DI-FCT-UNL Segurança de Redes e Sistemas de Computadores *Network and Computer Systems Security*

Mestrado Integrado em Engenharia Informática MSc Course: Informatics Engineering 1st Sem., 2019/20120

Applied Cryptography Cryptographic Tools, Methods, Techniques and Algorithms

Outline

- Applied Cryptography
 - Typology: objectives and focus of different cryptographic methods and algorithms
 - Cryptographic constructions
 - Secure channels w/ cryptographic protection
 - Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

Cryptography

History / Origins Ancient Methods, Classical Cryptography vs. Modern Cryptography Computational / Applied Cryptography

Cryptography ... from classic cryptography ... (from the greek): krypthós (*hidden*) + graph ("*graphein" root… writing*)

Classic Cryptography: secrecy of the algorithm (or the means used to encode/decode functions)

Ancient Techniques:

- Ex., Bastions of Spartans, Secrets/Codes embedded in scriptures, ...
- Simple text substitution techniques (rotations, additive substitutions)
- Transpositions (permutations, reordering, geometric, columnar, table-relations, ...)
- Primarily: Monoalphabetic Ciphers,
- Middle age, 1500s >
 - Ex., Polyalphabetic substitutions, permutations (ex., 1553, Viginère Cipher) Algebraic description: $Ci = E_K (P_i) = (P_i + K_i) \mod 26$
 - Initial Algebraic Descriptions and Methods

• 1920s > ...

- OTPs w/ Key-Stream Generators and Algebraic Constructions
- Algebraic Constructions (Polyalphabetic Permutations w/ Matrix-Transf.)
- 1930s-1950 ... Rotor Machines

©rev, DI-FCT-UNL, Henrique João L. Domingos

(Some) Classical Encryption Methods and related transformations

- Caeser Cipher
 - (Shift Rotation mod)
- Generalization:

 $C=E_3(P) = (P+3) \mod 26$ $P=D_3(C) = (C-3) \mod 26$ $C=E_k(P) = (P+k) \mod 26$ $C=E_k(P) = (P-k) \mod 26$

Other transformations

- Monoalphabetic Ciphers: Permutations and Transpositions
- Chinese Methods: Columnar Transformations
- Viginère Cipher: Polyalphabetic Ciphers: Polyalphabetic 1533
 Substitutions
- Playfair Cipher: Permutations w/ Multiple Letter Encryptions 1854
- Vernam Cipher: bir-XOR w/ Key-Stream Generation, No
 1918
 Statistical Relatioships between Plaintext and Keys
- Hill Cipher: Linear Algebra (Matrix-Based Multiplications) 1929
- OTPs: Unbreakble One Time Pads
- Rotor Machines: Multiple (chains) Setup-Parameterized
- Permutations and Transpositions

©rev, DI-FCT-UNL, Henrique João L. Domingos

Applied Cryptography Slide 5

1950s

1930s

Cryptography ... Modern Cryptography

Modern Cryptography: algorithm not secret Secrecy is on the algorithm parameters (i.e., Cryptographic Keys)

Research: until the end of 1960s ... 1970s ... until now Some examples:

- SC Lucifer 1971, Horst Feistel
- SC Feistel Structure 1973, Horst Feistel
- SC DES 1977, IBM for NBS, later NSA
- AC Diffie-Hellman 1976 Whitfield Diffie, Martin Hellman
- AC RSA 1977-1978, Ron Rivest, Adi Shamir and Len Adleman
- SH MD2(1989, Ron Rivest
- AC DSA 1991, NIST
- SC AES 2001, NIST, from Rijndael proposal 1998
- AC ECC Foundations 1885, N. Kolbitz, Victor Miller
- SHA-2 2001- ... 2013 ... NIST
- AC ECC Crypto 2004-... until now, many contributions
- SH SHA-3 2006-2015

from initial Keccak Construction, G. Bertoni, J. Daemen, M. Peeters, G. Assche

Classical Substitutions and Transpositions ... (many examples: Morse, Great, Zodiac, Pipgen, ... etc etc)

