guarantees
- Need protocols and services for Public-Key Revocation and Status Verification & management

More on Asymmetric Cryptography

- Practical use: on LABs (Java JCE Programming and Tools ex., openssl)
- Also Important practical issues:
 - For Encryption and for "Standard" Digital Signatures' Constructions (Signing/Verifying Operations)
 - Implications on the proper use of PADDING in the case of Asymmetric Cryptography – very different purpose when compared with Symmetric Block Encryption
 - Experimental observations in relevant tradeoffs;
 - Sizes of Plaintext vs. Ciphertext
 - Security Concerns
 - Performance Concerns
 - Integrity Concerns
- In a Lecture on Asymmetric Crytography: details and theoretical issues involved in adopting different algorithms: RSA, DSA, ECC-Curves and Key-Exchange (DH and Group-Based DH)

Secure Hash Functions

Hash Functions

h = H(M) // h result is the hash value of input M

- Input (block M) can have any size*
 - *) Typically M must have a maximum size for each specific hash function
- The produced output *h* has always a fixed size
- H(*M*) is relatively easy to compute for any given *M*, with both hardware and software implementations practical.
- Irreversibility (or pre-image resistance):
 - from h is computationally infeasible to obtain M
 (One-Way Hash Functions)
- Collision-Resistance (or Collision-Free) :
 - Second-Image Resistance (also referred as weak collision resistance): Given M1, it is impossible to find M2≠ M1 such that h=H(M2)=H(M1)
 - Strong collision resistance: Impossible to find any pair X1, X2, such that H(X1) = H(X2)

Use of Secure Hash Functions

• Use for Integrity

Hash

Functions

- Message (or Data) Integrity Proofs and Guarantees
- Integrity of records in a Database (Data Base Integrity)
- Integrity of message flows with hash-chains (as aggregated integrity proofs in a chain of ordered messages in the flow
 H(Mi) = H(M || H(Mi-1)) w/ H(Mi-1) = H(Mi-1) || H M(i-2) ... and so on

This can be used as Traffic-Flow Integrity Proofs

- Other examples:
 - Integrity of Chains of Data Blocks (Integrity and Irreversibility of Blocks in Blockchains, where Blocks are "Hashed-Chained", With Blocks and Hash-Proofs maintained persistently, for example and typically, in a Merckle Tree Structure in a Data-Base (used as a LEDGER), decentralized (replicated) with Certain Consistency and Ordering Guarantees
 - Also used for Proof-Of-Work Verification. How ? Why ?
 - Also usable for possible DoS Avoidance Protection. How ? Why ?

More on Secure Hash Functions

- Practical use: on LABs (Java JCE Programming and Tools ex., openssl)
- Also Important practical issues:
 - Use of Secure Hash-Functions
 - Experimental observations in relevant tradeoffs;
 - Sizes of Hash-Values
 - Security Concerns
 - Performance Concerns
 - Integrity-Checking Concerns
- In a Lecture on Secure Hash: details and theoretical issues involved in adopting different algorithms

Emergent Cryptography

Beyond the current conventional applied cryptography

Just Informative ... Details not covered in the CNSS Course

LBE and Functional Cryptography

New Arithmetic Constructions and Emergent and Post-Quantum Cryptography (Some examples from recent research):

- Lattice-Based Cryptography (Post-Quantum) and important constructs (ex.,):
 - Applications for ZKP (Zero Knowledge Proofs), IBE (Identity Based Encryption) and similar requirements as the conventional encryption methods but ...
 - COMPLEXITY TIMES and SECURITY PROPERTIES for POST-QUANTUM Computing
- Identity-Based Cryptography
 - Identity Elements and Features used as Public Keys in Special Public-Key Cryptograhic Methods
- Functional Encryption Algorithms and Methods

Emergent Cryptography (Beyond the Base-Cryptographic Algorithms and Methods)

- Homomorphic Encryption Alg. And Methods
 - FHE (Fully Homomorphic Encryption)
 - PHE (Partial Homomorphic Encryption)
- Searchable Encryption (can also relate to Practical PHE Methods)

Applications:

- Privacy-Enhanced Content-Based Searchable Information Retrieval
- Multimodal Searchable Encryption
- Privacy-Enhanced Cloud Storage and Computation Services

Queryable Encryption for Content-Based Inormation Retrieval

New Arithmetic Constructions and Emergent and Post-Quantum Cryptography (Some examples from recent research):

- Queryable Content-Based Encryption for Privacy-Preserving Information Retrieval (for Encrypted Databases and Encrypted NoSQL Repositories or Key-Value Stores
 - Text-Only, Unstructured Data
 - Ex., Search/Index operations on encrypted unstructured data repositories
 - Text-Only, Structured Data (ex., Graphs, Trees, etc)
 - Ex., Support of Operations directly done on encrypted graphs
 - Ex., Ranking Algorithms directly running on encrypted documents
 - Ex., Encrypted SQL constructions of Encrypted Databases
 - Media-Contents (Privacy-Preserving Multimodal Content Based Information Retrieval or CBIR)
 - Ex., Support of Operations (ex., SEARCHES) directly done on ENCRYPTED IMAGE FORMATs
 - Ex., Given a Repository of Encrypted Images, Search an image that is Similar to

©rev, DI-FCT-UNL, Henrique João L. Domingos

Applied Cryptography Slide 59

Outline

- Classic Cryptography
- Applied Cryptography
 - Typology: objectives and focus of different cryptographic methods and algorithms
 - Cryptographic constructions
 - Secure channels w/ cryptographic protection
 - Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

Composition of Cryptographic Constructions

... In practice we need to combine all the different cryptographic methods. Why ?