©rev, DI-FCT-UNL, Henrique João L. Domingos

Other classic algorithms: Playfair

More sophisticated (Algebraic, Matrix Mult.) Polyalphabetic Substitutions : Hill Cipher

Ex., Hill Cipher (Sir Lester S. Hill, 1929)
A B C D E F G H I J K L M N O P Q R S T U V X W Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 28 19 20 21 22 23 24 25

Plaintext: $\begin{pmatrix} 0\\2\\10 \end{pmatrix}$ Key: $\begin{pmatrix} 0 & 24 & 1\\13 & 16 & 10\\20 & 17 & 15 \end{pmatrix}$ Encryption: $\begin{pmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 10 \end{pmatrix} = \begin{pmatrix} 67 \\ 222 \\ 210 \end{pmatrix} \equiv \begin{pmatrix} 15 \\ 14 \\ 7 \end{pmatrix} \pmod{26}$ Ciphertext: Decryption $\begin{pmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 22 & 17 & 15 \end{pmatrix}^{-1} \equiv \begin{pmatrix} 8 & 5 & 10 \\ 21 & 8 & 21 \\ 21 & 12 & 8 \end{pmatrix} \pmod{26}$ $\begin{pmatrix} 8 & 5 & 10 \\ 21 & 8 & 21 \\ 21 & 12 & 8 \end{pmatrix} \begin{pmatrix} 15 \\ 14 \\ 7 \end{pmatrix} \equiv \begin{pmatrix} 260 \\ 574 \\ 520 \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 2 \\ 10 \end{pmatrix} \pmod{26} \quad \text{Plaintext:}$

©rev, DI-FCT-UNL, Henrique João L. Domingos

Applied Cryptography Slide 9

Other classic algorithms: Vernam Construction Idea: choose a keyword as long as the plaintext

J. Vernam, 1918 The very-base idea for a symmetric stream cipher !

The Principle of OTPs (One Time Pads)

J. Mauborgne idea: Use a random key string, so long as the message size

Random nev Rey Stream encry	er ted to nt/decrypt Key Stream
Supposing we will test a certain number of permutations	n Time to break (brute force) ?: :
10 ⁹ tests/:	s 4x10 ²⁶ /10 ⁹ = 4x 10 ¹⁷ s = 6.3 x 10 ⁹ years
10 ¹³ tests/	s 6.3 x 10 ⁶ years
$Plaintext_{i} \qquad \qquad Op$	

Interesting aspects: Unbreakable Randomness Permutations of 26 Chars, (monoalphabeth): 26! = 4x10²⁶ Practical aspects: Unbreakable if ... Truly Randomness... vs. Repeatable Keys Key DistributionEstablishment and Sync.

©rev, DI-FCT-UNL, Henrique João L. Domingos

Rotor Machines Ex: Enigma Machine

<u>http://enigmaco.de/enigma/enigma.html</u> <u>https://play.google.com/store/apps/details?id=uk.co.franklinheath.enigmasim&hl=en</u> <u>https://itunes.apple.com/us/app/mininigma-enigma-simulator/id334855344?mt=8</u>

©rev, DI-FCT-UNL, Henrique João L. Domingos

Rotor Machines Ex: Enigma Machine

A "Polyalphabetic Substitution Cipher" Machine Period = 16900 x the more longest encoded message

Summary of the combinatory:

- A Table with permutations of 26 characters = 26! Permutations
 - 26 ! = 4 x 10²⁶
- 3 Rotors: 3 x 26! Permutations (in 15576 possible combinations)
- 4 Rotors: 4 x 26! Permutations (in 456976 possible combinations)
- Plugboard with L leads
 - Combination of letter pairs: 26 ! / (26-2L) ! * L! * 2^L)
 - Ex., L= 6 => 100,391,791,500 combinations =~ 100 ×10¹²
 => 100 billions
 - Ex., L=10 => 150,738,274,937,250 = 150 × 10¹⁵
 => 150 trillions