What about performance (and computational cost... and energy consumption) of different methods?

- Easy to "feel" in practice ...
- See, ex::
 \$openssl speed
- Practical observation:

Hash = H(input)

Symmetric Crypto Encryption/Decryption Stream Ciphers

> Symmetric Crypto: Encryption/Decryption Block Ciphers

What suggests the performance and specialization of different cryptographic Methods ?

x 10³ to ... 10⁶ ... and more

Asymmetric Crypto

Computational Applied Cryptography Constructions (or Schemes)

 For Confidentiality, Authenticity, Integrity, and Key-Establishment

Alice to Bob:

{ Ks }_{KpubBOB} \parallel {M, H(M)}_{Ks} \parallel Sig_{KprivALICE} (M)

Х

Hybrid Cryptographic Constructions

Combination of Cryptographic Algorithms

Hybrid Cryptographic Constructions

 Protocols and Services for Secure Key-Distribution and Establishment of Security Association

Outline

- Classic Cryptography
- Applied Cryptography
 - Typology: objectives and focus of different cryptographic methods and algorithms
 - Cryptographic constructions
 - Secure channels w/ cryptographic protection
 - Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

Cryptographic Message Formats for Secure Channels

 Constructions with the combination of different methods in message multi-parts

Ex: A to B (Discussion)

Cleartext-Metadata || SIG || Secure Envelope || Confidental Data || Mess. Auth and Integrity || Fast Integrity Checks

Example:

Plaintext header: metadata, version

- || Sig (Info, Msg-Data, M)_{Sig-KprivA}
- || {Ks, Secrecy Params}_{KpubB}
- $|| \{M, H(M)\}_{Ks}$
- || MAC_{Km1} (Msg plaintext Data)
- ... or
- || MACopt_{Km2} (Ciphertext Data)

- : Public Metadata
- : Digital Siganture
- : Dist. of Symmetric Session Key
- : Ciphertext
- : HMACs or CMAC Cnstruction
- ... or
- : HMAC or CMAC Construction

Outline

- Classic Cryptography
- Applied Cryptography
 - Typology: objectives and focus of different cryptographic methods and algorithms
 - Cryptographic constructions
 - Secure channels w/ cryptographic protection
 - Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

Tools, Practice, Hands-On (in our LABs)

- Java JCA/JCE for Programming w/ Cryptography
 - JCA / JCE Model and Framework
 - Tools, Algorithms, Prog. Techniques
 - Hands On Practice
- Cryptographic tools and demos

Programming w/ Crypto Algorithms and Methods:

- Lab JCA/JCE, Setups and Prog. Model, Java Platform Policy Enforcements, and Programming w/ Crypto Providers
- Lab: JCA/JCE Symmetric Encryption (Block and Stream Ciphers), Block Modes, SAPs, Key Generation
- Lab: Secure Hash Functions and MACs (HMACs and CMACs)
- Lab: Public Key Crypto and Digital Signatures' Constructions
- Lab: Key-Exchange w/ Asymmetric Methods

Practical Considerations ... (see in LABs)

Specific symmetric crypto algorithms for block-ciphers

• Use:

- Fixed input Block sizes
- Valid Key-Sizes
 - Need Secure Key Generators to avoid weak keys
- Can operate by processing in different modes:
 - Ex., ECB, CBC, OFB. CFB. CTR, ...
- Can use modes with implicit integrity checks:
 - Ex., CCM, GCM, ...
- Depending on the mode and information to be encrypted/decrypted... we need to use padding schemes:
 - Ex., PKCS#5, PKCS#7, ...

How, When, Why and What we must chose For these different parameterizations ?

Practical Considerations ... (see in LABs)

Specific Asymmetric crypto algorithms

• Uses:

- Variable Block sizes
- Valid Key-Sizes (long, > 1024, 2048 bits)
 - Need Secure Key-Pair Generators to avoid weak keys
- Not all are used for the same purposes
 - Digital Signatures Constructions for Privacy or implicit Integrity
 - Encryption constructions for Confidentiality
- Depending on the purpose and information involved, ... we need or not to use padding schemes:
 - Ex., PKCS#1, PSS (ex. RSA-Based Signatures)
 - Ex., OAEP (ex., RSA-Based encryption)
 - Ex., NoPadding (ex., DSA, ECDSA Signatures

How, When, Why and What we must chose For these different parameterizations?

Practical Considerations ... (see in LABs)

Different and specific Hash-Functions, and MAC Constructions

- Operate with:
 - Limited or unlimited input information
 - Have different and specific security guarantees
 - Compute hash-values with different sizes
- Can be used as "Unkeyed" or as Keyed" hash values
 - Unkeyed when used for Message/Data Integrity purposes
 - Keyed when used for Message/Data Integrity and Authenticity purposes
 - This us used as HMAC Constructions (Hash-Based Message Authentication Codes)

How, When, Why and What we must chose For these different parameterizations ?
For those interested: Optionally Suggested Readings

on Symmetric Encryption

Suggested Reading (study for tests):

• W. Stallings, Network Security Essentials, Part I, Chapter 2

If you want more about Classical Encryption Techniques (including classical methods, rotor machines, steganography):

 W. Stallings, L. Brown, Cryptography and Network Security – Principles and Practices, Part 2 – Symmetric Ciphers, Chap 3 – Classical Encryption Techniques

read it