Steganography

Steganography Techniques

- Hidden secret information, encoded in public/available information (concealing the existence of the hided information), Ex:
 - Secret messages (text) in tests
 - Secret messages (text) in images
 - Secret messages (text) in sounds
 - Secret info (text or images) in movies
 - In genera: secret media hidden in public media
 - Examples and demos (will appear in a LAB class)

Example of other interesting approaches (Recent / On-going Research)

- Unobservable Covert Channels
 - Traffic encapsulation
 - Internet Censorship Circumvention
 - Privacy Enhanced Communication (Private Channels / Public Net. Infrastructures)
- Content Withholding Circumvention
- Non-Detectable Network Proxies / Traffic Rerouting combining Data Flows using Steganography Techniques and/or Traffic Obfuscation
- Communication over Randomized Protocols (Circumvention of Protocol Classifiers for Blocking Strategies)
- Protocol Imitation
- Protocol Tunnelling / Staged Protocols and Applications
- Tunnelling w/ Traffic Media Morphing and Multimedia Streaming
 - Ex., Covert Channels for Censorship Circumvention using Staged Conferencing Tools (Skype, Hanghout, etc)

Outline

Applied Cryptography

- Typology: objectives and focus of different cryptographic methods and algorithms
- Cryptographic constructions
- Secure channels w/ cryptographic protection
- Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

Computational Applied Cryptography

 Conventional Cryptography: Families of Method and Algorithms and related Techniques

-

Base Families (Algorithms)

Computational Applied Cryptography

 Conventional Cryptography: Families of Method and Algorithms and related Techniques

Also known as...

- Symmetric
 Encryption /
 Shared Key
 Cryptography
- 2 Basic Methos/Algs:
- Block Ciphers (or Block-Oriented Crypto Algs.)
- Stream Ciphers (Stream-Oriented Crypto Algs.)

Also known as...

- Public-Key Cryptography
- Essentially, block-oriented Crypto Algs.

Also known as...

 Key-Exchange Cryptographic Methods and Algs.

Also known as...

Message-Digesting Methods/Algs.

Computational Applied Cryptography

 Conventional Cryptography: Families of Method and Algorithms and related Techniques

Applied Cryptography: Typology

 Conventional Cryptography: Families of Method and Algorithms and related Techniques

"Each monkey on its correct branch" 🙂

Confidentiality (Encryption)	Auth. + Key Exchange	Integrity Proofs	Est and	ablihment of Keys SA Parameters
Symmetric Crypto	Asymmetric Crypto	Secure Hashing		Key- Agreement
Shared Key (sender/receiver) Encryption and Decryption functions use the same key Require secure Key generation and distribution	Use of Keypairs: Private and Public Keys (What you encrypt with one key of the pair you can decrypt with the other key of the pair	Use for Integrity Proofs		Based on Asymmetric Methods (using private and public Parameters as Key-Values) Used for secure establishment of symmetric keys
Block encryption: Use of different encryption modes and related parameters	Main use for Digital Signatures and Secure Envelopes for Sym Key Distribution			or security assotiation parameters
Block and key sizes fixed for each algorithm	or protected secrecy parameters			

©rev, DI-FCT-UNL, Henrique João L. Domingos

(Some) Examples ("of Kids in Town")

 Conventional Cryptography: Families of Method and Algorithms and related Techniques

Symmetric Crypto

- Block-Oriented (or block ciphers)
 - Used (parameterized) with different block modes of operation, possible Initialization vectors and padding processing (as security association parameters)
 - Key sizes and block sizes defined (fixed) for each algorithm (you must know it ...)
 - ... Characteristics for each algorithm
- Stream-oriented (or stream ciphers)
 - Byte-stream-oriented or bit-stream-oriented operation
 - Variable key-sizes (algorithm dependent)
 - Fast to operate on stream-oriented inputs, ex., Real-Time Processing (bytes, bits)
 - Ex., real-time bit-streaming, iterative-traffic and/or lowlatency communication requirements
 - Security issue: the security and period of the keystream generation

©rev, DI-FCT-UNL, Henrique João L. Domingos

Block Ciphers (Block-Encryption ALGs)

Notation:

Symmetric

Crypto

 $C = \{P\}_{K}$; C = E(P, K); $C = E_{k}(P)$ // M encrypted with key K P = $\{C\}'_{K}$; P = D(C, K); P = D_{k}(C) // C decrypted with key K

©rev, DI-FCT-UNL, Henrique João L. Domingos

Symmetric Crypto Stream Ciphers

- Use for stream-encryption, ex., bit-streaming
- Interesting: real-time bit streaming (ex., radio-frequency communication)

Symmetric Crypto Stream Ciphers

- Use for stream-encryption, ex., bit-streaming
- Interesting: real-time bit streaming (ex., radio-frequency communication)

Stream Ciphers (Typical Structure)

©rev, DI-FCT-UNL, Henrique João L. Domingos

Symmetric

Crypto

Asymmetric Crypto

Asymmetric Cryptography or Public-Key Cryptography

- **Robustness** (security and correctness of the symmetric encryption algorithms on their trust-execution criteria)
 - Resistance against brute-force attacks and cryptanalysis attacks
- Need security association parameters for the intended purpose
- Need of strong keys: generated w/ randomness, distributed and maintained with security guarantees
 - TRNGs, PRNGs, PRFs for Key-Generation and other parameters
 - Ex., possible use of HSMs, Smartcards, Crypto-Tokens
 - Avoidance of "possible weak keys" in the key generation process for a specific algorithm
- Need of secure key-distribution and establishment protocols and services (shared keys and related security association parameters)
- Minimization or Avoidance of key-exposure
- Fast and secure "rekeying" services with perfect future and past secrecy, with key-independence
 - Ex., Rekeying for temporary session keys, or keys used with OTP assumptions

Asymmetric Cryptography Model

Need Two related keys (or a Key-Pair Generation)

- a public-key, known by anybody: can be used to encrypt messages, and verify (or recognize) digital signatures
- a private-key, maintained as private: used to decrypt messages, and sign (create) digital signatures

In general*, what we encrypt with one key, we can decrypt with the other key of the pair

*) Sometimes not supported in specific algorithms and constructions

Same function (same computation) for encryption and for decryption, different keys

Note: Contrary to Symmetric Encryption: different functions (inverse functions), with the same key

©rev, DI-FCT-UNL, Henrique João L. Domingos

Asymmetric

Crypto

For Confidentiality principles: Encryption with the destination Public key

Confidentiality + Authentication

Uhm ... Not good (practical) idea !!! Why? Can we do better for secure use? How?

©rev, DI-FCT-UNL, Henrique João L. Domingos

Asymmetric

Basic Scheme for Authentication: Base Digital Signature Construction

 Principle of construction of Digital Signatures Schemes: Sender

©rev, DI-FCT-UNL, Henrique João L. Domingos

Base Scheme for Authentication

• Principle of Verification of Digital Signatures Schemes

Use of Secure Hash Functions

• Use for Integrity

Hash

Functions

- Message (or Data) Integrity Proofs and Guarantees
- Integrity of records in a Database (Data Base Integrity)
- Integrity of message flows with hash-chains (as aggregated integrity proofs in a chain of ordered messages in the flow
 H(Mi) = H(M || H(Mi-1)) w/ H(Mi-1) = H(Mi-1) || H M(i-2) ... and so on

This can be used as Traffic-Flow Integrity Proofs

- Other examples:
 - Integrity of Chains of Data Blocks (Integrity and Irreversibility of Blocks in Blockchains, where Blocks are "Hashed-Chained", With Blocks and Hash-Proofs maintained persistently, for example and typically, in a Merckle Tree Structure in a Data-Base (used as a LEDGER), decentralized (replicated) with Certain Consistency and Ordering Guarantees
 - Also used for Proof-Of-Work Verification. How ? Why ?
 - Also usable for possible DoS Avoidance Protection. How ? Why ?

Emergent Cryptography (Beyond the Base-Cryptographic Algorithms and Methods)

- New Arithmetic Constructions in Emergent Cryptography
- (Some) examples (recent research)
 - Lattice-Based Cryptography (Post-Quantum) and important constructs (ex.,):
 - ZKP (Zero Knowledge Proofs), IBE (Identity Based Encryption)
 - Homomorphic Encryption Alg. And Methods
 - FHE (Fully Homomorphic Encryption)
 - PHE (Partial Homomorphic Encryption)
 - Searchable Encryption

Applications:

- Privacy-Enhanced Content-Based Searchable Information Retrieval
- Multimodal Searchable Encryption
- Privacy-Enhanced Cloud Storage and Computation Services

Outline

Applied Cryptography

- Typology: objectives and focus of different cryptographic methods and algorithms
- Cryptographic constructions
- Secure channels w/ cryptographic protection
- Tools:
 - Java JCA/JCE for Programming w/ Cryptography
 - Tools in the Java Environment
 - Openssl library and the openssl tool

Computational Applied Cryptography Constructions (or Schemes)

Conventional Base Cryptography:

Hybrid Cryptographic Constructions

Combination of Cryptographic Algorithms

Hybrid Cryptographic Constructions

 Protocols and Services for Secure Key-Distribution and Establishment of Security Association

Outline

Applied Cryptography

- Typology: objectives and focus of different cryptographic methods and algorithms
- Cryptographic constructions
- Secure channels w/ cryptographic protection

- Tools:

- Java JCA/JCE for Programming w/ Cryptography
- Tools in the Java Environment
- Openssl library and the openssl tool

Cryptographic Message Formats for Secure Channels

- Constructions with the combination of different methods in message multi-parts
- Ex: A to B (Discussion)

Cleartext-Metadata || SIG || Secure Envelope || Confidental Data || Mess. Auth and Integrity || Fast Integrity Checks

Example:

Plaintext header w/ metadata

- || Sig (Info and Msg Data)_{Sig-KprivA}
- || {secrecy params}_{KpubB}
- || {Msg plaintext data}_{Ks}
- // can include Integrity Proof
- || MAC_{Km1} (Msg plaintext Data)
- || MACopt_{Km2} (Ciphertext Data)

- : Public Metadata
- : Digital Siganture
- : Dist. of Symmetric Session Key
- : Ciphertext data w/ Symm. Encryption // can include Hash (Msg)
- : HMACs or CMAC Cnstruction
- : HMAC or CMAC Construction

Outline

- Applied Cryptography
 - Typology: objectives and focus of different cryptographic methods and algorithms
 - Cryptographic constructions
 - Secure channels w/ cryptographic protection
 - Programming Tools

Tools, Practice, Hands-On (in our LABs)

- Java JCA/JCE for Programming w/ Cryptography
 - JCA / JCE Model and Framework
 - Tools, Algorithms, Prog. Techniques
 - Hands On Practice
- Cryptographic tools and demos

Programming w/ Crypto Algorithms and Methods:

- Lab JCA/JCE, Setups and Prog. Model, Java Platform Policy Enforcements, and Programming w/ Crypto Providers
- Lab: JCA/JCE Symmetric Encryption (Block and Stream Ciphers), Block Modes, SAPs, Key Generation
- Lab: Secure Hash Functions and MACs (HMACs and CMACs)
- Lab: Public Key Crypto and Digital Signatures' Constructions
- Lab: Key-Exchange w/ Asymmetric Methods

Next Lecture Topic ...

• Symmetric Encryption ... in more detail 🙂

For those interested: Optionally Suggested Readings

on Symmetric Encryption

Suggested Reading (study for tests):

W. Stallings, Network Security Essentials, Part I, Chapter 2

Can

read it

If you want more about Classical Encryption Techniques (including classical methods, rotor machines, steganography):

- W. Stallings, L. Brown, Cryptography and Network Security Principles and Practices, Part 2 – Symmetric Ciphers, Chap 3 – Classical Encryption Techniques
- Or see the first slides (can also talk with me for practical demos...)